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Abstract

We propose an approach to image retrieval that does not require any distance
computations. The idea is to represent images and corresponding image fea-
tures by means of the two sets of vertices of a bipartite graph. Even though in
such a graph the images are not directly related, the degrees to which the fea-
tures are present in an image allow for defining partial orders. If the degrees
of presence are normalized such that they form probability distributions, sim-
ilarity rankings result from the stationary distributions of stochastic diffusion
processes over the graph. The method is closely related to recent approaches
to ranking on manifolds but does not involve the computation of parame-
terized affinity and Laplacian matrices. Experiments with a standard image
retrieval data set demonstrate the efficacy of the approach. Compared to a
corresponding distance-based approach, it yields a higher overall precision.

1 Introduction

Content-based image retrieval (CBIR) from large databases has become a task of consid-
erable practical importance. Admen, artists, designers, and journalists need fast access
to appropriate icons or pictures to illustrate advertisements, journals, jingles or whatever
else requires visual amelioration nowadays. However, the sheer size and speed of growth
of present day image repositories create a crucial problem: consistent semantic annota-
tions can hardly be provided single-handedly anymore. Neither can teamwork guarantee
consistency. Experience withfolksonomiesgathered and maintained by online communi-
ties shows that spurious and ambiguous labels occur inevitably. Figure 1 illustrates what
this implies in practice; it displays a choice from the 40 top ranking results obtained from
typing “tiger” into Google’s image search.

State of the art retrieval systems therefore apply computer vision techniques that are
fine tuned to the task at hand by means of user feedback [3, 12, 14]. In the so called
human-in-the-loopapproach, the user repeatedly rates selections of images according to
how well they match the current query. Based on this relevance feedback, characteristics
of appropriate and inappropriate images are determined and a hopefully better suited set
of images is retrieved from the database. This interactive process continues until the user’s
demands are met.

In a series of influential papers, Rui and Huang [11, 12] presented interactive CBIR
systems based on a hierarchical model that combines different features and adaptable



Figure 1: Some of the top ranking results when searching Google Images for “tiger”.

distance measures. Even though their model and many of its successors enable flexible
searches for images similar to the user’s intent, the way the different distances between
features are defined appears to be solely technically motivated and is hard to grasp intu-
itively. More recent approaches [3, 14] apply more sophisticated reasoning and adaptation
processes, but at their heart, too, lies the problem of defining distances between images
that would allow for producing similarity rankings.

The reason why we emphasize this issue here is that it became clear some time ago
that sets of images of a semantic class tend to form nonlinear manifolds whose global
structure cannot be captured by simple metrics (see the examples in [2, 10, 13]).

Dealing with the problem of CBIR, the question then is how define similarities be-
tween objects residing on such manifolds. Or, in other words, what is needed is a method
to rank such objects. As a matter of fact, this problem has been addressed in several re-
cent contributions [1, 7, 8, 15, 16]. It has even been studied with respect to information
retrieval in general [5] and image retrieval in particular [6]. Since these approaches are
closely related to the idea presented in this paper, we will discuss them in more depth later
on. For now, we simply point out that all these approaches derive the global structure of
a set of data by considering local relations among individual elements which are again
based on some notion of distance.

In this paper, we consider only a single iteration in an interactive CBIR system and
focus on the problem of image ranking. Our approach determines similarities among im-
ages but does not require any distance computations. The idea is to represent a collection
of images and a set of meaningful image features by means of the two sets of vertices of a
bipartite graph. Assuming the edges between images and features to denote transitions in
a Markov process immediately provides an ordering scheme: if we model a user query as
an initial distribution over the vertices corresponding to images, a ranking results from the
stationary distribution of a corresponding Markov chain that starts from this initial state.

In the next section, we detail this idea and the computational approach. We will see
that there is a simple closed form solution to compute image rankings from an arbitrary
query. We will discuss that, similar to the approaches in [1, 7, 8, 15, 16], our approach
leads to a graph diffusion kernel. In contrast to existing methods, however, the kernel
naturally results from the probabilistic model and its derivation does not require manual
adjustment of free parameters. In section 3, we present experiments that demonstrate
the efficacy of the proposed approach. On a standard data set it yields useful precision
and outperforms a distance-based retrieval method considered for baseline comparison.
Finally, section 4 concludes this paper and points out promising next steps of research.
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Figure 2: Example of a bipartite graph. Although there are no direct relations among the
verticesui , their relations with the verticesv j define a similarity and thus allow for partial
ordering. With respect to vertexu3, for instance, the order isu3 w u4 w u1 w u2

2 Ranking as a Markov Process over Bipartite Graphs

The idea for the CBIR approach presented in this paper occurred while we were exploring
novel mechanisms for collaborative filtering for automatic recommender systems. In the
discussion that follows, we will thus frequently resort to rather metaphorical language and
make use of terms such asvote foror ratewhich we feel convey the underlying ideas.

2.1 Mathematical Model

Assume labeled bipartite graphG = (V,E) as shown in Fig. 2. Its sets of verticesV is
partitioned such thatV = V1∪V2 andV1∩V2 = /0. Then verticesu1,u2, . . . ,un in the set
V1 correspond to entities (such as users, images, . . . ). In a slight abuse of notation we will
identify vertices and their labels and represent a labeling of the vertices inV1 by means
of a vectoru = [u1,u2, . . . ,un]T . Them verticesv1,v2, . . . ,vm in the setV2 correspond to
rated items or features that are voted for (e.g. books, RGB color bins, gradient directions,
. . . ) and their labels are stored in a vectorv = [v1,v2, . . . ,vm]T .

In a recommender systems, each entityui ∈ V1 votes for (a subset of) the items in
V2. Dealing with CBIR, we may think of the votes as indicators to what extend a certain
feature inV2 is present in an image represented byui . In both cases, votes or frequency
counts can be represented by means of directed, weighted edges (see Fig. 3(a)).

Even though there are no immediate relations (i.e. no edges) among the elements in
V1, their voting behavior allows for determining partial orders. Given an entityui , its
fellow entities can be ranked according to how much their voting behavior resembles the
one ofui . In contrast to common distance measures between vectors of votes or frequency
counts, the bipartite graph model seamlessly accounts for indirect relations as well. In the
example shown in Fig. 2, for instance,u2 is related tou3 andu4 alike. However, while the
nature of its relation tou4 is of first degree because both entities share a vote, its relation
to u3 is a second degree relation because it is mediated throughu4.

The key idea is now to understand relations of arbitrary degree as the outcome of
a stochastic diffusion process over the bipartite graph. To this end, we normalize the
votes cast by an entity so that they sum to 1. If all the votes of all the entities are stored
in a column stochasticm× n matrix R, and entity vectors are normalized so that they
sum to 1, too, individual or weighted combined ratings result fromvt = Rut . With these
assumptions, we obviously are considering probabilistic mappings fromV1 to V2.
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Figure 3: Example of the beginning of a stochastic diffusion process over a bipartite
graph. Staring with the distributionu0 = [0010]T produces a distributionv0 which in turn
leads to the updated distributionu1.

Given the transition matrixR, each itemv j ∈V2 can deducewhich entities do vote for
it for this information is essentially contained in the transpose of the transition matrix. If
S∝ RT was normalized so that it is a column stochastic matrix, too, a set of rated items
can (in turn) vote for entities (see Fig. 3(b)). An updated distribution over the entities in
V1 would then result from

ut+1 = Svt = SRut
!= Hut . (1)

Note that then× n matrix H introduced in last step of this derivation is a doubly
stochastic matrix whose rows columns and rows sum to 1. It is square and non-negative
and its eigenvaluesλk are characterized by|λk| ≤ 1.

Also, note thatH defines a Markov process over the setV1. Therefore, even though no
direct relation among theui ∈V1 were available in the first place, we now have a tool for
ranking. Assume an initial distributionu0 with only a few non zero entries. Then, after
t steps, the probabilities inut = Htu0 will be higher for entities which are more closely
related to the initially active elements and less high for less closely related ones.

However, in this most simple form, the model cannot produce reasonable rankings
if the underlying Markov chain is irreducible and contains positive-recurrent states. In
this (practically very likely) case, the process converges to a uniform distribution over the
elements inV1 which does not allow for any ranking. We therefore assume the initial dis-
tribution u0 to be a steady source of probability mass that constantly feeds the stochastic
process. With this modification, the update rule for distributions is given by

ut+1 =
1
2

[
Hut +u0

]
(2)

where the scaling factor12 ensures thatut+1 does sum to 1 just asut andu0 do. With
some algebra it is easy to see that, written as a power series, the recursive expression in
(2) amounts to
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(1

2
H

)t
u0 +

1
2

t−1

∑
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(1
2

H
)i

u0 (3)

Recall thatH is a doubly stochastic matrix whose eigenvaluesλk satisfy|λk| ≤ 1. For
the limit t → ∞, we therefore have

lim
t→∞
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H
)t

= 0 and lim
t→∞
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H
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. (4)



Hence, the iteration in equation (2) is guaranteed to converge. Once the process has
converged, the vectoru it converged to is characterized byu = 1

2

[
Hu +u0

]
which directly

leads to the closed form solution

u =
1
2

[
1− 1

2
H

]−1
u0. (5)

Therefore, given an arbitrary initial distributionu0 that might represent a single entity
or –just as well– a mixture of entities, we can immediately determine the corresponding
stationary distribution and the ranking it implies.

2.2 Discussion

It is interesting to note that the matrix in equation (5) constitutes a diffusion kernel [8]. In
fact, from the derivation, we recognize another instance of thekernel trick. The similari-
ties among vectorsu ∈ Rn that are contained inH = SR result from mapping the vectors
back and forth to a (usually higher dimensional) spaceRm.

Diffusion kernels for the purpose of computing similarities on manifolds or graphs
have recently been studied by several authors [1, 7, 8, 15, 16]. In two contributions closely
related to this paper, Zhou et al. [15, 16], investigate the problem of ranking on manifolds.
They manifolds they are concerned with are represented by means of adjacency graphs.
Given an unstructured set of feature vectors, they compute a matrix that represents local
structures in the data by means of the distances between each data point and itsk nearest
neighbors. The adjacency matrix is then transformed into a similarity matrixK using a
Gaussian kernel with parameterσ . GivenK , they show that diffusion processes on this
adjacency graph are governed by the matrix(1−α)

[
1−αK

]−1
. This, of course, closely

resembles the result in (5).
In fact, from settingα = 1

2, we recognize stochastic diffusion over a bipartite graph to
be a special case of the problem studied [15, 16]. However, some comments appear to be
in order. While our derivation did not involve any free parameters, the approach by Zhou
et al. requires at least three of them (k, σ , α). Moreover, while our approach avoids the
computation of distances between vectors of ratings or features, the approach by Zhou
et al. requires distance computation for constructing the adjacency matrix as well as the
corresponding similarity matrix. Finally, the matrixH in our approach is a stochastic
matrix and thus allows for a concise interpretation of the ranking procedure in terms of a
Markov process. The matrixK in the approach by Zhou et al., in contrast, eludes such an
interpretation.

Ranking on manifolds has already been applied in systems for document and image
retrieval [5, 6]. However, to the best of our knowledge, all known such systems consider
diffusion processes over adjacency graphs that represent local neighborhoods similar to
the way discussed above. They therefore leave the user with the problem of choosing
suitable distances and parameters. Our approach, on the other hand, is parameter-free.
In the next section, we present initial experiments which demonstrate that it nevertheless
yields useful results for the problem of CBIR.



3 Experiments

In this section, we report first results obtained from our approach to image similarity
ranking. Note that, in our experiments, we did not pay too much attention to the selection
of features suitable for the task of CBIR. Therefore, the figures and examples presented
below should not be considered the maximum achievable performance. Rather, they are
meant to illustrate the potential of ranking based on diffusion over bipartite graphs.

3.1 Setting

All our experiments considered the Corel 1000 data set [9]. It contains 1000 color images
showing scenes or objects from 10 different categories; for each category, there are a 100
examples.

Since the idea of thedegree of presenceof a feature, which we alluded to in the
last section, naturally translates to the use of histograms, we considered histogram-based
descriptors to characterize entire images in the data set. In order to represent information
due to the geometric structure of the image content, we decided to apply histograms of
oriented gradients as introduced by Dalal and Triggs [4]. We used 12 bins to store gradient
directions computed over a 9×9 grid of cells. The nonlinear normalization of different
histograms was computed with respect to 3× 3 blocks of cells. In order to represent
information contained in the color distributions of the images, we adopted the idea by
Dalal and Triggs to color histograms. Here, we considered 5×5 cells which again were
normalized using 3× 3 blocks. The color histograms in each of the cells contained 20
bins; the corresponding prototypical colors were determined from clustering the pixels of
all images in the database into different sets. Other than that, no preprocessing steps were
applied; in particular, we did not perform brightness adjustments or color normalization
such as proposed in [4].

Given these image descriptors, we tested how our approach performed when the de-
scriptors were considered individually as well as how it performed when they were com-
bined into a larger vector. For baseline comparison, we also verified how a retrieval pro-
cedure performed that determines image similarities based on the cosine distance between
feature vectors.

The figures in the Tables 1 to 3 resulted from issuing 10 different queries for each
category and averaging over the results. In accordance with the traditional approach in
information retrieval, we characterize the different algorithms in our test with respect to
theprecisionthey achieved.

3.2 Results

Tables 1, 2, and 3 list the precision valuesat 5, at 10, andat 20, respectively, and thus
indicate how many relevant documents were returned among the top 5, top 10, and top 20
ranking documents. Results obtained from the histogram of gradients features are found
in the columns markedHOG, the ones obtained from histograms of colors are displayed in
the columns markedHOC, results yielded by the combined descriptors are labeledboth.

Although some images seem to defy retrieval (e.g. the pictures of Mountains), the re-
sults obtained from stochastic diffusion processes over bipartite graphs generally appear
reasonable and useful. Moreover, on average, our approach consistently outperforms the



stochastic diffusion cosine distance

HOG HOC both HOG HOC both

New Guinea 82 82 82 10 50 44
Beaches 80 90 94 46 54 44
Rome 40 20 32 14 44 32
Busses 80 52 78 76 56 78

Dinosaurs 96 100 100 72 100 100
Elephants 20 78 70 22 66 50
Flowers 60 72 78 34 94 54
Horses 22 76 74 96 90 94

Mountains 4 24 18 8 42 34
Food 26 36 66 0 58 58

average 51 63 69 38 65 59

Table 1: Precision @ 5 obtained on the Corel 1000 data set.

stochastic diffusion cosine distance

HOG HOC both HOG HOC both

New Guinea 76 76 76 5 52 41
Beaches 73 84 90 40 39 41
Rome 35 21 33 14 37 31
Busses 74 45 74 71 48 71

Dinosaurs 89 97 97 59 100 100
Elephants 21 68 65 15 61 42
Flowers 62 74 78 33 88 49
Horses 19 68 64 92 85 89

Mountains 4 21 17 5 36 25
Food 22 32 59 5 55 48

average 48 59 65 34 60 54

Table 2: Precision @ 10 obtained on the Corel 1000 data set.

baseline method, if it considers the combination of gradient and color features. Prelimi-
nary results like this are promising and justify further work on CBIR based on parameter-
free diffusion over bipartite graphs.

Figures. 4 through 6 exemplify another interesting and promising feature of our ap-
proach: since it avoids the computation of distances, it does not only apply to ranking
with respect to individual elements on a manifold but can be seamlessly applied in order
to rank with respect to sets of elements. The figures illustrate, how this can aid CBIR.

In its lower row, Fig. 4 shows the top 5 ranking images that were returned when the
image in the upper row was used as the query example. The ranking resulted from using
the combined gradient and color features and starting the Markov chain with an initial



stochastic diffusion cosine distance

HOG HOC both HOG HOC both

New Guinea 65 65 65 9 54 37
Beaches 69 77 82 32 38 40
Rome 30 18 26 15 27 26
Busses 66 37 71 60 48 64

Dinosaurs 80 90 90 42 100 98
Elephants 20 56 53 16 57 42
Flowers 58 66 74 27 80 50
Horses 21 58 60 88 79 86

Mountains 6 22 17 10 35 25
Food 19 34 52 7 52 40

average 43 52 59 30 57 51

Table 3: Precision @ 20 obtained on the Corel 1000 data set.

Figure 4: A single query image and the 5 top ranking results.

distributionu0 = [0. . .010. . .0]T . Figures 5 and 6 show the outcome of the process when
started with a distributionu0 = 1

M [0. . .010. . .010. . .0]T whereM = 3 elements were
set to 1

M . From Fig. 5 we see that, if these elements index visually similar images, the
retrieved images appear similar to these images, too. If the initial distribution covers a set
of less similar images, the ones that will be returned among the top ranking images will
also show a greater variety (see Fig. 6).

4 Summery and Outlook

In this paper, we described a novel approach to image ranking for content-based image
retrieval. The interesting characteristics of this approach are that it is parameter-free and
that it determines image similarities without computing distances. Given a collection of
images together with a corresponding set of normalized feature vectors, the idea is to un-
derstand both sets as the disjoint sets of vertices of a bipartite graph. If the edges between
images and features are assumed to denote transitions in a Markov process and if given
queries are taken to be the initial distribution, an ordering with respect to a query results



Figure 5: Three similar query images and the 5 top ranking results.

Figure 6: Three less similar query images and the 5 top ranking results.

from the stationary state of the chain. By design –and in contrast to other recent ap-
proaches to manifold ranking– our approach allows for a rigorous interpretation in terms
of Markov processes. Since these are completely characterized by the underlying stochas-
tic matrix, a user does not have to adjust free parameters and distance measures. On the
contrary, feature frequency counts or histograms immediately lead to necessary transition
probabilities.

Preliminary results obtained with this approach are promising and justify further in-
vestigation as to what features might further improve precision. In addition, the method
itself offers interesting perspectives for future research. An obvious idea is to apply it to
classification: given a feature vectorv derived from an unknown input image and a set of
known images, the new image can be classified by, for instance, a majority count of the
top ranking entities in the vectoru that results from a query with the initial distribution
u0 = Sv. Another direction worth pursuing further appears from noting that equation (2)
resembles the systems one deals with in linear quadratic control. The noticeable differ-
ence is that, in equation (2), the control matrix is set to1. Especially from the point of
view of interactive content-based retrieval, ways of adapting this matrix to better meet the
user’s intent seem a worthwhile topic.
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