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Abstract

Recent advances in real-time visual SLAM have been based primarily on
mapping isolated 3-D points. This presents difficulties when seeking to ex-
tend operation to wide areas, as the system state becomes large, requiring
increasing computational effort. In this paper we present a novel approach
to this problem in which planar structural components are embedded within
the state to represent mapped points lying on a common plane. This col-
lapses the state size, reducing computation and improving scalability, as well
as giving a higher level scene description. Critically, the plane parameters
are augmented into the SLAM state in a proper fashion, maintaining inherent
uncertainties via a full covariance representation. Results for simulated data
and for real-time operation demonstrate that the approach is effective.

1 Introduction

Concurrently estimating the pose of a moving camera and scene structure in real-time
is appealing, both for the algorithmic challenges involved and the potential applications
that can result. Recently, much progress has been made by adopting the principles of
simultaneous localisation and mapping (SLAM) from robotics [19], where it was aimed at
enabling autonomous systems to navigate around previously unknown surroundings. For
a single camera, however, either attached to a person or handheld, and using only visual
measurements, the problem is much more difficult, as the benefits of wheel odometry and
control in robotics, for example, are no longer available.

Since the pioneering work of Davison [7], based on Kalman filtering and efficient fea-
ture matching, several visual SLAM systems have been proposed, addressing problems
such as scalability and robustness. For example, Eade and Drummond [10] pose the prob-
lem within a factored sampling framework, using the FastSLAM algorithm to offer better
theoretical scalability of map size, whilst Chekhlov et al. [5] use highly discriminative
features with scale prediction to improve robustness of tracking and to handle periods of
measurement loss. More recently, Williams et al. [20] combine an auxiliary RANSAC
process with the Kalman filter to achieve relocalisation when tracking fails.

These systems are based on sparse maps, which are built by estimating the position
of 3-D scene points and their associated uncertainties. This minimal representation is
attractive since, in practice, it allows real-time operation whilst providing sufficient infor-
mation to maintain accurate tracking. Recently, however, there has been a move towards



the use of more structure-rich maps, in order to gain higher level scene descriptions and
minimise redundancy. This includes the estimation of local surface normals [14], 3-D line
segments [18, 12] and edgelets [9]. However, these descriptions are still based on isolated
3-D features and there is no sense of how these features group together to form higher
level structures. A move towards the latter has been developed by Castle et al. [4], where
known planar objects are detected using appearance features and inserted into the map.

In this paper we describe a novel approach to building in structural grouping within
visual SLAM without prior knowledge of objects. This is achieved by augmenting the
state with parameters representing higher level structures and then ‘folding in’ subsets of
3-D points which are consistent with the higher level parameterisation. This collapses the
state space, reducing computational demands and increasing scalability, as well as giv-
ing a higher level scene description. Crucially, this is done in a manner which maintains
the inherent uncertainties built up during SLAM operation by adopting a full covariance
representation, ensuring consistency of the tracking and the map estimate. We demon-
strate the approach by using it to discover 3-D planes in a scene. Plane detection has been
previously investigated in the context of offline structure from motion [3] and is a natu-
ral choice to enhance visual maps given that most man-made environments contain large
well defined planes. In Augmented Reality applications, for instance, planes are useful
for augmenting the scene with virtual objects that are relative to a planar surface [13].

The paper is organised as follows. In the next section we briefly summarise the basic
visual SLAM system. Details of state space augmentation and collapsing are then given
in Section 3, followed by details of how this can be used for discovering higher level
structure such as planar surfaces. Results are then presented for simulated data and real-
time operation within an office environment.

2 Visual SLAM Using Kalman Filtering

We assume a calibrated camera moving with agile motion whilst viewing a static scene.
The aim is to estimate the camera pose, whilst simultaneously estimating the 3-D param-
eters of structural features, such as points or surfaces. We use a Kalman filter framework,
similar to that in [7, 18, 5]. The system statex = [v,m]T has two partitions, one for the
camera posev = [q, t]T and one for the structural features,m = [m1,m2, . . .]T . The cam-
era rotation is represented by the quaternionq andt is its 3-D position vector, both defined
w.r.t a world coordinate system. We adopt a generalised framework for the structural par-
tition to allow multiple feature types to be mapped. Eachmi denotes a parameterisation of
a feature, be it a position vector for a 3-D point or the position and orientation of a planar
surface. In general, we expect the number and the types of features to vary as the camera
explores the environment, with new features being added and old ones being removed so
as to minimise computation and maintain stability.

The Kalman filter requires aprocess modeland anobservation model, encoding the
assumed evolution of the state between time steps and the relationship between the state
and the filter measurements, respectively [2]. We assume a constant position model for
the camera motion, i.e. a random walk, and since we are dealing with a static scene this
gives the process model

xnew= f(x,w) = [∆q(wω)⊗q, t +wτ ,m]T (1)



wherew = [wω ,wτ ]T is a 6-D noise vector, assumed to be fromN(0,Q), ∆q(wω) is
the incremental quaternion corresponding to the Euler angles defined bywω , and⊗ de-
notes quaternion multiplication. Note that the map parameters are predicted to remain
unchanged and that the non-additive noise component in the quaternion part is necessary
to give an unbiased distribution in rotation space. At each time step, we collect a set of
measurements,z = [z1,z2, . . .]T , where in general eachzi will be related to the state via
a separate measurement function, i.e.zi = hi(x,e), wheree is a multivariate noise vector
from N(0,R). For example, when mapping point features, the measurements are assumed
to be corrupted 2-D positions of projected points and for theith measurement

hi(x,e) = Π(y(v,m j))+ei (2)

wherem j is the 3-D position vector of the point associated with the measurementzi ,
y(v,m j) denotes this position vector in the camera coordinate system,Π denotes pin-hole
projection for a calibrated camera andei is a 2-D noise vector fromN(0,Ri).

The filter gives state mean and covariance estimates based on the process and obser-
vation models. Both are non-linear and thus we use the extended Kalman filter, in which
predictions and updates are derived from approximations based on the Jacobians off and
hi [2]. The role of the covariances within the filter is critical. Proper maintenance en-
sures that updates are propagated amongst the state elements, particularly the structural
components, which are correlated through their mutual dependence on the camera pose
[19, 8]. This ensures consistency and stability of the filter. Propagation of the state covari-
ance through the observation model also allows for better data association, constraining
the search for image features. As discussed next, it is therefore crucial to ensure that
covariances are properly maintained for successful filter operation.

3 EKF SLAM with Plane Discovery

We discover higher level structure within the SLAM framework in the following manner.
We begin by mapping 3-D points, starting from known points on a calibration pattern [7].
As the camera moves away, new points are initialised and added to the map, allowing
tracking to continue as the camera explores the scene. Points are added using the inverse
depth representation [15] and augmented to the state in a manner which maintains full
covariance with the rest of the map [1] (see below). For measurements, we use the fast
salient point detector developed by Rosten and Drummond [17] to identify potential fea-
tures and the SIFT-like descriptors with scale prediction developed by Chekhlovet al. [5]
for repeatable matching across frames.

As SLAM proceeds, the system seeks to identify subsets of mapped points that po-
tentially lie on a planar structure. This is done using an auxiliary RANSAC process and
a subsequent principal component analysis amongst inliers then yields initial estimates
for the plane parameters, allowing a new ‘planar feature’ to be augmented to the state.
The 3-D inlier points are then transformed to 2-D planar points, representing their posi-
tion within the plane, hence collapsing the state. Critically, both the augmentation and
transformation include proper adjustment of the state covariance, ensuring that full cross
correlation is maintained amongst the existing and new state parameters. As SLAM con-
tinues, new 3-D planes are initialised as appropriate and the system attempts to collapse
new 3-D points into the planes, hence continuing to reduce state size. Details of each
component are given in the following sections.



3.1 Augmenting and Collapsing the State Space

It is useful to consider first the general procedure for augmenting and transforming the
state space in a SLAM system [1, 6]. Assume that we have an existing state estimate
x̂ = [v̂,m̂1, . . . ,m̂n]T , with n features in the map, and that we wish to augment the state
with a new featuremn+1, based on an initialisation measurementzo. In general, the initial
estimate for the feature will be derived from a combination of the measurement and the
existing state, i.e.̂mn+1 = s(x̂,zo), and the augmented state covariance then becomes

Pnew = J
[

P 0
0 Ro

]
JT J =

[
I 0

∇sv ∇sm1 . . . ∇smn ∇szo

]
(3)

whereRo is the covariance of the measurement and∇sv = ∂s/∂v. This transformation
of the covariance introduces the important correlations between the new feature and the
existing features in the map. For example, in the case of augmentation with a new point
feature, only the Jacobians∇sv and∇szo are non-zero and the new point feature is cor-
related with those already in the map through the camera pose. In a similar way, we can
also transform an existing feature to a different representation, e.g.m̂new

i = r(x̂), and then
the covariance update is given by

Pnew= JPJT J =


I 0 0

∇r v . . . ∇rmi−1 ∇rmi ∇rmi+1 . . . ∇rmn

0 0 I

 (4)

where any change in the dimensions of the state is reflected in the dimensions of the
JacobianJ. We can use both of the above relationships in order to introduce higher level
features and collapse the state size. For example, consider a new featuremn+1 which
represents a higher level structure and which imposes a constraint on a subset of existing
features. Given an initial estimate ofmn+1, we can introduce it into the system using
(3) and the constraint can then be imposed by transforming the existing features into the
new constrained representation using (4). This collapses the state by removing redundant
constrained variables, whilst also maintaining the correlations between the new features,
the camera pose and the remainder of the map.

3.2 Representing Planes

We demonstrate the process of collapsing the state space using the example of discovering
and enforcing planar structure in a scene. The descriptors used to match and identify 3-D
points perform best when they are initialised on planar, textured surfaces, so it is likely
that many of the points in the map will end up lying on planes. We seek to infer the
locations and orientations of these planes and introduce parameterisations of the planes
as new features in the map. This then allows the 3-D points lying on the planes to be
collapsed into 2-D planar points defined w.r.t the plane. We use a seven parameter state
vector to define a plane, so that a new planar feature augmented to the state has the form
mn+1 = [po,θ1,φ1,θ2,φ2]T , wherepo is the plane origin and the orientation is defined by
two basis vectors,c(θ1,φ1) andc(θ2,φ2), which lie on the plane, i.e.

c(θi ,φi) = [cosφi sinθi , −sinφi , cosφi cosθi ]T (5)



Note that the normal to the plane is then simply the cross product between the two basis
vectors, i.e.n = c(θ1,φ1)×c(θ2,φ2). A 3-D point in the map which lies on the plane and
whose feature vectormi defines its 3-D position vector, can then be transformed into a
2-D planar point using

mnew
i = [(mi −po) · c(θ1,φ1), (mi −po) · c(θ2,φ2)]T (6)

where· denotes the dot product. Thus forl such points, this gives a state size of 7+ 2l ,
compared with 3l , giving a reduction in state size forl > 7.

3.3 Initialising Planes

We use the RANSAC algorithm [11] to search for planes amongst point features in the
map, similar in approach to that used in [3]. Plane hypotheses are generated from min-
imal sets of points randomly sampled from the subset of point features with variance
σ2

max< σ2
T , whereσ2

max is the maximum of the variances along each dimension andσT is
a suitably chosen threshold. Each hypothesis is tested for consensus with the rest of the
set. A minimal set of point features(m1,m2,m3) generates the parameters of the plane
hypothesis as follows:

po = m1 c(θ1,φ1) = m2−m1 c(θ2,φ2) = m3−m1 (7)

and a pointmi is deemed to be in consensus with the hypothesis if its perpendicular
distance from the plane,d, is less thandT , whered = (mi − po) · n, and its Euclidean
distance from the plane origin is less thandmax. The second test ensures that we only
initialise planes with strong local support. This is important because it is known that the
relative positions of nearby points in a SLAM system are typically very accurate, even if
the uncertainty in the global positions is large, so introducing a plane using a set of local
points is relatively safe. However, we can make no such assumptions about the relative
positions of widely dispersed points in the SLAM map.

The best-fit plane is determined from the inlying point features for the plane hypothe-
sis with most consensus. The origin is set to the mean and the orientation parameters are
determined from the principal components. Specifically, if the position vectors forl inly-
ing points w.r.t the mean are stacked into anl ×3 matrixM , then the eigenvector ofMTM
corresponding to the smallest eigenvalue gives the normal to the plane and the other two
eigenvectors give the basis vectors within the plane. The smallest eigenvalue,λmin, is the
variance of the inliers in the normal direction and provides a convenient measure of the
quality of the fit.

In order to avoid adding poor estimates of planes to the system state, the best-fit plane
generated by the RANSAC process is only initialised in the SLAM system ifl > lT and
λmin < λT . The best-fit parameters are used to initialise a plane feature in the state and the
covariance is updated according to (3), wheres(x,zo) denotes the derivation of the plane
parameters from the set of inlying point features. Thus, bothzo = 0 and∇sv = 0, whilst
the Jacobian w.r.t an inlying point featuremi is computed as:

∇smi =
[

∂po

∂mi
,

∂ (θ1,φ1)
∂c(θ1,φ1)

∂c(θ1,φ1)
∂mi

,
∂ (θ2,φ2)
∂c(θ2,φ2)

∂c(θ2,φ2)
∂mi

]T

(8)

where∂c(θ1,φ1)/∂mi and ∂c(θ2,φ2)/∂m j are the Jacobians of the two eigenvectors
computed using the method described in [16]. This ensures that the plane parameters



are correlated with the rest of the SLAM state through the inlying point features. How-
ever, we do not immediately convert these inlying feature points to 2-D points on the
plane in case the latter proves to be an unstable addition to the map. Instead, we choose
to gradually add points to the plane using the mechanism described in the next section.

3.4 Adding and Fixing Points in Planes

At each time step, all converged 3-D point features in the map are considered as candidates
for transformation to 2-D points associated with planes augmented to the map. A 3-D
point feature is transformed using (6) ifσ2

max < σ2
T and its perpendicular distance from

the plane and its distance from the plane origin are withindT anddmax, respectively. The
state covariance is then updated using (4). Since the new representation is dependent
on the plane parameters, this process introduces correlations with the other 2-D points
associated with the same plane.

If the maximum of the variances of a 2-D planar point becomes very small, less than
a thresholdσ f ix, then we can consider a further collapse of the state space by removing
it completely. Instead of maintaining an estimate of its 2-D position in the plane, we
consider it as a fixed point in the plane and use its measurements to update the associ-
ated planar feature directly (as described in the next section). This leads to a significant
reduction in the size of the state space but does so at the cost of introducing errors and
inconsistency into the system (c.f. Section 4).

3.5 Plane Measurement Equation

It is not possible to make a direct observation of the plane. However, each observed
feature on the plane imposes a constraint between the camera pose, the position and ori-
entation of the plane and the position of the observed 2-D point. The measurement model
for a 2-D planar pointmi is very similar to that of a standard 3-D point feature, but in-
volves an additional preliminary step to convert it to a 3-D position vectorp in the world
frame of reference prior to projection into the camera, i.e. from (6)

p = [c(θ1,φ1) c(θ2,φ2)]mi + po (9)

The predicted measurement for the planar point can then be obtained by passingp through
the standard perspective projection model in (2). The similarity between the measurement
models makes the implementation of planar points in the existing EKF SLAM system
very simple. The measurement Jacobian required by the EKF is much the same as that
for 3-D point features, except that we need to take account of the conversion in (9) when
computing the Jacobian relating the observation to 2-D point feature, i.e

∂hi

∂mi
=

∂hi

∂p
∂p

∂mi
(10)

wherehi is the measurement function associated with a 3-D point (eqn 2) and∂p/∂mi is
the Jacobian of the 3-D point w.r.t the 2-D planar point, derived from (9). Finally, since
the predicted observation is also dependent on the position and orientation of the plane, a
Jacobian∂hi/∂m j relatinghi to the relevant plane featurem j is also derived from (9).



Figure 1: Simulation results: (left) large covariance just prior to loop closure; (middle)
covariance and map error reduction after loop closure; (right) further reductions in covari-
ance and discovery of additional plane on second loop.

4 Experiments

Experiments were carried out to test the effectiveness of plane discovery and the effect of
collapsing the state space on the consistency of the SLAM estimation. Simulated data was
used to determine the accuracy of tracking and reconstruction against a known ground
truth. Performance was also assessed for real-time operation using an agile hand-held
camera within an office environment.

The simulation models a 6 d.o.f. camera moving through an environment containing
200 3-D points arranged in a square room with walls 4m long (Fig. 1) and with 50% of the
points lying at random positions on the walls. Newly observed points are initialised as 6-
D inverse depth points and converted to 3-D points once their depth uncertainty becomes
Gaussian [6]. Camera specifications are 43◦ horizontal field of view (FOV) and image size
320×240 pixels. Point features are observed with perfect data association and zero-mean
Gaussian measurement error of 1.0 pixel2 variance. The camera moves on a fixed circular
trajectory of radius 1m around the room centre and maintains a radial orientation. Each
simulation was run for two full loops of the camera trajectory. We used the following
thresholds, chosen to minimise mismatches of points to planes:dT = 0.5cm, lT = 7, λT =
d2

T , dmax= 200cm. Varying these values produces different numbers and sizes of planes.
The simulations were run for three different SLAM scenarios: with points only; with
inference of planes; and with inference of planes and fixed planar points. Different values
for the thresholds on point feature variance were tested: a strong thresholdσT = 2.0cm,
σ f ix = 0.1cm (cases B and D in Fig. 2); a weak thresholdσT = 10.0cm, σ f ix = 1.0cm
(cases C and E); and a medium thresholdσT = 10.0cm, σ f ix = 0.1cm(case F).

Figure 1 shows an external view of the camera position, trajectory, and map estimates
prior to and following loop closure. The ellipses indicate position and point variances
and the plane estimates are shown superimposed on the ground-truth outline of the room.
In this case, a strong threshold was used for plane discovery and planar points were not
fixed. Note the accuracy of the plane estimates and the clear reduction in point covariance
and correction of the camera trajectory after loop closure. This demonstrates that infer-
ence of higher level structure and collapsing of the state space can be achieved without
losing consistency. Reductions in state size for the different simulations are shown in
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Figure 2: Simulation results: (top-left) total state size, horizontal line indicates minimum
size if all planar points are added as fixed points; (top-right) NEES of camera position,
horizontal line indicates consistency threshold; (bottom-left) MSE of camera position;
(bottom-right) MSE of map features. Loop closure occurs in frames 5400 and 10800.

Fig. 2 (top-left). We observe that the different methods all lead to different levels of state
reduction and the merits of each approach can be assessed by comparing the consistency
and accuracy shown in the remaining plots of Fig. 2. Consider case E which achieves a
large reduction in state size but becomes inconsistent and with large mean-squared error
(MSE). In contrast, case D achieves savings in state size compared to points only (case A)
but maintains consistency. The consistency of the camera position estimates (Fig. 2 (top-
right)) was measured using the Normalised Estimation Error Squared (NEES) [2] function
(v− v̂)TP̂−1

vv (v− v̂). The figure also shows the thresholdχ2
r,1−α

from theχ2 distribution
with r = dim(v) = 7 degrees of freedom andα the desired significance level (0.95 in
our experiments). Note that consistency is strongly affected when we try to aggressively
fix planar points to reduce state size (cases C, E and F). However, more conservative ap-
proaches (cases B and D) achieve useful state space reductions and introduce higher order
structure without adversely affecting consistency.

MSE analysis of camera and feature position estimates (Fig. 2 (bottom)) shows the
cost of introducing inconsistency. The most inconsistent methods do not benefit fully
from loop closure and are unable to correct the error in their maps. More conservative
thresholds maintain consistency and achieve similar accuracy to the points only approach
with the additional benefit of reduced state size. There is also an indication that the MSE
during the first loop is reduced when we add planes to the system (cases B, C, D and
F). This may be because a good plane estimate extends its influence further into the map
than a good point, due to its higher level structure, and any points constrained to lie on



Figure 3: Real-time operation with hand-held camera: (left) view of camera position, map
estimates and planar features; (middle and right) planar features (boundaries in white) are
discovered with converged 3-D points in black and 2-D planar points in white. Videos
available at this paper’s entry atwww.cs.bris.ac.uk/Publications.

this plane will also have their accuracy improved. This effect could be exploited by using
known planes to initialise the SLAM system.

We also tested the method in real-time in an office environment using a calibrated
hand-held web-cam with a resolution of 320× 240 pixels and 43◦ FOV. Tracking was
initialised with four known map points corresponding to the corners of a planar black
on white rectangle placed in the scene. The environment contained three distinct planar
surfaces with sufficient texture to encourage reliable feature detection and recognition.
The former was based on a fast salient operator [17] and the latter on multiscale SIFT-
like descriptors with scale prediction [5]. This gives robust performance, even in the face
of significant erratic camera movement. Figure 3 shows an external view of the camera
position and map estimates part way through the sequence and views through the camera
with mapped point and planar features superimposed. Note that the three planes in the
scene have been successfully detected and the vast majority of the 3-D points mapped
were transformed into 2-D planar points (except those on the calibration pattern which for
fair comparison we force to remain as 3-D points). In this experiment, the system operated
at around 20 frames/sec, including graphics rendering and without software optimsation,
for maps of up to 50 features and with 10 visible features per frame on average.

5 Conclusions

Augmenting the SLAM state with parameters representing a planar structure allows us to
represent mapped points lying on the plane with a reduced parameterisation and collapse
the state space whilst maintaining a consistent, full-covariance representation. This tech-
nique can be applied in real-time visual SLAM systems to reduce computational demands,
as well as giving a higher level scene description suitable for further applications. Future
work will consider the incorporation of a wider variety of structural information, such as
lines and junctions. Knowledge of planar structure in the scene may also have benefits for
visual feature detection and matching which can be exploited to improve performance.
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