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Abstract 
 

In this paper we present a novel, computationally efficient algorithm for non-
rigid 2D image registration based on the work of Haker et al.[1, 2]. We 
formulate the registration task as an Optimal Mass Transport (OMT) problem 
based on the Monge-Kantorovich theory. This approach gives a number of 
advantages over other conventional registration methods: (1) It is parameter 
free and no landmarks need to be specified, (2) it is symmetrical and the 
energy functional has a unique minimiser, and (3) it can register images 
where brightness constancy is an invalid assumption. Our algorithm solves 
the Optimal Mass Transport program via multi-resolution, multi-grid, and 
parallel methodologies on a consumer graphics processing unit (GPU). 
Although solving the OMT problem has been shown to be computationally 
expensive in the past, we show that our approach is almost two orders 
magnitude faster than previous work and is capable of finding transport maps 
with optimality measures (mean curl) previously unattainable by other works 
(which directly influences the quality of registration).  We give results where 
the algorithm was used to register 2D short axis cardiac MRI images and to 
morph two image sets from a SOHO solar flare image sequence. 

 
1 Introduction 
 
1.1 Image Registration and Morphing 
 
Image registration and morphing are amongst the most common image processing 
problems. Registration is necessary in order to compare or integrate image data 
obtained from different measurements while image morphing, on the other hand, is a 
class of techniques that deals with the metamorphosis of one image into another 
(also known as image interpolation). Given two related images, these two 
techniques can be used together to generate a sequence of intermediate images in 
which an image gradually changes into the other over time. Critical to the success of 
this process is the quality of the warping function generated by the registration 
procedure. Morphing is achieved by shifting all pixels in the image according to the 
vector field defined by this warping function and will not be reasonable if the 
underlying warping function is not correct. 
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1.2 Optimal Mass Transport 
 
The optimal mass transport problem was first formulated by a French mathematician 
Gasper Monge in 1781, and was given a modern formulation in the work of 
Kantorovich [3] and, therefore, is now known as the Monge-Kantorovich problem. 
The original problem concerned finding the optimal way to move a pile of soil from 
one site to another in the sense of minimal transportation cost. Hence, the 
Kantorovich-Wasserstein distance is also commonly referred to as the Earth 
Mover’s Distance (EMD). 
 Recently, Haker et al. have applied the optimal mass transport approach to 
certain medical image registration problems [1, 2]. Rigorous mathematical details 
for their algorithm are given by Angenent et al. [4]. Although there have been a 
number of algorithms in the literature for computing an optimal mass transport, the 
method by Haker et al. computes the optimal warp from a first order partial 
differential equation, which is a computational improvement over earlier proposed 
higher order methods [5, 6] and computationally complex discrete methods based on 
linear programming. The OMT method has a number of distinguishing 
characteristics: (1) It is parameter free and no landmarks need to be specified, (2) it 
is symmetrical and the energy functional has a unique minimiser, and (3) it can 
register images where brightness constancy is an invalid assumption. Conducting 
registration via OMT also utilizes all of the greyscale data in both images and places 
the two images on equal footing. It is thus symmetrical; the optimal mapping from 
image A to image B is the inverse of the optimal mapping from B to A. 
Furthermore, OMT does not require that landmarks be specified and the minimizer 
of the distance functional involved is unique; there are no other local minimisers. 
Finally, OMT is specifically designed to take into account changes in densities that 
result from changes in area or volume.  
 However, solving the Optimal Mass Transport problem is computationally 
expensive and a typical 2D image registration using the method of [1, 2] has been 
reported to require a matter of minutes. It has also been shown that this method may 
not necessarily converge to an optimal solution within a feasible amount of time. In 
our previous work [16] we showed considerable improvement in computation time 
when implemented using multi-resolution strategy.  
 
Contribution. In this paper we present a new algorithm based on [1, 2] for solving 
the Optimal Mass Transport Problem using a coarse-to-fine strategy and a full 
multigrid solver, which we implement on a consumer graphics processing unit. We 
demonstrate two orders of magnitude improvement in computation time and that the 
algorithm is capable of computing transport maps with optimality measures (mean 
curl) previously unattainable by other works. The latter development has a direct 
influence on the quality of registration and image warps obtained by the algorithm 
while the speed-up achieved by our algorithm makes the use of OMT on 3D grids 
and other large bodies of data feasible and furthers the applicability of OMT for 
image processing tasks.  
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2 Optimal Mass Transport Theory 
 
2.1 Formulation of the Problem 
 
We will briefly provide an introduction to modern formulation of the Monge-
Kantorovich problem. We assume we are given, a priori, two sub-domains Ω0 and 
Ω1 of Rd with smooth boundaries, and a pair of positive density functions, μ0 and μ1 
defined on Ω0 and Ω1 respectively. We assume that, 
 ∫∫

ΩΩ

=
10

10 μμ  (1) 

This ensures that we have same total mass in both the domains. We now consider 
diffeomorphisms ũ from Ω0 to Ω1 which map one density to other in the sense that, 
 uuD ~~

10 oμμ =  (2) 

which we call the mass preservation (MP) property, and write ũ ∈MP. Equation 
(2211) is called the Jacobian equation. Here, |D ũ| denotes the determinant of the 
Jacobian map D ũ, and ◦ denotes composition of functions. It basically implies that 
if a small region in Ω0 is mapped to a larger region in Ω1, then there must be a 
corresponding decrease in density in order for the mass to be preserved. There may 
be many such mappings, and we want to pick an optimal one in some sense. 
Accordingly, we define the squared L2 Monge-Kantorovich distance as following: 
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The optimal MP map is a map which minimizes this integral while satisfying the 
constraint (2). The Monge-Kantorovich functional (3) is seen to place a penalty on 
the distance the map ũ moves each bit of material, weighted by the material’s mass. 
A fundamental theoretical result[7-9], is that there is a unique optimal ũ ∈MP 
transporting μ0  to μ1, and that ũ is characterized as the gradient of a convex function 
ω, i.e., ũ = ∇ω. This theory translates into a practical advantage, since it means 
that there are no non-global minima to stall our solution process. 
 
2.2 Computing the Transport Map 
 
We will describe here only the algorithm for finding the optimal mapping ũ. The 
details of this method can be found in [2]. The basic idea for finding the optimal 
warping function is first to find an initial MP mapping u0 and update it iteratively to 
decrease an energy functional. When the pseudo time t goes to ∞, the optimal u will 
be found, which is ũ. Basically, there are two steps: 
 
2.2.1 Finding an Initial Mapping 
 
The first step in this algorithm is to find an initial mass preserving mapping. This 
can be done for general domains using the method of Moser [10] or the algorithm 
proposed in [2]. The later method can simply be interpreted as the solution of a one-
dimensional Monge-Kantorovich problem in the x-direction followed by the solution 
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of a family of one-dimensional Monge-Kantorovich problems in y-direction. We 
used this later method for our implementation and experiments. 
 
2.2.2 Finding the Minimizer 
 
The second step is to adjust the initial mapping found above iteratively using 
gradient descent in order to minimize the functional defined in Equation (3), while 
constraining u so that it continues to satisfy Equation (2). This process iteratively 
removes the curl from the initial mapping u and, thereby, finds the polar 
factorization of u. For details on this technique, please refer to [2]. The overall 
algorithm is summarized graphically in Figure (1). 
 
2.3 Defining the Warping Map 
 
In elastic registration applications, one usually wants to visualize the explicit 
warping between the two images where one image smoothly deforms to the other. 
This has been shown to be easily done using the solution from the Monge-
Kantorovich problem described above using the following relationship [2]: 
 ))(~(),( * xxutxtxX −+=  (4) 
where, X(x,t) defines our continuous warping map between densities μ0 and μ1. Note 
that when t = 0, X is the identity map and when t=1, it is the solution ũ* to the 
Monge-Kantorovich problem. All the morphs in the results section have been 
created using this equation. 
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Figure 1: Optimal Mass Transport Algorithm 
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3 Multi-resolution OMT 
 
Performing image registration using a multi-resolution approach is widely used to 
improve speed, accuracy and robustness. The basic idea is that registration is first 
performed at a coarse scale. The spatial mapping determined at the coarse level is 
then used to initialize registration at the next finer scale. This process is repeated 
until it reaches the finest scale. This coarse-to-fine strategy greatly improves the 
registration success rate and also increases robustness by eliminating local optima at 
coarser scales [11]. Our coarse-to-fine hierarchy comprised of three levels and uses 
bi-cubic interpolation to interpolate the solution from the coarse to fine grids. 
 

 
Figure 2: Coarse-to-fine Approach 

 
This multi-resolution technique diminishes the mean curl of u remarkably fast as 
compared to the normal case as is shown in Figure 3 below. These results 
correspond to the heart registration example given in Figure 8. Figure 3 shows the 
mean curl of u achieved in the same number of iterations with and without multi-
resolution. It should be noted that same number of iterations of multi-resolution 
complete in less than 1/3 the time. 
 

 
Figure 3: Convergence with and without multi-resolution approach 
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3.1 Multigrid 
 
We used the Full Multigrid (FMG) algorithm in our implementation of the Poisson 
solver also known as the nested iteration. In the case of FMG, the initial 
approximation is obtained by interpolating from a coarse-grid solution. For 
discretization we used the standard five-point discrete approximation of the 
Laplacian given by: 
 jijijijijiij uuuuuu ,1,1,,1,1

2 4−+++≈∇ −++−  (5) 

where, i and j are row and column indices into the grid. We chose the most 
frequently used Standard Coarsening, i.e. doubling the mesh size in each direction. 
The same discretization of the Laplace operator is used on all the grid sizes. This is 
known as Discrete Coarse Grid Approximation (DCA). We restrict the residual 
from the fine-to-coarse transfer using Half Weighting technique and for 
interpolation from coarse-to-fine transfers we use Bilinear Interpolation. For a 
comprehensive overview of multigrid methods, we refer to [12, 13]. 
 The FMG algorithm is graphically illustrated in the following figure. The thick 
arrows indicate use of a higher order interpolation (bi-cubic) scheme instead of the 
Bilinear Interpolation. This is due to the fact that when we increment to the next to 
coarsest level, we do not have to use an interpolation complementing the Full 
weighting scheme to maintain symmetry in a cycle. 
 

 
Figure 4: Structure of one Full Multigrid cycle 

 
3.2 GPU Implementation 
 
An advantage of our solution to the OMT problem is that it is particularly suited for 
implementation on parallel computing architectures making optimization with 
multiple processing cores highly advantageous. Over the past few years, it has been 
shown that GPUs are particularly suited for these types of parallelizable problems 
[14, 15]. 
 Implementing the PDE-based OMT solver on the GPU comes quite 
naturally as it can be abstracted down to a series of convolutions and simple point-
wise arithmetic between data grids. From this standpoint, the GPU has much to gain 
over the CPU implementation: while the CPU computes updates on data grids one 
element at a time, the GPU is capable of updating entire grids in one pass due to 
their massively parallel architecture. This is graphically illustrated in Figure 5 
below. Such simplicity allowed us to implement the entire algorithm via an 
OpenGL/fragment shader approach using the same methodology as [14, 15] for 
GPU computation. In contrast to [14,15], however, the OMT solver is much more 
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complex in that a multigrid solver is only a component of the algorithm in addition 
to additional computation of temporary quantities (curl, divergence, coarse-to-fine 
interpolation) and an upwinding scheme for state updates. 
  

 
Figure 5: CPU vs. GPU solutions of PDEs. 

 
 The GPU implementation of the algorithm gave considerable performance 
gains over the CPU. For instance, on a 5122 grid, the time required to perform one 
iteration of the solver by Haker et. al. was 0.42 seconds while the GPU 
implementation required 0.0159 seconds, representing an improvement of 2681 
percent (Figure 6). This improvement increases with grid size to 7060 percent on a 
20482 grid. All results were obtained on a Dual Xeon 1.6GHz and nVidia GeForce 
7950 GX2 graphics card with a 3DMark score of 6747. 
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Figure 6: Comparison of execution speeds at each grid size. 

 

4 Examples and Results 
 
We illustrate our method using two examples. In the first case, we interpolate 
between two greyscale SOHO solar flare images shown in colour here to highlight 
the details. We take Figure 7(a) and Figure 7(b) to be the starting and ending 
images, respectively. Figure 8 shows the intermediate images generated by our 
morphing algorithm at times t=0.25, 0.5 and 0.75. In Figure 9 we show that a 
classical non-rigid registration based on optical flow fails to warp the flare images. 
The procedure cannot account for the new information present in the second image 
versus the first image and thus the warp fails. 
 In the second case, we applied our method to two different 2D short axis 
cardiac MRI images (2562 pixels) taken from a sequence of images (Figure 10). The 
images were inverted for improved performance. Note that the deformed grid 
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(Figure 11) shows areas of compression of the ventricle. Note that in each case, total 
computation time was only a matter of seconds. 
 

  
                       (a) Source Image                                             (b) Target Image 

 

Figure 7: Source and target solar flare images (5122 grid) 
 

  
                            (a) t = 0.25                                                   (b) t = 0.50 

 

  
  (c) t = 0.75                                                    (d) t = 1.00 

 

Figure 8: OMT-interpolated solar flare images (12 sec, μ curl 10-3.2 ) 
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Figure 9: Failure of classical non-rigid registration based on optical flow warp. 

 

 
Figure 10: Two frames from 2D cardiac MRI image sequence. 

 

 
Figure 11: Deformed grid for cardiac example (64 sec, μ curl 10-3.6). 
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5 Conclusions 
 
In this paper, we presented a computationally efficient method for image registration 
and morphing based on the classical problem of optimal mass transportation. The 
speed-up achieved by our algorithm makes the use of OMT on 3D grids and other 
large bodies of data feasible and furthers the applicability of OMT for image 
processing tasks including compression and coding. 
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