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Abstract

Active appearance models (AAMs) are widely used to fit statistical models
of shape and appearance to images, and have applications in segmentation,
tracking, and classification of structures. A limitation ofAAMs is that they
are not robust to a large set of gross outliers. Using a robustkernel can help,
but there are potential problems in determining the correctkernel scaling pa-
rameters. We describe a method of learning two sets of scaling parameters
during AAM training: a coarse and a fine scale set. Our algorithm initially
applies the coarse scale and then uses a form of deterministic annealing to
reduce to the fine outlier rejection scaling as the AAM converges. The algo-
rithm was assessed on two large datasets consisting of a set of faces, and a
medical dataset of images of the spine. A significant improvement in accu-
racy and robustness was observed in cases which were difficult for a standard
AAM.

1 Introduction

Active Appearance Models (AAMs) [2] are statistical modelsof object shape and appear-
ance which have been used to represent and locate objects in awide range of domains.
In their basic form they match a model to a new image using ananalysis-by-synthesis
approach, in which a synthetic image is generated from the model, and then compared to
the target image. The model parameters are optimised to synthesise an image as close as
possible to the target. One of the strengths of AAMs is that byusing a sum-of-squares
measure to compare model and target, they can exploit the linear nature of the problem to
perform fast parameter updates and thus are able to match to anew image very quickly.

The constraints of the underlying appearance model make AAMs reasonably robust
against noise. However, sum-of-squares terms can be badly affected by large outliers.
Image regions where the intensities are far from the predicted model values can have a
significant deleterious effect, and may lead to poor overallmatches or divergence. For
example, a model of faces trained on people without beards orglasses may fail badly on
images of people with beards or glasses; or on an image where part of the face is occluded.
In the medical context there may be a surgical implant in partof the image. A natural
method of mitigating such problems is to introduce methods from robust statistics [7].
Typically these seek to downweight larger residuals. However some scaling parameter



is then required to define which residuals are ’large’. One approach to choosing such a
parameter is to use estimates of the expected variance of theresiduals when matching the
model to the training set. However, these tend to be underestimates, and are certainly
not appropriate during early stages of search when the modelmay start far from the true
position, leading to large initial residuals.

In this paper we introduce a novel approach in which we use a large initial estimate
of the scaling, and gradually reduce the scale as the search algorithm proceeds. So as
the image match becomes better, the algorithm becomes stricter as to what it considers
inliers. We describe the technique, and give the results of experiments on two different
datasets (facial photographs and a medical dataset), demonstrating that the approach leads
to improved performance when matching to ’difficult’ examples.

2 Background

2.1 Active Appearance Models

Statistical appearance models [2] are linear models of object shape and texture variation,
which are learned from a training set. An appearance model isconstructed by first learning
the statistics of shape and texture variation, and then incorporating both into a set of
combinedappearanceparametersc. These represent the shape,x, and texture,g, (in the
model frame) according to

x = x̄+ Qsc
g = ḡ+ Qgc

(1)

wherex̄ is the mean shape,̄g the mean texture in a mean shaped patch andQs,Qg are
matrices describing the modes of variation derived from thetraining set.

A shape in the image frame,X, can be generated by applying a suitable global trans-
formation (such as a similarity transformation) to the points in the model frame. The
texture in the image frame is generated by applying a scalingand offset to the intensities
generated in the model frame. These shape pose and texture scaling parameters are con-
catenated with the appearance model parametersc to give the full set of AAM parameters,
denoted byp.

The AAM seeks to minimise a sum-of-squares problem of the form

F(p) = |r(p)|2 = rTr (2)

where the vector of residualsr is calculated as:

r = w(I : p)−g (3)

wherew(I : p) is the (normalised) texture sampled from the imageI given the shape de-
fined by model parametersp. The AAM is trained (see [2]) how to solve this minimisation
by learning the relationship between perturbations in parameters and the texture residu-
als that these induce. This relationship is then inverted toprovide an update matrix that
can be applied to the current residual vector. When applied iteratively this provides an
efficient model fitting scheme where the necessary parameterchangeδp to the parameter
vectorp, givenr is estimated as:

δp = −Rr (4)



whereR is derived from the JacobianJ = δr
δp thus.

R =
[

JTJ
]−1

JT (5)

2.2 Robust Extensions of AAMs

Edwards et al [4] derived an exclusion threshold for each pixel based on the distribution
in the training set during AAM matching. Residuals beyond their threshold are ignored
in the AAM update step. Stegmann et al [17] extended this by introducing a robust
measure for the comparison on AAM solutions, which changes the convergence criterion.
However the AAM update steps are still performed as in [4] during the initial search.
There are two potential problems with this. Firstly rejecting certain pixels early on can
ignore useful information, and may even lead to convergencefailure - for example if
there is a large initial pose error. Secondly the AAM update matrix with a robust kernel
objective function should ideally be changed. In [17] this problem is partly avoided by
the use of a simulated annealing phase after conventional AAM search. Gross et al [15]
propose a modification that solves this update matrix problem by using a variable Hessian
that can be efficiently computed assuming a degree of spatialcoherence. Theobald et al
[1] experimented with using this method with a variety of kernels. However less attention
was given to the problem of determining kernel scaling parameters, which is particularly
important in problems where the AAM may not have a good initialisation.

A different approach was adopted by Beichel et al [5]. Their robust AAM identifies
outliers by analysing the multi-modal nature of the residual histogram. This method has
the advantage of avoiding the direct use of cutoff thresholds - which might be set too
low for a particular target image - but at the price of some complexity in the outlier
identification method.

Our approach is to recast the objective function as a weighted sum of squares in a
way that allows us to apply the standard AAM update to weighted residuals. The scale
parameters used for the weighting start off at a coarse scalebut are gradually reduced as
the AAM converges.

3 Robust Kernel Application and Scaling

We adopt an M-estimator approach adapted to the AAM framework. Given a robust kernel
form ρ , the aim is to minimise the objective function:

S=
n

∑
k=1

ρ(rk,σk) (6)

We have used the Geman-McClure [16] kernel for a residual error rk at pixelk.

ρ(rk,σk) =
rk

2

rk
2 + σ2

k

, (7)

whereσk is a scale parameter that controls the convexity of the robust function.
This kernel has some history of use in computer vision, including learning and fit-

ting eigenspace models [9, 13], and in robustly estimating optical flow [14]. The



Geman-McClure robust function is twice-differentiable, and although its influence func-
tion (derivative) tends to zero for large errors, there is noabsolute cut-off point. The
kernel response is always less than theL2-norm, and the influence is approximately linear
over the inlier region[− σ√

3
,

σ√
3
], after which it declines.

The scaling of the GM kernel is typically some multipleβ of the (inlier) standard de-
viation. The influence of inliers should typically extend toat least one standard deviation,
whereas the GM function reduces a residual’s influence afterσ√

3
. Also because training

set inadequacies typically underestimate the true residuals encountered in unseen images
we extend the inlier region by a further 50%, and use:β = 1.5

√
3.

We note that the conventional AAM is trained to minimise the residual sum of squares
- the residuals are not normalised by their variance. Although this is not a maximum
likelihood estimator, in practise it appears to work well because the image patch typically
includes large numbers of uninteresting pixels with low variance but little structure. So
we modify the objective function to make it more like a conventional AAM and optimise:

S′ =
n

∑
k=1

σ2
k ρ(rk,σk) (8)

This form of sum of robust error functionsρk (rk) can be recast as an Iteratively
Weighted Least Squares problem:

S̃=
n

∑
k=1

σ2
k wkrk

2 wk =
1
rk

dρk

drk
(9)

with weights determined by the kernel influence, since at thetrue minimum these
problems have the same solution, as can readily be seen by differentiation (and regarding
the weights as fixed for the current iteration). We use the AAMupdate matrix as a quick
though approximate solver, applying it to the “kernel-ised” residualsr′, with:

rk
′ =

√
wkγkrk (10)

whereγk is a normalisation constant chosen so thatrk
′ = rk for a residual at a suitable

small proportionε 1of the residual standard deviation.
This leads to the following mapping to apply to the residual vector, which we denote

by the vector functionK(r,σ)

rk
′ = [K(r,σ)]k = γk

rk

rk
2 + σk

2 γk =
ε2 + β 2

β 2 σk
2 (11)

Essentially our robust AAM treats an outlier residual as though it were a smaller
residual, which leads to a reduced update step to the model parameters (due to this pixel).
However because the implicit Jacobian being used is stillδr

δp and notδr′
δp , the estimate of

the required update step becomes biassed for large outliers. The situation is complicated
by having varying biases due to many residuals spread over many parameters. However
if we consider the limiting case of the contribution of a specific residualrk to a single
parameter model, we would see by comparing the two Jacobiansδr

δp and δr′
δp that

ˆδ pk =
√

wkδ pk
(0) (12)

1We usedε = 0.1.



where ˆδ pk is the update step contribution we use, whereasδ pk
(0) is the one really required

in minimising S̃ in 9. Thus we tend to underestimate the step for outliers (where the
weights are small) and hence bias the step direction in favour of the inliers (which have
weights near unity). The bias is mitigated by the fact that

√
wk tends to zero more slowly

thanwk itself. This bias would be worse for rapidly decaying kernels, but the Geman-
McClure kernel we use is relatively benign to outliers, and adegree of bias towards inliers
may be acceptable. We also reduce the effect of bias by gradually reducing the scale as
discussed below.

So although the AAM update matrix should ideally be adapted to the weights, the
standard AAM update matrix still gives an approximate solution in the inlier region where
the weights are close to unity. Nevertheless the underestimate of the update step can cause
convergence failures if starting from too far away from the solution, because reducing a
large residual can cause the weighting to increase in a way that makes the overall objective
function increase (the weight increases faster than the residual squared decreases). In fact
such local minima problems can occur in any case with other forms of Iterated Weighted
Least Squares. There is always the problem of how to select correct scalings for the{σk}
so that outliers are rejected without causing convergence failures on genuine data when
the AAM is initialised some way off the target shape.

Our proposed solution is to apply a form of deterministic annealing similar to that used
in [9, 13] (which used quasi-Newton non-linear optimisation ). We calculate two sets of
scaling parameters:{σ̃Ik} and{σFk} for the initial and final scale parameters respectively.
In the initial AAM updates the scaling is such that the vast majority of residuals are inliers,
and so the AAM update equation can validly be used to find an approximate solution to
the weighted least squares problem. Then the scale is gradually reduced. The initial scale
parameters are learned during the standard (kernel-free) AAM training. We learn the
Jacobian of the induced residual vectorr as parametersp are displaced from their correct
values. This Jacobian is used to derive the initial set{σ̃Ik} from the modelled parameter
variances. However if the AAM has really converged successfully then the final residuals
should be substantially lower, and the final residual variances should be approximated by
those of the underlying appearance model. These can be learnt by refitting the appearance
model back to its own training set2. We denote the underlying appearance model ideal
standard deviations asσ (0). Our approach reduces the kernel scaling parameters from
one set to the other. AAMs are typically used with coarse-to-fine search using Gaussian
image pyramids, and this reduction is applied at each stage of the image pyramid before
moving onto the next.

In [6], the median absolute deviation (MAD) over the entire image dataset was used
as a lower bound on each pixel‘s scale parameter. On the assumption that the training set
represents outlier-free data with zero-mean uncorrelatedGaussian distributed residuals,

the MAD over all pixels has an expected value of:̂MAD(σ) =

√

∑n
k=1 σ2

k

1.4826
√

n wheren is the
number of pixels.

We obtain estimates of the initial residual standard deviations by summing over the
mp AAM parameters and using the JacobianJ and the AAM parameter variances{σ2

jp}.
For the appearance model parametersc these variances are known, and determined via
the eigenvalues of the appearance model modes. For the pose parameters (e.g. similarity
transform from model to image reference frame) we assume theassociated parameter

2or preferably a jackknifed miss-1-out estimate can be derived



standard deviation is the positive displacement range usedin AAM training (i.e. when
deriving the estimate ofJ). Then

σIk =

√

√

√

√

mp

∑
jp=1

Jk jp
2σ2

jp (13)

Applying the MAD lower bound and rescaling byβ gives:

σ̃Ik = βmax(σIk, ˆMAD(σI)) (14)

Whereas for the converged kernel parameters:

σFk = βmax(σ (0)
k , ˆMAD(σ (0))) (15)

We now summarise the application of the kernel and its rescaling more formally.

For each image pyramid level loop:

1 Setσ = σ̃I

2 While the AAM update step improves the solution loop:

2.1 Calculate the raw residual error vectorr(p)

2.2 Calculater′(p) = K(r,σ)

2.3 Compute current kernel-ised error normE = ‖r′‖2

2.4 Set∆ = 1
2.5 Update the parameter vectorp̃ = p−∆Rr′

2.6 Calculate a new error vectorr̃ using the updated parametersp̃
2.7 Compute the updated kernel-ised error vectorr̃′ = K(r̃,σ)

2.8 If ‖r̃′‖2
< E, then accept the new parameters:p = p̃

2.9 Else retry for∆ = 1.5,∆ = 0.5,∆ = 0.25 etc and go to step 2.5; or exit
this loop when no more improvement results

2.10 End loop

3 Calculate the median reduction ratioµ of {σFk
σ̃Ik

}
4 Given annealing decay constantα (e.g.α = 0.9), set the number of kernel

rescaling stepsN =
[

log(µ)
log(α)

]

5 for N+1 rescalings do

5.1 if final rescaling setσ = σF

5.2 else: for each k:σk = max(σFk,ασk)

5.3 SetM = 4 (or other suitable update count)
5.4 Set∆ = 1

M

5.5 forM forced updates do
5.5.1 Recalculate the raw residual error vectorr(p)

5.5.2 Calculater′(p) = K(r,σ)

5.5.3 Update the parameter vectorp̃ = p−∆Rr′

5.5.4 p = p̃
5.6 end loop



6 end loop

7 Repeat AAM update loop (2) at reduced scale nowσ = σ̃F

8 Move to next image level

End loop over image pyramid hierarchy

4 Experiments

We used a standard set of face images [10], of size 720x576 pixels. An AAM was trained
using a subset of the data containing 162 subjects free of facial hair (beards) and glasses.
The form of appearance model used was a feature AAM using sigmoidally renormalised
corner and edge features combined with similarly renormalised cartesian gradients. See
[8] for details. This has been shown to generally outperforma standard texture AAM. The
renormalisation to the local image feature statistics alsomeans that there are less likely to
be problems with the kernel scaling being inappropriate to aparticular image.

The test set used was the remainder of 136 subjects having either facial hair or wearing
glasses. Thus the appearance model would be expected to be unable to accurately fit
to significant portions of the test cases. This will typically cause a number of overall
convergence failures. We tested running the AAM with and without the robust kernel,
to see if the robust kernel improves convergence reliability in cases which significantly
depart from the trained model. There were 3 images used for each subject, giving a total
test set size of 408. The AAM was fitted to each test case using afixed grid of initial
position and scale offsets. The initial pose parameters were set by performing an initial
best fit of the shape model to the (known) test case points. Then the appearance parameters
were reset to zero, and the x,y and scale pose parameters varied as follows. The x and
y values were stepped respectively between [-20,20] pixelswith a step-size of 5 pixels;
the scale was stepped between 1/1.05,1.0,1.05 respectively. This gives a total intialisation
grid of 9x9x3=243 searches for each test image.

For the medical images miss-8-out experiments were performed on a dataset of 308
DXA images of the spine. These used 10 initialisations for each image, based on random
perturbations on the mean shapes implied by the vertebral centres. See [12] for details.
DXA images use a very low X-ray dose, which makes them quite noisy. The aim was to
locate the positions of the 10 vertebrae from lumbar L4 to thoracic T7. The segmenta-
tion algorithm uses multiple AAMs, each of which fits a triplet of vertebrae. These are
overlapped, which establishes linkage between the varioussub-models. This gives good
accuracy on healthy vertebrae [12]. However the main aim of the DXA imaging is in the
diagnosis of osteoporosis, as the the weakening of bone leads to fracture of vertebrae as
one of the early symptoms of the disease. Accuracy results onseverely fractured verte-
brae are much poorer, partly because the AAM is prone to miss the fractured vertebrae
and instead fit to neighbouring vertebrae. For example the top of a fractured T8 may be
fitted to the bottom of the neighbouring T7, which provides a locally similar edge. See
Fig 1c for an example. In [11] we used an alternative fractured AAM initialisation which
partly resolved this problem. Also the low bone density in fractured vertebrae can give
them a very poor signal to noise ratio, which means that noiseoutliers have a more sig-
nificant overall effect. We re-ran the experiments of [11] tosee if the robust kernel might
improve the accuracy on these difficult fractured vertebrae.



Standard AAM Robust Kernel AAM
Error Measure Mean Median 90%-ile Mean Median 90%-ile
Point-to-Curve 4.93 3.36 10.54 4.64 3.28 8.86
CoG X 1.95 1.05 4.63 1.48 0.94 2.96
CoG Y 3.79 1.22 12.55 3.17 1.08 9.51

Table 1: Search accuracy results (pixels) for the face data.CoG X and CoG Y are the
absolute errors in the centre of gravity of the face

Standard AAM Robust Kernel AAM
Fracture Mean Median 90%-ile %ge EdgesMean Median 90%-ile %ge Edges
Type (mm) (mm) (mm) Misfit (mm) (mm) (mm) Misfit
Normal 0.73 0.55 1.57 0.20% 0.78 0.59 1.62 0.20%
Grade 1 0.83 0.57 1.77 4.07% 0.83 0.60 1.79 1.61%
Grade 2 1.01 0.67 2.34 4.37% 0.98 0.67 2.26 1.96%
Grade 3 1.65 0.88 4.52 16.64% 1.28 0.78 3.05 8.42%

Table 2: Search accuracy results by vertebral fracture status for spine DXA images. NB
Fracture grades 1-3 correspond to height reduction thresholds of 20%, 25% and 40%
respectively. Errors are in mm but the %ge edges misfit columns give the percentage ratio
of superior or inferior edges fitted erroneously onto a neighbouring vertebra

5 Results

For the face experiments we calculated the mean, median and 90%-ile for: a)mean ab-
solute point-to-curve error over each face image; b) face centre of gravity x and y posi-
tions. For the vertebral data we similarly calculated the mean, median and 90%-ile on
raw point to curve errors, and also enumerated the proportion of vertebral edges that were
erroneously fitted to a neighbouring vertebra. These were analysed according to their
classification as normal (non-osteoporotic), or one of 3 fracture severity grades according
to a standard system used by radiologists. Results for the face and vertebral datasets are
summarised in tables 1 and 2 respectively.

6 Discussion and Conclusions

In the face experiments a statistically significant improvement occurs in mean point-to-
curve error, and also in the mean error in the cartesian coordinates of the face centre.
Moreover the tail of the distribution appears to be reduced by the use of the robust ker-
nel. The 90th percentile is reduced from 10.54 pixels to 8.86. The median error is also
marginally lower, indicating that the improvement in mean error is not at the expense of
a general deterioration in the better fitting cases. There isa larger improvement in the
accuracy of the estimate of the centre of the face, both in terms of mean and the 90th
percentile tail. Overall in the face data there is a modest but significant improvement in
accuracy. An example is shown in Figure 1, which shows a partial search failure without
the use of the kernel. The AAM appears to have been confused bythe facial hair and
does not correctly locate the mouth and chin, whereas in the corresponding case with the



Figure 1: Examples. The left (Fig 1a) and middle (Fig 1b) figures show an example from
the face data using a standard AAM (leftmost) and with the kernel AAM (middle). The
facial hair appears to confuse the non-robust AAM (left) as to the location of the mouth
and chin, whereas with the robust kernel (middle) this problem is avoided. The right-hand
figure (Fig 1c) shows an edge misfit (standard non-robust AAM)on a vertebra for a grade
3 fracture. The fitted standard 6-point morphometric cornerand mid-points are shown.
The arrows indicate where the AAM search fitted the top of T8 tothe bottom of T7, and
the anterior bottom corner of T8 to the top of T9.

kernel applied the solution has converged with reasonable overall accuracy.
In the medical image data, there was no improvement with normal vertebra. In fact

there was a mild deterioration when applying the kernel, from 0.73mm to 0.78mm, though
this difference is on the margins of statistical significance, and is far smaller than the
precision of the underlying manual annotation. There is little difference in mean accuracy
on mildly fractured vertebrae, although the number of incorrectly converged solutions on
neighbouring vertebra does appear to reduce. But when we come to the challenging case
of the severely fractured vertebra there is a substantial reduction in the number of incorrect
solutions on neighbouring edges, and this is accompanied bya significant improvement in
mean accuracy from 1.65mm to 1.28mm, and the 90%ile error is reduced from 4.52mm
to 3.05mm. Where the AAM was already performing well (i.e. the normal vertebrae),
there is no advantage to using the kernel on this dataset. However in this application
the marginal deterioration in well localised healthy vertebra is an acceptable price for a
substantial improvement in accuracy for the more difficult severely osteoporotic cases.
The marginal deterioration on normals may be because the useof the standard AAM
update matrix on the transformed residuals leads to small biases. In fact variations inR
across the population is a general problem for AAMs. Cootes introduced the Updating
AAM [3] to address this. In future we intend combining our form of robust AAM with
the Updating AAM, which should lead to better optimisation of the objective functioñS
(equation 9).

In conclusion the use of a Geman-McClure robust kernel priorto applying the standard
AAM update matrix leads to a modest but significant improvement in accuracy, when
applied to test images which would be expected to provide difficult cases. Initial coarse
kernel scaling parameters can be derived using the AAM Jacobian, and we have shown a



method of reducing these to the finer scale of the appearance model itself. This generally
avoids the trap of local minima that would be caused by the premature rejection of too
many useful pixels. This method could be used with other kernels, but approximations in
the update step mean it would work best with kernels having a gradual outlier rejection -
e.g. inverse polynomical decay rather than exponential.
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