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Abstract

Active appearance models (AAMs) are widely used to fit siaibmodels
of shape and appearance to images, and have applicatioegriteatation,
tracking, and classification of structures. A limitationfAMs is that they
are not robust to a large set of gross outliers. Using a rd¢arsel can help,
but there are potential problems in determining the cokertel scaling pa-
rameters. We describe a method of learning two sets of gcphnameters
during AAM training: a coarse and a fine scale set. Our algoriinitially
applies the coarse scale and then uses a form of determiarstiealing to
reduce to the fine outlier rejection scaling as the AAM cogesr The algo-
rithm was assessed on two large datasets consisting of & feetes, and a
medical dataset of images of the spine. A significant impmoset in accu-
racy and robustness was observed in cases which were diféical standard
AAM.

1 Introduction

Active Appearance Models (AAMs) [2] are statistical modaisbject shape and appear-
ance which have been used to represent and locate objectsideaange of domains.
In their basic form they match a model to a new image usingraalysis-by-synthesis
approach, in which a synthetic image is generated from thdeand then compared to
the target image. The model parameters are optimised tbesise an image as close as
possible to the target. One of the strengths of AAMs is that&ing a sum-of-squares
measure to compare model and target, they can exploit tharlimature of the problem to
perform fast parameter updates and thus are able to matahete anage very quickly.
The constraints of the underlying appearance model make &\Addsonably robust
against noise. However, sum-of-squares terms can be b#idttead by large outliers.
Image regions where the intensities are far from the prediotodel values can have a
significant deleterious effect, and may lead to poor overatches or divergence. For
example, a model of faces trained on people without beardsasses may fail badly on
images of people with beards or glasses; or on an image wherefgthe face is occluded.
In the medical context there may be a surgical implant in phathe image. A natural
method of mitigating such problems is to introduce methe@dmfrobust statistics [7].
Typically these seek to downweight larger residuals. Haxeome scaling parameter



is then required to define which residuals are 'large’. Ongr@qch to choosing such a
parameter is to use estimates of the expected variance tdgftials when matching the
model to the training set. However, these tend to be underatgts, and are certainly
not appropriate during early stages of search when the nmoalstart far from the true
position, leading to large initial residuals.

In this paper we introduce a novel approach in which we usege limitial estimate
of the scaling, and gradually reduce the scale as the selyatitm proceeds. So as
the image match becomes better, the algorithm becometestais to what it considers
inliers. We describe the technique, and give the resultxpéements on two different
datasets (facial photographs and a medical dataset), ddrating that the approach leads
to improved performance when matching to 'difficult’ exaesl

2 Background
2.1 Active Appearance Models

Statistical appearance models [2] are linear models ofcbbfeape and texture variation,
which are learned from a training set. An appearance modehistructed by first learning
the statistics of shape and texture variation, and thenrjozating both into a set of
combined appearancgarameters. These represent the shageand textureg, (in the
model frame) according to

X = X+QsC

g = g+QgC @
whereXx is the mean shapeg, the mean texture in a mean shaped patch@g@q are
matrices describing the modes of variation derived frontithiaing set.

A shape in the image fram#, can be generated by applying a suitable global trans-
formation (such as a similarity transformation) to the peim the model frame. The
texture in the image frame is generated by applying a scalinoffset to the intensities
generated in the model frame. These shape pose and texalirygzarameters are con-
catenated with the appearance model parametergive the full set of AAM parameters,

denoted byp.
The AAM seeks to minimise a sum-of-squares problem of theafor
F(p)=Ir(mPP=rTr )
where the vector of residualds calculated as:
r=w(:p)—g 3)

wherew(l : p) is the (normalised) texture sampled from the imaggéven the shape de-
fined by model parameteps The AAM is trained (see [2]) how to solve this minimisation
by learning the relationship between perturbations in patars and the texture residu-
als that these induce. This relationship is then invertqotéide an update matrix that
can be applied to the current residual vector. When appierdtively this provides an
efficient model fitting scheme where the necessary pararlesergedp to the parameter
vectorp, givenr is estimated as:

op=—Rr 4)



whereR is derived from the Jacobiah= g—; thus.
R=[J73] 1T 5)

2.2 Robust Extensions of AAMSs

Edwards et al [4] derived an exclusion threshold for eacklgiased on the distribution
in the training set during AAM matching. Residuals beyoneittithreshold are ignored
in the AAM update step. Stegmann et al [17] extended this lrpdlucing a robust
measure for the comparison on AAM solutions, which chanigesbnvergence criterion.
However the AAM update steps are still performed as in [4]imtythe initial search.
There are two potential problems with this. Firstly rejegtcertain pixels early on can
ignore useful information, and may even lead to convergdaibere - for example if
there is a large initial pose error. Secondly the AAM updagdrin with a robust kernel
objective function should ideally be changed. In [17] thislgem is partly avoided by
the use of a simulated annealing phase after convention® 8é@arch. Gross et al [15]
propose a modification that solves this update matrix prolilg using a variable Hessian
that can be efficiently computed assuming a degree of suatie@rence. Theobald et al
[1] experimented with using this method with a variety ofrik&ls. However less attention
was given to the problem of determining kernel scaling pa&tans, which is particularly
important in problems where the AAM may not have a good ilidizion.

A different approach was adopted by Beichel et al [5]. Thebust AAM identifies
outliers by analysing the multi-modal nature of the residhistogram. This method has
the advantage of avoiding the direct use of cutoff thresheldhich might be set too
low for a particular target image - but at the price of some glaxity in the outlier
identification method.

Our approach is to recast the objective function as a weilgbten of squares in a
way that allows us to apply the standard AAM update to weighesiduals. The scale
parameters used for the weighting start off at a coarse bedilare gradually reduced as
the AAM converges.

3 Robust Kernel Application and Scaling

We adopt an M-estimator approach adapted to the AAM framiewdiven a robust kernel
form p, the aim is to minimise the objective function:

S=Y p(rc, o) (6)
=

We have used the Geman-McClure [16] kernel for a residual efrat pixelk.

rk2

I’k2+ Ukz’

p(rk, 0k) = (7)
wheregy is a scale parameter that controls the convexity of the tdhuastion.

This kernel has some history of use in computer vision, idiclg learning and fit-
ting eigenspace models [9, 13], and in robustly estimatiptical flow [14]. The



Geman-McClure robust function is twice-differentiabledaalthough its influence func-
tion (derivative) tends to zero for large errors, there isabgolute cut-off point. The
kernel response is always less thanltherorm, and the influence is approximately linear
over the inlier regiorj—%, \%], after which it declines.

The scaling of the GM kernel is typically some multifdeof the (inlier) standard de-
viation. The influence of inliers should typically extendatdeast one standard deviation,
whereas the GM function reduces a residual’s influence %erAlso because training
set inadequacies typically underestimate the true relsidumountered in unseen images
we extend the inlier region by a further 50%, and y3e: 1.5v/3.

We note that the conventional AAM is trained to minimise tesidual sum of squares
- the residuals are not normalised by their variance. Algothis is not a maximum
likelihood estimator, in practise it appears to work welkdese the image patch typically
includes large numbers of uninteresting pixels with lowiaace but little structure. So
we modify the objective function to make it more like a coniemal AAM and optimise:

S=7 aip(r. ow) (8)
&

This form of sum of robust error functiong (r¢) can be recast as an lteratively
Weighted Least Squares problem:

_1dp,
B 'k dl’k

n
S= Z Okzwkl’k2 W (9)
K=1
with weights determined by the kernel influence, since attthe minimum these
problems have the same solution, as can readily be seenfbyedifiation (and regarding
the weights as fixed for the current iteration). We use the Adpddate matrix as a quick
though approximate solver, applying it to the “kernel-isebidualsr’, with:

= VW (10)

wherey is a normalisation constant chosen so that ry for a residual at a suitable
small proportiore Lof the residual standard deviation.

This leads to the following mapping to apply to the residwedter, which we denote
by the vector functioi (r, o)

'k _ £2+B2 2

i = [K(r,0)l =
Essentially our robust AAM treats an outlier residual asutifoit were a smaller
residual, which leads to a reduced update step to the modshegters (due to this pixel).
However because the implicit Jacobian being used is&tithnd not‘g—r', the estimate of
the required update step becomes biassed for large ouflibessituation is complicated
by having varying biases due to many residuals spread ovey parameters. However
if we consider the limiting case of the contribution of a dfieadesidualry to a single
parameter model, we would see by comparing the two Jacolgbaaedg—g that

3pc = VWi dpi© (12)

1We usece = 0.1.



where6bk is the update step contribution we use, whegag® is the one really required
in minimising Sin 9. Thus we tend to underestimate the step for outliers (evitee
weights are small) and hence bias the step direction in fawbthe inliers (which have
weights near unity). The bias is mitigated by the fact tjfa, tends to zero more slowly
thanwy itself. This bias would be worse for rapidly decaying kespddut the Geman-
McClure kernel we use is relatively benign to outliers, amggree of bias towards inliers
may be acceptable. We also reduce the effect of bias by digdeducing the scale as
discussed below.

So although the AAM update matrix should ideally be adaptethé weights, the
standard AAM update matrix still gives an approximate sohuin the inlier region where
the weights are close to unity. Nevertheless the underatiof the update step can cause
convergence failures if starting from too far away from tb&ison, because reducing a
large residual can cause the weighting to increase in a veayrthkes the overall objective
function increase (the weight increases faster than tha@ualssquared decreases). In fact
such local minima problems can occur in any case with othengmf Iterated Weighted
Least Squares. There is always the problem of how to seleeatscalings for thé oy}
so that outliers are rejected without causing convergesitierés on genuine data when
the AAM is initialised some way off the target shape.

Our proposed solution is to apply a form of deterministicealdimg similar to that used
in [9, 13] (which used guasi-Newton non-linear optimisatjo We calculate two sets of
scaling parameterggix } and{ ogk} for the initial and final scale parameters respectively.
In the initial AAM updates the scaling is such that the vasfarity of residuals are inliers,
and so the AAM update equation can validly be used to find anceypate solution to
the weighted least squares problem. Then the scale is dhadeduced. The initial scale
parameters are learned during the standard (kernel-fréd) &aining. We learn the
Jacobian of the induced residual veatas parametens are displaced from their correct
values. This Jacobian is used to derive the initial{€gt } from the modelled parameter
variances. However if the AAM has really converged suceglysthen the final residuals
should be substantially lower, and the final residual vaxéagrshould be approximated by
those of the underlying appearance model. These can b¢ iarefitting the appearance
model back to its own training sét We denote the underlying appearance model ideal
standard deviations as(®). Our approach reduces the kernel scaling parameters from
one set to the other. AAMs are typically used with coarséifte-search using Gaussian
image pyramids, and this reduction is applied at each sthtieedmage pyramid before
moving onto the next.

In [6], the median absolute deviation (MAD) over the entireage dataset was used
as a lower bound on each pixel‘s scale parameter. On the assurthat the training set
represents outlier-free data with zero-mean uncorrel@gassian distributed residuals,

/<n 2

the MAD over all pixels has an expected value MAD(o) = % wheren is the
number of pixels.

We obtain estimates of the initial residual standard dewiatby summing over the
mp AAM parameters and using the Jacobiband the AAM parameter variancésrjzp}.
For the appearance model parametetisese variances are known, and determined via
the eigenvalues of the appearance model modes. For the pasagters (e.g. similarity
transform from model to image reference frame) we assumedbkeciated parameter

2or preferably a jackknifed miss-1-out estimate can be ddriv



standard deviation is the positive displacement range is@@M training (i.e. when
deriving the estimate af). Then

Mp
Ok=,| > kapzajzp (13)
jp=1
Applying the MAD lower bound and rescaling Ify/gives:

ik = Bmax ik, MAD(aj )) (14)

Whereas for the converged kernel parameters:
ork = Bmaxa,” ,MAD(c®))) (15)

We now summarise the application of the kernel and its resgahore formally.
For each image pyramid level loop:

1 Seto = G
2 While the AAM update step improves the solution loop:

2.1 Calculate the raw residual error veatép)

2.2 Calculate’(p) =K(r,o0)

2.3 Compute current kernel-ised error nae= ||r’||2

24 SetA=1

2.5 Update the parameter vecfoe p — ARr’

2.6 Calculate a new error vectbusing the updated paramet@rs
2.7 Compute the updated kernel-ised error vetter K (f, o)

2.8 If |f’||? < E, then accept the new parametgys:

2.9 Elseretry fon =1.5A =0.5,A = 0.25 etc and go to step 2.5; or exit
this loop when no more improvement results

2.10 End loop

3 Calculate the median reduction raticof {%T?k

4 Given annealing decay constan{e.ga = 0.9), set the number of kernel

rescaling stephl = [lﬁgﬁﬁﬂ

5 for N+ 1 rescalings do

5.1 if final rescaling setr = of

5.2 else: for each koy = max ok, a ok)

5.3 SetM =4 (or other suitable update count)

5.4 SetA= &

5.5 forM forced updates do
5.5.1 Recalculate the raw residual error vecig)
5.5.2 Calculate’(p) =K(r,0o)
5.5.3 Update the parameter vecfor p — ARr’
554p=p

5.6 end loop




6 end loop
7 Repeat AAM update loop (2) at reduced scale mow Gr
8 Move to nextimage level

End loop over image pyramid hierarchy

4 Experiments

We used a standard set of face images [10], of size 720x5@&pikn AAM was trained
using a subset of the data containing 162 subjects free @fl taair (beards) and glasses.
The form of appearance model used was a feature AAM usingdiatty renormalised
corner and edge features combined with similarly renosedlicartesian gradients. See
[8] for details. This has been shown to generally outperfastandard texture AAM. The
renormalisation to the local image feature statistics alsans that there are less likely to
be problems with the kernel scaling being inappropriategiaréicular image.

The test set used was the remainder of 136 subjects havireg &tial hair or wearing
glasses. Thus the appearance model would be expected toab& un accurately fit
to significant portions of the test cases. This will typigatbuse a number of overall
convergence failures. We tested running the AAM with anchwiitt the robust kernel,
to see if the robust kernel improves convergence relighititcases which significantly
depart from the trained model. There were 3 images used &br ®ibject, giving a total
test set size of 408. The AAM was fitted to each test case usiingea grid of initial
position and scale offsets. The initial pose parametere wet by performing an initial
best fit of the shape model to the (known) test case pointa feeappearance parameters
were reset to zero, and the X,y and scale pose parametegd @arifollows. The x and
y values were stepped respectively between [-20,20] pixéls a step-size of 5 pixels;
the scale was stepped between 1/1.05,1.0,1.05 respgclives gives a total intialisation
grid of 9x9x3=243 searches for each test image.

For the medical images miss-8-out experiments were peddrom a dataset of 308
DXA images of the spine. These used 10 initialisations fehamage, based on random
perturbations on the mean shapes implied by the vertebnédese See [12] for details.
DXA images use a very low X-ray dose, which makes them quitsyndhe aim was to
locate the positions of the 10 vertebrae from lumbar L4 tadbiz T7. The segmenta-
tion algorithm uses multiple AAMs, each of which fits a triptd vertebrae. These are
overlapped, which establishes linkage between the vasohisnodels. This gives good
accuracy on healthy vertebrae [12]. However the main airh@XXA imaging is in the
diagnosis of osteoporosis, as the the weakening of bons teddacture of vertebrae as
one of the early symptoms of the disease. Accuracy resulsewverely fractured verte-
brae are much poorer, partly because the AAM is prone to rhis$ractured vertebrae
and instead fit to neighbouring vertebrae. For example theta fractured T8 may be
fitted to the bottom of the neighbouring T7, which provideseally similar edge. See
Fig 1c for an example. In [11] we used an alternative fractuxAM initialisation which
partly resolved this problem. Also the low bone density icfured vertebrae can give
them a very poor signal to noise ratio, which means that nmigkers have a more sig-
nificant overall effect. We re-ran the experiments of [113¢e if the robust kernel might
improve the accuracy on these difficult fractured vertebrae



Standard AAM Robust Kernel AAM
Error Measure| Mean Median 90%-ile Mean Median 90%-ile
Point-to-Curve| 4.93  3.36 1054 | 464 3.28 8.86
CoG X 1.95 1.05 463 | 1.48 094 2.96
CoGY 3.79 1.22 12.55 | 3.17 1.08 9.51

Table 1: Search accuracy results (pixels) for the face dawG X and CoG Y are the
absolute errors in the centre of gravity of the face

Standard AAM Robust Kernel AAM
Fracture| Mean Median 90%-ile %ge EdgesMean Median 90%-ile %ge Edge
Type (mm)  (mm) (mm) Misfit (mm)  (mm) (mm) Misfit
Normal | 0.73  0.55 1.57 0.20% | 0.78 0.59 1.62 0.20%
Gradel| 0.83 0.57 1.77 4.07% | 0.83 0.60 1.79 1.61%
Grade2| 1.01 0.67 2.34 437% | 0.98 0.67 2.26 1.96%
Grade3| 1.65 0.88 452 16.64% | 1.28 0.78 3.05 8.42%

Table 2: Search accuracy results by vertebral fracturastar spine DXA images. NB

Fracture grades 1-3 correspond to height reduction thiéstad 20%, 25% and 40%
respectively. Errors are in mm but the %ge edges misfit cotugive the percentage ratio
of superior or inferior edges fitted erroneously onto a neighiing vertebra

5 Results

For the face experiments we calculated the mean, median @G#tdile for: a)mean ab-
solute point-to-curve error over each face image; b) facéreef gravity x and y posi-
tions. For the vertebral data we similarly calculated thememedian and 90%-ile on
raw point to curve errors, and also enumerated the propoofivertebral edges that were
erroneously fitted to a neighbouring vertebra. These weatyaed according to their
classification as normal (non-osteoporotic), or one of 8tfne severity grades according
to a standard system used by radiologists. Results for tteedfiad vertebral datasets are
summarised in tables 1 and 2 respectively.

6 Discussion and Conclusions

In the face experiments a statistically significant improeat occurs in mean point-to-
curve error, and also in the mean error in the cartesian cuatess of the face centre.
Moreover the tail of the distribution appears to be reducgthle use of the robust ker-
nel. The 90th percentile is reduced from 10.54 pixels to 8Bt median error is also
marginally lower, indicating that the improvement in mearoeis not at the expense of
a general deterioration in the better fitting cases. Theeel&ger improvement in the
accuracy of the estimate of the centre of the face, both mdesf mean and the 90th
percentile tail. Overall in the face data there is a modessiguificant improvement in

accuracy. An example is shown in Figure 1, which shows agdaiarch failure without
the use of the kernel. The AAM appears to have been confuselebfacial hair and

does not correctly locate the mouth and chin, whereas indiregponding case with the



Figure 1: Examples. The left (Fig 1a) and middle (Fig 1b) fegushow an example from
the face data using a standard AAM (leftmost) and with the&keAAM (middle). The
facial hair appears to confuse the non-robust AAM (left)athe location of the mouth
and chin, whereas with the robust kernel (middle) this prohbis avoided. The right-hand
figure (Fig 1¢) shows an edge misfit (standard non-robust ABMA vertebra for a grade
3 fracture. The fitted standard 6-point morphometric coaret mid-points are shown.
The arrows indicate where the AAM search fitted the top of Ttheobottom of T7, and
the anterior bottom corner of T8 to the top of T9.

kernel applied the solution has converged with reasonaldeatl accuracy.

In the medical image data, there was no improvement with abuwertebra. In fact
there was a mild deterioration when applying the kerneinfo73mm to 0.78mm, though
this difference is on the margins of statistical significmnand is far smaller than the
precision of the underlying manual annotation. Theretigldifference in mean accuracy
on mildly fractured vertebrae, although the number of inecity converged solutions on
neighbouring vertebra does appear to reduce. But when we tmthe challenging case
of the severely fractured vertebra there is a substantialtgon in the number of incorrect
solutions on neighbouring edges, and this is accompaniadhkgnificantimprovementin
mean accuracy from 1.65mm to 1.28mm, and the 90%ile err@dsaed from 4.52mm
to 3.05mm. Where the AAM was already performing well (i.ee tiormal vertebrae),
there is no advantage to using the kernel on this dataset. et#wn this application
the marginal deterioration in well localised healthy vbreeis an acceptable price for a
substantial improvement in accuracy for the more difficeltesely osteoporotic cases.
The marginal deterioration on normals may be because thefue standard AAM
update matrix on the transformed residuals leads to smadkelsi In fact variations iR
across the population is a general problem for AAMs. Coaté®duced the Updating
AAM [3] to address this. In future we intend combining ourrfoof robust AAM with
the Updating AAM, which should lead to better optimisatidittee objective functiors
(equation 9).

In conclusion the use of a Geman-McClure robust kernel poiapplying the standard
AAM update matrix leads to a modest but significant improvenie accuracy, when
applied to test images which would be expected to providecdif cases. Initial coarse
kernel scaling parameters can be derived using the AAM Janpand we have shown a



method of reducing these to the finer scale of the appearaadelitself. This generally
avoids the trap of local minima that would be caused by thenptare rejection of too
many useful pixels. This method could be used with otherddsrmut approximations in
the update step mean it would work best with kernels havingduwgl outlier rejection -

e.g.

inverse polynomical decay rather than exponential.
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