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Abstract

Shape from texture has received much attention in the past few decades.
We propose a computationally efficient method to extract 3D planar surface
orientation from the spectral variations of a visual texture. Under the as-
sumption of homogeneity, the texture is represented by the novel method of
identifying ridges of its Fourier transform. Local spatial frequencies are then
computed using a minimal set of selected Gabor filters. Under perspective
projection, frequencies are backprojected and orientation is computed so as
to minimize the variance of the frequencies’ backprojections. A comparative
study with two existing methods, and experimentation on simulated and real
texture images is given.

1 Introduction
Shape from Texture was first introduced by Gibson 50 years ago. In [7] he suggests that
texture can provide an important shape cue. However for a machine the solution to this
problem is ill-posed. Shape from texture is generally about measuring the texture distor-
tion in an image, and then reconstructing the surface 3D coordinates in the scene ([6],
[8], [9], [11]). The model for the texture can be either deterministic or stochastic. The
second allows a wider variety of textures ([9], [11], [13]) and implies local spectral mea-
surements, usually with the Fourier transform ([11]), or more recently, wavelets ([8], [3]).

An initial assumption about the texture is always necessary, and few of the existing
papers are applicable to real surfaces because of restrictive assumptions. [10] deals with
texels, which are seldom found in nature, while [14] assumes isotropy, rarely the case.
Homogeneity is more frequently used ([9], [6], [3]), and is the one we choose here. For
deterministic textures it can be seen as periodicity, for stochastic textures it can be for-
malized as stationarity under translation ([11]). Under this condition we assume that all
texture variations are produced only by projective geometry.

We assume here a perspective or pin-hole camera model, as in [4] and [12], because
perspective effects (e.g. shrinking) are usually found in images of slanted planes. We do
not consider the weak perspective case as this preserves homogeneity and therefore gives
no information on plane orientation ([5] and references within).

The present work takes its motivation from [12]. The texture is analyzed using Gabor
filters to produce distortion information based on local spatial frequency (LSF). Unlike



[12], we do not just rely on a dominant LSF, but we consider groups of LSFs. This
extends [12] to exploit the multi-scale nature of textures. To our knowledge the algorithm
presented here is the first to consider the multi-scale nature of texture to the extent of
exploiting all main LSFs, most of the related work uses only two preferred directions in
the spectral domain (e.g. [13]).

Section 2 explains in detail how the texture is analyzed to produce distortion informa-
tion, and justifies the chosen method. Section 3 presents the projective geometry. Section
4 shows how we can recover surface 3D coordinates from the measured texture distortion.
Finally, section 5 presents results, comparing them with those in [8].

2 Texture Description
Here we describe how to set 2D Gabor functions and their first derivatives from the infor-
mation on texture supplied by the Fourier transform. The former provide local analysis to
compute instantaneous frequencies, which are used to measure distortion and reconstruct
the 3D coordinates of the texture surface.

2.1 Estimating the Instantaneous Frequencies
The analysis of an image I(x) is usually done using a band-pass filter h(x,u), a function
of a point x = (x,y) and of a central frequency u = (u,v), which is convolved with the
image to provide the local spectrum. As in [12] we choose 2D Gabor functions:

h(x,u) = g(x)e2π jx·u where g(x) =
1

2πγ2 e
−(x·x)

2γ2 (1)

with j the unit imaginary and g(x) a 2D Gaussian function with variance γ2.
For a 2D cosine f (x) = cos(2πΩ(x)) the instantaneous frequency is given by

ũ(x) = (ũ(x), ṽ(x)) =
(

∂Ω
∂x

,
∂Ω
∂y

)
. (2)

Our goal is to measure ũ(x). [1] shows that this can be done by considering a Gabor
function h(x,u), and its two first order derivatives, hx(x,u) and hy(x,u):

|ũ(x)|= |hx(x,u)∗ I(x)|
2π|h(x,u)∗ I(x)|

|ṽ(x)|= |hy(x,u)∗ I(x)|
2π|h(x,u)∗ I(x)| . (3)

This estimate can be assumed to be correct if the frequency we are measuring is in the
pass-band of the filter. This method implies that we have to choose the central frequencies
u of the Gabor functions, and the spatial constants γ , in order to set the centre and width
of the filters. The filters have constant fractional bandwidth (bandwidth divided by its
centre frequency). This allows us to measure higher frequencies more locally than lower
frequencies and is computationally less expensive. Moreover, as all filters so derived are
geometrically similar it is simpler to compare their outputs.
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(a) 1D cosine at frequency
ũ≈ 0.42 rad/s

−4 −2 0 2 4
0

50

100

150

200

250

300

350

400

(b) Amplitude of the spec-
trum of the cosine in 1(a)
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(c) 1D cosine with fre-
quency varying from ũ ≈
0.42 rad/s to ũ≈ 1.27 rad/s
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(d) Amplitude of the spec-
trum of the cosine in 1(c)
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(e) 2D cosine at frequency
|ũ| ≈ 0.42 rad/s

(f) Amplitude of the spec-
trum of the cosine in 1(e)
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(g) 2D cosine with fre-
quency continuously vary-
ing from |ũ| ≈ 0.42 rad/s
to |ũ| ≈ 1.27 rad/s

(h) Amplitude of the spec-
trum of 1(g) and the cho-
sen set of Gabor filters
(circles) on it
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(i) Two 2D cosines
superposed, at frequencies
|ũ1| ≈ 0.42 rad/s and
|ũ2| ≈ 0.63 rad/s, 45◦
degrees apart

(j) Amplitude of the spec-
trum of the image in 1(i)
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(k) Result of slanting the
image in 1(i) by 38◦

(l) Amplitude of the spec-
trum in 1(k) and the cho-
sen set of Gabor filters
(circles) on it

Figure 1: Setting the Gabor filters’ parameters

We choose to set the Gabor functions using the information from the Fourier trans-
form of the texture. Unlike Super and Bovik ([12]), who sample the whole 2D frequency
plane, we make a selection of Gabor filters using ridges in the Fourier transform of the
image. In our algorithm every ridge determines a set of Gabor filters that covers the corre-
sponding values of frequencies. Every ridge therefore determines different instantaneous
frequencies and thus different distortion measures.

2.2 Setting the Gabor Filter Parameters
Let us consider a 1D cosine (figure 1(a)). The signal has length of 128 samples and fre-
quency ũ≈ 0.42 rad/s (where π rad/s is by convention the biggest admissible frequency).
Figure 1(b) represents its spectrum amplitude, two symmetric spikes at the corresponding
frequencies (≈±0.42 rad/s). A chirp is shown in figure 1(c), i.e. a cosine with frequency
varying from ũ≈ 0.42 rad/s to ũ≈ 1.27 rad/s. Figure 1(d) illustrates its spectrum, where
significant non-zero values span that range.

Analogously we show a 2D image generated by a 2D cosine with frequency |ũ| ≈ 0.42
rad/s (figure 1(e)) and its spectrum (figure 1(f)), given by symmetric spikes on the fre-



quency value. And we compare them to figures 1(g) and 1(h), the image of a 2D cosine
with frequency ranging from |ũ| ≈ 0.42 rad/s to |ũ| ≈ 1.27 rad/s and its spectrum (circles
are fully explained later). In the latter, significant non-zero values form a ridge corre-
sponding to that range. Figures 1(g) and 1(h) were actually generated by slanting (see
section 3) image 1(e) through 38◦. The ridges of the amplitude of the Fourier transform
of the image represent the 2D frequencies contained in the texture.

The algorithm we propose analyzes the spectrum of the texture to determine its ridges,
and then uses this information to define the sets of Gabor functions used. Figure 1(h)
shows the chosen set of central frequencies u (the centres of the circles) and the set of
spatial constants γ (their radii); half of the spectrum is considered because of its redun-
dancy. There is significant overlapping (50%) to produce a robust LSF estimation. How-
ever, unlike in [12], where 63 central frequencies and spatial constants sample the whole
2D frequency plane, here the number used varies with the image. 7 u’s and γ’s are used in
figure 1(h). This implies a significant reduction of the computational expense: in [12] 63
u’s and γ’s correspond to 378 convolutions (the Gabor filter and its first order derivatives
and an equivalent number of post-smoothing filters); our algorithm in this case uses 7 u’s
and γ’s, meaning 42 convolutions, therefore a computational saving of about 89%.

We now consider the case of multiple frequencies. Figure 1(i) shows the cosine from
the previous example (|ũ1| ≈ 0.42 rad/s) on which we have superposed another cosine,
with frequency |ũ2| ≈ 0.63 rad/s, separated by 45◦ degrees from the first in the frequency
plane. The amplitude of the spectrum of the image (figure 1(j)) shows four peaks, corre-
sponding to the values of the two frequencies of the cosines. In this case we can associate
two instantaneous frequencies to each point, which in fact coexist at every pixel. Figure
1(k) shows the result of applying the same slant as in figure 1(g): each cosine has now
a continuously-varying frequency. Moreover the two LSFs change independently from
each other. In fact the first cosine acquires the same continuously-varying frequency as
in the previous section, and the second equivalently acquires a range of 2D frequencies
varying in the direction of the slant. This is what the amplitude of the spectrum in figure
1(l) shows. In it we can observe two ridges, each of them associated with the original
cosines, the spread indicating a variation or distortion due to the slant.

Our algorithm detects the two ridges and sets two groups of Gabor filters. In each
group a series of values for the central frequencies, u’s, and the spatial constants, γ’s,
are defined, so as to determine the filters to cover the respective ridge area (figure 1(l)).
Every set of filters is processed as in the previous example, i.e. as if the texture contained
only one corresponding LSF. Thus each set of filters reconstructs an instantaneous fre-
quency for each pixel. These are used to measure the deformation of the texture due to
the slanting, are processed independently and finally the results are combined (details are
in section 4). In this sense we exploit the multi-scale nature of the texture, because all
different-scale frequencies are considered in the final result.

3 Projection of Texture
Here we describe the viewing geometry and a projection model, to provide a relationship
between the surface and the image plane as a function of the orientation. We then present
a surface texture model.



Figure 2: Viewing geometry and projection model

3.1 Viewing Geometry and Projection Model
We adopt the viewing geometry and projection model of [12]. They assume a pin-hole
camera model and their coordinate systems are given in figure 2. In it the origin of the
world coordinate system xw = (xw,yw,zw) coincides with the focal point and the optical
axis coincides with the −zw-direction. The image plane coordinate system xi = (xi,yi) is
placed at z = f < 0, with | f | being the focal length, such that xi = xw and yi = yw. The
orientation of the surface is described using the slant-tilt system: the slant σ is the angle
between the surface normal and the optical axis, with values ranging from 0◦ to 90◦; the
tilt τ is the angle between the xi-axis and the projection on the image plane of the surface
normal, with values between −180◦ and 180◦. The surface is described by the coordinate
system xs = (xs,ys,zs): the xs-axis is aligned with the perceived tilt direction, the zs-axis
is aligned with the surface normal, ys forms a right handed orthogonal coordinate system
and the origin of xs is on the intersection of the surface with the zw-axis, at zw = z0 < 0.

[12], to which we refer for details of the derivation, obtains the equations for trans-
forming 2D surface to 2D image coordinates, and vice versa, under perspective projection.
Most importantly, they derive the relationship between the instantaneous frequencies on
the image plane ui = (ui,vi) and those on the surface plane us = (us,vs):

us = Jt(xi,xs) ·ui. (4)

Jt , the transpose of the Jacobian determinant of the coordinate transformation, is

Jt(xi,xs) =
sinσ

zw

[
xi yi
0 0

]
+

f
zw

[
cosσ cosτ cosσ sinτ
−sinτ cosτ

]
(5)

with zw = z0− xs sinσ =
f z0 cosσ

sinσ(xi cosτ + yi sinτ)+ f cosσ
. (6)

We use the above to backproject a LSF computed on the image plane to the surface plane.

3.2 Surface Texture Model
We model textures as due to variations of surface reflectance, the proportion of incident
light reflected. We assume that the surfaces have a Lambertian reflection, and that the
texture is therefore ‘painted’ on them, without roughness or self-occlusion.



Surface reflectance, ts(xs), and image reflectance, ti(xi), are related by the following:

ti(xi) = k(xi) · ts[xs(xi)], (7)

where xs(xi) represents the perspective backprojection, while k(xi) is a multiplicative
shading term. [4] shows how to estimate and remove k. However, if the scale of variation
of ts is small compared to the scale of variation of the shading term, then the latter can be
assumed to be constant in any small neighborhood. Moreover, our method automatically
normalizes for slow variations in illumination, shading and surface texture contrast, be-
cause it uses frequencies rather than amplitudes. Also no assumption is made about the
textural nature of ts(xs), thus it might apply to various patterns, e.g. lines, blobs, etc.

4 Computing Surface Orientation
We explain here how our algorithm processes the image texture to produce the orientation
of the surface texture.

As discussed in the introduction, we assume homogeneity, in the specific form that
the relevant LSFs of the textured surface are constant in the surface region under analysis.
Our assumption includes as a corollary that the variance of each LSF on the surface plane
is zero. The theoretical zero value means a minimum in the case of real data, and this
assumption is used to compute the surface orientation, i.e. the slant σ and tilt τ .

The structure of the proposed algorithm is therefore:

• The spectrum amplitude of the image texture is analyzed and ridges are detected.

• Each ridge determines a set of Gabor functions and their first derivatives, so that
the filters cover the frequencies pertaining to the particular ridge.

• For each set of filters the following steps are repeated:

– the image is convolved with the Gabor filters and their derivatives, and the
outputs are smoothed with a Gaussian to reduce noise;

– the Gabor filter with largest amplitude output is selected at each point;

– the (signed) instantaneous frequencies are computed at each point (eq. 3);

– a 2D search over the plane σ -τ is implemented: for each couple (σ ,τ) the
instantaneous frequency is backprojected using equation 4, and the variance
Vσ ,τ is computed;

– the values of σ and τ corresponding to the minimum variance are chosen, and
the variance is also returned.

• The algorithm chooses the best couple (σ ,τ) as that giving the lowest variance.

The minimum variance (Vσ ,τ ) method requires the estimated instantaneous frequen-
cies to pertain to the same slanted and tilted LSF in every group. This is not assured if
we use a grid of Gabor filters and choose the largest amplitude output, as in [12]. In this
case, maximum outputs might then correspond to different groups of LSFs for different
pixels in textures with more than one dominant frequency, which invalidates the orienta-
tion estimation. Our algorithm allows us to estimate instantaneous frequencies pertaining
to distinct groups because it uses separated sets of filters. This improves its robustness.



(a) D20 (b) D52 (c) D57 (d) D65

(e) D82 (f) D84 (g) D95 (h) D95 with white Gaus-
sian noise (SNR=−5dB)

Figure 3: Images synthesized from Brodatz textures

Image True τ τGL |τGL− τ| τHLC |τHLC− τ|True σ σGL |σGL−σ |σHLC |σHLC−σ |
D20 160 160.45 0.45 160.05 0.05 37 37.36 0.36 37.53 0.53
D52 -60 -60.28 0.28 -61.08 1.08 50 49.55 0.45 49.58 0.42
D57 90 91.00 1.00 91.41 1.41 70 70.37 0.37 67.30 2.70
D65 60 59.48 0.52 55.00 5.00 50 48.71 1.29 54.38 4.38
D82 90 89.63 0.37 90.71 0.71 50 49.16 0.84 48.62 1.38
D84 135 134.16 0.84 128.58 6.42 35 35.32 0.32 33.26 1.74
D95 -155 -154.92 0.08 -158.57 3.57 27 25.89 1.11 28.45 1.45

Table 1: Tilt and slant results of our method (τGL, σGL) on images synthesized from
Brodatz database textures, compared to the results of [8] (τHLC, σHLC) (angles in degrees)

All the relevant frequencies are used. Eventually, we choose the pair (σ ,τ) with the
lowest Vσ ,τ as we assume that lower values of residual variance, closer to the ideal zero
value, correspond to better orientation estimates. As results from all ridges are accurate,
future work might address combining these to produce better estimates.

Finally, the algorithm lends itself well to parallel implementations, because each ridge
and filter can be processed independently and implemented by different units.

5 Results
We demonstrate our method on two sets of images. The first (figures 3(a)-(g)) is derived
from [8], whose results we use for comparison. The images in this set were synthesized
by mapping real textures from the Brodatz database ([2]) onto an inclined surface and
then rendering it as a new image. Table 1 shows the results achieved compared with those
from [8]. Our average estimation errors for τ and σ are 0.51◦ and 0.68◦ respectively,
while Hwang et al. ([8]) achieve corresponding values of 2.6◦ and 1.8◦. The accuracy
of our method is significantly higher. As in [8], we add various levels of white Gaussian
noise (SNR ranging from 20 to−5 dB) to the images of the textures D20, D52, D82, D95



(a) Rubber rug (b) Page 1 (c) Page 2 (d) Pyjamas

(e) Pillow case 1 (f) Pillow case 2 (g) Shirt (h) Sponge

(i) Towel (j) Trousers (k) T-shirt (l) Towel in 4(i) - Whole
picture

Figure 4: Real images of texture planes

(the latter with SNR=−5dB is shown in figure 3(h)). Note that our estimates are always
closer to the noiseless result than those of [8], thus indicating increased robustness.

The second set (figures 4(a)-(k)) consists of real images. All of them are the central
128x128 parts of 640x480 pictures. Figure 4(l) presents the whole image from which
figure 4(i) was derived. As can be seen, the textured object was laid flat on a panel of
known orientation (obtained using a multiple camera system prior to the experiment) and
photographed with a Pulnix TM-6EX camera. The chosen textured objects were mainly
fabrics, but also included some different materials. It is clear that the pictures are af-
fected by variations in illumination and self shadowing (4(h)), creases (4(e)), imperfec-
tions (4(b), 4(a)) and occlusions (4(d)). Table 3 shows the results we obtained, compared
to the ground truth. On average, tilt and slant were estimated with an error of 1.3◦ and 1.5◦

SNR (dB)
Image (τ/σ) ∞ 20 10 0 -5
D20 (160/37) 160.4/37.4 159.5/37.1 159.6/36.8 159.6/37.3 157.3/37.3
D52 (-60/50) -60.3/49.5 -58.7/47.6 -64.4/49 -67.2/46.6 -61.6/34.3
D82 (90/50) 89.6/49.2 -89.1/51.3 90.6/52.3 86.1/45.4 X
D95 (-155/27) -154.9/25.9 -158.8/25.2 -159.8/26.2 -160.8/25.4 -160.6/24.5

Table 2: Surface orientations (τ/σ) estimated using our method on noisy images - true
values are in parenthesis (X indicates that the results were not reliable) (angles in degrees)



Image True τ τGL |τGL− τ| True σ σGL |σGL−σ |
rubber 118.8 118.3 0.5 35.3 33.4 1.9
page1 -152.8 -153.3 0.5 23.6 23.4 0.2
page2 123.6 121.3 2.3 36.9 34.0 2.9
pyjamas -152.8 -151.2 1.6 23.6 20.2 3.4
p’case1 -123.6 123.2 0.4 36.9 34.4 2.5
p’case2 -146.5 -147.7 1.2 32.7 33.6 0.9
shirt 103.2 107.5 4.3 33.6 31.2 2.4
sponge -158.3 -157.9 0.4 25.5 25.1 0.4
towel 146.4 146.2 0.2 38.8 39.9 1.1
trousers 118.8 118.7 0.1 35.3 35.2 0.1
T-shirt 123.6 121.3 2.3 36.9 35.7 1.2

Table 3: Tilt and slant results of our method (τGL,σGL) on real images (angles in degrees)

respectively. These data confirm both the accuracy and the robustness of our algorithm.
All processed images were 128x128 pixels with 256 levels of gray. The backprojec-

tion of the computed LSFs for each value (σ ,τ) was done just for the middle section of
the image (here 64x64), so as to avoid edge effects. The constant fractional bandwidth is
one half, and the space constant of the post-smoothing Gaussian filter is 1/12 of the im-
age. We could not apply our method to those images in [12] because we could not gather
all the data of the original setup. Processing the 18 images, 46 ridges of the Fourier trans-
form were detected, that determined 232 Gabor functions. On average the number of
convolutions per image was therefore 77.33. Compared to [12], where 378 convolutions
per image are used, we save 79.54% in computational power.

As stated in section 1, the homogeneity assumption requires some sort of periodic-
ity/stationarity: the algorithm can deal with as little as 6 cycles/picture.

Finally, we address the possibility that ridges might superimpose. This may be the
case when a texture composed of close frequencies is slanted. Such a superposition can
easily be spotted by our algorithm, as it results in gaps in the frequency estimation. We
solve it by considering a smaller patch of the image, e.g. 96x96 instead of 128x128. In
this way the range of variation of frequencies analyzed by the Fourier transform is smaller
and hence there is less chance of observing the superposition.

6 Conclusions
The study presented here has characterized the variations of the dominant LSFs in textures
via the ridges of their Fourier transforms, and used those to estimate the orientation of sur-
face textures. Numerical results have been given on both semi-synthetic and real images
and compared where possible with other work. Our algorithm is more accurate, simple to
implement, and has the potential to be extended to more complex surface shapes.

To our knowledge, the proposed algorithm is the first to consider the multi-scale nature
of texture to the extent of exploiting all main LSFs. Furthermore, it is robust against
shading, variations in illuminations, and occlusions, and performs well in the presence of
added Gaussian noise. Finally, it is based on the Fourier transform of the image and on a



minimal number of convolutions, results are therefore computationally fast.
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