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Abstract

We address the issue of real-time pedestrians detectiomfban envi-
ronment. This is a challenging task owing to the high valighof appear-
ances and poses that humans can have and to the complexétglafrounds.
We propose a solution made of gradient-based local descsippbmbined to
form strong classifiers and organized in a cascaded detatdeveloped
for this an extension of the Histograms of Oriented Gradi€htOGs) and
added a new component to the histogram which represenrémgth of
edges or themount of information in the histogram support. We also im-
plemented a learning algorithm based on Real Adaboost viWverphases —
selection first, then refinement of weights — provide moreaustiess to the
detector. We evaluated our system by comparing it to theackestdetector
of Haar features of Viola & Jones [7] and to the SVM of HOGs teas of
Dalal & Triggs [1]. To ensure an equitable and valid comparjsve used the
database proposed in [1]. Our system outperforms them éctieh results
and in time needs.

1 Introduction

The human class in object detection is probably one of theerdificult because of the
variability of appearances and poses that humans can hawe ddscriptor used to de-
scribe and to detect human silhouettes has to capture finelgaod characteristics to
assure an efficient detection. Moreover, applied to an ucbatext, the detection chain
has to be as robust as possible and has to run in real-time.eWdoged a human de-
tection system based on Histograms of Oriented Gradien®s3$j features learnt by a
cascaded boosting procedure which performs better thda-Vanes [7] Haar+Adaboost
cascadedystem ) and Dalal-Triggs [1] HOG+SVMgystem 3. We adopted the cascade
approach from [7] with some modifications which tend to mdiegystem more robust
and we worked with HOGs-like descriptors including gradirength information. This
paper is organized as follow: we first make an overview of joevwork on human de-
tection in 2. Then we present briefly our system in 3, expemtedeesults are exposed in
4 with a comparison with other state-of-the-art method$, lwe present the performance
of our system through several parameters study and we ficatiglude and discuss about
future work in 6.



2 Previous Work

Lot of work has already been done in Computer Vision baseédctien systems and an
extensive literature accompanies this work. Papageomiali[6] presented a detector
which infers a pedestrian model from positive and negatikzergles by the mean of a
polynomial SVM and usequadruple density Haar Wavelets as a pattern descriptor. An
improved version has been developed by Deporeeak[2], principally with dimension
reduction thanks to Adaboost features selection and SYRbtlel generation. Violat al

[7] introduced a Haar-like wavelets coarse-to-fine casdddee detector combined with
an efficient features extraction method — the integral imaged extended this system
to take into account motion cues in video scenes [8]. Theegysteveloped by Gravila
et al [3] computes the chamfer distance to perform a shape-basdebpian detection
and validates the detection with textures classificatiomfa neural network and stereo
verifications. Mikolajczyket al [5] assembled seven part detectors (frontal and profile
head, face and upper body, legs) with Bayesian decisios.rillalal and Triggs [1] pro-
posed a detector build on a SVM learning machine and Histogi Oriented Gradients
(HOG) through a very interesting study of their implemeiotatssues. A more challeng-
ing goal is aimed by Leibet al [4] and Wu and Nevatia [9] who tried to detect partially
occluded pedestrians in crowded scenes. The formers @vasdithe aggregation of local
and global cues while the latter usedbel et features learnt by a boosting method.

3 Overview of the System

In this section, we describe briefly our system schematindjure 1. More details for
each parameters are given in section 5.
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Figure 1: Detection chain of our system.

We developed a system that can achieve real-time pedesuligtection in urban
scenes with very low false-positive rates. Real-time d&teds an important point for
this system which could be adapted to a future embeddedwversi
Our method is based on a true/false classification obtaigexhlevaluation of local de-
scriptors computed densely on input images through a boestscade of classifiers.

3.1 Local Descriptors

Distinction and recognition of objects in static scenes loarobtained from shape con-
tours. HOGs work well to capture such information from anga&ut it lacks of a clue,
which could be named thentour strength, to make difference between acute and loose
edges. To correct this drawback, we included the gradieghitale as a new component
in the histogram so that our histograms are now made of 9 raatgrnormalized orien-
tations bins — each one 2Bide — plus 1 bin for the gradient magnitude. The orientation

1Support Vector Regression Machines



are unsigned so that we do not make difference between aldligfht transition and a
bright-dark one (this assumption makes sense with the totdr end texture variability
of human appearances: hair, skin, clothes, etc.). To redl&ging, we use a kind of
simple smoothing to compute the histogram components byga/fractionx of the vote
to the corresponding bin and a fraction-X to the nearest bin whebec [Xmin, 1]. Xmin
depends on the angle threshékdabove which we consider a vote belonging to one and
only one bin k= 1). In fine, we obtain heterogeneous descriptors, compuatadiense
way, that can code the orientations andstnength of a shape.

Input images are represented in grayscale color space apaté first normalized along
the luminance in areas where there are enough gradientmat@n. This preprocessing
provides to the system some robustness to illuminationitiond. Gradients are com-
puted with an optimized implementation of the Deriche ofmgrand components votes
are efficiently accumulated thanks to the integral imagertgpies.

3.2 Learning Procedure

Pedestrians characteristics are extracted and learnt dgcaded boosting algorithm like
the one used in [7]. In our case the learning algorithm haade Wwith a very high dimen-
sional space made of almost ten thousand of componentsdbrpesitive and negative
example. The Adaboost algorithm is used to select the nete@mponents and to train
classifiers from them likesystem 1 The boosting algorithm builds, for each stage, a
strong classifier from a weighted selection of features -wibak classifiers — and stop
selecting features when the training errors drop belowestiwld.

We changed a bit this procedure to robustify the resultanngtclassifier: we first se-
lect n weak classifiers, each of them is a component of an histogkéoha’s algorithm
would stop there but ours comprises another loopnabunds of boosting to compute
more finely the weights of the selected components. The difficulty is to find the two
optimal parameters andmto prevent the system from over-learning, which could lead
to a decrease in the performances.

4 Results and Comparison with Different Systems
4.1 Databases

Our system is dedicated to human detection in urban scengdrain and test it, we
acquired several hours of video with a video-camera fixed ocaralriven in cities (see
fig. 2 for examples of image). We obtained very good resultth@ndatabase. Although
we could use these datas in this paper, we would prefer usingatabase available in
[1], where the background is not especially urban, to makeemneutral comparisons
between the different systems. This database containghifprimans with various poses,
clothes, backgrounds and light conditions. Some samples fetial occlusions. There
are 2478 96« 160 positives examples for training (1239 + left-right reibes) and 1126
70x 134 positives examples (563 + reflexions) for testing. Reaplthese images are
64 x 128 sized. There is also a free-person set of 1218 imagegfmrgting the negative
examples.

4.2 Methodology.

We trained and tested our detector on this database in tderalit ways. The system
presented in [7] is based on a cascade of boosted classifieneas the system in [1]



Figure 2: Samples of images in our urban database.

Figure 3: Some samples from the database we used.

is based on a linear SVM. Although the cascade hierarchyiges\a faster behavior to
the system, it also decreases a little the detection ratk=elah, several stages have more
chance to reject wrongly good candidates than only one stHgys is why we separated
our comparisons in two distinct parts: the first comparisdhlve between the cascades
of classifiers, a Haar-based from Viola-Jones and our casc@lde second comparison
will compare the SVM+HOGs system from Dalal-Triggs witbrge stage cascade trained
with our method. For each case, we give ROC curves with Mige Ra-Recall) versus
False Positive Per Windows (FPPW) rate.

4.3 Results & Comparisons.

Boosted cascade of Haar classifiers vs. improved boosted cade of HOGs.We used
Intel OpenCV implementation of Viola-Jones detector andramed it with the datas we
described above. We gave the same parameters to the twingramograms: 2478 posi-
tives samples and 10000 negatives samples and we built tseadas made of 10 stages
with the Real version of Adaboost. Minimum hit rate and maximfalse alarm rate are
respectively fixed to 99.5% and 50%. Training has been doradntel Xeon Processor
at 3.0GHz equiped with 4Gb of memory and it took several dayadgst 1 week) fosys-
tem 1 whereas ours needed only a few hours (almost 2 hours). THefireades used
397 different weak classifiers faystem 1 and 169 for ours.

Now let’s talk about results and performance. Figure 4 glestrows that our cascaded
pedestrian detector is better theystem 1 Further studies shows theystem 1 has dif-
ficulties to detect correctly pedestrians present in thaliete we used. This is due to
the variety of backgrounds and parasitic elements likdi¢rafgns, billboards, etc. By
the same way, those same elements add false alarms leadingt@rall decrease of the
performance. Considering processing times, it took 46.4amsystem 1 and 27 ms for
our system to scan a 320240 image with the same parameters (scale factor of 1.2, step
size of 1.5). The figure 4 shows the ROC curvessigstem 1 and our system.

HOGs+linear SVM vs. 1-stage HOGs+Boosting. We used the latest system avail-



able described in [1] to compare it with our method. We letdleéault parameters as
there are supposed to be the best for this system and wediitimigh the same examples
set, which took several hours (almost 3). To have a compasistem, we trained@ne
stage cascade with our own program with 50 weak classifiers. This was dorless than
an hour.

Regarding the results, our system quickly outperformsyiséesn based on HOGs+linear
SVM and provides a near perfect detection with an accepfalde positive rate. Our
system is a little bit less performant for FPPW undgr-55 but above, it is better than
system 2 and reaches perfect detection for false alarm rates dter 4. See fig. 4 for
the whole ROC curves. We also compared processing time ox 220 images with a
dense scan of almost 5500 detection windogigstem 2 took 3 seconds whereas ours
needed only 229ms. Remind that the cascaded detector neatje@7ms: this shows
how the cascade structure is efficient to reduce detectiogsti
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Figure 4: Performances afystem Jand our cascade (left) and performancesystem
2and ourl-stage detector (right). In both cases, our method outperformsther sys-
tems.

Figure 11 shows examples of output of our systems on somentegtes of the
database from [1].

5 Performance and Parameters Study

In this section, we study the impact of some parameters oaytstem. After addressing
the issue of gradient computation method, we justify theaishe gradienstrength as a
new component in the histogram and then study the drawingeoflense grid on which
histograms are computed. We expose then the initializatidime learning algorithm and
the manner in which a strong classifier is trained. After,tiat discuss of the existence
of an optimal number of stage in a cascaded detector and wiy fatady the structure
and characteristics of the resultant detector.

5.1 Gradient Computation

The detection chain almost begins with gradient computamthat the detector results
are closely dependent with the way in which they are compWétested several gradi-
ent computation methods to select the best result/time aatiwe want our system to be
real-time. Rapid gradient computations could be done vititipke small mask derivation
(1D:[-1,0,1], 2D: Sobel) and also with the Deriche recursive operators.



The only parameter for Deriche’s operatorsisvhich drives thesmoothing phase of the
filter. The smallera is, the stronger the smoothing will be. But, as our descrifitals
complementary information on the gradient strengtimust not be too small.

We looked then at the influence of the size of the normalimatimdows. As expected,
the evolution of the results reached an optimum as the sizeases. We started from 10
pixels to 30 pixels and the optimum is between 15 and 20 pixX¢étse that this window
is as broad as an arm/leg of human on the training samples.
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Figure 5: Effect of gradient computation method (left) afidarmalization window size
(right).

5.2 Contribution of the Gradient Magnitude in the Descriptor

We now study the contribution of the gradient magnitude thatcalled thecontour
strength. This is done by comparing two detector: one with classic H@Scriptors
and the other with HOG+magnitude. The two systems diffey onlthe descriptors used,
they are trained with the same parameters and on the saniteadataFigure 6 clearly
shows that including the magnitude of the gradient as a nempoaent of the histogram
improves the results.
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Figure 6: Comparison between HOGs with nhorm and without noftrere is a positive
gain of almost 0.1 between the two descriptors at no additicalculation cost.

5.3 Drawing a Dense Grid on the Image

Our system is sensitive to the gradients computation methotlobviously it is also
sensitive to the manner usedd@w a dense grid on inputs image. We evaluated different



schemes with fixed sizes of windows X8, 16x 16, 24x 24) and with relative sizes of
windows (0.1 — 0.9] x 1mgSizewith position steps of @ and a scale factor steps o0
for example). Our tests arrive at the conclusion that a szdte grid is better and that
it is preferable to let the learning algorithm run in a vergthidimensional space than
reducing this dimension by fixing arbitrarily restrictivees for the computation grid.
Figure 7 shows this results.
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Figure 7: The results of the detector depends on how the dmig®f histograms is
computed. A multiscale grid is better and the results ara evare better if the histograms
are computed on regions of the size of a human limb.

5.4 The Cascaded Detector

We noticed several important points as we worked on our dastpedestrian detector.
First is the issue of the initialization of the learning aligfom. There are two possi-
bilities to initialize the weights of the training sample$: w; =w_ = N Jer or 2.

Wy = N— andw_ = N— with N+/_ the number of positive/negative examples. The second
initialization method leads in fact to two cases dependimghe amount of positive and
negative examples. We could intuitively think that givingetter weights to positive (or
negative) examples will influence the system so that it fesuts discriminative work on
them. This is true but finally, this does not improve the rissat all. It is better to let the
system find his own rules with an equitable initialization.

The second point concerns the number of stages of the caséadee know, the cas-
cade structure is useful to accelerate the processing asstaicoarse-to-fine approach.
Although this technique degrades a little the detectionltgsthe gain in performance
is satisfactory enough to justify this loss. Nevertheld¢ss, cascade length has a limit
beyond which the system speed stagnates whereas the destiésmase too much. Thus,
this indicates that there would be an optimal number of stdgebuilding a cascaded
detector. We verified this and tried to show the independehtids number of stages to
the testing set. Those two points are illustrated by figure 8.

5.5 Training a Strong Classifier

The learning algorithm we developed for our system is quitélar as the one used in
system 1 But, whereasystem 1 lets the Adaboost algorithm run until it found the re-
quired features, we force our algorithm — a classical Reabddst — to begin another
loop of rounds of boosting after the selection phase. Tha igdédo first select the best



ROC curves for the three cases of Adaboost initialization ROC curves for each stage of our cascaded detector
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Figure 8: Left: effect of the initialization of the learnirdgorithm. Right: The ROC
curves for each stage of our cascaded detector. The resididygreach an asymptote.

features and then to refine the weights as precisely as passib

For this, we have to determine previously the number of dewes and also the number
of additional rounds of boosting to calculate the weights.w# study the influence of
those two parameters on our system whose results reach axptadg as they increase.
We noticed that a strong classifier built with very few dgsiis is very fast, of course,
but useless because it is not discriminant enough. On tlex bnd, a big strong classi-
fier has good results but is also very slow. As an example, Wedur one stage detector
with 50 descriptors boosted by 10 rounds/descriptors.

Effect of the number of descriptors on a 1-stage detector Effect of the number of additional rounds of boosting on a 1-stage detector
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Evolution of time needs with the number of descriptors/rounds of boosting
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Figure 9: Effect of the number of descriptors and the numibexddlitional rounds of
boosting on a 1-stage detector. We choose, as a comprontigedredetection rates and
time needs, 50 descriptors for 10 rounds per desc. of additlmosting iterations.



5.6 Post Learn Study

Results and detection speed are good indicators to evaduatsystem, but we would
like to go further and to see how our learning machine buétdietector. We observed
that stronger histograms are chosen more often than others. In trainimples, this
corresponds to select the edges of the silhouettes we wigatrto(see fig. 10). Moreover,
when we focus on descriptors that are the most chosen, orsanipi®rs that are the most
discriminant — they have the strongest positive/negatdte v we noticed that they are
localized in regions likdiead, shoulders, legs and thecrotch. That is to say characteristic
regions that allow to recognize a pedestrian in an imagallyjrhistograms from regions
as broad as a human limb are also selected more often thams.othe

Figure 10: Examples of support of HOG selections. The majiors are near the head,
shoulders, legs and also the crotch. Pedestrians are»nl@8 bounding boxes (black)
inside 96x 160 images (gray).

6 Conclusion and Future Work

We have proposed a system that detects pedestrians — \lersers of the road — in
real time. To build this system, we used HOGs local desaspttomputed on a dense
overlapping grid and learnt by a boosting algorithm whosputis a cascaded detector.
We have shown that considering the gradient magnitude as aoraponentin the HOGs
provides new information to the learning algorithm and ioyas dramatically the results.
We have also presented a learning procedure based on Adabads of two phases — a
feature selection phase followed by the precise refinemfetiteoweights — which adds
robustness to the system while improving the detectiorsrafée evaluated our system
and compared it to Viola-Jones one and Dalal-Triggs one uitaoje conditions and
showed that our detector performs the best.

Although detection rates and speeds are satisfactorye feesbviously still room for
optimizations. The computation of the score of the strorgdifiers is far from being
efficient since we did not limit the displacements in the imadn the same way, the
boosting algorithm we used is an accumulating algorithmatT$to say the only action it
does is to add features to the classifier and adjust the veeigt# could employ another
algorithm that, for every iteration, decides whether to addew feature or remove an
old feature. Context in the image also provides a lot of imfation and could be used,
for example, to remove false alarms or to get rid of some glasticlusions. Finally, we
currently begin to study how to combine the histograms togreb reinforce the selection
of the learning algorithm. The idea beyond this is intuitian histogram is selected



because it contains discriminative information. So itedimeighbors could also contain
this information, even in a lower quantity. We call thidjacent HOGs.

Figure 11: Some examples of detection on full size images.
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