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Abstract

We address the issue of real-time pedestrians detection in aurban envi-
ronment. This is a challenging task owing to the high variability of appear-
ances and poses that humans can have and to the complexity of backgrounds.
We propose a solution made of gradient-based local descriptors combined to
form strong classifiers and organized in a cascaded detector. We developed
for this an extension of the Histograms of Oriented Gradients (HOGs) and
added a new component to the histogram which represents thestrength of
edges or theamount of information in the histogram support. We also im-
plemented a learning algorithm based on Real Adaboost wheretwo phases –
selection first, then refinement of weights – provide more robustness to the
detector. We evaluated our system by comparing it to the cascaded detector
of Haar features of Viola & Jones [7] and to the SVM of HOGs features of
Dalal & Triggs [1]. To ensure an equitable and valid comparison, we used the
database proposed in [1]. Our system outperforms them in detection results
and in time needs.

1 Introduction

The human class in object detection is probably one of the more difficult because of the
variability of appearances and poses that humans can have. The descriptor used to de-
scribe and to detect human silhouettes has to capture finely the good characteristics to
assure an efficient detection. Moreover, applied to an urbancontext, the detection chain
has to be as robust as possible and has to run in real-time. We developed a human de-
tection system based on Histograms of Oriented Gradients (HOGs) features learnt by a
cascaded boosting procedure which performs better than Viola-Jones [7] Haar+Adaboost
cascade (system 1) and Dalal-Triggs [1] HOG+SVM (system 2). We adopted the cascade
approach from [7] with some modifications which tend to make the system more robust
and we worked with HOGs-like descriptors including gradient strength information. This
paper is organized as follow: we first make an overview of previous work on human de-
tection in 2. Then we present briefly our system in 3, experimental results are exposed in
4 with a comparison with other state-of-the-art methods. In5, we present the performance
of our system through several parameters study and we finallyconclude and discuss about
future work in 6.



2 Previous Work

Lot of work has already been done in Computer Vision based detection systems and an
extensive literature accompanies this work. Papageorgiouet al [6] presented a detector
which infers a pedestrian model from positive and negative examples by the mean of a
polynomial SVM and usesquadruple density Haar Wavelets as a pattern descriptor. An
improved version has been developed by Deporrtereet al [2], principally with dimension
reduction thanks to Adaboost features selection and SVRM1 model generation. Violaet al
[7] introduced a Haar-like wavelets coarse-to-fine cascaded face detector combined with
an efficient features extraction method – the integral image– and extended this system
to take into account motion cues in video scenes [8]. The system developed by Gravila
et al [3] computes the chamfer distance to perform a shape-based pedestrian detection
and validates the detection with textures classification from a neural network and stereo
verifications. Mikolajczyket al [5] assembled seven part detectors (frontal and profile
head, face and upper body, legs) with Bayesian decision rules. Dalal and Triggs [1] pro-
posed a detector build on a SVM learning machine and Histograms of Oriented Gradients
(HOG) through a very interesting study of their implementation issues. A more challeng-
ing goal is aimed by Leibeet al [4] and Wu and Nevatia [9] who tried to detect partially
occluded pedestrians in crowded scenes. The formers considered the aggregation of local
and global cues while the latter usededgelet features learnt by a boosting method.

3 Overview of the System

In this section, we describe briefly our system schematized in figure 1. More details for
each parameters are given in section 5.
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Figure 1: Detection chain of our system.

We developed a system that can achieve real-time pedestrians detection in urban
scenes with very low false-positive rates. Real-time detection is an important point for
this system which could be adapted to a future embedded version.
Our method is based on a true/false classification obtained by an evaluation of local de-
scriptors computed densely on input images through a boosted cascade of classifiers.

3.1 Local Descriptors

Distinction and recognition of objects in static scenes canbe obtained from shape con-
tours. HOGs work well to capture such information from an image but it lacks of a clue,
which could be named thecontour strength, to make difference between acute and loose
edges. To correct this drawback, we included the gradient magnitude as a new component
in the histogram so that our histograms are now made of 9 magnitude-normalized orien-
tations bins – each one 20◦wide – plus 1 bin for the gradient magnitude. The orientations
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are unsigned so that we do not make difference between a dark-bright transition and a
bright-dark one (this assumption makes sense with the high color and texture variability
of human appearances: hair, skin, clothes, etc.). To reducealiasing, we use a kind of
simple smoothing to compute the histogram components by giving a fractionx of the vote
to the corresponding bin and a fraction 1− x to the nearest bin wherex ∈ [xmin,1]. xmin

depends on the angle thresholdθT above which we consider a vote belonging to one and
only one bin (x = 1). In fine, we obtain heterogeneous descriptors, computed in a dense
way, that can code the orientations and thestrength of a shape.
Input images are represented in grayscale color space and they are first normalized along
the luminance in areas where there are enough gradient information. This preprocessing
provides to the system some robustness to illumination conditions. Gradients are com-
puted with an optimized implementation of the Deriche operator and components votes
are efficiently accumulated thanks to the integral image techniques.

3.2 Learning Procedure

Pedestrians characteristics are extracted and learnt by a cascaded boosting algorithm like
the one used in [7]. In our case the learning algorithm has to face with a very high dimen-
sional space made of almost ten thousand of components for each positive and negative
example. The Adaboost algorithm is used to select the relevant components and to train
classifiers from them likesystem 1. The boosting algorithm builds, for each stage, a
strong classifier from a weighted selection of features – theweak classifiers – and stop
selecting features when the training errors drop below a threshold.
We changed a bit this procedure to robustify the resultant strong classifier: we first se-
lect n weak classifiers, each of them is a component of an histogram.Viola’s algorithm
would stop there but ours comprises another loop ofm rounds of boosting to compute
more finely the weights of then selected components. The difficulty is to find the two
optimal parametersn andm to prevent the system from over-learning, which could lead
to a decrease in the performances.

4 Results and Comparison with Different Systems
4.1 Databases

Our system is dedicated to human detection in urban scenes. To train and test it, we
acquired several hours of video with a video-camera fixed on acar driven in cities (see
fig. 2 for examples of image). We obtained very good results onthis database. Although
we could use these datas in this paper, we would prefer using the database available in
[1], where the background is not especially urban, to make more neutral comparisons
between the different systems. This database contains upright humans with various poses,
clothes, backgrounds and light conditions. Some samples have partial occlusions. There
are 2478 96×160 positives examples for training (1239 + left-right reflexions) and 1126
70× 134 positives examples (563 + reflexions) for testing. People in these images are
64×128 sized. There is also a free-person set of 1218 images for generating the negative
examples.

4.2 Methodology.

We trained and tested our detector on this database in two different ways. The system
presented in [7] is based on a cascade of boosted classifiers whereas the system in [1]



Figure 2: Samples of images in our urban database.

Figure 3: Some samples from the database we used.

is based on a linear SVM. Although the cascade hierarchy provides a faster behavior to
the system, it also decreases a little the detection rate. Indeed, several stages have more
chance to reject wrongly good candidates than only one stage. This is why we separated
our comparisons in two distinct parts: the first comparison will be between the cascades
of classifiers, a Haar-based from Viola-Jones and our cascade. The second comparison
will compare the SVM+HOGs system from Dalal-Triggs with aone stage cascade trained
with our method. For each case, we give ROC curves with Miss Rate (1−Recall) versus
False Positive Per Windows (FPPW) rate.

4.3 Results & Comparisons.

Boosted cascade of Haar classifiers vs. improved boosted cascade of HOGs.We used
Intel OpenCV implementation of Viola-Jones detector and wetrained it with the datas we
described above. We gave the same parameters to the two training programs: 2478 posi-
tives samples and 10000 negatives samples and we built two cascades made of 10 stages
with the Real version of Adaboost. Minimum hit rate and maximum false alarm rate are
respectively fixed to 99.5% and 50%. Training has been done onan Intel Xeon Processor
at 3.0GHz equiped with 4Gb of memory and it took several days (almost 1 week) forsys-
tem 1 whereas ours needed only a few hours (almost 2 hours). The final cascades used
397 different weak classifiers forsystem 1 and 169 for ours.
Now let’s talk about results and performance. Figure 4 clearly shows that our cascaded
pedestrian detector is better thansystem 1. Further studies shows thatsystem 1 has dif-
ficulties to detect correctly pedestrians present in the database we used. This is due to
the variety of backgrounds and parasitic elements like traffic signs, billboards, etc. By
the same way, those same elements add false alarms leading toan overall decrease of the
performance. Considering processing times, it took 46.4 msfor system 1 and 27 ms for
our system to scan a 320×240 image with the same parameters (scale factor of 1.2, step
size of 1.5). The figure 4 shows the ROC curves forsystem 1 and our system.

HOGs+linear SVM vs. 1-stage HOGs+Boosting. We used the latest system avail-



able described in [1] to compare it with our method. We let thedefault parameters as
there are supposed to be the best for this system and we trained it with the same examples
set, which took several hours (almost 3). To have a comparable system, we trained aone
stage cascade with our own program with 50 weak classifiers. This was done inless than
an hour.
Regarding the results, our system quickly outperforms the system based on HOGs+linear
SVM and provides a near perfect detection with an acceptablefalse positive rate. Our
system is a little bit less performant for FPPW under 5E −5 but above, it is better than
system 2 and reaches perfect detection for false alarm rates after 6E −4. See fig. 4 for
the whole ROC curves. We also compared processing time on 320×240 images with a
dense scan of almost 5500 detection windows:system 2 took 3 seconds whereas ours
needed only 229ms. Remind that the cascaded detector neededonly 27ms: this shows
how the cascade structure is efficient to reduce detection times.
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Figure 4: Performances ofsystem 1and our cascade (left) and performances ofsystem
2and our1-stage detector (right). In both cases, our method outperforms theother sys-
tems.

Figure 11 shows examples of output of our systems on some testimages of the
database from [1].

5 Performance and Parameters Study

In this section, we study the impact of some parameters on thesystem. After addressing
the issue of gradient computation method, we justify the useof the gradientstrength as a
new component in the histogram and then study the drawing of the dense grid on which
histograms are computed. We expose then the initializationof the learning algorithm and
the manner in which a strong classifier is trained. After that, we discuss of the existence
of an optimal number of stage in a cascaded detector and we finally study the structure
and characteristics of the resultant detector.

5.1 Gradient Computation

The detection chain almost begins with gradient computation so that the detector results
are closely dependent with the way in which they are computed. We tested several gradi-
ent computation methods to select the best result/time ratio as we want our system to be
real-time. Rapid gradient computations could be done with simple small mask derivation
(1D: [−1,0,1], 2D: Sobel) and also with the Deriche recursive operators.



The only parameter for Deriche’s operators isα which drives thesmoothing phase of the
filter. The smallerα is, the stronger the smoothing will be. But, as our descriptor finds
complementary information on the gradient strength,α must not be too small.
We looked then at the influence of the size of the normalization windows. As expected,
the evolution of the results reached an optimum as the size increases. We started from 10
pixels to 30 pixels and the optimum is between 15 and 20 pixels. Note that this window
is as broad as an arm/leg of human on the training samples.
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Figure 5: Effect of gradient computation method (left) and of normalization window size
(right).

5.2 Contribution of the Gradient Magnitude in the Descriptor

We now study the contribution of the gradient magnitude thatwe called thecontour
strength. This is done by comparing two detector: one with classic HOGdescriptors
and the other with HOG+magnitude. The two systems differ only on the descriptors used,
they are trained with the same parameters and on the same database. Figure 6 clearly
shows that including the magnitude of the gradient as a new component of the histogram
improves the results.
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Figure 6: Comparison between HOGs with norm and without norm. There is a positive
gain of almost 0.1 between the two descriptors at no additional calculation cost.

5.3 Drawing a Dense Grid on the Image

Our system is sensitive to the gradients computation method, but obviously it is also
sensitive to the manner used todraw a dense grid on inputs image. We evaluated different



schemes with fixed sizes of windows (8×8, 16×16, 24×24) and with relative sizes of
windows ([0.1→ 0.9]× ImgSize with position steps of 0.1 and a scale factor steps of 0.2
for example). Our tests arrive at the conclusion that a multiscale grid is better and that
it is preferable to let the learning algorithm run in a very high dimensional space than
reducing this dimension by fixing arbitrarily restrictive sizes for the computation grid.
Figure 7 shows this results.
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Figure 7: The results of the detector depends on how the densegrid of histograms is
computed. A multiscale grid is better and the results are even more better if the histograms
are computed on regions of the size of a human limb.

5.4 The Cascaded Detector

We noticed several important points as we worked on our cascaded pedestrian detector.
First is the issue of the initialization of the learning algorithm. There are two possi-
bilities to initialize the weights of the training samples:1. w+ = w− = 1

N++N−

or 2.

w+ = 1
N+

and w− = 1
N−

with N+/− the number of positive/negative examples. The second
initialization method leads in fact to two cases depending on the amount of positive and
negative examples. We could intuitively think that giving abetter weights to positive (or
negative) examples will influence the system so that it focuses its discriminative work on
them. This is true but finally, this does not improve the results at all. It is better to let the
system find his own rules with an equitable initialization.
The second point concerns the number of stages of the cascade. As we know, the cas-
cade structure is useful to accelerate the processing as it uses a coarse-to-fine approach.
Although this technique degrades a little the detection results, the gain in performance
is satisfactory enough to justify this loss. Nevertheless,the cascade length has a limit
beyond which the system speed stagnates whereas the resultsdecrease too much. Thus,
this indicates that there would be an optimal number of stages for building a cascaded
detector. We verified this and tried to show the independenceof this number of stages to
the testing set. Those two points are illustrated by figure 8.

5.5 Training a Strong Classifier

The learning algorithm we developed for our system is quite similar as the one used in
system 1. But, whereassystem 1 lets the Adaboost algorithm run until it found the re-
quired features, we force our algorithm – a classical Real Adaboost – to begin another
loop of rounds of boosting after the selection phase. The idea is to first select the best
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Figure 8: Left: effect of the initialization of the learningalgorithm. Right: The ROC
curves for each stage of our cascaded detector. The results quickly reach an asymptote.

features and then to refine the weights as precisely as possible.
For this, we have to determine previously the number of descriptors and also the number
of additional rounds of boosting to calculate the weights. So we study the influence of
those two parameters on our system whose results reach an asymptote as they increase.
We noticed that a strong classifier built with very few descriptors is very fast, of course,
but useless because it is not discriminant enough. On the other hand, a big strong classi-
fier has good results but is also very slow. As an example, we built our one stage detector
with 50 descriptors boosted by 10 rounds/descriptors.
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5.6 Post Learn Study

Results and detection speed are good indicators to evaluateour system, but we would
like to go further and to see how our learning machine built the detector. We observed
that stronger histograms are chosen more often than others. In training samples, this
corresponds to select the edges of the silhouettes we want tolearn (see fig. 10). Moreover,
when we focus on descriptors that are the most chosen, or on descriptors that are the most
discriminant – they have the strongest positive/negative vote – we noticed that they are
localized in regions likehead, shoulders, legs and thecrotch. That is to say characteristic
regions that allow to recognize a pedestrian in an image. Finally, histograms from regions
as broad as a human limb are also selected more often than others.

Figure 10: Examples of support of HOG selections. The main regions are near the head,
shoulders, legs and also the crotch. Pedestrians are in 64×128 bounding boxes (black)
inside 96×160 images (gray).

6 Conclusion and Future Work

We have proposed a system that detects pedestrians – vulnerable users of the road – in
real time. To build this system, we used HOGs local descriptors, computed on a dense
overlapping grid and learnt by a boosting algorithm whose output is a cascaded detector.
We have shown that considering the gradient magnitude as a new component in the HOGs
provides new information to the learning algorithm and improves dramatically the results.
We have also presented a learning procedure based on Adaboost made of two phases – a
feature selection phase followed by the precise refinement of the weights – which adds
robustness to the system while improving the detection rates. We evaluated our system
and compared it to Viola-Jones one and Dalal-Triggs one in equitable conditions and
showed that our detector performs the best.
Although detection rates and speeds are satisfactory, there is obviously still room for
optimizations. The computation of the score of the strong classifiers is far from being
efficient since we did not limit the displacements in the image. In the same way, the
boosting algorithm we used is an accumulating algorithm. That is to say the only action it
does is to add features to the classifier and adjust the weights. We could employ another
algorithm that, for every iteration, decides whether to adda new feature or remove an
old feature. Context in the image also provides a lot of information and could be used,
for example, to remove false alarms or to get rid of some partial occlusions. Finally, we
currently begin to study how to combine the histograms together to reinforce the selection
of the learning algorithm. The idea beyond this is intuitive: an histogram is selected



because it contains discriminative information. So its direct neighbors could also contain
this information, even in a lower quantity. We call thisAdjacent HOGs.

Figure 11: Some examples of detection on full size images.
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