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Abstract

This paper investigates several aspects of 3D-2D camera pose estimation,
aimed at robot navigation in poorly-textured scenes. The major contribution
is a fast, linear algorithm for the general case with six or more points. We
show how to specialise this to work with only four or five points, which is
of utmost importance in a test and hypothesis framework. Our formulation
allows for an easy inclusion of lines, as well as the handling of other cam-
era geometries, such as stereo rigs. We also treat the special case of planar
motion, a valid restriction for most indoor environments. We conclude the
paper with extensive simulated tests and a real test case, which substantiate
the algorithm’s usability for our application domain.

1 Introduction
Given known points in the world and their projected images, pose estimation refers to
recovering the pose of the camera from such data. In photogrammetry, this problem has
been studied as early as 1841 by Grunert [8]. For a recent survey, consult e.g. [9].

We are interested in pose estimation for the purpose of navigating a robot with a stereo
rig through a poorly-textured room. Besides the usual demands on speed and accuracy, a
pose estimation algorithm should use as few feature points as possible during robust esti-
mation in such a setting. To ease the problem of lacking feature points, it is advantageous
to allow other features besides points, such as lines, in the estimation. Moreover, the
algorithm should be extendable to a stereo rig. Lastly, as the robot movements might be
restricted to planar ones, it should be possible to include this constraint in the formulation.
All these demands are fulfilled by our algorithm: four points suffice for the estimation in
the general case, we show how lines can be used in conjunction with points, we investi-
gate the special case of planar motion, and demonstrate the application of the algorithm
to a stereo rig in this planar case. While the presented results are for a robotic scenario,
the algorithm is also directly applicable to e.g. augmented reality.

Before presenting the actual algorithm in Section 2, the next subsection lists some
existing solutions to the general problem of linear pose estimation. Section 3 investigates
the specialisation of the algorithm for the planar case. Then, Section 4 gives results from
both simulated and real-world scenarios, before the paper is concluded in Section 5.



1.1 Related Work
A linearisation of the pose estimation problem is not only tempting for reasons of effi-
ciency. An accurate linear solution also provides a valuable starting point for an iterative
algorithm, resulting in its faster convergence. First, we discuss three prior contributions
to linearising the n-point pose estimation problem.

The first linear approach for determining the camera pose was proposed by Fiore [6].
Based on a projective invariant, he constructs a linear equation system to solve for the
depths of the image points. Using the recovered depths, 3D-3D pose estimation (also
called absolute orientation, [10]) is carried out to obtain the actual pose. In the general
case, the method needs at least six point correspondences to work.

Based on a general procedure for linearising quadratic systems, Ansar and Daniilidis
[1] suggest methods for pose estimation from points and lines. For points, their approach
is based on depth recovery by considering ratios between the points’ depths. For lines,
their respective angles and the invariance of inner and outer products are used to di-
rectly estimate the pose. In both cases, two linear systems are constructed to guarantee
a unique solution. While mathematically interesting, this approach mainly suffers from
high-dimensional equation systems, which considerably hamper the performance of the
algorithm, both in terms of speed and numerical accuracy.

Quan and Lan [15] also base their algorithm for depth recovery on ratios between
different points’ depths. They apply their method to each point in turn and solve a set of
fourth degree polynomial constraints. Their algorithm works for n ≥ 4 points.

All the above methods need an additional step of absolute orientation. The algorithm
proposed in this paper recovers the pose directly. It works for both points (n≥ 4) and lines
(n ≥ 5), and a mixed solution is possible. As shown in the results section, is performance
is comparable with or better than other algorithms.

As a note on minimal solutions, Nister [12] presents a generalised solution for the
3-point case (an additional point is needed for resolving a 4-fold ambiguity). Besides
minimality, an advantage of the method is its applicability to stereo rigs or other gener-
alised camera systems by allowing non-concurrent rays. The algorithm presented here
offers the same generality, but also allows more points or the usage of lines.

Phong et al. [14] also present an algorithm for calculating the pose from points and
lines, however, their solution is iterative. Liu et al. [11] study a two-step process for
pose estimation from lines that first iteratively solves for rotation and then linearly for
translation. Point tuplets can be included as lines. They also present a linear solution for
the first step, which however is not minimal in the number of needed correspondences,
as opposed to the one presented here. Also, no special cases (planar motion, multiple
cameras) are studied.

2 Pose from Points
Given a set of world points pi and a corresponding set of normalised1 image points qi, the
pose estimation problem consists of finding a rotation matrix R and a translation vector t
that minimise the geometric reprojection error:

∑
i
‖Rpi + t−λiqi‖/λi → min. (1)

1For actual points q̃ in the image, q = K−1q̃, for lines ñ, n = K>ñ, with K the internal calibration matrix.



In Eq. (1), λi models the depth of a point from the given view. Since this is a non-
linear problem in λi, iterative algorithms are needed for the solution. However, instead
of considering the geometric reprojection error, one could minimise the distance between
the two back-projected rays, also known as object space collinearity:

∑
i
‖Rpi + t−λiqi‖→ min. (2)

While this formulation does not take the depth-dependent uncertainty of the 3D location
into account, it allows for a linear, and hence fast and simple, solution to the problem. By
setting the derivatives of λi to zero, the λi can be eliminated. Let Qi = I− qiqi

>

‖qi‖
denote the

projection operator into qi. After some rearranging, Eq. (2) can be reformulated as

∑
i
‖Qi(Rpi + t)‖→ min. (3)

Assuming an affine transformation instead of R, Eq. (3) becomes a linear system Mx = 0
with twelve unknowns whose least squares solution is wanted. This can be solved in a
straightforward manner. However, as the values of R are between −1 and 1, while the
ones for t can take any value, t’s variables can dominate the solution vector, resulting
in unsatisfactory precision for R. It is not possible to impose the hard-constraints of or-
thonormality on R in a linear fashion due to their quadratic nature. Still, the less restrictive
constraint ‖R‖F =

√
3, where ‖ · ‖F is the Frobenius norm, can be enforced, as shown in

the following. The above problem is partitioned as follows:

(A B)
(

r
t

)
= 0, (4)

where r corresponds to the nine variables of the rotation, and A and B to their respective
columns in M. To find a least squares solution, we square Eq. (4):(

r> t>
)

(A B)>(A B)
(

r
t

)
→ min. (5)

Deriving of the term for t and setting to zero yields

t =−(B>B)+B>Ar =−B+Ar, (6)

where B+ denotes the pseudo-inverse of the matrix B. Eq. (4) can now be rewritten as

Ar−BB+Ar = 0. (7)

Considering the economy-size SVD2 of B = USV>, this simplifies to

(A−UU>A)r = 0. (8)

Eq. (8) is a least squares problem in the rotation r, whose solution can be found as the
nullvector of SVD. By definition of the SVD, the resulting vector r will have length 1.
Hence, a multiplication by

√
3 gives the desired Frobenius norm for the rotation. t is then

obtained by backsubstitution into Eq. (6).
As we are basically only solving for an affine transformation, it is advisable to orthog-

onalise the obtained solution for R before solving for t. Compared to QR decomposition
and quaternions, SVD yielded the best results for this (QR and quaternions were both
about 10% worse in average w.r.t. accuracy). The SVD might return an orthogonal R with
det(R) =−1, which can be fixed with a sign reversal of both R and t.

2The economy-size SVD of an m×n matrix yields an m×n matrix U, containing only the columns corre-
sponding to non-zero singular values. UU> consequently does not correspond to the identity. S and V are n×n.



2.1 4 or 5 Points
As each point correspondence imposes only two constraints, a minimum of six point
correspondences is needed to solve the pose estimation problem uniquely. For less points,
the dimension N of the nullspace of Eq. (8) will not be 1 (disregarding degenerate cases,
N = 12−2n). Let’s denote the nullspace of Eq. (8) by

X = {r1, . . . ,rN} (9)

The correct solution r is a linear combination of the vectors ri. That is, we need to find
scalars αi, such that

r = ∑
i

αiri. (10)

To obtain this, a quadratic system based on the constraints R>R = RR> = I can be con-
structed. These quadratic constraints on R are formulated in the quadratic terms of its el-
ements, r(i)r( j), where r(i) is given by Eq. (10). Now, we linearise the resulting quadratic
terms in αiα j by substituting them with new variables αi j. Due to the linearised nature of
the formulation, there are eleven independent constraints on the ri j, and hence on the αi j.
Thereby, we obtain a linear equation system in the N(N+1)

2 scalars αi j. For five points, this
corresponds to three unknowns, for four points, to ten unknowns. The αi can be recov-
ered up to a global sign ambiguity from the αii. As above, this ambiguity is resolved by
enforcing det(R) = 1.

2.2 Lines
The chosen formulation also allows for the direct inclusion of lines (or other features,
for that matter) into the pose estimation. In contrast to previous work [1], both lines and
points can be used at the same time to constrain the pose. A line’s direction imposes the
following constraint on R:

n>Rd = 0, (11)
with d being the unit vector of the 3D line’s direction and n = (a,b,c)> the normalised line
in 2D. n is set to unit length as well, and equals the normal vector of the plane obtained
from the 2D line’s back-projection. In this formulation—which proved to be the most
stable one in our experiments—each line imposes only one constraint on R. Still, using
the steps from subsection 2.1, five instead of nine lines suffice to estimate the pose.

2.3 Multiple Cameras
When the joint pose estimation from multiple, externally calibrated cameras is desired,
the right hand side of Eq. (4) is not 0 anymore. The solution to the resulting constrained
problem Ax = b,‖x‖ = 1 then can be found either using differential-geometry methods
[4], or by introducing a homogeneous variable, as done for planar motion in Section 3.
As latter disables the direct constraint ‖R‖F = 3, former is to be preferred.

2.4 Depth Dependency
Clearly, using object-space collinearity instead of the more correct image-space collinear-
ity seems like a disadvantage. Please note however that the depth λi is mainly a weighting



factor in Eq. (1), for which in many cases an estimate is available. In Section 4, we also
examine the algorithm’s performance subject to different depth ranges.

3 Planar Motion
The special case of robot navigation in indoor environments typically restricts the move-
ments to planar ones. This greatly reduces the number of unknowns and can thereby
increase stability and performance. There has been quite some research activity in this
field, mostly in the uncalibrated case, cf. e.g. [2, 5]. Stewenius et al. [16] treat various
problems for multi-camera setups subject to planar motion. Their resection algorithm is
similar to the one presented in the following, was however very susceptible to noise in
our tests.

In the planar case, the motion variables reduce to

R =

 cosθ 0 sinθ

0 1 0
−sinθ 0 cosθ

 , t =

 tx
0
tz

 (12)

Inserting into Eq. (3), this yields equations of the form

(Q11 px +Q31 pz)c+(−Q31 px +Q11 pz)s+(1−Q11)tx +(−Q13)tz =−Q21 (13)
(Q13 px +Q33 pz)c+(−Q33 px +Q13 pz)s+(Q31)tx +(1−Q33)tz =−Q23, (14)

where Qi j corresponds to the entries of the projection matrix Q. Besides the necessary
variables for c = cosθ and s = sinθ , we introduce an additional homogeneous variable
ρ for Q21 and Q23 to arrive at a formulation needed for Eq. (4). After having solved for
r = (c′,s′,ρ)> in Eq. (8), we remove the homogeneous quantity by dividing through ρ . A
valid rotation is then inferred from c and s.

In the reduced formulation, three points suffice to determine the pose using Eq. (8)
and Eq. (6) without any further processing. Vertical lines can be treated as points when
considering their intersection with a horizontal plane. Also, due to the introduction of the
homogeneous variable, camera rigs can be handled in a straight-forward fashion.

4 Results
In the following, we will give various simulation results of our algorithm (“GLPE”) com-
pared to the approaches suggested by [1] (“Ansar”) and [6] (“Fiore”), as well as the so-
lution obtained using Levenberg-Marquardt (“LM”, initialised using GLPE). Due to its
iterative nature, the latter is expected to always come closest to the actual minimum; we
include it mainly as a reference. In all cases, the rotational error is measured as the abso-
lute error in the unit quaternion, |q− q0|. The relative translational error is measured as

2‖t−t0‖2
‖t‖2+‖t0‖2

. q0 and t0 refer to the ground truth for rotation and translation, respectively.

4.1 Simulation
All the results in this section were obtained by averaging over 5,000 runs for the respective
scenario. Different configurations for the point clouds (different sizes and shapes, such



as pyramids and cubes) were tested, but the basic results with respect to accuracy and
the relative ordering among the algorithms remained the same. Thus, we only report the
results that were obtained by randomly sampling points in a 10,000× 10,000× 10,000
cube, centered around the z-axis, and placed in front of a camera in the origin. The
point cloud’s barycentre is then assumed as new origin, around which the entire system is
rotated randomly. A focal length of 1,500 was chosen, with principal point 0, and aspect
ratio 1. Gaussian noise is added to the projected image points.

Fig. 1 shows the results obtained by keeping the number of points constant at six
and increasing the noise level. For the rotational error, our algorithm clearly outperforms
the other linear approaches. The error in translation is comparable between the three
algorithms. As an interesting sidenote, Fiore performs very comparably to Ansar, as
opposed to the findings by [1].

Next, we compare the performance with respect to the number of points used, Fig. 2.
We perform slightly worse than Ansar for the 4-point case, as only eleven constraints are
imposed on the ten unknowns, cf. Section 2.1. The 5-point case exhibits a drastic gain in
accuracy and outperforms Ansar’s algorithm. There is another considerable improvement
for more than six points, as this presents the overdetermined case. Note that Fiore’s ap-
proach could not be used with less than six points. In general, it performs rather similar to
our algorithm. However, besides offering various useful extensions (lines, planar motion),
we found our algorithm to be more reliable in a real scenario, as shown later.
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Figure 1: Rotational and translational error with increasing Gaussian noise (6 points).
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Figure 2: Performance with increasing number of points (noise σ = 1.5 pixels).

For lines, we compare our algorithm to the line algorithm proposed in [1], Fig. 3.
While our formulation needs at least five lines (as opposed to four), it is more accurate in
all tests. Also, keep in mind that our formulation would allow for a mixed solution, which
is not possible using their approach.



5 6 7 8 9 10 11
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Number of lines

R
ot

at
io

na
l e

rr
or

GLPE
Ansar

5 6 7 8 9 10 11
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Number of lines

Tr
an

sl
at

io
na

l e
rr

or

GLPE
Ansar

Figure 3: Performance with increasing number of lines (noise σ = 1.5 pixels).

4.2 Depth Dependency
Lastly, we investigate the performance of the various algorithms by increasing the depth
range where points can come from, Figure 4. Again, we use 6 points and a noise stan-
dard deviation of 1.5 pixels. As can be seen, the rotational error is largely unaffected
by increasing depth range, however, translational error grows. As mentioned above, in
most cases, a depth estimate is known for the points (especially when processing video
sequences), which can be used to weight the influence of each point.
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Figure 4: Performance with increasing depth range (6 points, noise σ = 1.5).

4.2.1 Planar Motion

For the planar case, we compare our algorithm with the one of Stewenius et al. [16].
Obviously, it is not quite fair to compare any of the above algorithms with the special case
of planar movement. Nonetheless, for illustrative purposes, we add Fiore’s algorithm to
the comparison. Fig. 5 and Fig. 6 again give results for varying noise level and number
of points, respectively. As to be expected, our algorithm outperforms Fiore for the same
number of points, especially when noise levels are increasing. Notice however that the
planar version already outperforms Fiore given three points less, which is basically the
number of missing degrees of freedom. The algorithm of Stewenius proved to be very
susceptible to noise in our experiments and was hence left out in Fig. 6.

4.3 Timings
We time straightforward C-implementations of the aforementioned algorithms, using VXL
for the numerical routines (everything was compiled without optimisations). Table 4.3
gives an overview of the runtimes in ms on a 2.4 GHz AMD Opteron for various numbers
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Figure 5: Performance with increasing Gaussian noise in the planar case (6 points).
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Figure 6: Performance with increasing number of points in the planar case.

of points, averaged over 10,000 runs. As expected, our algorithm has very low runtimes
due to its small equation system. In the 4- and 5-point cases, some additional overhead is
needed for finding the correct linear combination in the nullspace (see section 2.1), hence
the slightly higher runtime. The size of this second equation system decreases enough in
the 5-point case to yield attractive timing figures. Fiore provides an overall fast perfor-
mance, but is slightly slower than our algorithm. With an increasing number of points,
the margin between Fiore and our algorithm increases (note however that Fiore proposes
an optimisation that is not implemented here). Using many points at low cost in time is
attractive for providing a better initialisation using all inliers, and hence quicker conver-
gence, for a nonlinear algorithm after running RANSAC [7]. Ansar’s algorithm becomes
very slow for an increasing number of points, as the size of the equation system increases
quadratically as opposed to linearly as in our and Fiore’s formulation.

The planar version takes 0.060 ms for the 4-point and 0.086 ms for the 8-point case.

Algorithm 4 points 5 points 6 points 8 points 50 points 100 points
GLPE 0.346 0.205 0.194 0.227 0.865 1.657
Ansar 0.727 2.016 5.159 28.031 - -
Fiore - - 0.201 0.311 9.362 38.590

Table 1: Runtimes in ms for different algorithms on a 2.4 GHz AMD Opteron.

4.4 Real Scenario
To verify the results obtained in the above simulations, we apply the presented method to
a small video sequence taken from a stereo rig, which undergoes a planar motion. Two



moving persons are walking in front of the robot, introducing an additional challenge. In
all images, SURF features [3] are detected. Similar to [13], an initial triangulation from
the stereo rig is used for the world reference points. The pose is estimated using either
Fiore’s, Ansar’s, or our approach with 6 points, or our planar stereo 4-point algorithm.
At every iteration, all inliers are used to iteratively refine the pose. Every fifth frame, the
world points are discarded and new ones are triangulated from the current stereo frame.
A few sample frames, as well as the obtained tracks are shown in Fig. 7. Even without
using any bundle adjustment, our algorithms yield better results than using either Fiore’s
or Ansar’s method. Already the 5-point version gives an acceptable result. The planar
version, with sampling from both cameras of the stereo rig, exposes its advantages in this
constrained scenario: while the other methods show quite some variance in y-direction (up
to 20cm, not visible in the figures), its track sticks nicely to the ground. For comparison
purposes, we also include the track generated using the 3-point algorithm and bundle
adjustment.
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Figure 7: Real scenario. Top: frames with two moving objects. Middle: tracks found by
6-point versions of Fiore (a), Ansar (b) and GLPE (c). Bottom: 5-point version of GLPE
(d), stereo planar GLPE 4-point (e), and 3-point relative pose with bundle adjustment (f).

As mentioned in the introduction, the algorithm can be applied to other scenarios
such as augmented reality. In general, a better performance can be expected in cases
where e.g. a 3D CAD model is already given, since this omits additional errors from 3D
reconstruction as in the example shown here.



5 Conclusions
We introduced a novel algorithm for linear pose estimation from n ≥ 4 points. Aimed at
robot navigation in poorly-textured indoor environments, the algorithm’s main advantage
is its adaptability to different scenarios such as planar movement, stereo rigs or the in-
clusion of lines and other features besides points. Extensive simulation results show its
general performance to be comparable or slightly better than other linear algorithms, at
increased speed. In a real scenario, the algorithm outperforms other linear approaches,
even without making use of advantages such as the support of stereo rigs or the ability to
constrain the motion.
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