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Foreword

It is with great pleasure that we welcome you to BMVC 2007 at Warwick Univer-
sity. This year we received just over 300 submissions which is the second-highest
number of submissions for BMVC, after an unpredictably large number of sub-
missions last year. We believe that a growing number of international submissions
to BMVC reflects its international prominence.

The task of reviewing was distributed over 87 experts (listed overleaf), each of
whom on average reviewed 10 papers. The final selection took place at a meeting
of the 23 Area Chairs on 18 June 2007 at the Computer Science Department,
University of Warwick. A total of 114 papers were selected, 41 for oral presen-
tation and 73 for poster presentation.

We are very pleased to have keynote addresses by Professor Hans Knutsson from
the Link6ping University in Sweden and Professor Mubarak Shah from the Uni-
versity of Central Florida. We are also delighted to have an invited tutorial on
the emerging area of Visual SLAM by Dr Andrew Davison from the Imperial
College, and Dr Andrew Calway and Dr Walterio Mayol-Cuevas from the Uni-
versity of Bristol.

We are grateful to Siemens and Warwick Warp for sponsoring the best security
paper prize. The best science paper, the best poster, and the Sullivan thesis
prizes are sponsored by the BMVA.

The organisation of the conference would not have been possible without the self-
less help of many people whom we would like to thank. The reviewers and area
chairs did a fantastic job of providing timely reviews and devoting much of their
precious time to participate in the paper selection meeting. The CAWS team at
Manchester University have been helpful in answering our queries related to the
CAWS online system used for the conference. Manuel Trucco (BMVC’2006) was
always very generous in providing tips and helpful advice on most matters regard-
ing conference organisation. Majid Mirmehdi and Andrew Fitzgibbon (BMVA)
offered almost instant help with general administrative as well as technical mat-
ters whenever asked. Catherine Pillet, our finance officer, has been invaluable in
handling the registrations and delegate queries. Our thanks also to Jean Trevis
of Warwick Conferences.

We would like to thank the staff and PhD students in the Computer Science
Department at University of Warwick, especially those in the Signal and Image
Processing and Medical Informatics and Medical Image Computing (MiMIC)
research groups, for their help during the conference week. A special thanks to
Muhammad Arif for double-checking the conference programme for us.
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We hope that you find the conference informative and stimulating, and that you
enjoy your stay at Warwick.

Nasir Ragjpoot and Abhir Bhalerao
Warwick, July 2007
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Abstract

In most previous works, histograms are simply treated as n-dimensional
arrays or even reshaped into vectors when measuring the distances between
them. However many histograms have their intrinsic topologies, such as
HSV histogram (cone), shape context (polar), orientation histogram (circle).
The topologies are important for so-called cross-bin distance, because they
determine the similarities between histogram bins, and influence the cross-
bin distances between histograms. In this paper, we proposed the topology-
preserved diffusion distance to take the topology into account. This method
extracts the distance by measuring the heat diffusion process defined on the
topology of the histogram. Moreover, a fast implementation with time com-
plexity O(N) is developed. Experiments on image retrieval and interest point
matching show the effectiveness and efficiency of the proposed method.

1 Introduction

Histograms are widely used in many applications of image analysis and computer vision,
such as interest point matching [8, 9], shape matching [2], image retrieval [12] and tex-
ture analysis [11]. They are very effective due to the rich information captured by the
distribution. However, it is well known that histogram is sensitive to the changes of il-
lumination and viewpoints, as well as quantization effects [2], therefore the design of a
robust histogram distance is a challenging task.

According to the type of bin correspondence, histogram distance is divided into two
categories [12], i.e. bin-to-bin and cross-bin distance. The former just compares each bin
in one histogram to the corresponding bin in the other. The Minkowski distance (such
as L and L), histogram intersection, and yx? statistics belong to this category. These
distances are sensitive to distortions, and suffer from the quantization effect. In contrast,
the cross-bin distances allow the cross-bin comparison, and therefore are more robust
to distortions. Quadratic Form distance (QF) [4], Earth Mover’s Distance (EMD) [12],
EMD-L, [7], EMD-Embedding [5], Pyramid Matching Kernel (PMK) [3] and diffusion
distance [6] fall into this category.
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Almost all of the previous works simply treated the histogram as an n-d interval. How-
ever in practice, many histograms have their special topological structures. For example,
HSYV colour histogram has a cone-shaped structure, orientation histogram is a circle, and
shape context is based on the polar coordinate system. The simple treatment as an interval
results in great distortions of the similarities between some bins, and then degrades the
accuracy of the cross-bin distance. Take 1-d orientation histogram as an example. It’s
often represented as an interval [0,27), though it’s a circle actually. Given a small posi-
tive €, two orientations O and 2w — € are almost the same. However, with the traditional
representation, the two locate at two extremes of the interval, respectively. The distance
between them is almost the longest, which means the smallest similarity. It contradicts
with human perception. The similar contradictions also exist in HS colour histogram with
the first dimension for Hue and the second for Saturation, which is usually represented
as a 2-d interval [0,1) x [0,1]. Compared to the polar representation, the distances be-
tween colours locate at different sides of the line H = 0 are enlarged improperly, and the
same for the distances between colours with small saturations. Similar problems exist in
some other histograms, such as Scale-Invariant Feature Transform (SIFT) [8] and shape
context [2], when they are represented as n-d intervals.

In the paper, we proposed the topology-preserved diffusion distance for histogram
matching, which is inspired by Ling and Okada’s work [6]. In their work, the cross-
bin relations are simulated by the heat diffusion on the n-d interval, and the distance is
the integral of the diffusion process. Different from [6], the proposed method solves
the diffusion process on the histogram’s intrinsic topology, rather than the interval. By
preserving of the topology, it’s more consistent with human perception. Sophisticated
numerical method for Partial Differential Equation (PDE) is used to handle the non-trivial
topology. Compared to the convolution in [6], it has solid mathematical background, such
as the error bound and the numerical stability. The time complexity of the distance is
O(N), where N is the number of bins. The experiments are conducted on image retrieval
and interest point matching. The proposed distance is compared with other state-of-the-art
methods, and hypothesis tests are conducted to show its superior performance.

The rest of the paper is organized as follows. Section 2 discusses the related works.
Our work is described in Section 3. Experiments are reported in Section 4 and then
conclusion is drawn in Section 5.

2 Related Works

In this section, we briefly review the cross-bin distances, because our method belongs to
this category. For more comprehensive discussion, please refer to [11, 12].
QF [4] is an early proposed cross-bin distance. Given two histograms /1 and hy, the
distance is defined as
OF (hy,h2) = (hy — hy)" A(hy — ), (1

where A = [q;;] is the weight matrix and the weights a;; denote similarities between bins
i and j. In the comparison of colour histograms [4], the topology is taken into account by
defining

aij=1—d;j/dmax, 2

where d;; is the L, distance between colours i and j, and dmax = max; j(d;;). QF makes
each bin in one histogram to correspond to all the bins in the other, and thus tends to
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overestimate the mutual similarity without a pronounced mode [12]. Different from QF,
Our method use the diffusion process to simulate the cross-bin relations, and the bin in
one histogram dynamically corresponds to some neighbouring bins in the other.

EMD dynamically selects the correspondences by solving a transportation problem.
Although it achieves good performances in image retrieval [12] and texture analysis [11],
its computation is costly, and usually large than O(N?), where N is the number of bins.
Several fast approximations have been proposed. [5] embeds the EMD metric into a
Euclidean space, and the EMD can be approximated by the L; distance in the space after
embedding. Its time complexity is O(NdlogA), where N is the number of features, d is
the dimension of the feature space and A is the diameter of the union of the two feature
sets. PMK [3] is proposed for feature set matching. First, a pyramid of histograms of a
feature set is extracted, and then the similarity between two feature sets is defined by a
weighted sum of histogram intersections at each level of the pyramid. EMD-L; [7] utilizes
the special structure of the L; ground distances on histograms for a fast implementation
of EMD.

The major difference between our method and the EMD related distances above is
that the topology of the histogram is not considered in the latter. EMD uses ground dis-
tances defined on the n-d interval, and the other approximate methods are all developed
for this specific type of ground distance. Although EMD may handle non-trivial topol-
ogy by using properly defined ground distance, it’s costly to compute (> O(N3)). Our
method is much faster (O(N)). Besides the major difference, our method differs from
PMK in another two ways. First, PMK focuses on feature distributions in the image do-
main [3], while ours focuses on comparison of histogram-based descriptors, such as SIFT.
Second, PMK uses intersection to allow partial matching, which is important for handling
occlusions for feature set matching. In contrast, we employ the L; distance, because the
histograms are all normalized.

Diffusion distance [6] measures histogram distance by heat diffusion. The difference
of two histograms /1 and h; is treated as the initial condition of a heat diffusion process
u(x,t), and the distance is defined as

T
K( ) = [ ux0)), dr, 3)

where T is a constant, and ||-||; represents the L; norm. [6] convolutes the initial con-
dition with a Gaussian window iteratively to approximate the diffusion, and sums up the
L norms after each convolution to approximate the integral. The bin correspondences
are implicitly determined by the diffusion. Its time complexity is O(N), where N is the
number of bins.

Similar to the diffusion distance, our method is also defined as the integral of the dif-
fusion process. However, there are some significant differences. First, we define diffusion
process on the histogram’s intrinsic topological structure, while diffusion distance solves
the process on an n-d interval. Second, we utilize numerical methods for PDE, i.e. finite
volume method [1] and backward Euler scheme [10], to solve the diffusion process. In
contrast, diffusion distance uses convolution to approximate the diffusion, which cannot
handle the non-trivial topology.
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3 Our Work

In this section, we first introduce the numerical method for heat diffusion equation, and
then present the topology-preserved diffusion distance. At last, a fast implementation is
described.

3.1 Numerical Method for Heat Diffusion Equation

We discretize the heat diffusion equation with Neumann boundary condition

M:V-w(x,t), x€Q, (4)
ot
XY o xeon )
ox

and then solve it numerically. The approach is briefly introduced as follows.

First, the spatial derivative V - Vu(x,?) is discretized by finite volume method [1].
With division &, the domain Q is divided into N cells {ck}f{vjl, and the solution u is
approximated in each cell as a constant, i.e.

u(x,t) = u(t), x€c. 6)

Integrating both sides of (4) over cell ¢, and using Gauss theorem and the boundary
condition, we can approximate (4) and (5) with the spatial discretized equation

d
Vit = Y ol — ), (7)

where 4% is the set of neighbours of the cell ¢, and V; and oy are constants related to
the topology of domain Q and the division & only.
By including the solutions of all cells, (7) can be rewritten in matrix form

du
— = A
i u, (®)

. . . . N
where diagonal matrix M and operator matrix A consists of {Vk}ivzland {ak j} kj1> Te-

spectively, and column vector u = [uy,ua, ... ,uN]T consists of solutions in all cells.

Second, the time domain [0, is discretized into a series of time steps 0 =y < 1] <
--- <t =T. Using the backward Euler scheme [10] to approximate the time derivative,
the linear ordinary differential equation (8) becomes completely algebraic equation

(k) _ gk=1)
MUY Au®, k=12,....L )
Aty
where u®) = u(t;) is the solution at the k-th time step, and Az = #x — 1. In nu-

merical computation, we usually use fixed time step Aty = Ar. Defining matrix B =
(M — AtA)~'M, we can simply advance solution by

u® = Buk-D, (10)
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Further more, we can get the solution at any time point directly by
u™ =B, (11)

Due to the properties of the backward Euler scheme [10], our discretization (9) is
stable for any positive time step Afr. The accuracies of both the spatial and temporal
discretization are first-order. Therefore, the error in the numerical solution is O(At) +
O(Ax), where At is the size of the time step, and Ax is the size of the cells.

3.2 Topology-Preserved Diffusion Distance

Some notions are introduced first. A normalized histogram /4 is a probability density
function defined on domain Q, which is embedded in a normed space X. The topology
of A is actually the topology of Q. For example, the domain of colour histogram for Hue
and Saturation is a disk embedded in the 2-d plane. The histogram h often referred in
computer vision is the discrete version of 4. It corresponds to a division &, which divides
Q into cells {c,-}f-vzl. The integral of h over a cell is the value of the corresponding bin in
h. We use “ to represent discrete histogram and other related functions.

To compute the topology-preserved diffusion distance between two histograms, the
heat diffusion equation with their difference as the initial condition is solved first. And
then, the distance is extracted by integrating the L; norm of the process along time. Given
two histograms, 4 (x) and A2 (x), their corresponding initial condition is

u(0,x) = hy(x) — hy(x). (12)

Given the solution of heat diffusion equation (4) with conditions (5) and (12), the topology-
preserved diffusion distance is defined as

T
K(hl,hg):/o /Q\u(x,t)\dxdt. (13)

If Q is an n-d interval and the division & is uniform, (13) reduces to the diffusion distance.

The method introduced in Section 3.1 is used to compare discrete histograms. Given
two histograms le and fzg, (4) and (5) are spatial discretized according to their common
division 2, and the initial condition is

u® =iy — hy. (14)

We can get the discretized temperature field u(z) at any time ¢ by (11). Since the integral
over Q can be approximated by L; norm, and the integral along time can be approximate
by summation, (13) can be rewritten as

L
R(hy,hy) =Y [u(T)ll, (15)
i=0

where Ty < 71 < ... < Ty, are time points. L is usually set to 2 or 3. The time complexity
of this distance is O(LN?), where N is the number of bins. In the next section, a fast
implementation is introduced, and its complexity is O(LN).

A toy example is given in Figure 1 to illustrate the advantage of the proposed method.
In the three Hue-Saturation histograms in Figure 1(a), only one bin in each is nonzero.
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Figure 1: Toy example to show the advantage of the proposed method. (a) Histograms on disks. (b) Histograms on rectangles.
(c) Diffusion process of le and izz on the disk. (d) Diffusion process of le and fzg on the rectangle. (e) Diffusion process of le
and fz3 on the disk. (f) Diffusion process of le and fz3 on the rectangle. Time points and L; norms of the temperature fields are
shown above the images.

Intuitively, the similarity between le and fzz is larger than the one between le and 23,
because the ground distance between the nonzero bins in the former pair is smaller. Cut-
ting along the red line in Figure 1(a), i.e. H = 0, and performing some transformation,
we get the common histograms in Figure 1(b). The diffusion processes on both disk and
rectangle with different initial conditions are illustrated by Figure 1(c), (e), (d) and (f)
respectively. The L norms above the images show that the process in Figure 1(c) decays
faster than the one in Figure 1(e). But there’s no similar phenomenon in Figure 1(d) and
(f). In fact, the L; norm of the last image in Figure 1(d) is even slightly larger than the
corresponding one in Figure 1(f). The topology-preserved distances of Figure 1(c) and (e)
are 3.6564 and 5.6270, respectively. This is consistent with the intuition. In contrast, the
diffusion distances of Figure 1(d) and (f) are 3.2331 and 2.8826, respectively. Obviously,
the diffusion distance fails in this case.

3.3 A Fast Implementation

Because of the linearity, the diffusion process with initial condition (12) can be viewed
as the difference of two sub-processes, which use two histograms as the initial conditions
respectively. The same holds in the discrete case. Plug (14) and (11) into (15), we get

(16)

L
R(hi,hp) =Y ||(B"h1) — (B"ih)||,
i=0
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where m; = |T;/At|. Since the division 2, the domain Q, the time step At and the time
points 7o < T; < ... < T are all predetermined, B can be computed in advance. Therefore
both vectors, i.e. B™ le and B™ fzz, can be computed at feature extraction step. The online
computation only includes the differences of the vectors and the L; norms, and thus the
online complexity is O(LN) = O(N).

4 Experiments

The proposed methods are tested on natural image retrieval and interest point matching.
Seven distances are compared, including Li, L,, ¥, QF, EMD, Diffusion Distance (Dif-
fusion) and Topology-Preserved Diffusion Distance (Topology). The weight matrix of
QF is determined according to [4]. For the diffusion distance, we set o = 0.5 as [6], and
use 3 x 3 window for image retrieval and 3 x 3 x 3 window for interest point matching.
L, ground distance on the n-d interval is used in EMD. For the proposed method, we
empirically choose time points {0, 1,2} for image retrieval and {0,2,4} for interest point
matching.

4.1 Natural Image Retrieval

This experiment is performed on the widely used Corel-5000 database [13], which con-
sists of 5000 images. 8 x 8 HS colour histogram is used as the only feature. 1000 images
(10 categories) with relatively significant colour characteristics are selected as the queries.
For each query, the nearest 100 images are returned.

The average precisions of different distances are plotted in Figure 2 with respect to the
scope. The time costs of different distances are shown in Table 1. EMD outperforms all
the other methods, but its time cost is too high. The proposed method places the second,
with much smaller time cost. L; and diffusion distance perform almost the same, and
they are both the third. Although topology is taken into account, QF is worse than L,
which is only a bin-to-bin distance. It confirms the analysis in Section 2, i.e. the static
correspondence limits QF’s performance. 2 and L, are the last.

Distance | Topology | Diffusion | L; | x> | L, | QF | EMD
Times (s) 18.0 14.1 63 | 13.4 | 7.2 238.4 | 8023.4

Table 1: Time costs in image retrieval

To further confirm the improvement, hypothesis tests are conducted. For a specific
scope and a specific distance, the average precisions of 10 categories are treated as i.i.d.
samples drawn from some distribution. The proposed method is compared with the oth-
ers using these samples. Since the distribution is unknown, non-parametric Wilcoxon’s
signed rank test (one-sided) for two related samples is adopted. The p-values of the tests
are listed in Table 2. Except EMD, all the others are small than 0.05, which means the
improvements over the corresponding methods are all statistically significant.
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Figure 2: Retrieval precisions with respect to the scope in image retrieval

Scope | Diffusion | L; P Ly QF EMD
20 0.0469 | 0.0371 | 0.0039 | 0.0020 | 0.0020 | 0.5566
40 0.0020 | 0.0059 | 0.0039 | 0.0020 | 0.0020 | 0.6250
60 0.0039 | 0.0273 | 0.0039 | 0.0020 | 0.0137 | 0.7695
80 0.0098 | 0.0117 | 0.0059 | 0.0020 | 0.0420 | 0.6250
100 0.0039 | 0.0059 | 0.0039 | 0.0020 | 0.0322 | 0.6953

Table 2: p-values of hypothesis tests in image retrieval

4.2 Interest Point Matching

This experiment is performed on the Affine Covariant Regions Dataset [9], which consists
of 40 image pairs with known plane projective transforms. We extract SIFT like descrip-
tors from the interest regions detected by the Hessian-Affine detector [9]. The descriptor
differs from SIFT by ignoring the tri-linear interpolation [8] and by being normalized by
L; norm. The number of local descriptors varies from 200 to 4000 per image depending
on the content.

The evaluation strategy in [9] is utilized. For each pair of images, the ground truth
correspondences are first determined by the known transform. Then, we use the threshold-
based strategy to match descriptors, i.e. two descriptors are matched if the distance be-
tween them is below a threshold. Varying the threshold, a Receiver Operating Character-
istic (ROC) curve can be obtained. For some image pairs, it’s hard to obtain the complete
ROC curve with any distance because the precision keeps low. It’s probably due to the
limitations of the detector and/or the descriptor. For this reason, 21 image pairs are se-
lected, and ROC curves in Figure 3 of different methods are the averages on these pairs.

Compared to image retrieval, similar ranking are shown in Figure 3. EMD is the best,
followed by the topology-base diffusion distance. The diffusion distance and L; place the
third, and then QF, L, and x2. The margin between Topology and Diffusion (or L) is
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Figure 3: ROC curves in interest point matching

1—Precision Diffusion Ly XZ Ly QF EMD
0.2 7.9802e-005 | 1.2267e-004 | 5.9570e-005 | 5.9570e-005 | 7.1872e-005 | 0.7823
0.4 0.0033 4.1887e-004 | 5.9570e-005 | 5.9570e-005 | 6.4356e-004 | 0.5829
0.6 6.1791e-004 | 5.4342e-004 | 5.9570e-005 | 5.9570e-005 | 3.5792e-005 | 0.8392
0.8 0.0037 4.1887e-004 | 5.9570e-005 | 5.9570e-005 | 5.0872e-005 | 0.5929

Table 3: p-values of hypothesis tests in interest point matching

roughly 1%. In spite of the superior performance, the computation of EMD costs about
300 hours. In contrast, our method uses only about 10 minutes, and the diffusion distance
uses about 7 minutes.

The same hypothesis tests are conducted. For a specific precision and a specific dis-
tance, the recalls of different image pairs are treated as i.i.d. samples, on which the com-
parisons are based. The p-values are listed in Table 3. Again, the improvements over
the other methods are significant, except EMD. Compared to Table 2, the p-values are
smaller, which means the improvements are more significant in the sense of statistics, in
spite of the smaller margins showed in Figure 3.

5 Conclusions

In this paper, we extend the diffusion distance by combining the idea of topology preserv-
ing. The proposed method defines the diffusion process on the topology of the histogram,
and measures the distance by integrating the L;-norm of the process along time. It outper-
forms most existing histogram distances by preserving the topology, and also outperforms
topology-based QF by utilizing the diffusion process. Among the methods with complex-
ities lower than O(N?), the proposed one is the most accurate. Moreover, it’s also very
efficient with the complexity O(N).
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Abstract

We propose an approach to image retrieval that does not require any distance
computations. The idea is to represent images and corresponding image fea-
tures by means of the two sets of vertices of a bipartite graph. Even though in
such a graph the images are not directly related, the degrees to which the fea-
tures are present in an image allow for defining partial orders. If the degrees
of presence are normalized such that they form probability distributions, sim-
ilarity rankings result from the stationary distributions of stochastic diffusion
processes over the graph. The method is closely related to recent approaches
to ranking on manifolds but does not involve the computation of parame-
terized affinity and Laplacian matrices. Experiments with a standard image
retrieval data set demonstrate the efficacy of the approach. Compared to a
corresponding distance-based approach, it yields a higher overall precision.

1 Introduction

Content-based image retrieval (CBIR) from large databases has become a task of consid-
erable practical importance. Admen, artists, designers, and journalists need fast access
to appropriate icons or pictures to illustrate advertisements, journals, jingles or whatever
else requires visual amelioration nowadays. However, the sheer size and speed of growth
of present day image repositories create a crucial problem: consistent semantic annota-
tions can hardly be provided single-handedly anymore. Neither can teamwork guarantee
consistency. Experience witblksonomiegathered and maintained by online communi-

ties shows that spurious and ambiguous labels occur inevitably. Figure 1 illustrates what
this implies in practice; it displays a choice from the 40 top ranking results obtained from
typing “tiger” into Google’s image search.

State of the art retrieval systems therefore apply computer vision techniques that are
fine tuned to the task at hand by means of user feedback [3, 12, 14]. In the so called
human-in-the-loo@mpproach, the user repeatedly rates selections of images according to
how well they match the current query. Based on this relevance feedback, characteristics
of appropriate and inappropriate images are determined and a hopefully better suited set
ofimages is retrieved from the database. This interactive process continues until the user’s
demands are met.

In a series of influential papers, Rui and Huang [11, 12] presented interactive CBIR
systems based on a hierarchical model that combines different features and adaptable
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Figure 1: Some of the top ranking results when searching Google Images for “tiger”.

distance measures. Even though their model and many of its successors enable flexible
searches for images similar to the user’s intent, the way the different distances between
features are defined appears to be solely technically motivated and is hard to grasp intu-
itively. More recent approaches [3, 14] apply more sophisticated reasoning and adaptation
processes, but at their heart, too, lies the problem of defining distances between images
that would allow for producing similarity rankings.

The reason why we emphasize this issue here is that it became clear some time ago
that sets of images of a semantic class tend to form nonlinear manifolds whose global
structure cannot be captured by simple metrics (see the examples in [2, 10, 13]).

Dealing with the problem of CBIR, the question then is how define similarities be-
tween objects residing on such manifolds. Or, in other words, what is needed is a method
to rank such objects. As a matter of fact, this problem has been addressed in several re-
cent contributions [1, 7, 8, 15, 16]. It has even been studied with respect to information
retrieval in general [5] and image retrieval in particular [6]. Since these approaches are
closely related to the idea presented in this paper, we will discuss them in more depth later
on. For now, we simply point out that all these approaches derive the global structure of
a set of data by considering local relations among individual elements which are again
based on some notion of distance.

In this paper, we consider only a single iteration in an interactive CBIR system and
focus on the problem of image ranking. Our approach determines similarities among im-
ages but does not require any distance computations. The idea is to represent a collection
of images and a set of meaningful image features by means of the two sets of vertices of a
bipartite graph. Assuming the edges between images and features to denote transitions in
a Markov process immediately provides an ordering scheme: if we model a user query as
an initial distribution over the vertices corresponding to images, a ranking results from the
stationary distribution of a corresponding Markov chain that starts from this initial state.

In the next section, we detail this idea and the computational approach. We will see
that there is a simple closed form solution to compute image rankings from an arbitrary
query. We will discuss that, similar to the approaches in [1, 7, 8, 15, 16], our approach
leads to a graph diffusion kernel. In contrast to existing methods, however, the kernel
naturally results from the probabilistic model and its derivation does not require manual
adjustment of free parameters. In section 3, we present experiments that demonstrate
the efficacy of the proposed approach. On a standard data set it yields useful precision
and outperforms a distance-based retrieval method considered for baseline comparison.
Finally, section 4 concludes this paper and points out promising next steps of research.
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Figure 2: Example of a bipartite graph. Although there are no direct relations among the
verticesuy;, their relations with the verticeg define a similarity and thus allow for partial
ordering. With respect to vertex, for instance, the orderigs Jus Ju; Juwp

2 Ranking as a Markov Process over Bipartite Graphs

The idea for the CBIR approach presented in this paper occurred while we were exploring
novel mechanisms for collaborative filtering for automatic recommender systems. In the
discussion that follows, we will thus frequently resort to rather metaphorical language and
make use of terms such aste foror rate which we feel convey the underlying ideas.

2.1 Mathematical Model

Assume labeled bipartite gragh= (V,E) as shown in Fig. 2. Its sets of vertic¥sis
partitioned such that =V, UV, andVy NV, = 0. Then verticesuy, Uy, ..., Uy in the set
V; correspond to entities (such as users, images, ...). In a slight abuse of notation we will
identify vertices and their labels and represent a labeling of the vertidésbg means
of a vectoru = [ug, Up, ..., un|". Themverticesvy,Vy, ...,V in the setV, correspond to
rated items or features that are voted for (e.g. books, RGB color bins, gradient directions,
...) and their labels are stored in a vediGe v, Vo, ... ,vm]T.

In a recommender systems, each entitg Vi votes for (a subset of) the items in
V5. Dealing with CBIR, we may think of the votes as indicators to what extend a certain
feature inV, is present in an image representeduyIn both cases, votes or frequency
counts can be represented by means of directed, weighted edges (see Fig. 3(a)).

Even though there are no immediate relations (i.e. no edges) among the elements in
V1, their voting behavior allows for determining partial orders. Given an emntityts
fellow entities can be ranked according to how much their voting behavior resembles the
one ofy;. In contrast to common distance measures between vectors of votes or frequency
counts, the bipartite graph model seamlessly accounts for indirect relations as well. In the
example shown in Fig. 2, for instanaeg, is related taiz andug, alike. However, while the
nature of its relation tay is of first degree because both entities share a vote, its relation
to us is a second degree relation because it is mediated thnaugh

The key idea is now to understand relations of arbitrary degree as the outcome of
a stochastic diffusion process over the bipartite graph. To this end, we normalize the
votes cast by an entity so that they sum to 1. If all the votes of all the entities are stored
in a column stochastim x n matrix R, and entity vectors are normalized so that they
sum to 1, too, individual or weighted combined ratings result figrs Ru;. With these
assumptions, we obviously are considering probabilistic mappings\idmV,.
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Figure 3: Example of the beginning of a stochastic diffusion process over a bipartite
graph. Staring with the distributiamp = [001qT produces a distributiony which in turn
leads to the updated distribution.

Given the transition matriR, each itenv; € V> can deducevhich entities do vote for
it for this information is essentially contained in the transpose of the transition matrix. If
SORT was normalized so that it is a column stochastic matrix, too, a set of rated items
can (in turn) vote for entities (see Fig. 3(b)). An updated distribution over the entities in
V1 would then result from

Ups1 = S = SRu = Hut. @)

Note that then x n matrix H introduced in last step of this derivation is a doubly
stochastic matrix whose rows columns and rows sum to 1. It is square and non-negative
and its eigenvalued, are characterized biyy| < 1.

Also, note thaH defines a Markov process over the'¥gtTherefore, even though no
direct relation among the € V7 were available in the first place, we now have a tool for
ranking. Assume an initial distributiomy with only a few non zero entries. Then, after
t steps, the probabilities i, = H'ug will be higher for entities which are more closely
related to the initially active elements and less high for less closely related ones.

However, in this most simple form, the model cannot produce reasonable rankings
if the underlying Markov chain is irreducible and contains positive-recurrent states. In
this (practically very likely) case, the process converges to a uniform distribution over the
elements in/y which does not allow for any ranking. We therefore assume the initial dis-
tribution ug to be a steady source of probability mass that constantly feeds the stochastic
process. With this modification, the update rule for distributions is given by

Uty = % [Hut + UO} (2)

where the scaling facto% ensures thatl ;1 does sum to 1 just ag andug do. With
some algebra it is easy to see that, written as a power series, the recursive expression in

(2) amounts to .
tf .
o= (3o 5 ()
I=

Recall thatH is a doubly stochastic matrix whose eigenvaldigsatisfy|Ay| < 1. For
the limitt — oo, we therefore have

lim (}H)t —0 and tlimt_l(}H)i = [1-

! 4
im (3 im3 (3 ] @
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Hence, the iteration in equation (2) is guaranteed to converge. Once the process has
converged, the vectarit converged to is characterized by= % [Hu + uo] which directly
leads to the closed form solution

1 1 9-1

u=_-|1-2 } Uo. 5

511-3H] “w 5)
Therefore, given an arbitrary initial distributiar that might represent a single entity

or —just as well— a mixture of entities, we can immediately determine the corresponding

stationary distribution and the ranking it implies.

2.2 Discussion

It is interesting to note that the matrix in equation (5) constitutes a diffusion kernel [8]. In
fact, from the derivation, we recognize another instance okéneel trick The similari-

ties among vectors € R" that are contained inl = SR result from mapping the vectors
back and forth to a (usually higher dimensional) spa€e

Diffusion kernels for the purpose of computing similarities on manifolds or graphs
have recently been studied by several authors [1, 7, 8, 15, 16]. In two contributions closely
related to this paper, Zhou et al. [15, 16], investigate the problem of ranking on manifolds.
They manifolds they are concerned with are represented by means of adjacency graphs.
Given an unstructured set of feature vectors, they compute a matrix that represents local
structures in the data by means of the distances between each data poinkarehitsst
neighbors. The adjacency matrix is then transformed into a similarity mtrsing a
Gaussian kernel with parameter GivenK, they show that diffusion processes on this
adjacency graph are governed by the mattix o) [1 — aK] - This, of course, closely
resembles the resultin (5).

In fact, from settingx = % we recognize stochastic diffusion over a bipartite graph to
be a special case of the problem studied [15, 16]. However, some comments appear to be
in order. While our derivation did not involve any free parameters, the approach by Zhou
et al. requires at least three of theky ¢, ). Moreover, while our approach avoids the
computation of distances between vectors of ratings or features, the approach by Zhou
et al. requires distance computation for constructing the adjacency matrix as well as the
corresponding similarity matrix. Finally, the matri in our approach is a stochastic
matrix and thus allows for a concise interpretation of the ranking procedure in terms of a
Markov process. The matrik in the approach by Zhou et al., in contrast, eludes such an
interpretation.

Ranking on manifolds has already been applied in systems for document and image
retrieval [5, 6]. However, to the best of our knowledge, all known such systems consider
diffusion processes over adjacency graphs that represent local neighborhoods similar to
the way discussed above. They therefore leave the user with the problem of choosing
suitable distances and parameters. Our approach, on the other hand, is parameter-free.
In the next section, we present initial experiments which demonstrate that it nevertheless
yields useful results for the problem of CBIR.
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3 Experiments

In this section, we report first results obtained from our approach to image similarity
ranking. Note that, in our experiments, we did not pay too much attention to the selection
of features suitable for the task of CBIR. Therefore, the figures and examples presented
below should not be considered the maximum achievable performance. Rather, they are
meant to illustrate the potential of ranking based on diffusion over bipartite graphs.

3.1 Setting

All our experiments considered the Corel 1000 data set [9]. It contains 1000 color images
showing scenes or objects from 10 different categories; for each category, there are a 100
examples.

Since the idea of thelegree of presencef a feature, which we alluded to in the
last section, naturally translates to the use of histograms, we considered histogram-based
descriptors to characterize entire images in the data set. In order to represent information
due to the geometric structure of the image content, we decided to apply histograms of
oriented gradients as introduced by Dalal and Triggs [4]. We used 12 bins to store gradient
directions computed over a>99 grid of cells. The nonlinear normalization of different
histograms was computed with respect ta 3 blocks of cells. In order to represent
information contained in the color distributions of the images, we adopted the idea by
Dalal and Triggs to color histograms. Here, we consideracbXells which again were
normalized using % 3 blocks. The color histograms in each of the cells contained 20
bins; the corresponding prototypical colors were determined from clustering the pixels of
all images in the database into different sets. Other than that, no preprocessing steps were
applied; in particular, we did not perform brightness adjustments or color normalization
such as proposed in [4].

Given these image descriptors, we tested how our approach performed when the de-
scriptors were considered individually as well as how it performed when they were com-
bined into a larger vector. For baseline comparison, we also verified how a retrieval pro-
cedure performed that determines image similarities based on the cosine distance between
feature vectors.

The figures in the Tables 1 to 3 resulted from issuing 10 different queries for each
category and averaging over the results. In accordance with the traditional approach in
information retrieval, we characterize the different algorithms in our test with respect to
theprecisionthey achieved.

3.2 Results

Tables 1, 2, and 3 list the precision valuass, at 10, andat 20, respectively, and thus
indicate how many relevant documents were returned among the top 5, top 10, and top 20
ranking documents. Results obtained from the histogram of gradients features are found
in the columns markeHOG, the ones obtained from histograms of colors are displayed in
the columns markeHOC, results yielded by the combined descriptors are lableddd
Although some images seem to defy retrieval (e.g. the pictures of Mountains), the re-
sults obtained from stochastic diffusion processes over bipartite graphs generally appear
reasonable and useful. Moreover, on average, our approach consistently outperforms the
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stochastic diffusion cosine distance
HOG HOC both| HOG HOC both

New Guinea 82 82 82 10 50 44
Beaches 80 90 94 46 54 44
Rome 40 20 32 14 44 32
Busses 80 52 78 76 56 78
Dinosaurs 96 100 100 72 100 100
Elephants 20 78 70 22 66 50

Flowers 60 72 78 34 94 54
Horses 22 76 74 96 90 94
Mountains 4 24 18 8 42 34
Food 26 36 66 0 58 58
average 51 63 69 38 65 59

Table 1: Precision @ 5 obtained on the Corel 1000 data set.

stochastic diffusion cosine distance
HOG HOC both| HOG HOC both

New Guinea 76 76 76 5 52 41
Beaches 73 84 90 40 39 41
Rome 35 21 33 14 37 31
Busses 74 45 74 71 48 71
Dinosaurs 89 97 97 59 100 100
Elephants 21 68 65 15 61 42

Flowers 62 74 78 33 88 49
Horses 19 68 64 92 85 89
Mountains 4 21 17 5 36 25
Food 22 32 59 5 55 48
average 48 59 65 34 60 54

Table 2: Precision @ 10 obtained on the Corel 1000 data set.

baseline method, if it considers the combination of gradient and color features. Prelimi-
nary results like this are promising and justify further work on CBIR based on parameter-
free diffusion over bipartite graphs.

Figures. 4 through 6 exemplify another interesting and promising feature of our ap-
proach: since it avoids the computation of distances, it does not only apply to ranking
with respect to individual elements on a manifold but can be seamlessly applied in order
to rank with respect to sets of elements. The figures illustrate, how this can aid CBIR.

In its lower row, Fig. 4 shows the top 5 ranking images that were returned when the
image in the upper row was used as the query example. The ranking resulted from using
the combined gradient and color features and starting the Markov chain with an initial
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stochastic diffusion cosine distance
HOG HOC both| HOG HOC both

New Guinea 65 65 65 9 54 37
Beaches 69 77 82 32 38 40
Rome 30 18 26 15 27 26
Busses 66 37 71 60 48 64
Dinosaurs 80 90 90 42 100 98
Elephants 20 56 53 16 57 42

Flowers 58 66 74 27 80 50
Horses 21 58 60 88 79 86
Mountains 6 22 17 10 35 25
Food 19 34 52 7 52 40
average 43 52 59 30 57 51

Table 3: Precision @ 20 obtained on the Corel 1000 data set.

Figure 4: A single query image and the 5 top ranking results.

distributionup = [0...010...0]T. Figures 5 and 6 show the outcome of the process when
started with a distributionup = ﬁ[o...mo...om..oﬂ whereM = 3 elements were

set toﬁ. From Fig. 5 we see that, if these elements index visually similar images, the
retrieved images appear similar to these images, too. If the initial distribution covers a set
of less similar images, the ones that will be returned among the top ranking images will
also show a greater variety (see Fig. 6).

4 Summery and Outlook

In this paper, we described a novel approach to image ranking for content-based image
retrieval. The interesting characteristics of this approach are that it is parameter-free and
that it determines image similarities without computing distances. Given a collection of

images together with a corresponding set of normalized feature vectors, the idea is to un-
derstand both sets as the disjoint sets of vertices of a bipartite graph. If the edges between
images and features are assumed to denote transitions in a Markov process and if given
queries are taken to be the initial distribution, an ordering with respect to a query results
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Figure 6: Three less similar query images and the 5 top ranking results.

from the stationary state of the chain. By design —and in contrast to other recent ap-
proaches to manifold ranking— our approach allows for a rigorous interpretation in terms
of Markov processes. Since these are completely characterized by the underlying stochas-
tic matrix, a user does not have to adjust free parameters and distance measures. On the
contrary, feature frequency counts or histograms immediately lead to necessary transition
probabilities.

Preliminary results obtained with this approach are promising and justify further in-
vestigation as to what features might further improve precision. In addition, the method
itself offers interesting perspectives for future research. An obvious idea is to apply it to
classification: given a feature vectoderived from an unknown input image and a set of
known images, the new image can be classified by, for instance, a majority count of the
top ranking entities in the vectar that results from a query with the initial distribution
up = Sv. Another direction worth pursuing further appears from noting that equation (2)
resembles the systems one deals with in linear quadratic control. The noticeable differ-
ence is that, in equation (2), the control matrix is set.tdEspecially from the point of
view of interactive content-based retrieval, ways of adapting this matrix to better meet the
user’s intent seem a worthwhile topic.
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Abstract

In this paper a novel approach for improving automatic image annotation
methods is proposed. The approach is based on the fact that accuracy of cur-
rent image annotation methods is low if we look at the most confident label
only. Instead, accuracy is improved if we look for the correct label within the
set of the top-k candidate labels. We take advantage of this fact and propose
a Markov random field¥IRF) based on word co-occurrence information for

the improvement of annotation systems. ThroughMiiF- structure we take

into account spatial dependencies between connected regions. As a result, we
are consideringemantiaelationships between labels. We performed exper-
iments with iterated conditional modes and simulated annealing as optimiza-
tion strategies in a subset of the Corel benchmark collection. Experimental
results of the proposed method together wikkr-aearest neighbors classifier

as our annotation method show important error reductions.

1 Introduction

The task of assigning semantic labels (words) to images is known as image annotation.
This is a very important step towards developing more precise image retrieval systems.
For text-based image retrieval systems, annotations are indispensable features; while for
content-based image retrieval methods, annotations can provide them with semantic in-
formation for improving their performance. Image annotation, however, is not an easy
task; manual annotation is both infeasible for large collections and subjective. Therefore,
there is an increasing interest in developing automatic methods for image labeling.

There are two ways of facing this problem, at image level and at region level. In the
first case, labels are assigned to the entire image as an unit, not specifying which words are
related to which objects within the image. In the second approach, which can be conceived
as an object recognition task, the assignment of labels is at region level; providing a
one-to-one correspondence between words and regions. The last approach can provide
more semantic information for the retrieval task, although it is more challenging than the
former. Within the region-level automatic image annotatibh task, we can distinguish
two approaches for assigning labels to regions, these are soft and hard annotation. Hard
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Figure 1: Graphical schema of our approach. We start from an image that is segmented into
regions; attributes are obtained from each region; next these attributes are used witlhl soft-
method that returns a set of candidate labels, together with a relevance weight, for each region in
the image. Then the method proposed in this paper is applied, and it returns an unique correct label
for each image.

annotation consist of the task of assigning, with probability 1, an unique label to each

region; soft annotation, on the other hand, ranks the labels according to their relevance
to being the correct annotation for a given region. Accuracy of soft annotation systems

is superior to that of hard systems, though assigning a set of labels to a single region is
both confusing and impractical. On the other hand, accuracy of hard annotation systems
is poor, though it is more understandable and practical assigning a unique label to each
region.

In order to take advantage of the high precision of soft annotation methods as well as
the clarity of hard approaches, we propddBFI, a probabilistic model based on word
co-occurrence information for improving image annotation systéif¥-l considers the
top—k candidate labels for each region within an image and, by using word co-occurrence
information together with spatial context, it re-ranks each candidate label. Then we select
the unique top label for each image, according to this ranking. In Figure 1 the proposed
approach for improvingAlA methods is graphically described. We used-anearest
neighbor classifier as o#lA system and experiments on a subset of the benchmark Corel
collection were performed. Experimental results show significant improvements by using
KNN+MRFI over singleKNN, furthermoreKNN+MRFI outperforms several others state
of the art annotation methods.

The rest of this document is organized as follows. In the next Section we review
related work. In Section 3 some background information is described. Next in Section
4 the MRFI method is proposed. Then in Section 5 experimental results are presented.
Finally, in Section 6 conclusions and future work directions are discussed.

2 Related work

A wide variety of methods for image labeling have been proposed since the late nineties.
However, none of current methods have taken advantage of label’'s semantics for improv-
ing their performances. A very early attempt that used word co-occurrence information
is the work by Mori et al [13], in which every word assigned to the entire image is inher-
ited by each region; regions are visually clustered and probabilities of the clusters given
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each word are calculated by counting the occurrence of common words within these clus-
ters. A recent approach that attempts to take advantage of co-occurrence information is
that proposed by Li et al [12]. They use a probabilistic support vector machine classi-
fier for ranking candidate labels for each region within an image. Co-occurring words
in the candidate labels for regions in the same image are weighted high; then candidate
labels are re-ranked, top ranking labels are assigned as annotation for the entire image.
Our approach is different to the previous methods because we obtained the co-occurrence
information from an external corpus and considered spatial dependencies between con-
nected regions. Instead of just considering co-occurrence of labels within the same image
[12] or clusters of regions [13]. Moreover in such works co-occurrence information is
used ad-hoc for their annotation method; while in this work we propose a method that can
be used with other soft-annotation systems.

A work close in spirit to ours is due to Carbonetto et al [4]. In this work the authors in-
troduce spatial information intoRF for object recognition. This approach is different
to the one we adopted; since Carbonetto et al define the potential function for discover-
ing the unknown association between visual features extracted from each region and the
considered labels; furthermore tMRF is entirely based on a single collection of anno-
tated images. While in this work we use semantic information, obtained from an external
source, for modeling word association between neighboring regions. Dealing with a dif-
ferent problem: that of selecting an unique label given a set (a subset of the vocabulary)
of candidate ones; which can be seen as a re-ranking strategy. Conditional random fields
(CRF'9 have also been applied to pixel-level image labeling [9], and object recognition
[14]. These works have obtained positive results in different scenarios, although their
applicability is still limited to segmentation ([9]) and two-class object recognition ([14]).
However using conditional random fields #&fA can be an immediate future work direc-
tion. The above described approaches take into account dependencies between connected
regions [4, 9, 14]; although none of these have used semantic knowledge together with
spatial context for improving performance of object recognition methbtiRFIl, on the
other hand, does not attempt to induce tigial-features to wordelationship by con-
sidering spatial information. InsteddRFI| takes advantage of semantic information and
attempts to select the best configuration of labels for the regions contained in the same
image. Semantic information is obtained off-line from a word co-occurrence matrix cal-
culated from an external collection of manually annotated images.

3 Background

3.1 KNN as annotation system

Thek—nearest neighbor&{N) classifier is an instance based learning algorithm widely
used in machine learning tasks. In this work we used this method as our annotation
system due to the fact that it can outperform other state of the art methods (see Section
5); furthermore KNN can be adapted to work in the hard and soft annotation schemas.
KNN starts from a training data s€K,Y} consisting ofN pairs of examples of the
type{(x1,¥1),- .., (Xn,YN) }, With thex{s beingd—dimensional feature vectors and ¥ie
being the labels oKs. In this work eachx contains visual attributes extracted from a
region. While eacly; is one of the|V| labels we can assign to a region. The training
phase oKNN consist of storing all available training instances. When a new instagce,
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needs to be classifigNN searches, in the training set, for},... X}, the topk—objects
more similar tox;; then in a hard annotation schema it assigns the class of the most
similar neighbor in the training set, we call this approdeNN
In order to applyWMRFI with KNN as annotation method we need to ti&hNN into
a soft-annotation method. That is, candidate words for a given region should be ranked
and weighted according to the relevance of the labels to being the correct annotation for
such a region. We used the distance of the test instance to thé tugarest neighbors
as relevance weight. In this way we can infer relevance weights directly related to the
proximity of the neighbor to the test instance. Relevance weighting is obtained using
Equation (1) .
R _ 49i(x)
P = Srao X
with dj(x') being the inverse of the Euclidean distance in the attribute space of instance
X, within thek—nearest neighbors, 6, the test instance. As we can see, the sum of the
priors for all the candidate labels is one, therefore this relevance weightikdlNfcan
be taken as the prior probability for thdRFI method. Note that this relevance weight
is accumulative; that is, labels appearing more than once will accumulate their weights
according to the times they appear in the-téplabels. In this way we are implicitly
accounting for repeated labels.

3.2 Obtaining co-occurrence information

Word co-occurrence is a form of word association that has been widely used by informa-
tion retrieval models [1]. In the simpler schema, bags of words of documents and queries
are compared (that is, word co-occurrences are calculated) for retrieving the documents
whose bags of words are masnilar to that of the query. This form of word association

can be used with labels in the vocabulary £dA tasks for taking into account semantic
information between neighboring labels.

The co-occurrence information matiiklc) is a|V|x|V| square matrix in which each
entry Mc(wj, w;j) indicates the number of documents (counted on an external corpus) in
which wordsw; andw; appeared together. That is, we considered each pair of words
(wi,wj) € VxV and searched for occurrences, at document levélyofv;). We did this
for each of thgV|*|V| pairs of words and for each document in our textual corpus. The
collection of documents we considered for this work was the set of captions of a new
image retrieval corpus: tHAPR-TC128] benchmark. This collection consists of around
20,000 images that were manually annotated, at image level; therefore, if two words
appear together in the captions of such collection, they are very likely to be visually
related. Captions consist of a few text lines indicating visual and semantic content. From
the entries of theM; matrix we can estimate conditional and joint probabilities if we

. P(wiwj) _, c(wi,wj) c(wi,wi) -
take: P(wi|wj) = P(Tj)l ~ C(Wj)’ , andP(w;,wj) =~ IDIJ , Wherec(x,y) indicates the
number of timex andy appear together in the corpus (that is, an entry oMbenatrix);
and|D| is the number of documents in our textual corpus. If we repeat this process for
each pair of words in the vocabulary we obtain a matrix of probabilitiBg ), which
may contain conditional or joint probabilities. Preliminary experiments showed that the
use of conditional probabilities resulted in more significant improvements than those with
joint probabilities; therefore, we used in this work conditional probabilitiegfr).
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A problem with theRy, matrix is the sparseness of data, that is, many entries of the
matrix have zero values, which can affect the performance of our approach; this is a
very common issue in natural language processing [6]. In order to alleviate this problem
we applied a widely used smoothing technique known as interpolation smoothing [6],
described on Equation (2)

c(wi,wj)

P(wi|wj) =~ Ax C(Wj) +(1—=N)x*

c(wj)
(W]

@)

whereA is an interpolation parameteand|W/| is the number of words in the collection.
This formula is an interpolation between the empirical estim%%’v—\j)@) and the empir-

ical distribution of the termw; (c(wj)). Therefore if two terms never co-occur in the
co-occurrence matrixMc) we will not have a zero value iRy.

4 MRFI: A Markov random field for improving AIA

A random field is a collection of random variables indexed by sites [11]. We consider a
set of random variablds = Fy, ..., Ry associated to each site in the site’s sysffach
random variable takes a valdgfrom a set of possible valués A Markov random field
(MRF) is a random field with the Markov properB( fi| fi_1, fi_2,... f1) = P(fi|N(f;)),
whereN(f;) is the set of neighbors df. A typical application oMRF’siis to obtain the
most probable configuratiof*) for the MRF; given some restrictions represented by
local probabilities, also known as potentials. We can express the joint probability of a
MRF, “F”, given the observatiofG”, as the product of the potentials:

Fria(F) = v []R(X) 3)

With v constant, potentialsP{(X)) can be thought of as restrictions that will favor or
punish certain configurations Bf In this way,F* can be considered as the configuration
that have the highest compatibility with the local probabilitiBgX)). We can express

the potentials as energy functions in exponential form, thaPigX) = e Ye(*e) with
Uc(Xc) being an energy function. Then using Equation (3) we have an unique energy
functionUp(f) = 3 :Uc(Xc). In consequence Equation (3) can be reformulated as:

1 _
Pria(f) = xexp Uel1) (4)

with Z being a normalization constant. For a first order neighborhood, as the one we
considered in this work, we have:

Up(f):ZVc(f)+lZVo(f) G)]

Where\; corresponds t&:, the domain information given by the neighbors; &gaor-
responds tdr, the information given by the observatiorisjs a constant that weights

the contribution of each term. In our case, we would like to select the best configuration
of labels assigned to the regions in each image. Making a compromise between the visual

1Usually the value of\ is chosen empirically. Intuitively a low value #f should be used with sparser data.
After a few trial and error experiments we selecfee- 0.5.
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Figure 2: Left: graphical interpretation dfIRFI for a given configuration of labels and regions.
Right: spatial dependencies are shown for this configuration. pffecorrespond to the rele-
vance weight attached to each candidate labelafhespresent the unknown association between
connected regions.

properties of the region/y) and the semantics of its neighboring regiog.(Therefore,
we used the above described framework for approaching this problem.

The observed variables in our task are the relevance weight attached to each label
p?, .. p,\R,,n, for each regiorR; and the top-k candidate labelss, ... wk, for each region.
Observing this variables we define potential functions that exploit spatial dependencies
between labels assigned to spatially connected regions within each image. The structure
of MRFI and the dependencies it consider are shown in Figure 2. For this work we
consider a region; is connected (spatially related) to another regigrif r; is next-to 1.

Note that the next-to relation is symmetric and thBFI depends on the segmentation.
MoreoverMRFI can not deal with problems like over-segmentation. However, as we will
see in Section 5, if we have no available an accurate segmentation tool we can always
divide an image into squared patches. Although poor, the use of this simple partition
in AlA has outperformed methods based on sophisticated algorithms just has normalized
cuts (see Section 5 and [4, 3]). Also we can make the square patches as small as we want;
smaller patches will provide finer grain segmentations. PotentialsIRIFl are defined
in Equations (6) and (7) for the consideration of context and observation information,
respectively.
Ve(f) =3 (P(welwi))" (6)
C
Volf) = ()" ™
P (wi)

Conditional probabilities in Equation (6) are obtained from the word co-occurrence ma-
trix, as described in Section 3.2. While relevance weigiifs, are obtained from the
AIA system. The problem of selecting the correct annotation for each region within a
given image reduces to the selection of the configuration that minimizes Equation (5).
The selection of thisptimal configuration is solved by standard optimization algorithms.
In this work we performed experiments with two widely used algorithms: iterated con-
ditional modesICM [2]) and simulated annealing with metropolis criterf@A[10]). In
Section 5 we report results of experiments with these two search strategies.

5 Experimental results

In order to evaluate the performanceMiRFI several experiments on a subset of the Corel
collection were performed. The data set we used is described in Table 1. It is a single
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Data set | #Images| Words | Training blobs | Testing blobs
A-NCUTS 205 22 1280 728
A-P32 205 22 3288 1632

Table 1: Subset of the Corel image collection we used in the experimentatioKNith
MRF
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Figure 3: Comparison of KNN against other semi-supervised method$Mi(1 [7];
dML10,gML1,gMLO[3]; gMAP1[5]; gMAP1MRF[4]), using a Box-and-Whisker plot. The cen-

tral box represents the values from the 25 to 75 percentile, outliers are shown as separate points.
Left: accuracy at the first label. Right: accuracy at the-tbgabels. The upper dotted line repre-
sents a random bound, while the bottom dotted line representive mathod that always assigns

the same label to all regions.

data set composed of 205 images segmented with normalized cutAMNTUTS and

grid segmentationX-P32. The attributes we considered for each region are the follow-
ing: area, and color attributes. First we compakédlN against other semi-supervised
object recognition methods [7, 4, 5, 3] (see caption of Figure 3), which are extensions and
modifications to the reference work proposed by Duygulu et al [7]. In order to provide an
objective comparison, we used the code provided by P. Carbéndttis code includes
implementations of the above mentioned methods. In Figure 3 a comparison between
KNN and the semi-supervised methods for F8lCUTSdata set is shown. In this plot,
error is computed using the following equation:

z

1

e _
an

1 - ma;
:Nn (1*5( u= ux>) ®)

whereM, is the number of regions on imageN is the number orimages in the collection;
andd is an error function which is 1 if the predicted annotataiij* is the same as the
true labela,,. Results with the test sets are averaged over 10 trials.The left plot in Figure
3 shows error at the first labebdrd annotatio). Error is high for all of the methods we
considered, howevdrNN outperforms in average all of the semi-supervised approaches.

%http: //wwwesubcca/ ~ pearbg/
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Method k Its A n | Context | Time | Improved | #—runs | AVG-I
ICM-P32 20| 100 | 0.1 | 1 | Nextto | 1.8 134 4500 41.3
ICM-NCUTS | 20 | 100 | 5 | 0.5 Full 0.78 56 4500 -0.7
SA-P32 20| 50 | 0.1| 2 | Nextto | 15 144 2700 98.6
SA-NCUTS | 20| 25 | 10 | 0.5 | Next-to 0.5 54 2700 275

Table 2: Parameters for the best configuratiokiss the number of candidate labels in
KNN; Its is for iterations;A andn are parameters for Equation (5); context indicates the
type of neighborhood considered; time is the average time in seconds required to analyze
an image withMRFI. Improvedis the number of annotations improved—#énsis the
number of experiments performed aA¥ G-I is the total of annotation improvements
averaged by #runs

gMIO s the closest in accuracy 16NN, though it obtains an average error which is above
1-NN by 4.5%. In the right plot of Figure 3 we consider a label is correctly annotated
if the true label is within the top5 candidate labelsséft annotatioh As we can see,
error for all methods is reduced, this clearly illustrates the fact that accuracy of annotation
systems is high considering a set of candidate labels instead of the first one. In this case
gMAP [5] outperforms5-NN by 0.9% in average. All other approaches obtain a higher
average error than that 6iNN

In the second experiment we compared the performand&NN+MRFI to that of
KNN alone as well as to the previous methods. Note that we have several parameters
to fix for MRFI. These arek, the number of candidate labels for each regibrandn,
parameters for Equation (5); the number of iterations is a parameter for the optimiza-
tion algorithms; furthermore, we performed experiments with spatial context (see Figure
2) and with full spatial context, that is, assuming all regions in an image are connected
to each other. Given th&flRFI is an efficient method we could perform many experi-
ments with both data sets in order to determine the average improvemdRFf-KNN
over singleKNN. The parameters of the best configurations for each data set consid-
ering both optimization strategies are shown in Table 2. We also show the average of
accuracy improvement and processing time. From Table 2 we can point out several inter-
esting observations. First, as expected, the more candidate labels we consider, the more
improvements we gain. We performed experiments With{3,5,10,20} and the best
results were obtained witki= 20. ICM needs a higher number of iterations to converge
thanSA A small value ofA works well for theP32 data set, which means that a small
weight is given to the co-occurrence information. While a high valug pérforms bet-
ter for NCUTS giving more importance to co-occurrence information. We can see that
for NCUTSa value ofn = 0.5 performs well, while this parameter do not significantly
affected the performance ®iRFI. The use of spatial information, through thext-to
relation, results in larger improvements than if consider each region is connected to each
other in the image. Improvements are consistent through the number of experiments per-
formed. The lowest average improvement was obtained MIM-NCUTS While with
the grid segmented dat®32) we obtained the largest improvement, 98 annotations per
run in average; which is a very significant improvement. An important result showed in
Table 2 is the processing tirhieequired to process an entire image WitRFI. These
results show the efficiency iRFI.

3All experiments were carried out on a PC with 1 GB in RAM and a 2.7 @eatiun® processor
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Figure 4:Comparison oKNN andKNN+MRFI against other semi-supervised methods (see cap-
tion of Figure 3) for images segmented with normalized cuts (left) [15] and with the grid approach
(right); error is measured at the first label, see caption in Figure 3.

In all experiments performed using grid segmentation, which is faster than the other
method, outperformed in accuracy segmentation with normalized cuts [15]. This result
agrees with previous work [4, 5]. IMRFI this can be due to the fact that with grid seg-
mentation P32 the structure of th&RF is equal for all images. While for normalized
cuts we have a different segmentation, according to the image’s content, and therefore
a different structure for th®IRF. The use ofSAinstead oflCM does not result in sig-
nificant improvementsSA outperformedCM by 0.5%, which means that we have not
many local minima. In Figure 4 we compare the best configuratiofdR¥1 (Table 2)
with the other methods. From Figure 4 we can clearly appreciate the improvement we
can get by applyinIRFI+KNN, instead ofL.-NN alone, for both data sets. The improve-
ments of MRFI+KNN over 1-NN are of 75% and 108% for theP32 and NCUTSdata
sets, respectively. These percentages represent around 1832fand 46 (foNCUTS
annotations that were enhanced; this is a very significant improvement in accuracy. Fur-
thermore, the difference in performance betw&RFI+KNN and the other methods is
dramatically increased. The semi-supervised method with closest average accuracy is
gMLO. MRFI+KNN improvedgMLO in average by 18% and 147% for theP32 and
NCUTSdata sets, respectively. Results from this Section give evidencKid+MRFI
is an effective image annotation method. FurthermbfBFI can be applied with any
other annotation system, though more experimentation should be performed in order to
evaluate its impact with other methods.

6 Conclusions

We have presentddRFI, a method for the improvement 1A systems. I'MRFI spatial
dependencies are considered througiRF model. Semantic information between la-
bels is incorporated using word co-occurrences. Co-occurrence information is calculated
off-line from an external collection of captions, which is a novel approach. Experimen-
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tal results of our method on a subset of the Corel collection, give evidence that the use
of KNN+MRFI results in significant error reductions. Our method is efficient since the
co-occurrence matrix is obtained off-line, and in most of the cases we just need a few
iterations to obtain a good configuration (aroundl 4econds per image). Furthermore,
MRFI can be used with otheoft-annotatiorsystems.

The improvement of the co-occurrence matrix is an immediate step towards the en-
hancement oMRFI. Other future directions include the consideration of global image
labels intoMRFI and considering other models thsdRF'’s, such asCRF's as well as
experiments with probabilisti&lA methods.
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Image Retrieval through Qualitative
Representations over Semantic Features
Zia Ul-Qayyum, A.G. Cohn

Abstract

We propose a qualitative knowledge-driven semantic modelling approach for
image retrieval based on qualitative relations over local semantic concepts of
images. The relative similarity of two images is proportional to their qualitative
similarity. The similarity measure is calculated for each query by exploiting the
notion of conceptual neighbourhood - a measure of closeness between
qualitative relations. The approach is motivated by the need to perform semantic
querying using qualitative relations and bridge the semantic gap between a
human user and that of CBIR systems. Three qualitative representations (and
several variants) and a corpus of 700 natural scene images have been used to
evaluate the effectiveness of image retrieval using this approach.

1. Introduction

Advances in digital technologies along with the growth of the Web have resulted in
universal access to very large archives of digital data. This has lead to an increasing
requirement for systems with more flexible and robust techniques to handle dynamic and
complex visual content at a higher semantic level. Content based image classification and
retrieval systems have thus gained more importance and have become an active research
area [1]. In all such systems, image interpretation and understanding plays a vital role.
Most of the research in this area is primarily based on use of low level image features like
colour, texture, shape etc [9, 18]. Although low level image processing algorithms and
methodologies are quite mature, such systems are hard to be used effectively by a novice
due to the semantic gap between user perception and understanding, and system
requirements. Bridging this gap between low level synthetic features and high level
semantic meanings is, therefore, generally regarded as an open problem [1]. Humans tend
to describe scenes using natural language semantic keywords/concepts like sky, water etc
and specify queries like “an image with water next to fields and sky above....” or “... has
a small lake with high peaks of mountains behind and fields on left...”. This suggests that
use of underlying semantic knowledge in a qualitative representation language may
provide a way to model the human context and is a natural way to bridge semantic gap for
better image understanding, categorization and retrieval capabilities.

This paper thus proposes a qualitative knowledge-driven semantic modelling
approach for IR. Qualitative representation of the local semantic contents of an image
allows for representation and reasoning of content structures at a higher abstraction level
than low level features. In earlier work [13], we showed how category descriptions for a
set of images could be learned using qualitative spatial representations (QSR) over a set
of local semantic concepts (LSC) such as sky, grass. There were six global categories
(e.g. coasts, forest etc) [19] and we used three kinds of QSR techniques to demonstrate
that supervised learning using QSR of semantic image concepts can rival a non
qualitative approach for image categorization [19,13], and moreover result in a more
intuitive and more human understandable image description.



Our hypothesis in this paper is that the qualitative representations which were able
to effectively support categorization may also provide an effective and natural way to
support content-oriented querying. A query can either be directly described in the
qualitative representation, or in the evaluation of our approach described below, a query
can be given as a sample image (i.e. query by example: QBE) — the system then forms a
qualitative description of it by a conjunction of qualitative relations between the semantic
concepts. In both cases the system then compares the query qualitative description with
qualitative descriptions of images in the database of images, and uses a qualitative
similarity measure to retrieve qualitatively similar images, and show how retrieved
images can be ordered accordingly. We do not assume that images have already been
assigned categories/classes. The qualitative similarity measure is based on the notion of a
conceptual neighbourhood (CN) [10] — see 84.

In experiments, using this technique on the different QSRs, we observed that the
various representations had different levels of performance for different categories of
images; this lead us to investigate the use of voting schemes in order to combine the
different QSR to enhance the performance of the retrieval system overall.

A quantitative metric based evaluation of approaches based on qualitative
representations has always been difficult. In order to evaluate the performance of this
approach to IR, we take advantage of manually assigned categories for the image DB in
our experiments. Although we are not performing image categorization, and the retrieval
algorithm does not use the category information, success of retrieval is evaluated by
counting the number of highly ranked images in the same category as the query.

The experimental data set is a collection of 700 natural scenes images, provided and
hand labelled with categories by Vogel et al, who developed a semantic modelling
framework for image categorisation and retrieval [19]. Our approach builds on her work,
an overview of which is presented in §3.

The rest of the paper is structured as follows. Related work is briefly discussed in
82. 83 describes our approach to image description using QSR. A qualitative similarity
based IR approach is presented in §4. 85 presents the results and evaluation of the
approach, while 86 presents our conclusions and suggestions for future work.

2. Related Work

In the IR literature, image description and better understanding of underlying
semantic content play important roles as the nature and structure of the query depends on
the underlying image description. In this section, we first we describe the most relevant
work from allied disciplines of content-based IR and then briefly survey the field of QSR.

CBIR systems have become an active research area in computer vision. [7,9,15,18]
review the state of the art in segmentation, indexing and retrieval techniques in a number
of CBIR systems. Despite increased work in aspects related to high level semantics of
image features, the gap between low level image features and high level semantic
expressions is a bottleneck in accessing multimedia data from databases. These surveys
reveal that almost all existing approaches rely on using low level image features for
image description, categorization and retrieval. Since image understanding is key to all
content-based image categorisation and retrieval systems, so a human understandable
image description may yield more robust systems since humans normally tend to use
semantic and qualitative terms to describe a situation/image. Therefore, a retrieval system
based on qualitative description of underlying semantic knowledge may help a non-
expert user query such systems more effectively. Research has already been done
focusing on the use of labelling the image regions with semantic concepts and carrying
out key-word based IR. One such probabilistic approach [4] is to assign small image
areas labels such as “man-made” and “natural”, and global labels such as “inside”,
“outside” to whole images using class likelihoods from colour-texture features of images
for semantic IR. Local regions of images have been annotated with 11 and 10 semantic
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categories respectively [17,20]; in [17] a global label is not assigned to images, so
retrieval is based on local semantic concepts only. An IR approach based on semantically
labelled image regions is demonstrated in [1]. These image regions have been
hierarchically classified based on their semantics using low level image features.
Retrieval is based on these semantic keywords attached to particular images.

In an approach [21] for semantic retrieval based on content and context of image
regions and which supports both keyword and QBE queries, images are segmented using
a semantic codebook based on colour and texture classification. The content and context
describe a region’s low level features and their relationships respectively. It uses only
dominant semantic categories of an image and the most typical images in that category
are selected manually from an image database which can best model the codebook
representing colour and texture classification for that particular semantic category.
Another query by semantic example (QBSE) approach is based on posterior concept
probabilities of each concept in an image [14]. QBSE is accomplished by comparing the
probability simplexes of the query image and all database images to find the closest
neighbours. The perceptual segmentation approach in [8] has not been applied in their
work for image categorization and retrieval, but the relative effectiveness of their
approach to image segmentation and labelling can be used to perform keyword based IR.
The VISENGINE system [16] relies on segmenting image regions by clustering visual
features like colour, texture, shape etc and differentiating them into foreground and
background regions. The approach is largely user-centred, and therefore results may vary
depending on human perception and context. Since only large regions are identified
during segmentation, small image areas do not contribute towards the retrieval process
which may inhibit a true semantic similarity in the retrieved images. Progress can also be
made algorithmically, e.g. it has been shown that classification and retrieval accuracy can
be boosted by combining different approaches [11]. The use of ontologies and metadata
representation languages is another recent trend for annotating and retrieving images
[12]. A prerequisite for this approach is the construction of generic and possibly domain
specific ontologies from which the detailed annotations are constructed.

One crucial research question for QBE systems is how to measure the level of
similarity, and assess the accuracy of such a technique. Defining a notion of similarity is
difficult since context may play a pivotal role. Moreover, when using a qualitative
representation, where feature descriptions do not take quantitative values, the very notion
of a metric becomes problematic; approaches to qualitative similarity are discussed in [3].
In computer vision and image processing, metric approaches have generally been used to
compute scene similarity, e.g. a measure based on normalised distance for a semantic
ordering of natural scenes in categories such as forest and mountains, mountains and
rivers/lakes [19].

The field of QSR has become increasingly more active within Al as it arguably
provides cognitively or intuitively relevant representations for spatial information —
typical spatial expressions in natural language are qualitative rather than quantitative.
Moreover, qualitative representations abstract away from noise and uncertainty in
perceptual data. It has increasingly been used in different application domains like GIS,
NLP, robotics, computer vision etc, see [6] for a review. There are many QSR, covering
aspects such as topology, distance, orientation, and shape. Rather than attempt an
exhaustive analysis of the utility of all these calculi, we concentrate on a small set of
QSR here; we do not claim these are necessarily the best calculi for image description, or
even for the particular kinds of images in the database we use here, but leave that for
further work. Our aim is simply to illustrate the use of qualitative calculi for IR and to
demonstrate their potential applicability and suitability for CBIR.

In the qualitative framework, in which images are described using a small finite set
of relations or qualitative values, similarity can be computed by using the distance in the
CN graph. The notion of a CN was first put forward [10] in the context of a set of 13
pairwise and disjoint relations between temporal intervals and was defined as “two spatial
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or temporal relations are conceptual neighbours if one can be transformed into the other
by a single [continuous] transformation/transition”. Given two such qualitative image
descriptions, their similarity is proportional to the number of such transformations
required to turn one into the other [5].

3. Qualitative Image Description

Our approach builds on Vogel et al’s work [19] in which images from a 700 image
corpus were divided into a grid of 10x10 regions (instead of using segmentation
techniques) and nine local® and discriminating semantic concepts were identified: sky,
water, grass, foliage, flowers, field, mountain, snow, trunks and sand. Vogel et al
manually annotated 99.5% of the images with these concepts, and used this as input to
supervised learning techniques to annotate image patches automatically. A label “rest” is
used for unidentified patches or occurrences of other semantic categories. Images were
represented by frequency histograms of local semantic concepts and based on a semantic
typicality measure; images were categorized into one of the six semantically meaningful
categories sky_clouds (34), coasts (143), landscapes_with_mountains (lwm) (178), fields
(128), forests (103), waterscapes (114). (The numbers in brackets show total number of
images for the respective category.) This approach is partially spatial through its division
of the image into horizontal bands (e.g. top (T), middle (M) and bottom (B)) but is
mainly based on the metric value of the percentages of discriminant semantic concepts.

We use the hand labelled data set in the experiments reported here in order to

evaluate using the “gold standard” rather than be affected by the particular model learned
for annotation. The images are described using the following QSRs:
1) The relative size (measured in grid squares) for all possible pairwise combinations of
the semantic labels. Each may be regarded as an attribute of the image with possible
values of ‘Greater than’ (>), ‘Less than’ (<) and ‘Approximately Equal to’ (=) — we allow
a £10% tolerance for =.

2) Allen relations [2] (measured on vertical axis between the intervals representing the
maximum vertical extent of each concept occurrence). The 13 relations are: ‘before’ (<),
‘meets’ (m), ‘overlaps’ (0), ‘during’ (d), ‘starts’ (s) and their inverses ‘after’ (>), ‘met-by’
(mi), ‘overlapped-by’ (oi), ‘contains’ (di), ‘started-by’ (si), “finished-by” (fi) respectively,
and ‘equal’ (=). A 14™ relation ‘no” is used if neither attribute is present.

3) Chord patterns [15] of semantic concepts applied to each grid row. Each semantic
feature is a ‘tone” and each row forms a ‘chord’ of tones. The 10x10 grid generates 10
chords, one for each row, such as “foliage sky” or “grass sky sand water”? etc.

4) A binary ‘Touching’ relationship (additional to the above 3 representations already
used in our work [13]), which records whether one patch type is spatially in contact with
another in the image. Note that, although apparently similar, the Allen ‘meets’ relation is
not equivalent since the 2 patches may be at different sides of the picture.

For comparison purposes, we also ran experiments with a purely quantitative metric
based retrieval scheme based on the respective percentages of each of the semantic
concepts in each image in the style of [19]. This representation is labelled as
“Percentages” in Table 1. Similarity is computed using the sum of absolute differences in
percentage values for each attribute in a pair of images.

Fig. 1(b) illustrates the chord representation while Fig. 1(a) the relative size and
Allen relationships. Several variants of the above QSRs were also investigated; we report

1 There are 9 semantic concepts in [19], while the data set provided and which has been used in our
experiments contains 2 extra ones (mountain and snow) — however these occur infrequently and the basis
for comparison will be thus essentially unaffected.

2 This representation can be regarded as an abstraction of the relation used by [19] — whereas they record the
percentage of each attribute in each horizontal band, in the chord representation it is only the presence or
absence which is recorded.
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on just one here where the relative size representation is recorded separately within 3
image areas: Top (T: top 3 rows), Middle (M: rows 4-7), Bottom (B: rows 8-10).

minsky...... _.minmountains .
! shyfolage
"sky "5t mountains” s'“'mfag"
Sky foliage
[minsky = minmountains Sy foliage
& maxsky < mazmaountainl 4 Shy foliage
o maxmountaing iy
"shy ' water" B Sl foliage
"mountain ‘<" water" mfa@
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water]) grass
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Fig. 1. QSR using (a) relative size and Allen’s calculus (b) chord representation

4. IR Based on Qualitative Similarity

We envisage a CBIR system in which a query is specified either by giving an
example image or by a symbolic query expressed in terms of the qualitative relations
defined above, e.g. “retrieve images with rocks touching water and more water than
foliage”. In the former case, we can compute a qualitative description of the image using
one more of our qualitative schemes, but in this case it is more likely that no image will
exactly match — this could also happen in the latter case. It would clearly be convenient to
be able to retrieve images which nearly match the query (which ever way it is specified).
The problem is to define what “nearly matches” means, since in a qualitative
representation we do not have raw numbers available. In the remainder of this section we
define notions of qualitative similarity for each the qualitative representations.

The CN of Allen relations is presented in Fig 2(a) below. The links connect
neighbouring relations — ones which are most similar — as one traverses more links from a
particular relation, the relations become progressively less similar. Thus if in image 1 sky
< grass, and also in image 2, then they are identical (in this comparison); if in image 3
sky m grass, then image 3 is similar to image 1, whilst if image 4 has sky o grass, then
image 4 is also similar to image 1 but not as similar as image 3, and so forth. Since there
are many attributes in each description of an image (e.g. 66 in Allen representation), we
have to find a way to combine the similarities of each pairwise comparison. The CN for
the Allen relations is already a partial order, and it is clear that the cross product across
all the attributes is even more so. To achieve a total ordering we assign a weight of 1 to
each arc in the CN, and sum the number of arcs traversed across all the attributes in order
to transform one description into another (using the shortest route). Clearly we could
assign non uniform weights to the different arcs but in the absence of any particular
reason to do this, a uniform weighting appears to be the obvious choice. The situation
where one of the relations from a particular pair of images for a pair of attributes is “no”
whilst the other is not, deserves some discussion — what should be the weight in this case
(since “no” does not appear in the CN)? One possibility is to choose a weight of 7 (one
more than the maximum weight otherwise in the Allen CN), though other choices could
clearly also be used, and indeed we also experimented with the choice of zero® and
values greater than and less than 7. In an implementation for an end user, this could be a
parameter (perhaps a slider in the interface).

3 This was particularly motivated by classes such as “lwm” where the set of concepts present can vary

considerably, and penalizing image with a different set of concepts to the query image had a great effect on
the results. A penalty weight of 0 implies that the similarity of images is determined only by the relationship
between common semantic concepts in the query and database images, and missing concepts do not
contribute towards total penalty weight.



The CN for the relative size representation is much simpler with just three nodes,
one for each of the three relations, with = neighbouring each of < and > and the
maximum weight is 2. For missing patch types we do not need a ‘no’ relation in this
representation since their size is zero and the existing three relationships are still
applicable.

For the case of the chord representation, we can think of the CN as being equivalent
to a complete lattice generated by the power set of the set of patch types; effectively this
means that the similarity is directly proportional to the number of insertions and deletions
required to transform one chord into another.

For the representation of spatial touching, there are just 2 nodes in the CND
(touching and not-touching) and a single link connecting them. We experimented with
this representation, however eventually used a similarity measure which also takes
account of the degree of touching. Each patch in the rectangular grid can touch up to 8
other patches. For a pair of given patch types pl and p2, we compute how many patches
of type p1 touch a patch of type p2, and vice-versa for p2 and p1; the maximum of these
2 values is then recorded as one of the attributes in this representation of an image. To
compute the degree of similarity between two images using this representation we simply
take the sum of the absolute differences in each of the corresponding attribute values for
each image. This representation thus combines a very qualitative representation,
touching, which is a purely topological relationship, with a metric measurement of its
applicability to a particular image. Thus, for example, for an image with extended sky-
grass spatial connection will be more similar than ones with small amount of spatial
connection between the two concepts.

Thus given a representation “R” with attributes AlR ...... AlFF:l, and a function

f ®(u,v) which gives the similarity between two attribute values u and v then the
overall similarity S® (x,y) between two images x and y in representation ‘R’ is given by:

i=|R

I
S (x,y) = Z AT (X), AT (V) 1)

We then can compute rank of an image y in the database for query image x as:

Rank ™ (x,y)=[{z:S" (x,2)<S" (x, y)} (2)

5. Results and Evaluation

We have conducted experiments with each of the representations above individually
and also in various combinations. To illustrate the results obtained, we first present (fig.
2(b)) a sample query image and the top 5 results according to the qualitative similarity
measures described in 84 for Allen representation. This does not give any quantitative
evaluation of the quality of the retrieval and we next turn to this question. To provide a
more thorough quantitative analysis of the performance of the various representations, we
used the following experimental setup. Each of the 700 images in the database was used
as a query image in turn, and a similarity ordering computed for all the other 699 images.
However this does not tell us whether images high in the ordering really are intuitively
similar to the query image. As a proxy for an extensive user evaluation of each of these
rank orderings, we use the hand assigned category labels used for previous work on this
dataset for supervised learning of category descriptions [19,13].

Given a query image in category ¢, we can evaluate the number and hence the
percentage of images in the same category in the top k images in the rank ordering. For
cases where the number of images of a particular category in the DB is less than k clearly
100% scores cannot be achieved.
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The number k may be user defined, or be determined by conditions such as how
many images of a certain size fit on a user’s screen, or could be determined by analysis of
the actual similarity values. Table 1 shows, for each class, the number of retrieved images
of that class in the top ranked 20 and the top k images (where k is the number of images
in the respective class, e.g. k=34 for sky_clouds), each row giving the values for a
different representation. The last two rows in Table 1 shows the statistics when using the
percentage of each semantic attribute as the representation for comparison with the
quantitative techniques of [19]. The results reveal the following interesting conclusions:

- The recall rate clearly validates the measures of similarity used, since as the number of
images retrieved increases, the accuracy of retrieved images goes down (measured by
successive retrieved images of the same category).

- the recall percentages are well above the baseline statistical likelihood of each category
of images in the population.

- The chord representation performs relatively well. Arguably this is because it closely
resembles the human cognition of similarity because a human may describe or compare
an image in terms such as “having sky in the top, foliage and water in the middle, water
and sand at the bottom of image” — remembering that the semantic categories were
assigned by a human (though without being aware of the possibility of subsequently
using the chord representation (or indeed any other).

~

@ ' (b)
Fig. 2. () CN for Interval Calculus [42] (b) Query & top 5 retrievals using Allen’s Rep

- The representation ‘relative size’ performs surprisingly well, given the low information
content. Moreover, the relative size on TMB regions of image representation performs at
least as well if not even better in overall compared to the purely metric representation
(Percentages and Percentages on TMB).

- The touch based representation does not perform particularly well — arguably it does not
encode sufficient information to be able to adequately distinguish cognitive similarity in
the image dataset.

Table 1 only considers individual representations. Since the performance of
representations varies across categories (and bearing in mind that we assume we do not
know the category of an image — we are using this information here purely for evaluation
purposes), we also experimented with similarity measures based on combinations of four
different qualitative representations* — Allen, relative size, chord and touching.

There have been a number of approaches in image categorization research involving
bagging/boosting while in IR, multiple query processing or use of low level and semantic
labels has been used to improve the retrieval accuracy. We investigated voting
approaches based on combining the respective penalty weights of images in individual
representations, and on combining the ranks of retrieved images in each selected QSR.

4 Of course each representation might itself be viewed as a hybrid representation with the 66 attributes (or

whatever number of attributes used in the particular representation) combining together to assign an overall
similarity to an image pair.



In order to count the accumulative effect of penalty weights in all of the 4 selected
representations and also the overall ranking of an image in the list of database images,
several other kinds of weighted voting schemes (V; — V,) were investigated ( Table 2):

V;- Compute:

r=4
Sh(xy)=).S"(xy) ©)
=1
for each image inrthe DB for a query x and then sort in ascending order.
V,- Compute:

% () =Min 8 (<) @

for each image in the DB for a query x and then sort in ascending order: (variant of VV1).

Although the weights within in each representation may be regarded as comparable,
it is arguable as to whether this also holds with respect to the weights in other
representations. We thus investigated schemes based solely on the rank within each of the
four representations.

V;- Compute:

S (x,y) = i rank " (X, y) (5)

r=1
for each image in the DB for a query x and then sort in ascending order.
V,- Compute:

" (6 y)=Max(rank’ () + Max@(ank' () ©)

where “Max” and “Max2” compute the maximum and 2" highest values respectively.
The results suggest the following conclusions:

- The purely qualitative approaches perform comparably or even slightly better in some
cases to the quantitative ones. The former have added advantage that they also allow
retrieval based on simple linguistic descriptions using qualitative descriptions over the
semantic attributes.

- The voting schemes based on accumulative weighted votes and weighted rank votes
(V1 —V,) perform better than the approaches using a single representation only.

- The overall accuracy of the retrieval process compared with the actual class labels is
somewhat problematic due to the fact that many images may be categorized as either
“lwm” or “coast” - i.e. most of the images in the DB have some aspects of “lwm” or
“coast”, and arguably it is a matter of degree or personal preference when an lwm with
sky above becomes a “sky_clouds”. Similarly, there is lot of potential confusion in
images categorised in classes like “fields” and “sky_clouds”. This fact was also
established in [13, 19] while learning the class descriptions.

- The voting schemeV; performs much better in the top 20 and the top k experiments as
it is based on accumulative row weights of an image corresponding to 4 representations
chosen. Its performance is comparable to the quantitative approach. Furthermore, both of
the basic voting schemes, V; and V3, are better than the individual representations in
terms of accuracy of IR using the “ground truth” of the hand assigned labels.

- It can be seen that coasts and waterscapes do relatively badly compared to the other
categories, and this is also true about sky_clouds and fields categories in some of the
representations, which is not altogether surprising from a semantic/intuitive viewpoint. If
these two categories are combined into a single category then the rate of accuracy
improves significantly. This fact has also been observed in the confusion matrices of
different learning schemes in [13].
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(Categories / | Coasts Field Forest LWM |Sky_Clouds | wscapes
QSRs Out of Out of Out of Out of Out of Out of |Overall

200 k| 20 k| 20/ k| 20 k| 20 k 200 k| 20| Kk

Allen only 56| 33| 38| 26| 66| 41| 84| 48 49 35| 46| 26/ 59|36

Touch 57 33| 40/ 27| 73] 51| 85 52 51 40| 42| 22| 6138

(Chord 56| 41| 66| 34| 91| 68 82| 59 91 89| 47| 36/ 70/50

Size only 63| 46/ 57| 34| 86| 66 88 61 60 44| 51| 37| 70[49

Sizeon TMB| 67| 45 68| 38 92| 75| 88 65 93 82| 47| 34| 74|53

IPercentages-

Y%os 62| 47| 70| 36| 92| 69 84/ 61 93 91| 47| 36| 73|52

%s on TMB 64 48] 69| 36| 93| 72| 84| 62 94 92| 48/ 35 73|53

Table 1. Recall percentages on per category and overall basis in top 20 & number of
images in each category (k) for all representations used.®

ICategories /| Coasts Field Forest LWM Sky_Clouds| Wscapes
QSRs | Out of Out of Out of Out of Out of Out of Overall
20 | k 20 | k 20 k 20 | k 20 k |20 | k 20 | k
Vv, 67 |45 |69 [35 |95 78 |92 |69 88 |78 |51 [35 |76 | 54
Vv, 55 |33 |37 [26 |65 42 |83 |48 50 |35 |47 |27 |59 |36
V;3 66 |44 |60 [33 |93 72 193 |65 79 |63 |50 |33 |74 51
V, 66 |42 |60 [34 |87 64 |90 |60 69 |48 |51 |33 |72 |47

Table 2. Recall percentages on per category and overall basis in top 20 & number of images
in each category (k) for weighted voting schemes.

6. Conclusions And Further Work

We have presented an approach to CBIR based on semantic knowledge and QSR.
The approach does not rely either on segmentation techniques applied directly or on low
level image features for an image description. We have presented similarity measures of
the qualitative spaces based on the conceptual neighbourhoods that typically accompany
qualitative calculi and experimental results for IR using a variety of qualitative
description languages and several combinations of these. We are not necessarily arguing
that these are the best languages either for this particular data set or in general. It is the
overall approach we present which we believe is the most important result of this
research, which shows that qualitative representations can rival metric ones, whilst
providing more intuitive descriptions. We have also presented a variety of voting
schemes for combining representations and evaluated their success on the image dataset.
The evaluation was based on a hand labelled categorization which although it has some
disadvantages, does provide a cognitive basis for evaluating the retrieval results. It may
be noted that in all cases, the recall percentages are well above the baseline statistical
likelihood of each category of images in the population.

A variety of further work suggests itself including the evaluation on other data sets,
using actual user analysis to evaluate the results (cf the psychophysical experiments in
[19]), experimentation with other qualitative calculi, and combining qualitative and
quantitative representations. We already have a prototype user interface to an IR system
based on the ideas presented here; this could be further improved to provide a flexible
interface based on query by image or by qualitative description, or a combination of the
two, with the user free to select the kinds of descriptions, similarity measures and voting

5 Bold figures in Table 1 and Table 2 indicate best ones in qualitative and quantitative representations, while

k=143,128,103,178,34 and 114 for above mentioned six classes — in order as these appear in table.




schemes most appropriate to their needs. The analysis here provides the basis for
reasonable default choices.
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Abstract

Conditional random field (CRF) has been widely used for sequence labeling
and segmentation. However, CRF does not offer a straightforward approach
to classify whole sequences. On the other hand, hidden conditional random
field (HCRF) has been proposed for whole sequences classification by view-
ing the segment labels as hidden variables. But the objective function of
HCREF is non-convex because of its hidden variable structure. In this paper,
we propose a classification oriented CRF (COCRF) adapted from HCRF for
natural scene categorization by taking an image as an ordered set of local
patches. Our approach firstly assigns a topic label to each segment on the
training data by the probabilistic latent semantic analysis (PLSA) and train
a COCRF model given these topic labels. PLSA provides a higher level of
semantic grouping of image patches by considering their co-occurrence rela-
tionships while COCREF provides a probabilistic model for the spatial layout
structure of image patches. The combination of PLSA and COCRF can not
only classify but also interpret scene categories. We tested our approach on
two well-known datasets and demonstrated its advantage over existing ap-
proaches.

1 Introduction

This paper addresses the problem of natural scene categorization. Scene understanding
underlies many other problems in visual perception such as object recognition and en-
vironment navigation. Although scene categorization can be achieved at a glance by a
human, it poses great challenges to a computer vision system. Different instances of the
same category can vary a lot in their color distribution, texture patterns and more impor-
tantly, a scene category does not have a well-defined shape as an object category does.
Recent work in scene image classification focus on image classification based on an
intermediate level of features. They can be further divided into two categories. The first
relies on self-defining the intermediate features. Oliva and Torralba [7] proposed a set
of perceptual dimensions (naturalness, openness, roughness, expansion and ruggedness)
that represent the dominant spatial structure of a scene. Each of these dimensions can be
automatically extracted and scene images can then be classified in this low-dimensional
representation. Vogel and Schiele [8] used the occurring frequency of different concepts
(water, rock, efc) in an image as the intermediate features for scene image classification,
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and they need manual labeling of each image patch in the training data. While manual
labeling can improve the semantic interpretation of images, it is still a luxury for a large
dataset and it can also be inconsistent in defining a common set of concepts [8]. The
second kind of approach is aimed to alleviate this burden of manual labeling and learn
the intermediate features automatically. This is achieved by making an analogy between
a document and an image and taking advantage of the existing document analysis ap-
proaches. For example, Fei-Fei and Perona [2] proposed a Bayesian hierarchical model
extended from latent dirichlet allocation (LDA) to learn natural scene categories. Bosch
et al. [1] achieved good performance in scene classification by combining probabilistic
latent semantic analysis (PLSA) [3] and a KNN classifier. A common point of these ap-
proaches is that they represent an image as a bag of orderless visual words. An exception
is the work done by Lazebnik et al. [6] where they proposed spatial pyramid matching for
scene image classification by partitioning an image into increasingly fine sub-regions and
taking each sub-region as a bag of visual words.

As a simple but discriminative enough representation, the bag of visual words has
shown its advantage in the above approaches. However, its assumption of an orderless
bag makes it inevitably sacrifice certain amount of discriminative capability. The order
statistics are actually quite helpful in our understanding of scenes. At least two cues
can be applied. The first is the spatial layout of the patches. For example, sky always
appear in the upper part of an image and ground almost always appear in the bottom part.
Lazebnik et al. [6] have demonstrated the advantage of this cues, but they did not do it
in a probabilistic model. The second cue is the spatial pairwise interaction between two
neighboring patches. For example, it is more likely to find a water patch as the neighbor as
a sand patch in a beach scene, while in a coast scene water patches are usually adjacent to
stone patches. None of the existing approaches have modeled both of these two relations
explicitly in a probabilistic model.

A good candidate for modeling a set of ordered local patches is the conditional ran-
dom field (CRF) [5]. For example, Kumar and Hebert [4] attempted to use a discriminant
random field to model contextual interaction between image patches. But their work was
for image region classification, instead of whole image classification. Generally speaking,
CRF is aimed for segment labeling and segmentation. It does not offer a straightforward
approach to classify whole sequences and requires the labeling of the segments in the
training data. Hidden conditional random field (HCRF) [9] was proposed for whole se-
quences classification by viewing the segment labels as hidden variables, but the hidden
variable structure makes the objective function of HCRF non-convex and only local opti-
mum can be achieved in training. In this paper, we proposed a combinational approach of
PLSA and a classification oriented CRF (COCRF) adapted from HCRF for natural scene
categorization by taking an image as an ordered set of image patches. COCREF takes the
advantage of automatic labels generated by PLSA and is capable of reaching a global op-
timum in the training stage. The motivations of PLSA here are not only that it can provide
labeling of the image patches, but also that it is complimentary to COCREF, i.e., PLSA can
discover the co-occurrence relationship between image patches, while COCRF can only
model spatial relation between patches. Thus our PLSA+COCRF model can take into
account both of these two factors. An obvious advantage of our approach is to provide a
probabilistic way to model both the spatial layout of image patches and their neighboring
interaction. We tested our approach on two scene image image datasets and show that it
outperforms existing approaches.
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The rest of this paper is organized as follows. Section 2 describes the topic labeling
of image patch by PLSA. Section 3 introduces COCRF and focus on the features we have
deployed. Section 4 discusses the learning and inference of COCREF for classification.
We show some experimental results in section 5 and conclude in section 6.

2 Automatic Topic Labeling of Image Patches via PLSA

In our approach, an image is represented as a number of image patches. Each patch is
assigned a topic label automatically through PLSA [3]. PLSA can be summarized as
follows. Suppose we have a collection of text documents P={d}, a vocabulary #'={w}
and a number of topics .’={s}. Each document d is represented as a bag of words, i.e,
we keep only the counts n(d,w) which indicates the number of occurrence of word w
in document d. PLSA assumes that each word in a document is generated by a specific
topic. Given the topic distribution of a document, its word distribution is independent
from the document. More precisely, the probability of a word w in a document d is a
marginalization over topics, i.e.,

P(wld) =}, P(wls)P(s|d) M
se.s

Given 2 and P(w|d), the parameters P(s|d) and P(w]|s) can be estimated by an EM
algorithm [3]. To adapt PLSA to image data, we transform images into the bag of visual
words representation by the following procedures: (i) Partition each image into a number
of small patches. (ii) Learn a visual vocabulary on the descriptors of a subset of local
patches by k-means clustering. (iii) Assign a visual word to each local patch. After a
PLSA model is learned from the training images, we can obtain the topic labeling s of a

visual word w in a specific document d by the following equation

P(wls)P(s|d)

The ending results of PLSA is that each image patch has a topic label.

3 C(Classification Oriented Conditional Random Field
(COCRF)

Our final objective is to assign a scene category label to a given image. The training data
is {(y®),x®) s(®))}, where y¥) is the category label, x¥) = {x’f,x’ﬁ,x’n‘k} are the visual
features of each image patch, sk = {s’l‘7s’§,sf§k} are the corresponding topic labels of the
image patches obtained by PLSA. k is the index of the training image. The graphical
structures of CRF, HCRF and COCREF are illustrated in Fig. 1. In these graphic models,
we have taken an image with four local patches (which we also refer to as segments) as
an example. The scene category label is denoted by variable y and s = {s1,s2,53,54} are
the topic labels of the image patches. The image observation is denoted by variables x =
{x1,%2,x3,x4}. The edges between nodes represent their inter-dependence. The shaded
nodes in HCREF indicate these nodes are hidden variables. In our model, we consider the
graphic structure of nodes s as a lattice with pairwise potentials. In a CRF model, we have
only the topic labels and the image observation. In HCRF we have an additional node y
but s is not observed. In COCRF we have the node y and all the nodes s are observed.
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A@‘

Figure 1: Graphical models of conditional random field (CRF), hidden conditional ran-
dom field (HCRF) and classification oriented conditional random field (COCRF).

Following the definition of a CRF model, the conditional probability for the topic
labels s and the category label y given the observation x can be expressed as
oV (rsx:0)

POwslx:8) = & N oxe)

(3)

where 0 represents the parameters of the model. eY0sx9) s the potential function.
In COCRE, we consider three types of potential and we write the log potential function
Y (y,s,x;0) as the summation of three terms. Each term can be viewed as a different type
of features deployed for classification.

y(,8x0)= w(ysx0) +v(ysx0)+ v(s:0) “
——— N—_——— ——

node appearance potential ~ edge potential  node spatial potential

3.1 Appearance Potential

The appearance potential measures the compatibility between a topic label and its appear-
ance. This potential is a kind of low-level features and it is shared among different scene
categories.

Ve (y,5,%0) =) 0(x,/)-08%(s)) ©)
j=1

where j is the index of a segment (patch) and m is the total number of segments. ¢ (x, j) €
R4 is a feature extraction function which maps the observation at site j to a d-dimensional
feature vector. 8%(s;) is the appearance parameter vector corresponding to the segment

label s; € 7.
Considering the diversity in appearance of each topic, we map the local observation
to a feature vector by a Gaussian Mixture Model (GMM). Suppose we have a set of

Gaussian components {g1,g2,..-,84}» each of which has its own parameters of the mean
and variance. The feature extraction function is represented as,
. t
0 (x,/) = [g1(x)),82(x)), -+ . 8a(x)] (©)

where x; is the appearance descriptor of segment j. To obtain the set of Gaussian com-

ponents {g1,82,..-,84}, we firstly collect a subset of local patches of each topic and fit a
GMM to each topic. The final set of Gaussian components are the combination of all the
Gaussian components for each topic.
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3.2 Edge Potential

The edge potential models the interaction between neighboring patches. It is similar to
that in CRF but it is category dependent. This provides COCRF more discriminative
capability between different categories, as follows

Vs x0)= Y 0°sjsty) @)
(j.k)EE
where 0¢ is symmetric with respect to s; and s;. E is the set of all the edge links between
the segment nodes depending on the 2-D lattice structure.

3.3 Spatial Layout Potential

Here we take an explicit approach by dividing the image area into 3x 3=9 sub-regions.
We examine the the spatial layout distribution of each topic on this 3x3 grid.

WS(Y7S;6):Zes(y7sj7n(j)) (8)
J

where ) (j) € {1,2,...,9} denotes the deterministic mapping function of a site j into the
sub-region it sits in. It is worth noting that if 8* does not depend on the spatial location of
node j, this potential will degrade to the one as same as that in HCRF [9].

4 Learning

In the training process we learn the model parameter § by maximizing its log likelihood
on the training data. Assume the training data is i.i.d., © is obtained by,

5, ~aremax } ¢
0= argmgle(e) = argméixk;f (6) ©)

where .£%(0) is the log likelihood of the k-th sample and 7 is the total number of training
samples. Since s is observed, we have

LV s x0:0) >

Y o VO xT0) | T vy ,s® x0:0)-10g ¥ VU S x9)
y s € R

y.s

Z40)=1logP(yW s® \x(k);ﬁ) =log <

10)

This equation is different from that in HCRF [9], where the topic labels s®) have to
be marginalized out because they are not observed. Unlike HCRF, .£%(8) is concave
because the first term is a linear function of 6 and the second term is a log-sum-exp
which is convex. The optimization is based on the quasi-newton algorithm, so we need
the first-order derivatives of the log likelihood with respect to the model parameters 0.
For convenience, we reformulate W (y,s,x;0) as a linear function of the model parameters
[5,9], ie.,

W(y757X;e) = Z Z eIlfl1 (]’,y,Sj,X)"F Z elzflz(j7k7yzsj7skax) (11)
J leLl! (j.k)EEIEL?
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where 911 is the clamped parameters of 6¢ and 6°. 6[2 is the clamped parameters ! of
0°. f,1 and f12 are the corresponding binary feature functions. The dependency of f! and
f2 on site index j and k is for the general formulation. In our problem, we have only one
feature function for nodes and edges respectively, i.e., |[L!| = |L?| = 1. We consider the
derivative with respect to the node potential parameters 911 based on this formulation. For
simplicity, we omit the upper index k for a specific training sample so that (y,s, x) actually
refers to (y*),s®) x®))_ Tt can be derived that,

0.2%(8)
26/

=Y A Goyspx) = Y PO sj=alx0) ) (). a.x) (12)
J

Ysja

Similarly, the derivative with respect to the edge potential parameters 6,2 can be writ-
ten as

afk(e) _ 2. ) o U AN, 20 /
392 = Z fl (],k.,y,s].,sk,x) Z P(y 7Sj_aa5k—b‘x’e)fl (Jvkay ,a,b,X) (13)
1 (j.k)EE Ysjikab
where,
P(sj=a,y|x;0)=P(sj=aly,x;0 )P(y|x;0) (14)
P(sj=a,sy=b,y|x;0)=P(sj=a,s;=bly,x;0)P(y|x;0) (15)

By belief-propagation (BP) [10], we can calculate the two marginals in Eq. (14) and
Eq. (15). As a by-product, BP can also calculate the partition function,

Z(y,x;0) =Y eV0sx9) (16)
S

so that we can calculate the marginal P(y|x;0) as

YseVOsx8)  7(y x:0)

- 17
Tyg V0S8 ¥ Z(y,x:0) a7

P(y[x;6) =

Given the observation x of a new image and the learned parameter vector 6, we infer
its category label j by maximizing the posterior probability. Since predicting the class
label y is our ultimate goal, we marginalize out the topic labels s, giving out

ﬁzargmaxZP(y,s\x;é) = argmax P(y|x; §) (18)
y 5 ¥

As noted in the above section, this can be efficiently calculated by BP.

S Experiments

5.1 Datasets

We used two well known scene image datasets for our experiments: the Oliva and Torralba
[7] dataset which we referred to as the OT dataset, and the Vogel and Schiele [8] dataset,

'The whole set of parameter is represented by a vector and the vector again is divided into blocks. The
parameters in the same block can be updated together. Clamped means several parameters are put in the same
block, this is for the convenience of implementation.
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Figure 2: Sample images from the OT datasets.
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Figure 3: Sample images from the VS datasets.

referred to as the VS dataset. The OT dataset contains grayscale images of 8 scene cate-
gories. The category labels and the number of images of each category (in brackets) are:
coasts (360), forest (328), mountain (374), open country (410), highway (260), inside of
cities (308), tall buildings (356) and streets (292). All the images are in the same size as
250250 pixels. The VS dataset contains 700 color images of 6 categories. The category
labels and the number of images (in brackets) are: coast (142), waterscape (111), forest
(103), field (131), mountain (179) and sky clouds (34). All the images in the VS dataset
have been resized to 250 pixel in the maximum dimension. In Fig. 2 and Fig. 3 we show
some sample images from these two datasets. Grayscale images are from the OT dataset
and color images are from the VS dataset. We are aware that there are other datasets with
more categories. The most complete set to our best knowledge is the 15 scene categories
proposed by Lazebnik et al. [6], of which the OT dataset is only a subset. We have not
chosen this one mainly because at this stage we have paid no effort on the speed of our
algorithm. Working on the OT subset, we can have a more comprehensive evaluation. It
is worth noting that although COCRF is computational more expensive compared to other
approaches, it provides a probabilistic model to interpret the scene categories which other
approaches cannot. The Bayesian approach by Fei-Fei and Perona [2] has this capability
but they can not interpret the spatial layout structures of scenes.

5.2 Implementation

In our implementation, we partition each image into patches of 18x 18 pixels and over-
lapping by 9 pixels. The number of patches of each image varies from 700 to 961. For
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Table 1: Classification results in percentage on the OT and VS datasets.
Performance on OT dataset

Method [1] [6] Task 1 | Task2 | Task 3

Accuracy | 86.65 | 86.85 | 82.3 | 87.13 | 90.2

Performance on VS dataset

Method [1] [8] Task 1 | Task 2 | Task 3

Accuracy | 85.7 | 74.1 84.2 87.1 88.0

the grayscale images from OT dataset, we use SIFT descriptor as the feature vector for
each patch. For the color images from VS dataset, we concatenated SIFT descriptor with
another 6 dimensional color descriptor. The color descriptor represents the mean and vari-
ance of R,G and B. The visual vocabulary is generated by clustering a subset of 50000
image patches into 500 visual words on these two dataset respectively. PLSA is applied
to group these visual words into 8 topics for both OT and OS. In generating the Gaussian
components, the appearance of each topic is modeled by a mixture of 2 Gaussian com-
ponents. Thus the final local appearance feature vector is a 2x8=16 dimensional vector.
On the OT dataset, we take 100 images from each category for the training and the rest
images for test (the same setup as [2] and [6]). On the VS dataset, we take half of the
images from each category as training and the rest as testing (the setup as [1]). We have
done several experiments including: (1) In task 1, we train COCRF with node potential
but ignore the spatial location of each patch and edge potential. (2) In task 2, we train
COCREF with spatial layout potential but without edge potential. (3) In task 3, we train
COCREF with spatial layout potential and edge potential.

5.3 Results

Table 1 shows the classification results on the two datasets. The classification accuracy
is calculated as the average of the classification accuracy of each category. In the fol-
lowing discussion we focus on the OT dataset. Task 1 is equivalent to take the number
of occurrence of each topic in an image as the features and train a logistic classifier for
image classification. Compared to the result (86.65%) in [1], our result (82.3%) in task 1
is a little worse. This is because their approach takes more training samples and trains a
KNN as a non-linear classifier although the features are similar while ours is equivalent
to a linear classifier. In task 2 we consider the number of occurrence of each topic and
also the spatial layout of topics. This incorporation of spatial information of patches raise
the recognition rate to 87.13%. It is better than that of [1] and [6] (86.65%). In [6], they
also takes into account the spatial layout of each patches. Nevertheless, the result of their
approach listed in Table 1 is conservative because we have taken out the classification
accuracy of 8 categories from their 15 scene categories classification results. With less
categories, the classification performance is expected to be slightly better. The best per-
formance of of 90.2% is obtained in task 3. With 5 runs of task 3, each having a differnt
partition of training and testing set, the deviation is 0.4%. This shows that the combina-
tion of spatial layout of individual patch and the pairwise interaction between patches is
helpful for classification. The experimental results on the VS dataset shows the similar
behavior.

As mentioned before, a benefit of COCREF is that it can discover the spatial layout
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Figure 4: Spatial distribution of topics per category. Each column illustrates two scene
categories and the spatial distribution of a specific topic. The blue dots superimposed on
the images illustrated the location of those image patches labeled as the corresponding
topics. See text for explanation. (This figure is best viewed in color).

distribution of local patches and their pairwise interaction for a category. The ability of
probabilistic modeling can not be achieved by those approaches such as those of Bosch
et al. [1] and Lazebnik et al. [6]. In Fig. 4 we illustrate the learned 3x3 spatial layout
distribution of different topics in some categories. In this figure, we compare the spatial
layout distributions of a specific topic of two categories in each column. The first row
shows the two distribution probability maps of a certain topic for the two categories. For
example, in the first row and the first column, we show the spatial layout distribution of
topic 6 for a coast scene in the left and that for a mountain scene in the right. The second
and third rows in each column show an instantiation for each category respectively. The
blue dots superimposed on the images illustrated the location of those image patches
labeled as the corresponding topics. The fourth row is the text description explaining
which categories and which topic are compared. It is interesting to discover that topic 6
in the moutain scene has a special distribution (mass in left top and right top part of an
image) while the same topic in a coast scene is more evenly distributed in the top part of
an image. In Fig. 5, we show the pairwise interaction potential map between different
topics for four categories. The intensity of the cell in row i and column j represents the
probability of that topic i and topic j appear as neighbors to each other. Since in scene
images, it is very common that the same topic appears as neighbors, we have depressed
the pairwise interaction between two same topics (diagonal cells). This is to highlight
the pairwise interaction potential between different topics. From this figure we can find
that different categories can have very different pattern of pairwise interaction potential
between patches.

6 Conclusion
We have presented a classification oriented conditional random field (COCRF) for natu-

ral scene categorization. COCREF is adapted from HCRF and is a fully observed model
for classifying a whole sequence instead of labeling each segment of a sequence. Our
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inside cities open country street tall building

Figure 5: Illustration of the pairwise interaction potential between topics for four cate-
gories. The intensity of the cell in row i and column j represents the probability of that
topic i and topic j appear as neighbors to each other.

approach is based on representing each image as an ordered set of local image patches.
The training of COCRF needs both the topic labels and category labels of the training
data. However, we do not need manual labeling of each segment. This is achieved by an
automatic segment labeling process based on PLSA. PLSA can provide a higher level of
semantic grouping of local patches by taking into account the co-occurrence relationship
between different patches. COCREF provides a discriminative probabilistic model of the
spatial layout of patches and their spatial pairwise interaction. Unlike HCREF, the objective
function of training a COCRF model is convex, so we can avoid the concerns about local
optimum and careful initialization. We have done experiments on two well-known scene
image datasets. Our results demonstrate that COCRF outperforms the existing approaches
for scene categorization.
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Abstract

This paper presents a method for object recognition, novel object detection,
and estimation of the most salient object within a set. Objects are sampled
using a scale invariant region detector, and each region is characterized by
the subset of texture and color descriptors selected by a Genetic Algorithm
(GA). Using multiple views of an object, and multiple regions per view, ob-
jects are modeled using mixtures of Gaussians, where each object represents
a possible class for a particular image region. Given a set of objects, the GA
learns a corresponding Gaussian Mixture Models (GMM) for each object in
the set employing a onevs. all training scheme. Thence, given an input image
where interest regions are detected, if a large majority of the regions are clas-
sified as regions of object O then it is assumed that said object appears in the
imaged scene. The GA’s fitness function promotes: 1) a high classification
accuracy, 2) the selection of a minimal subset of descriptors, and 3) a high
separation among models. The separation between two GMMs is computed
using a weighted version of Fisher’s linear discriminant, which is also used
to estimate the most “salient” object among the set of modeled objects. Ob-
ject recognition and novel object detection are done using confidence-based
classification. Hence, when a non-modeled object is sampled, the detected
regions are thereby identified as belonging to an unseen object and a new
GMM is trained accordingly. Experimental results on the COIL-100 data set
confirm the soundness of the approach.

1 Introduction

Currently, many computer vision systems address the problems of object detection and/or
recognition using a sparse representation of image information through locally prominent
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Figure 1: Abstract view of common object recognition vision systems.
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image regions [8, 3], see Figure 1. A training phase consists on detecting stable image
regions on an object using interest region detectors, and characterizing said regions using
discriminative local descriptors [5, 3, 11, 10]. In this way, by relying on sparse local
information the method is robust to partial object occlusions. During testing, an image is
taken as input and the same region detection/description process is repeated. However, the
extracted local information is now compared with stored object models and if appropriate
matching criteria are met it is possible to identify known objects within the scene. This
approach relies on the assumption that different local regions on an object will be highly
separated in descriptor space, and thus requires highly discriminative region descriptors.
This assumption will not hold true for objects with regular or repetitive patterns across
their surface, i.e. a football or tomato. Furthermore, if object representations are learned
in this manner, an intuitive comparison between two object models is not evident. For
instance, if three object representations are learned, how can a measure of similarity be
computed? These considerations are pertinent for a system that automatically identifies
the “most salient” object, or image, from a given set. Automatic novelty detection is a
line of research where these questions are essential [4]. Another application area relates
to the automatic identification of visual landmarks; in robot navigation, for example, the
norm is to use artificial or human selected landmarks.

This paper presents an approach where every region A detected on an object O is
taken as an instance of the same class, and is characterized with a feature vector of statis-
tical descriptors computed in a feature space @ of texture and color information. A GA
searches within @® for the smallest subspace F C @ of statistical descriptors, of both tex-
ture and color, that yield the highest classification accuracy using a onevs. all scheme of
maximum likelihood classification. The GA also searches for the best possible between-
class separation of learned models. Therefore, the proposed approach does not require
highly discriminative features because it uses a robust classifier, a known trade-off be-
tween descriptor design and classifier training. A GMM representation is used for each
class (object), and a heuristic extension of Fisher’s linear discriminant is used to estimate
an “apparent” measure of class separation among models with more than one component.
Based on this measure of model separation the most salient object is identified by select-
ing the object with the highest between-class separation using a min-max operation. A
further advantage of using a GMM based classifier is the ability to use confidence esti-
mation to identify regions extracted from unknown objects as outliers and label them as
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samples of a new class. Hence, it is possible to automatically train a new one vs. all
classifier for the newly identified object. Experimental results in this paper only deal with
objects in scenes with simple backgrounds. Nevertheless, the use of a multimodal models
should allow the approach to extend to real world scenes where more within class vari-
ation is likely to occur. Recently, Markou and Singh [4] propose a similar system that
carries out both novelty detection and classification, however several differences exist:

1. The current work is concerned with object recognition, on the other hand, the work
in [4] only addresses ROI classification.

2. The work in [4] relies on prior segmentation, a drawback because segmentation is
an ill-posed problem; this is avoided by using locally salient image regions.

3. The proposed feature space ® is more compact than the one used in [4], with less
redundant information. Furthermore, the GA used for feature selection maximizes
accurate classification, minimizes the set of descriptors used, and maximizes the
between-class separation of learned models. The authors in [4] use the sequential
floating forward selection algorithm and do not consider between-class separation.

4. The proposed measure for class separation is based on Fisher’s linear discriminant
which gives a closed form estimation computed directly from the learned GMMs;
the Bhattacharya distance is employed in [4] along with NNet classifiers.

5. Novelty detection in the present work utilizes confidence-based classification of
region descriptors, whereas [4] uses an heuristic criteria based on NNet output.

6. Finally, the COIL-100 data set used in the present work includes objects with in-
formation in feature space that tends to overlap, such as two toy cars with similar
texture or two objects with the same color. On the other hand, [4] uses classes with
marked differences among them, such as sky and chair classes.

2 Background

This section will give a brief review on some of the main concepts used throughout this
work: scale invariant region detection, genetic algorithms, Gaussian mixture models,
Fisher’s linear discriminant, and the texture and color feature space employed.

Scale Invariant Region Detection. Selecting a characteristic scale for local image
features is a process in which local extrema of a function response, embedded into a linear
scale-space, are found over different scales. The interest operator applied in the current
work was synthesized with Genetic Programming, optimized for high repeatability and
global region separability [9, 10], named K| pgp1+ Which is based on DoG filtering,

Kipgpa (X;tj) = Gy * Gy +1(X) = 1(x)[ , (€

where j =0,1,...,k, and k is the number of scales to be analyzed, here it is set to k = 15.
The size of a region is proportional to the scale at which it obtained its extrema value.
For the sake of uniformity, all regions are scaled to a size of 41 x 41 pixels using bicubic
interpolation before region descriptors are computed. Figure 2 shows sample interest
regions extracted with the aforementioned detector.
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Figure 2: Detected regions on three images from the COIL-100 data set.

Features Description

Gradient information ~ Gradient, Gradient magnitude and Gradient Orientation
(Dv H u ”’ Dw)-

Gabor filter response  The sum of Gabor filters with 8 different orientations (gab).

Interest operators t The response to 3 stable interest operators: Harris, IPGP1
and IPGP2 (Kyarris, Kipap1,; Kipcp2)-

Color information All the channels of 4 color spaces: RGB, YIQ, Cie Lab, and
rg chromaticity (R,G,B,Y,1,Q,L,a,b,r,g).

T Kipgpy is proportional to a DoG filter, and K pgp2 is based on the determinant of the Hessian [9, 10].

Table 1: The complete feature space ®.

Texture and Color Features. In order to appropriately describe each image region
the search space @ of possible features includes 18 different types of color and texture
related information, see Table 1. To characterize the information contained along dif-
ferent channels, six statistical descriptors are computed: mean u, standard deviation g,
skewness Y4, kurtosis y», entropy H and log energy E. This yields a total of 108 possible
descriptor values for the multivariate GMMs. Because general statistical information is
used, the descriptors will mostly be rotationally invariant.

Genetic Algorithms (GA) are stochastic heuristic search techniques that model, in
an abstract manner, the principles of natural evolution [2]. The basic principles that a
canonical GA follows are survival of the fittest (selection), recombination and replication
of fit genetic material (crossover), and the introduction of novel genetic information (mu-
tation), all of which are modeled as stochastic processes. These techniques operate over a
set of parameterized solutions using population-based metaheuristics. GAs can manage a
number of constraints and design decisions, and carry out a search in an intrinsic parallel
manner; thence, GAs can be considered as a global optimization and search method. In
the current work, the canonical GA with a binary string chromosome is employed.

Gaussian Mixture Modelsare a useful tool when it is necessary to model multimodal
data, or as an approximation to different types of more complex distributions. The GMM
pdf is defined as a weighted sum of Gaussian pdfs,

C
p(x;0) = Ziacf/V(X;Hc,zc) ) 2

c=

where A (X; Ue, Z¢) is the cth multivariate Gaussian component with mean L, covariance
matrix Z¢, and an associated weight ac. Estimation of the mixture model parameters is
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done using the EM algorithm when a fixed number of components is assumed. Alterna-
tively, if a variable number of component is desired, with a maximum bound, it is possible
to use the the Greedy-EM [7]. Classification with GMMs can be done through Bayes rule,
or using confidence-based classification [7]. A confidence value k € [0,1] and confidence
region #Z C & for a pdf are 0 < p(x) < o, V x € ®. K is a confidence value related to a
non-unique confidence region & such that

/ pX)dx =K . 3)
O\%

A sample x that lies within & is considered a true member of the class modeled by p,
otherwise it is classified as an outlier.

Fisher’s Linear Discriminant. Fisher defined the separation between two distribu-
tions .4{ and 4] as the following ratio

(Wl — 1))

W+ 2) (W)’ @)

Sj=
where w = (i + Z;)~1(t — yj) [1]. Note that Sis defined for unimodal pdfs, hence

a weighted version Sthat accounts for the weight a; and a; of the associated Gaussian
components in a GMM is proposed, such that

S

SIS Tra

®)
Hence, the separation between components with a small combined weight (they have
less influence over their associated models) will appear to be larger with respect to the
separation between components with larger weights. Therefore, let C, and Cy, represent
the number of components of pa(x; ©a) and py(x; Op) respectively, then S*P represents
the apparent separation matrix of size Cy x C,, that contains the weighted separation § i
of every component of p, with respect to every component of p,. The final apparent
separation measure . between p, and py is given by

3P —inf(SP) (6)

3 Proposed Approach

This section describes the details of the proposed approach to object recognition, novel
object detection, and salient object estimation; a flowchart view is depicted in Figure 3.

3.1 Learn Object Models

First, there is an initial off-line step in which interest regions from every object O € M
are extracted and labeled accordingly; moreover, all 108 descriptor values are computed
for each region. Afterwards, the GA performs feature selection, and learns appropriate
GMMs for a subset N of the objects in M. Figure 3a shows the basic flow chart of a
canonical GA, the two main aspects to discuss is how candidate solutions are represented
and how fitness assignment is done. The other processes in the GA are standard: fitness
proportional selection, mask crossover, single bit mutation and elitist survival strategy.
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Figure 3: An overview of the proposed approach, a) Genetic Algorithm, b) Learn object
models, c) Novel object detection.

Solution Representation: Each individual in the population is coded as a binary
string B = (b, by, ...bigg) of 108 bits. Each bit is associated with one of the statistical
descriptors in ®. Therefore, if bit b; is set to 1 its associated descriptor will be selected,
with the opposite being true if b; = 0. The feature vector x, for each region A is thereby
given by the concatenation of the set of selected descriptors F C &.

Fitness Evaluation: Here is where object models are learned and fitness is assigned
to each individual in the population. For every object Oj € N a corresponding GMM
pj(x; ©;) is trained with a one vs. all strategy with 70% of the regions, using the descrip-
tor values selected by B. The GMM classifiers are trained with the EM algorithm. After
training, a set 2 = {pi(x; ©;)} of [IN| GMMs, on each ¥ O; € N. Afterwards, the remain-
ing 30% of image regions are used for testing and a corresponding accuracy score .«
is computed using Bayes rule. Optimization is posed as a minimization problem, hence
fitness is assigned by

Bones+1 - S, _
T int (PP Vp,pjeZ,i#], when V>0,
f(B) = B ) o
- Bones + .
T—FE otherwise.

In the above equation, Bones is the number of ones in string B, <7’ is the average accuracy
score of all the GMMs in &2, a penalization term set to K = 2, and € = 0.01; hence,
fitness depends upon testing and not training accuracy. The first case in Eq. 7 is applied
when all of the classifiers where able to obtain an accuracy score, fitter individuals will
minimize the number of selected descriptors and maximize the average testing accuracy
&/'. Furthermore, the term inf(.P-Pi) promotes between-class model separation by
selecting the infimum of all the apparent separation measures computed for every object
in N. On the other hand, the second case in Eq. 7 is applied when the EM algorithm fails
to produce a valid GMM for one of the objects in N.

After a fixed number of iterations the GA stops and returns the fittest individual B°
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found so far. The best individual B® is re-trained using the Greedy-EM instead of the basic
EM, this is done for two reasons. First, the Greedy EM did not prove to be appropriate
during evolution because it required more computation time and produced more runs
that failed to converge. Secondly, once the GA has produced a valid high performance
solution, the associated object models can be further enhanced by using the Greedy EM
on BP. Therefore, the GA returns the selected subset of descriptors F that characterize the
objects in N, and a set of trained GMMs £2°. Finally, the most salient object O° in N is
said to be modeled by the GMM pP that satisfies the following,

p°<—argm§x(§’pi’pi) Vpi,pjeP° with i#j. (8)

3.2 Object Recognition and Novel Object Detection

In order to test the ability of the described approach to recognize known objects and de-
tect novel objects (those without a corresponding p; € £7°) the process in Figure 3c is
followed. Given an image of an object O; € M, interest regions are detected and their
corresponding descriptors, specified in F, are computed. The extracted regions are clas-
sified using confidence estimation with the models in £2°. A confidence region within
each GMM in £2° is defined, with the confidence threshold set to k = 0.95. Therefore,
if a large majority, over 60%, of the regions lie within the confidence region of a given
pj € &7° then it is said that object O; = Oj, thereby accounting for a successful recogni-
tion. Otherwise, if regions are classified as outliers from all known classes, it is possible
to tag them as belonging to an object not modeled in £2°. Hence, if the percentage of
regions classified as outliers is @7 > 60%, then the sampled object O; is labeled as a
new object, and a corresponding GMM is learned and added to £7°.

4 Experimental Results

This section presents three different experiments to test the proposed object recognition
system. The code was written mostly in MATLAB, the GMMBAYES Toolbox! was used
for GMM training, and the Genetic Algorithms for Optimization Toolbox? was used as
part of the GA code. The images used for testing are taken from the COIL-100 data set,
Figure 4 shows the first 40 objects in the data set [6]. Every object is seen from 72 different
views, interest regions are extracted from all of the views and tagged accordingly as the
ground truth for each object. The basic parameters of the algorithm are the same in every
run, only modifying the number of different objects used, the size of sets (M,N). Three
experiments are presented: Exp. 1 (10,5) with objects 1 - 10 from the data set; Exp. 2
(20,10) with objects 20 - 40; and Exp. 3 (40,25) with objects 1 - 40. The GMM classifiers
were trained using EM with one Gaussian component, and if a solution was not found,
the algorithm is restarted with 2 components, and so on. The results presented for each
experiment are shown for object recognition and novel object detection. Table 2 shows the
average accuracy score obtained after the initial object models are generated (Figure 3b),
along with the fitness value, the number of features, the set of selected features F, errors
in object recognition, and the salient object within the set. Table 3 presents the accuracy

1GMMBAYES Matlab Toolbox http://www.it.lut/project/gmmbayes
2Genetic Algorithms for Optimization Toolbox by Andrey Popov http://automatics.hit.bg
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Figure 4. These are the first 40 objects in the COIL-100 data set used in the reported
experimental runs. The images used with the first two experiments are marked, while all
40 are used in the third. Salient objects selected by the separation criterion are circled.
Object 32 is the only one for which novel object detection failed with h = 60%.

Exp. | @ f(B°) Bues Features Error O°

1) 99.6 0.5 27 D()Q,H)’ || a H(O’,Vz)’ D(p(VZ)’ KHarris(E)y none 4
KiPcP1(): Riur): Gow) Burouh):

YurHE) o) LoE)
3u.0) D(o.E): Y
2 | 992 15 43 Doyee) 10 ok Doape none 25
KHarris(yy,H)» KiPeP1(p,E)s KiPGP2(y E)
9ab(y,), Riu,0.8) Gy Bloyeh) Yy HE)
lo.H) QueH): LipyA(po )
Biu.o.): o) 9(E)

3 | 987 64 37 Doy 10 oyt £) Do)
KHarris(y,,E):KiPGPL(H)» KIPGP2(y5,H)
9801y, Ry £)r Guys BiyoHys Yot )
lE) Quuy): 8w): Pio): ToH): Jpo)

none 4

Table 2: Performance when initial class models are learned; see text for further details.

Ay Errors  Salient Objects
Exp.1 | 99.72 none objects 4, 7, 3

Exp.2 | 99.04 object32 objects 36, 38, 25
Exp.3 | 98.68 object32  objects 36, 28, 4

Table 3: Performance for novel object detection. Note that <%, represents the accuracy of
region classification after a corresponding model is learned for every object O € M.
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score once a corresponding model is learned for every object O € M, the incorrectly
classified objects, and the three most salient objects found in each case. Given the high
level of accuracy in both sets of results, in can be concluded that the problem of object
recognition is almost perfectly solved for the set of images employed. Figure 5 shows the
convergence graphs of each GA run, plotting the fitness of the best individual B° found
so far. The experiments were executed with 30, 30 and 40 iterations respectively.

Log(fitness)
Log(fitness)
Log(fitness)

-----------------
.............

.......................
.....

Generations Generations Generations

Experiment 1 Experiment 2 Experiment 3

Figure 5: Convergence plots that show the log(f(B°)) of the best individual found thus
far by the GA in each of the experimental runs.

5 Discussion and Conclusions

The results presented in the previous section exhibit promising performance patterns. For
all three experiments the algorithm was able to train extremely accurate classifiers using
a fraction of the available descriptors. It is important to note that in Table 2 even do all
experiments produce similar values for accuracy and number of descriptors, their associ-
ated fitness scores are different. This is due to the model separation measure inf (. Pi-Pi)
in the fitness function, because with more objects the space of possible objects models
becomes crowded. All the classifiers trained in each experiment finished with a single
Gaussian component, an unexpected outcome that can nevertheless be explained. Every
object is small and tends to exhibit regular patterns across their surface; therefore, it was
possible to characterize them with a single component in feature space. This suggests
that GMMs would be more appropriate dealing with images that have a larger variations
in descriptor space. Additionally, the convergence graphs in Figure 5 show two different
patterns. First, starting from the random population the initial iterations produce very
poor results, individuals in these generations are evaluated using the second case of the
fitness function because the EM fails to find a valid model for at least one of the objects.
Therefore, initial iterations attempt to find solutions B that are able to produce a classifier
for every object in N. Once a good solution is found, and its genetic material begins to
propagate throughout the population, the GA begins to optimize using the first case of the
fitness function. With a valid classifier for every object it is then possible for the GA to
explore the pruning of the feature space. Regarding novel object detection, the approach
produced nearly perfect results with only one false negative, object 32. However, object
32 is almost identical to object 29, they only differ slightly in color space. Perhaps an
interest operator that uses color information explicitly could help avoid ambiguous situ-
ations such as this. Finally, regarding the estimation of the most salient object within a
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set, the algorithm also produced coherent selections. The objects selected as most salient,
shown in Figure 4, are appreciably different than the rest, these objects tend to lack texture
and exhibit small color variations. Furthermore, all of the other objects in the data set tend
to have at least one similar counterpart, i.e. more that one toy car, and various small boxes.
In conclusion, the proposed approach produced promising initial results for object recog-
nition, novel object detection and salient object estimation. Future work concentrates on
using images with complex backgrounds, in order to perform scene classification of real
world images where the benefits of a multimodal model are expected to become evident.
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Abstract

This paper proposes a physics-based methodology for thes@énaf op-
tical flows displaying complex patterns. Turbulent motisach as that ex-
hibited by fluid substances, can be modelled using fluid dycsprinciples.
Together with supplemental equations, such as the cortgened mass, and
well formulated boundary conditions, the Navier-Stokesaipns can be
used to model complex fluid motion estimated from image secgs In this
paper, we propose to use a robust kernel which adapts todhkedata geom-
etry in the diffusion stage of the Navier-Stokes formulatiarhe proposed
kernel is Gaussian and embeds the Hessian of the local dét®s @svari-
ance matrix. The local Hessian models the variation of the ifitoa certain
neighbourhood. Moreover, we use a robust statistics mésinain order to
eliminate the outliers from the estimation process. Theppsed method-
ology is applied on artificial vector fields and in image seg#s showing
atmospheric and solar phenomena.

1 Introduction

Classical optical flow estimation methods work on the assionghat image intensity
structures are approximately constant under motion [1R8bust estimation employing
either median statistics or diffusion has been used to eétei outliers from the optical
flow [4] and to smooth colour images while preserving edgéspectively. Recently,
robust statistics and diffusion have been embedded in athingdernel for jointly pro-
cessing the data statistics and the local geometry in ngitigas flows [6]. This method
was shown to preserve data characteristics as well as timelanas of the moving objects,
while resulting in smoothed optical flows.

Very often, the natural phenomena modelling involve theiomobf dynamic fluids
which differs radically from that of rigid bodies. Clasdicgtical flow estimation algo-
rithms would fail in such cases. The use of fluid flow modellfag motion estimation
can be traced back to the work of Fitzpatrick [7], who comgawptical and fluid flow
methods. The computation of flows depends largely on theifspeature of the ap-
plication. Using Fitzpatrick’s analysis as a basis, Sond beahy [12], employed the
equation of continuity as an additional constraint to Hond &chunck’s algorithm [8]
in order to obtain better motion estimation of the beatingrheNavier-Stokes equations
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have been extensively studied in fluid mechanics for maugttie behaviour of fluids un-
der various conditions and constraints [9]. The Naviek&scand optical flow constraint
equations have been employed for modelling Karman flows @j. [Bertalmioet. al.
applied the Navier-Stokes equations to image and videdritipg [2]. Their approach
uses the vorticity-stream formulation of the fluid flow eqoaf which can be attributed
to the image intensity-Laplacian relationship. Corpetti al. used the vorticity-stream
formulation to recover dense motion of water vapours [5].

Navier-Stokes equations have been used in computer geafahigisualising flames
and building animation tools based on fluid-like motion [1B, 14]. The stable fluid
solver (SFS) algorithm implements Navier-Stokes equatamd consists of a set of con-
secutive processing steps [13], such as: advection, difitlnd mass conservation. The
boundary conditions are important in constraining the fhaiotion [9]. The boundaries
have been processed as a set of constraints on a grid [14hfbscmg repetition and
employing the Fast Fourier Transform (FFT) [13] or by usiegel sets [11]. In this
study, we extend the SFS solver methodology and apply itrfavathing vector fields
estimated from image sequences representing turbulenhgéuids. In our approach,
the diffusion step is anisotropic and robust by considedngedian of the Hessian dif-
fusion kernel [6]. The proposed hybrid SFS method procesetocal geometry and
data statistics consistently with the flow motion. The psmgzbapproach is applied for
smoothing artificial vector fields and in two image sequen@ée paper is structured as
follows: Section 2 outlines the SFS algorithm, while SetBalescribes our hybrid solver
applied for modelling vector fields. Experimental resultd ¢heir analysis are presented
in Section 4, while Section 5 concludes the paper.

2 The Stable Fluid Method

Navier-Stokes methodology represent the basis for moggedlilarge variety of phenom-
ena such as those characterising weather, ocean currestes flow in a pipe, the air flow
around a wing, the motion of stars inside a galaxy, blood fEmgnomics behaviour, etc
[9]. In engineering, they are used in the analysis of thecedfef pollution, the design of
aircraft and of power stations, etc. Navier-Stokes metlagjohas been applied in Com-
puter Graphics in order to visualise and create the efféetnidpy the complex movement
of fluids such as that of coloured gases, air, clouds, liqic®ke, fire, etc., [11, 13]. The
explicit model is generally used for precise computatiofiwtl dynamics and involves
heavy computational complexity [9]. The Von Neumann'’s Bitgtanalysis, as shown in
[9], highlights that the implicit model of discretisatiorhen calculating Navier-Stokes
equations is unconditionally stable, although it requae®mplex numerical implemen-
tation scheme. The SFS algorithm proposed by Stam repeeaeitnplementation of the
Navier-Stokes methodology in an implicit scheme [13, 14].

In order to achieve visual effects, the Navier-Stokes egoatare used for both den-
sity and velocity in the SFS algorithm [13, 14]. Unlike in tbeginal SFS approach, in
this study we consider only the modelling of motion basedr@Navier-Stokes equa-
tions. The area of investigation (in our case an image or eneated region from an
image) is split into cells located on a grid and we associgiarticle to each grid loca-
tion. Let us assume that the SFS system moves the particlesdaccording to a vector
field, where each vector corresponds to a grid location. Tégey-Stokes equation for
a given system is derived using the conservation of mass,entum, and energy for an
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arbitrary control volume [9] and is given by :
ou
ot
where the change of velocity over time is represented with respect to the advection,
gradient of the pressuf diffusion and external forcing functidnwhile v is a viscosity
constant that characterises the fluid #nid a parameter. The pressure is assumed to be
constant in the given field and its gradient is zere, the change in pressure from one
spatial position to another in the vector field is negligibléonsequently, the equation
employed by the SFS method is :
ou
ot
The diffusion termvJ2u characterises fluids which are assumed incompressible ewel N
tonian. Moreover, for incompressible fluids it is importamenforce the conservation of
mass [9]: Oou—0 3)
which states that the divergence of velocity componentseis for infinitesimal time
steps. The density of a particle is constant between itersitithereby the total mass of
the field is conserved within the given region.

—(u~D)u—%+vD2u+f (1)

—(u-0)u+vPu+f 2

for k — 1to > convergence / number of iteratio
do

add forceu; = ug +fAt
advect:uz(x) = adv(uy (x, —At))
transform:0y = FFT (up)
diffuse: Gi3(z) = G2(2)/(1+ vAtk?)
conservelly = conservéls)
transform:us = FFT ~1(0y)

OO~ WNPRE

Figure 1: The stable fluid solver algorithm.

The SFS algorithm proceeds to calculate the velocity coraptsu as described in
Fig. 1, [13]. For each iteration, the first step consists afiag the external forcing func-
tion f which determines the initial conditions in the processiggle. The second step
represents the advection term in equation (2), which cpards to the following :

B Ouy Jduy  duy duy
(u-Oju= (uxﬁ—kuya—y,uxWJruya—y 4)

whereu = (uy,Uy). The analysis of the advection process in real physical ginemna is

provided in [9]. The process described by equation (4) isaknas the self-advection
of velocity. The advection step from the SFS algorithm islengented by moving the
motion vector of each grid cell back in time withAt by backtracking the velocity field.
The third step transforms the velocity field to the frequetagnain using the Fast Fourier
Transform (FFT). The requirement to set specific boundanditmns is eliminated by

extending the spatial repeatability of the area under demation and by applying FFT.
The diffusion term (fourth step) represents the decay off Isigatial frequencies in the
velocity field and is computed in the Fourier domain with a &aan filter processing
the velocity component by using the time stegt and the fluid kinematic viscosity
v. The finite difference implicit scheme is used here to disseethe diffusion term in
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order to obtain an unconditionally stable system [13]. Tk itep enforces the local
incompressibility of the optical flow which requires thaéthmount of flow entering in a
specific area should be equal with the flow exiting that ard@e fihal step projects the
flow back from the frequency domain to the spatial-time domaing the inverse FFT
transform. This algorithm was modified in [14] by replacihg FFT transformations and
the processing in the frequency domain with defining a sebahdary constraints on a
grid-based representation of the flow.

3 The Robust Hybrid Fluid Solver

Input

Uo (x)

Add Force

lul {x)

Compute Hessian

Robust
Y Diffusion

Median Diffusion

yUz (x)
Mass

Conservation

yUs (%)

Advection

v U (x)

Mass

Conservation

s (x)
Output

Figure 2: Robust hybrid solver.

The implementation of the stable fluid solver [13] providather poor performance in
modelling turbulent optical flow estimated from image sewes. This is mainly caused
due to the uncertainty in the initial estimation of the ogltitow which leads to noise,
particularly in image sequences displaying complex motiém order to improve the
performance on optical flow, we propose to embed a robusbafsc kernel [6] in the
diffusion step of the SFS. Fig. 2 shows a flow diagram of th@psed robust hybrid fluid
solver. The initial flow can be estimated using the block miaig algorithm as in [4]
or other motion estimation algorithms [1]. Optical flows yided by block-matching or
by using temporal gradient estimation are invariably n¢yparticularly in the case of
image sequences representing moving fluids or other corpplexomena.

The first processing block corresponds to a reinforcememt ahd in the proposed
method is implemented by adding a proportion of the veldtdyn the previous iteration
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to the current velocity :
Up(t+At) = (1—€)up(t) + eAtus(t) (5)

whereus(t) is the motion vector from the previous iteratibre € (0,1) is a weighting
factor modelling the degree of the reinforcement apgt), us (t + At) represent the mo-
tion vector reinforced by force at timésandt + At, respectively. At the first iteration
there is no reinforcemenitg. € = 0. The SFS algorithm described in Section 2 proposes
to advect the initial flow at Step 2 from Fig. 1. However, thigiogithm produces unreli-
able estimation when applied to noisy vector fields. Thecapflow should have a degree
of smoothing before advection can be applied. In our approse propose to diffuse the
noisy flow before proceeding to the advection stage. Theteafunction of the original
smoothing algorithm is a Gaussian function appropriateffmed within the frequency
domain [13]. In our approach, we propose to implement a ldadsased diffusion that
jointly processes the local geometry and the statistich@fdcal vector field as in [6] :

S ugi(t)exp—(xi —ze) TH1(xi — z)]
a(t 4+ At) = 51 )

Y exp—(xi —z)TH (X — z)]
xi€n(zc)

wherelz(t + At) is the intermediate diffused valud,represents the local Hessian,i (t)
is the vector at locationwithin a neighbourhoodj (z;), centred at the locatior.. The
Hessian of the optical flow is calculated locally as :

9%u

_ | 0x2 oxd

H= d%u 02uy @)
ayox  9y2

The eigenvector corresponding to the largest eigenvaloesihe local direction of
the optical flow. This diffusion kernel is anisotropic anchpts to the local structure of
the optical flow. Significant optical flow transitions are etgted and consequently not
smoothed over by the Hessian-based kernel. However, aspsotliffusion does not deal
properly with outliers as shown in a study provided in [6]ohder to properly process the
local statistics and eliminate outliers, the median atpamiis considered for robustifying
the Hessian based diffusion in the neighbourh@zt).

At the advection stage, our model is only concerned with thdinearity of the ad-
vection term from equation (4). As mentioned in the previastion, the self-advection
term represents the ability of the velocity components teertbeir own values from one
position to another on a grid in a time step intervt, This procedure involves inter-
polating the velocity at the grid points, using a neighbowdh approximation, from the
previous time step back to the position in the current tirep §t4].

The model is dependent on the initialisation and on boundangitions of the sys-
tem under study. Boundary condition are specifically pregidnto the grid in order to
represent the physical limits of the optical flow. Such bamdconditions can be the
result of image or motion segmentation algorithms oadgdriori information about the
image sequence. There are two boundary conditions to amsldhe first condition is
determined by the physical boundary. This is representetidyon Neumann condition
which specifies the normal component of the flow to the bounslarface as :

Ju
%Q_O (8)
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whereQ represents the boundary ands its surface normal. This means that the wall
absorbs any flow particles coming towards it. For the sakedticing the required com-
putation complexity, the walls of the domai@, are represented by zero values on a ge-
ometric grid, which are enforced at every stage of the coatpmut in order to preserve
the stability and integrity of the numerical calculationn& our proposal incorporates
both explicit and implicit finite differencing schemes, stabsolutely imperative that the
model adheres to the stability criteria, giventy (Ax)? < 1/2, whereAx represents the
location change during the time intervstl.

The second condition relates to the conservation of madseofelocity field. The
conservation of mass, given by equation (3), should be miaied in order to ensure the
incompressibility of the flow. In order to maintain a divenge free velocity field for
every stage of computation, the conservation of mass isesdafter both diffusion and
advection stages. The conservation of mass stage cor@spora data normalisation
process. The conservation of mass is enforced by using thehaéz-Hodge decompo-
sition [13] of the velocity field. This decomposition proeisl an exact solution so that
the mass conserved incompressible flow can be obtained bgcérg the gradient of
the flow from the current vector field. This decomposition mtains the incompressibil-
ity and smoothness of the estimated velocity field. Mass ewmasion is important for
realistically estimating optical flow of fluids. For exenfiation, the Helmholtz-Hodge
decomposition of the exact closed cavity laminar flow (aitfidata experiment provided
in Section 4) at the 1000th iteration is shown in Fig. 3.

N

NA
NN

PSRN
N

Y
772

e ——
NN

—-—‘.\\\
455577
1774 AN
7
L7 .
7
7

Yy e
77

7

5 10 15 20 25 30 35 5 10 15 20 2 30 E3 5 10 15 20 % 30

Current Flow = Incompressible Flow  + Gradient Flow

Figure 3: Helmholtz-Hodge decomposition of a closed lideni cavity laminar flow.

4 Experimental Results

We present results when the proposed algorithm is evaluatedsynthetic vector field
and on the optical flow estimated from two real-world imaggussnces. The synthetic se-
quence is created using the original Navier-Stokes equaffij depicting the air flow gen-
erated within a lid driven closed cavity. The synthetic fl@xcieated using the vorticity-
stream formulation of the Navier-Stokes equations instédioe classic velocity-pressure
formulation. Fig. 4(a) represents the simulated syntHeld that visualises the air flow
moving with a fixed velocity from left to right inside the topea of a closed cavity. This
flow has been obtained after applying the Navier-Stokestaquéor a thousand itera-
tions. Fig. 4(b) shows flow degradation after adding Gaussa@se with zero mean and
varianceog? = 0.25. Modelling results using the modified SFS (SFSM) alganifi4]
adapted for usage on vector fields is shown in Fig. 5(a), whitgor field smoothing us-
ing Black’s anisotropic diffusion algorithm [3] is providen Fig. 5(b). Fig. 5(c) shows
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the effects of using MED-2DH which is a robust Hessian bas#dsibn algorithm de-
scribed in [6], while the robust hybrid fluid solver embedglihe median of 2D Hessian

diffusion kernel (MedH-SFS) algorithm, as described intec3, is shown in Fig. 5(d).
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Figure 4: Synthetic closed lid-driven cavity flows
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Figure 5: Atrtificial vector field smoothing comparisons. Hmatter visualisation, the

vector from the upper-right corner of the SFSM vector fiel@dhhas been rescaled.

(d) MedH-SFS (5)

The results in Fig. 5 are obtained at convergence when the swpeare error differ-

ence between vector fields at two successive iterationssstien 0.01. The number of

iterations necessary to achieve convergence is providdeiparentheses from the cap-

we daseove that the vector field

modelled by SFSM is still noisy at convergence, while thesadias been significantly re-

tion of each result plot of Fig. 5. From these results

duced in the other smoothed vector fields. It can be obsehadtedH-SFS provides the
best results and the flow vortex recovered is better locateehweompared to the vortices

recovered using Black and MED-2DH.
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Gaussian Noised?) | SFSM | SFS | MedH-SFS| Black | MED-2DH
0.01 0.7525| 0.6211| 0.7634 | 0.7226| 0.7383
0.10 0.6020| 0.5616| 0.7327 | 0.6554| 0.6997
0.25 0.4538| 0.4523| 0.6849 | 0.5584| 0.6424
0.30 0.4373| 0.4624| 0.6704 | 0.5567| 0.6058
0.40 0.4005| 0.4184| 0.5799 | 0.4958| 0.5556

Table 1: Mean cosine error (MCE) of smoothed vector fields.

For numerical comparisons, we consider the mean cosine @MI©E) between the
recovered smoothed flow and the ground truth flow. The MCElsutated as:

_ Shaui-Gi _ cog6) ©)
(Juil 1[Gil| L L
wherelL is the total number of vectors; is the ground truth before considering the noise
and smoothing, and; is the result achieved after smoothing the noisy vector fald
locationi. The MCE is the normalised dot product between two vectorisiwprovides
the cosine of the angle between them, denotef).aBhe closer MCE is to 1.0, the more
similar are the two vector fields. The MCE results are pravide Table 1 after one
iteration of smoothing. SFS algorithm was described iniBe@ and was adapted from
[13], while SFSM was described in [14]. Both these algorghinave been adapted to
work on vector fields. It can be observed that SFS providesd gesults for a vector field
corrupted with low noise variance. However, its perfornmeadeteriorates significantly
when the noise increases, because the corrupted vectodéphtts significantly from
the Navier-Stokes underlying model. The robust diffusighrid fluid algorithm MedH-
SFS provides better results than either SFS or SFSM metmosms of MCE when
considering additive Gaussian noise as it can be observed Table 1. MedH-SFS is
also consistently better than Black [3] and MED-2DH [6] atiepic smoothers.

We have applied the proposed methodology on optical flowimattd from image
sequences. Fig. 6(a) represents a frame from “Tornado”énsaguence, while Fig. 6(b)
shows a frame from the “Solar Flare” sequence obtained framzkllohe Obervatory’s
solar and environmental research website. The first sequepcesents a complex atmo-
spheric phenomenon while the second image is used to obmetv@nalyse solar surface
activity. The initial optical flows have been estimated gsbiock matching algorithm
(BMA) and are shown in Fig. 6(c) and Fig. 6(d), respectiveljhe complexity of the
motion in the scenes as well as the compression artefaatentié negatively the perfor-
mance of the BMA algorithm. Fig. 6(e) and Fig. 6(f) show theostining result when
using MedH-SFS algorithm on the optical flow estimated frow tTornado” sequence
and from the “Solar Flare” optical flow, respectively, bofitea one iteration. The im-
provements provided by the Med-SFS over the initial opficals are significant. We can
clearly identify the moving twister and its boundaries métsing the proposed methodol-
ogy as it can be observed in the optical flow from Fig. 6(e).blitent movements of the
solar surface can be properly identified in Fig. 6(f).

MCE

5 Conclusions

We have presented a physics based model that smoothes aetsroptical flow repre-
sentations estimated from images representing complexwusbdlent fluid motion. The
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Figure 6: Smoothing optical flows in image sequences digpdgiyrbulent motion.

Stable Fluid Solver (SFS) model is based on the Navier-Stelgeations for incompress-
ible fluid. The SFS algorithm, originally developed in cortgrugraphics for visualis-
ing fluid like movement and for building animation tools, tzeen modified in order to
be used on optical flows. The proposed model is highly efficiéendl stable under cer-
tain conditions. The flow incompressibility condition ishéeved by imposing the mass
conservation through the Helmholtz-Hodge decompositiée.embed a robust Hessian
based kernel in the diffusion step of the Navier-Stokes fdation in order to improve the
performance of the proposed method for smoothing vectasiélhis kernel ensures that
smoothing occurs along the structure of the motion field evhilaintaining the general
optical flow structure and the main optical flow features. pl@posed kernel ensures ro-
bust statistics capability in order to reduce the impactuifiers and thus to enhance the
smoothness of the resulting optical flow. The new model isvshio provide good results
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in both artificial data and in optical flow from two image seqeoes, showing turbulent
atmospheric and solar activity phenomena.
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Abstract

In previous work, we developed a novel data association algorithm with
graph-theoretic formulation, and used it to track a tennis ball in broadcast
tennis video. However, the track initiation/termination was not automatic,
and it could not deal with situations in which more than one ball appeared in
the scene. In this paper, we extend our previous work to track multiple tennis
balls fully automatically. The algorithm presented in this paper requires the
set of all-pairs shortest paths in a directed and edge-weighted graph. We
also propose an efficient All-Pairs Shortest Path algorithm by exploiting a
special topological property of the graph. Comparative experiments show
that the proposed data association algorithm performs well both in terms of
efficiency and tracking accuracy.

1 Introduction

In automatic video annotation, high-level descriptions rely on low-level features. In the
context of a ball game, such as cricket, football, tennis, table tennis or snooker, the tra-
jectory of the ball provides important information for high level annotation. Indeed, re-
constructing the ball trajectory is essential for a complete understanding of a ball game.
However, tracking a ball in a complex scene can be a difficult task. In the case of tennis
ball tracking, the ball’s small size, high velocity, abrupt motion change, occlusion, and
the presence of multiple balls all pose strong challenges. The scope of this paper is to
develop a robust algorithm for tracking tennis balls in broadcast tennis video.

Let us assume we have a ball candidate generation module, where a ball is detected as
a candidate with a certain probability along with some clutter-originated false positives.
The data association problem, i.e. the problem of determining which candidates are ball-
originated and which are clutter-originated, is the key problem to solve in tennis ball
tracking. In [5], a data association algorithm was proposed under the name of Robust
Data Association (RDA), and was used to track a tennis ball. The key idea of RDA is
to treat data association as a dynamic model fitting problem. In RDA, a RANSAC [2]
paradigm is employed. A sliding window containing several frames is moving over a
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sequence. Candidate triplets are randomly drawn from all the candidates in the current
interval, and are used to fit dynamic models. The fitted models are evaluated using a cost
function. The model is found that is best at explaining the candidates inside the interval.
An estimate of the ball position in one frame, e.g. the middle frame in the interval, is then
given by this model. As the sliding window moves, eventually ball positions in all frames
are estimated.

RDA works well under moderate clutter level, and when certain assumptions are sat-
isfied. However, several weaknesses of RDA have been noticed (see [8] for details).
Inspired by RDA’s model fitting approach to the data association problem, in our previ-
ous work [8], we proposed a two-layer data association algorithm (dubbed L2DA in this
paper) to remedy some of the weaknesses of RDA. Although L?DA provides improved
speed and robustness over RDA, like RDA, it is a single-object tracking algorithm, and
requires an additional track initiation/termination mechanism. This means LDA is not
applicable for real world tennis sequences that have complex track initiation/termination
scenarios of multiple balls. In this paper, we extend L?DA to handle multiple objects and
to automate the track initiation/termination. This is achieved by using an All-Pairs Short-
est Path (APSP) formulation instead of the Single-Pair Shortest Path (SPSP) formulation
at the second layer of L’DA, and by adding a third layer, path level analysis, onto L?DA.
The resulting algorithm is dubbed L>DA in this paper.

The rest of this paper is organised as follows: Section 2 gives a brief review of L’DA.
Section 3 describes the third layer, path level analysis, of L>DA. This layer works on
the set of all-pairs shortest paths in a graph. In Section 4, we propose an efficient APSP
algorithm. Experimental results are presented in Section 5. Finally, conclusions are given
in Section 6.

2 The L’DA Algorithm

In L?DA, the data association problem is sliced into two layers: candidate level associa-
tion and tracklet level association. Assume the frames in a sequence are numbered from
1 to K. At the candidate level, a sliding window containing 2V + 1 frames is moving
over the frames. At time i, the interval /; centres on frame i and spans frame i —V to
frame i +V, where i € [1 +V,K — V]. Now instead of randomly sampling as in RDA, we
exhaustively evaluate for each candidate in frame i/ whether a small ellipsoid around it in
the column-row-time 3D space contains one candidate from frame i — 1 and one candidate
from frame i+ 1. If it does, we call the 3 candidates inside the ellipsoid a “seed triplet”,
and fit a constant acceleration dynamic model to it. The fitted model is then “improved” by
re-fitting another model using candidates in the sliding window that are consistent with it.
This process is repeated recursively until convergence, forming what we call a “tracklet”:
a small segment of a trajectory. Compared to RDA, this “hill-climbing” scheme signifi-
cantly reduces the algorithm’s complexity: as the proportion of true positives drops, the
complexity grows approximately linearly.

A tracklet T consists of a parameterised dynamic model M (position and velocity at
time 7, and the constant acceleration), and a set . of candidates that support the converged
model (“supports” of the model). In other words, 7 2 {M,.%}. At time i, there may
be multiple tracklets generated. We threshold them based on the number of candidates
in their support sets, or their “strengths”. Only tracklets that are “strong enough” are
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Figure 1: An illustrative example of the topology of ¢. Each node is a tracklet. Nodes
generated in the same sliding window position are aligned vertically. Striped red nodes:
the first and last ball-originated nodes. Red nodes and red edges: the shortest path between
these two nodes.

retained, and the j retained tracklet in interval /; is denoted by T}j = {Mlj , fjij 1.

As the sliding window moves, a sequence of tracklets is generated. These tracklets
may have originated from the ball or from clutter. Now we need a data association method
at the tracklet level. We formulate tracklet level association as a SPSP problem. A
directed and edge-weighted graph & = {4, &} is constructed, where each node nlj €

N represents the tracklet 7/, and the weight wi,"vq of a directed edge efjff € &, which
connects n), to n”, is defined according to the “compatibility” of 7! and T/, i.e. the
smaller the wf;ff, the more likely Tul and 7," have originated from a same object (see [8]
for details). We assume that there is only one ball in the sequence, and that the first and
last tracklets (nodes) that have originated from this ball are already known. The ball-
originated candidates are then contained in the support sets of the nodes in the shortest

path between these two nodes, i.e. the path with smallest total edge weight (see Fig. 1).

3 Extending L’DA to L°’DA

L?DA assumes there is only one ball to track in a sequence. However, this is not always
the case. For example, there may be multiple plays in one sequence, and the second play
can start while the ball used for the first play is still in the scene. Moreover, track initia-
tion/termination, which is taken for granted in LDA, is not a trivial problem, especially
when multiple objects are present.

In this section, we extend L2DA to LDA to deal with multiple objects and to automate
the track initiation/termination. This is achieved by using APSP instead of SPSP at the
tracklet level, and by introducing one more layer on top of that, namely, path level analysis
with a Paths Reduction (PR) algorithm.

For a given pair of nodes n), and #" in &, there may be paths connecting n/, to n",
or there may not. Assume the shortest paths between all pairs of nodes that have at least
one path connecting them have already been identified. Let &2 be the set of such all-pairs
shortest paths, and p is the number of paths in &2. p is in the order of N2, where N is the
number of nodes in the graph. Now observe that no matter how many balls there are to
track, or where each of the ball trajectories starts and terminates in the graph, the paths
that correspond to the ball trajectories form a subset of &?. The question now is how to
reduce the original set of APSP £ to its subset that contains only paths that correspond
to the ball trajectories.

We propose a simple Paths Reduction (PR) algorithm to achieve this. The PR algo-
rithm reduces the set of APSP to the Best Set of Compatible Paths (BSCP) 4, providing



653

two assumptions are satisfied: first, the p paths in & can be ordered according to their
“qualities”; and second, a pair-wise “compatibility” of the paths in &2 is defined. The PR
algorithm is summarised as follows:

e Initialisation: & has p paths, and Z is empty.
e While & is not empty:

— Remove the best path P* in & from &2,
— If P* is compatible with all paths in %, add P* to 4.

Now we define the relative quality of the paths. Recall that the weight of a path is the
sum of the weights of all edges the path goes through. Note that the term “shortest path”
used in the previous sections should have been “lightest path”. However, we chose to
use “shortest path” for the sake of consistency with the terminology used in other papers.
We define the strength of a path to be the number of supports in all its nodes, or more
precisely, the size of the union of the support sets in all its nodes. Intuitively, a “good”
path is one that is both “light” and “strong”. However, there is usually a trade-off between
the weight and the strength of a path: a stronger path tends to be heavier. Taking this into
account, we define the relative quality of two path P and P, as follows:

P P i (Wi —Wy) a-(S;—5) 1

AV
VoA

% s

where the relation operators “>”, > and “<” between P; and P, stand for “is better
than”, “has the same quality as”, and “is worse than”, respectively; W) and W, are the
weights of P; and P, respectively; S| and Sy are the strengths of Py and P, respectively;
and « is a controllable parameter with the unit of pixel. According to this definition, if a
path P; is “much stronger” but “slightly heavier” than a path P, then P; is said to have a
better quality than P>. Note that this definition does not assume any relationship between
W) and W, or relationship between S| and S,.

It easily follows that the set &2 equipped with an operator “>" satisfies the following
three statements:

1. Transitivity: if P, > P, and P, > P; then P; > Ps3;
2. Antisymmetry: if Py > P, and P, > P; then P| = P5;
3. Totality: Pr>P,orP > P.

According to order theory [1], &2 associated with operator “>" is a totally ordered set.
The first assumption for the PR algorithm to work is satisfied.

The second assumption, the existence of pair-wise compatibility of the paths, is straight-
forward. Two paths are said to be compatible if and only if they do not share any common
support. It should be noted, however, two paths that do not share any common node are
not necessarily compatible, because different nodes can have common supports.
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(@ (b) © (@
Figure 2: (a): ball candidates in an example sequence. Each black circle is a candidate.
(b): generated tracklets. (c): results of applying APSP and the PR algorithm: 3 paths in
By Adjacent nodes in each path are plotted alternatively in blue and red. (d): recovered
class labels as given by %;;,.

Figure 3: Ball trajectories (after interpolation and key event detection) superimposed on
mosaic images. From left to right: the first, second and third play in time order.

Now with SPSP replaced by APSP at the tracklet level, and with the PR algorithm at
the path level, we have extended L?DA to L3DA. We apply L>DA to an example sequence
(see Fig. 2). Semantically, the ball-originated candidates in this sequence belong to three
plays. In time order (from bottom to top in the figures), the first play (magenta circles
in Fig. 2 (d)) is a bad serve, where the ball lands outside the service box; the second
“play” (cyan circles in Fig. 2 (d)) is a player bouncing the ball on the ground preparing
for the next serve; and the third play (red circles in Fig. 2 (d)) is a relatively long one with
several exchanges. The objective of data association is to identify the number of plays in
this sequence, and to recover the class label of each candidate: clutter, first play, second
play, or third play. In other words, the objective is to recover the colour information in
Fig. 2 (d), assuming it is lost (see Fig. 2 (a)).

First, we “grow” tracklets from seed triplets (see Fig. 2 (b)), as in L’DA. By looking
for all-pairs shortest paths, a set & with p = 87961 paths is obtained. The PR algorithm
is then applied, which gives a BSCP % containing 11 paths. In descending order, the
numbers of supports (strengths) of the paths in Z are: 411, 247, 62, 23, 20, 17, 17, 16,
15, 10, 9. It is a reasonable assumption that a path corresponding to a ball trajectory
has more supports than a path corresponding to the motion of a non-ball object, e.g.
a wristband worn by a player (which can be detected as ball candidates and can form
smooth trajectory as the player strikes the ball). We set a threshold Sy, and keep only the

Figure 4: A possible arrangement of the paths in %,;,. Magenta, cyan, and red paths
correspond to the first, second and third play in the sequence, respectively.
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paths that have more supports than S;;. This results in a thresholded BSCP %,;, with 3
paths (see Fig. 2 (c)), where each path corresponds to a play in the sequence.

In tennis ball tracking, the points at which the ball changes its motion abruptly corre-
spond to key events such as hit and bounce, and provide important information for high
level annotation. We detect these key events by looking for motion discontinuities in the
trajectories. In Fig. 3, the 3 ball trajectories after interpolation and event detection are
superimposed on mosaic images.

A suggestion of how the 3 paths might be arranged in the graph ¢ is shown in Fig. 4.
Note that there are 672 tracklets in this sequence. Far fewer nodes are plotted in Fig. 4
for ease of visualisation. Note also that two paths that are temporally overlapping are not
necessarily incompatible. In fact, the first and second plays in the example sequence do
overlap in time: the first play spans frame 16 to frame 260, and the second spans frame
254 to frame 321.

4 An Efficient APSP Algorithm

In L3DA, at the tracklet level, we need to solve an APSP problem for a graph ¢ with N
nodes. In some sequences, N can be in the order of 103. An efficient APSP algorithm
is desirable. Several APSP algorithms have been reported in the literature. The Floyd-
Warshall algorithm solves APSP in O(N?) time [3]. Johnson’s algorithm has a complexity
of O(N?logN +NE), where E is the number of edges in the graph [4]. Neither the Floyd-
Warshall algorithm nor Johnson’s algorithm makes any assumption about the topology of
the graph. Because of the way our graph is constructed, it has a special topological prop-
erty: its set of nodes .4 can be partitioned into subsets A 1y, A1y, ..o, Sx—v_1, Vk—V,
where .4/ is the set of nodes generated in interval [;, such that edges exist from nodes in
subset .4, to nodes in subset .4; only if u < v (see [8] for details). Using this property,
we derive an O(N?) APSP algorithm as follows.

The proposed APSP algorithm uses the concept of dynamic programming. Suppose
we are in the middle of the tracklet generation process. The sliding window now cen-
tres on frame i — 1, and tracklets in interval J,_; have been generated. Let ¥(~1 =
{JV<"*1),£’("’1>} be the graph constructed so far, where A=) = {Miv, Miv,y N1}
&1 is the set of edges that go into all nodes in .4 (=1 Clearly, ¢~ is a sub-graph
of the complete graph . Assume the APSP problem in graph ¢ (1) has been solved.

That is, in each node n]! € g(l”)’ a table is maintained, where each entry corresponds
to a node in the sub-graph ¢('~1). The entry corresponding to node n!, € ¢"~1) keeps
two pieces of information about the shortest path from nft ton) in¥ (i=1) " The first one

is the last node before 7] in the shortest path, and the second one is the total weight of
the shortest path. With these two pieces of information for each node r', € ("~ in each
node nf} € 4 (=1 the shortest path between any pair of nodes in & (1) can be identified
by back tracing.

Next, we show how to solve the APSP problem in ¢ @ using the solution of the APSP
problem in ¢ (=1), Now the sliding window moves one frame forward, and the interval /;
centres on frame i. Assume several tracklets are generated in [;, forming the set of nodes
;. Now we need to construct for each node n{ € 7 a table of APSP knowledge, where
each entry contains information about the shortest path in ¢ (@ from a node in ¥V~Y to

j

n;.
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Figure 5: Constructing the table of APSP knowledge for a node nlj € M.

In Fig. 5, the sub-graph inside the big rectangle represents @1 and a new node

n € ; is plotted as a shaded node. Assume s nodes in 901 are connected to nl with

edges. These s nodes are denoted by nul ,nf?z , and are plotted as dashed nodes

in Fig. 5. Edges that connect these nodes to n are denoted by eulljl, effzjw ,eff’jl, and are
plotted as dashed edges. Obviously, the number of entries in the table of APSP knowledge
in nl is equal to the number of nodes in «(=1)_Without loss of generality, let us consider
one entry in the table, which keeps information about the shortest path in & @ from a

node nlu e 9o nl] . In Fig. 5, nL is plotted as a striped node. Now observe that the

shortest path in () from n, to n] must go through one of the nodes in nf,'l ,n],fz, ,nf;j

and the corresponding edge in ei‘ljl, effz’l, ¢7. Since APSP has been solved in %01,
the information about the shortest path in ¢~ 1) from n!, to n” is kept in the table in nu ,

where r = 1,2,...,s. Let W= (n, nlr ) be the total weight of the shortest path in ¢~

ur Uy
from 7/, to n ,as kept in the table in n . Specially, if the table in n[r does not contain an

entry for n, 1t means u, < u, and we deﬁne for this case W= (n fi, lu’r) = oo, The total
weight of the shortest path in 4V @) from nu to n'l. is then:

WO (nl,nf) = min[w = (! nl’)—t—wl’j} Vre(l,s] (2)

ur'y u'u

where w 1s the werght of edge elr Jl The last node before nlj in the shortest path in ()

from rl, to ni is n!,, where

u*’

{u*,1*} = arg min}[W(’ D(nlnly) +wid] vr e [1,s] 3)

urly

The two pieces of information for one entry in the table in node n{ are thus obtained:
w0 (nl,n ) and n!, are put into the entry for 7, This process is applied to each node in

@i-1), whereupon the complete table in nlj is constructed. Using the special topological

property of the graph ¢ discussed at the beginning of this section, the shortest path in
«(i=1) between any pair of nodes in @(~1 is also the shortest path in ¢() between the
hij b ls.J

same pair of nodes. When the new node n and the associated edges €yl i Cuin 1 €t
.

u*

are added to @\~ 1>, the tables in the nodes in ¢~1) remain the same. This means that,
simply by applying the above process as new nodes (and associated edges) are received,
when the complete graph 4 = ¢ (K=V) is constructed, the APSP problem in it is solved.



657

SVMboundary | 4 | 3 | 2 | a1 | o | 1
ra 0917 | 0916 | 0.908 | 0.874 | 0.822 | 0.531
N 122 ] 90 | s1 [ 09 | o1 | o

Table 1: Detection rate and clutter level with various SVM boundaries.

The shortest path between any pair of nodes in ¢ can be easily identified by back tracing.
The proposed APSP algorithm is summarised as follows:

e Assume: the APSP problem in ¢4 (i=1) has been solved.
e For each node nl’ € N
— For each node n}, € 4(-1):
+ add an entry labelled n,ll to the table of APSP knowledge in nl] ;
s put WO (nl,n/) and n’. given by (2) and (3) into this entry.

u'vi

Let /; be the number of nodes in .4;. The number of nodes in sub-graph ¢ (=1 s
then ):};11 +v hi. To solve the APSP problem in ¢ (), we need to construct a table of APSP
knowledge for each node in .4;. The number of operations of this process is in the order
of h; Z};ll 4y’ The number of operations of the proposed APSP algorithm is then in
the order of Z,K: ’2‘1‘, (h; Z;;ll 4y hi). Simple manipulation shows that the complexity of the
proposed APSP algorithm is O(N?), where N = Zf: _1ka h; is the number of nodes in ¢¥.

S Experiments

We used 60 sequences from the 2006 Australia Open tournament Men’s final game for
our experiments. The number of plays in each sequence ranges from 2 to 4. In total the
60 sequences are approximately 16 minutes long, and contain 50,662 frames.

We used frame differencing to extract foreground moving objects. A Support Vector
Machine (SVM) was trained and used to classify the foreground blobs into ball candidates
and non-candidates. Features used in the SVM are the shape, colour and position of each
blob. By moving the decision boundary of the SVM, a trade-off can be made between the
ball detection rate r; and the average number of false candidates N in each frame. Table 1
shows 6 SVM boundaries and the corresponding r; and N. Using these 6 configurations,
we can evaluate a tracker’s performance under various detection rate and clutter level.

RDA and another two tennis ball tracking algorithms from our previous work [6, 7],
one based on particle filtering, and the other based on the Viterbi algorithm, were also
implemented for comparison. For these three trackers, one instance of the tracker was
used to track each play in each sequence, and track initiation/termination of each play was
manually dealt with. In RDA, the number of trials, N}, is chosen so that the probability
of finding a set that consists entirely of true positives is greater than a threshold y. In our
experiments, ¥ was set to 0.99.
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SVMboundary | 4 | 3 | 2 | a | o | 1
particle | 8.64% | 9.61% | 6.92% | 6.63% | 8.29% | 19.16%
prop. of | Viterbi | 4.14% | 3.88% | 3.41% | 3.23% | 3.64% | 4.12%
LOT | RDA | 17.06% | 15.73% | 12.43% | 9.18% | 6.99% | 7.27%
Frames | L’DA | 440% | 3.68% | 3.57% | 2.81% | 2.41% | 2.73%

Table 2: Proportion of loss-of-track (LOT) frames.

SVM boundary 4| 32| 1] o |1
particle | 21.0 | 23.2 | 25.1 | 26.6 | 28.8 | 30.7
processing speed | Viterbi | 31.3 | 36.7 | 40.4 | 42.2 | 459 | 473
(frames per sec) RDA 0.9 1.7 | 23.5 | 233.0 | 374.8 | 399.1
L°DA | 463 | 59.4 | 72.8 | 93.6 | 116.2 | 1424

Table 3: Processing speed.

To evaluate the performance of the trackers, ground truth of the tennis ball positions in
all frames was manually marked. Tracking results were then compared against the ground
truth. Tracking error is defined as the Euclidean distance between the ground truth and the
tracked (detected or interpolated) ball position. A loss-of-track (LOT) frame is defined as
a frame where the tracking error is greater than 6 pixels. Table. 2 shows the proportion
of LOT frames of each tracker with each SVM boundary. In brief, L3DA and the Viterbi-
based tracker outperform the other two trackers. When looking more carefully at Table. 2,
we can see the four algorithms have different failure modes.

When r; and N are both low, the particle-base algorithm performs poorly. This is
because the ball changes its motion drastically after being hit by a player. Consequently,
the next detected ball-originated candidate can be very far from its predicted position.
This is especially the case when ry; is low. As a result, the particle-based tracker can be
“trapped” by false candidates that have originated from the player, and cannot recover
until the ball is close to the player again. On the other hand, L’DA, being a non-iterative
algorithm, is much more robust against sudden change of motion direction.

RDA performs poorly when 7, and N are high. This is because in RDA, or more
generally in RANSAC, we make the implicit assumption that a model given by an un-
contaminated sample set is always “better” than that given by a contaminated sample set.
However, in a tennis sequence, especially when multiple balls are present, the ball being
tracked is not the only smoothly moving object. Candidates that have originated from
other balls, or even from part of a player, e.g. a wrist band, can form smooth trajectories.
As a result, a model given by candidates that have originated from the ball being tracked
can “lose” in the competition with a model given by candidates that have originated from
other objects. This problem is tackled in L*DA by enforcing motion consistency with the
shortest path formulation.

The Viterbi-based algorithm gives similar performance to that of L3DA. However,
L?DA has the advantage of being fully-automatic, while the Viterbi-based algorithm re-
quires an additional track initiation/termination mechanism.
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In Table 3, the speed of the four algorithms is compared. L3DA shares the top position
with the LDA. The fact that L’DA always starts model fitting from a seed triplet —
three candidates that have high probability of containing only true positives — allows
it to eliminate false candidates very quickly. The proposed APSP algorithm also helps
improve the efficiency of L’DA. It should be noted that as the SVM boundary increases,
RDA has the fastest growing processing speed. This is because the time complexity of
RDA is determined directly by N;, which drops rapidly as the proportion of true positives
increases.

6 Conclusions

In this paper, we have extended our previous work L?DA, a semi-automatic single-object
tracking algorithm, to L3DA, a fully automatic multiple-object tracking algorithm. This
was achieve by using APSP instead of SPSP at the tracklet level, and by adding one more
layer, path level analysis, on top of L’DA. In this paper, we have also proposed an efficient
APSP algorithm by exploiting a special topological property of the graph. The proposed
L3DA algorithm was used to track tennis balls in broadcast tennis video. Comparative
experiments show that it performs well both in terms of efficiency and tracking accuracy.
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Abstract

Shape from texture has received much attention in the past few decades.
We propose a computationally efficient method to extract 3D planar surface
orientation from the spectral variations of a visual texture. Under the as-
sumption of homogeneity, the texture is represented by the novel method of
identifying ridges of its Fourier transform. Local spatial frequencies are then
computed using a minimal set of selected Gabor filters. Under perspective
projection, frequencies are backprojected and orientation is computed so as
to minimize the variance of the frequencies’ backprojections. A comparative
study with two existing methods, and experimentation on simulated and real
texture images is given.

1 Introduction

Shape from Texture was first introduced by Gibson 50 years ago. In [7] he suggests that
texture can provide an important shape cue. However for a machine the solution to this
problem is ill-posed. Shape from texture is generally about measuring the texture distor-
tion in an image, and then reconstructing the surface 3D coordinates in the scene ([6],
[8]1, [9], [11]). The model for the texture can be either deterministic or stochastic. The
second allows a wider variety of textures ([9], [11], [13]) and implies local spectral mea-
surements, usually with the Fourier transform ([11]), or more recently, wavelets ([8], [3]).

An initial assumption about the texture is always necessary, and few of the existing
papers are applicable to real surfaces because of restrictive assumptions. [10] deals with
texels, which are seldom found in nature, while [14] assumes isotropy, rarely the case.
Homogeneity is more frequently used ([9], [6], [3]), and is the one we choose here. For
deterministic textures it can be seen as periodicity, for stochastic textures it can be for-
malized as stationarity under translation ([11]). Under this condition we assume that all
texture variations are produced only by projective geometry.

We assume here a perspective or pin-hole camera model, as in [4] and [12], because
perspective effects (e.g. shrinking) are usually found in images of slanted planes. We do
not consider the weak perspective case as this preserves homogeneity and therefore gives
no information on plane orientation ([5] and references within).

The present work takes its motivation from [12]. The texture is analyzed using Gabor
filters to produce distortion information based on local spatial frequency (LSF). Unlike
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[12], we do not just rely on a dominant LSF, but we consider groups of LSFs. This
extends [12] to exploit the multi-scale nature of textures. To our knowledge the algorithm
presented here is the first to consider the multi-scale nature of texture to the extent of
exploiting all main LSFs, most of the related work uses only two preferred directions in
the spectral domain (e.g. [13]).

Section 2 explains in detail how the texture is analyzed to produce distortion informa-
tion, and justifies the chosen method. Section 3 presents the projective geometry. Section
4 shows how we can recover surface 3D coordinates from the measured texture distortion.
Finally, section 5 presents results, comparing them with those in [8].

2 Texture Description

Here we describe how to set 2D Gabor functions and their first derivatives from the infor-
mation on texture supplied by the Fourier transform. The former provide local analysis to
compute instantaneous frequencies, which are used to measure distortion and reconstruct
the 3D coordinates of the texture surface.

2.1 Estimating the Instantaneous Frequencies

The analysis of an image I(x) is usually done using a band-pass filter 2(x,u), a function
of a point x = (x,y) and of a central frequency u = (u,v), which is convolved with the
image to provide the local spectrum. As in [12] we choose 2D Gabor functions:

—(xx)

h(x,u) = g(x)e*™*" where g(x) 22 (1

Rz

with j the unit imaginary and g(x) a 2D Gaussian function with variance 2.
For a 2D cosine f(x) = cos(2wQ(x)) the instantaneous frequency is given by

= (55 ) @

Our goal is to measure @(x). [1] shows that this can be done by considering a Gabor
function 2(x,u), and its two first order derivatives, /.(x,u) and £, (x,u):
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This estimate can be assumed to be correct if the frequency we are measuring is in the
pass-band of the filter. This method implies that we have to choose the central frequencies
u of the Gabor functions, and the spatial constants 7, in order to set the centre and width
of the filters. The filters have constant fractional bandwidth (bandwidth divided by its
centre frequency). This allows us to measure higher frequencies more locally than lower
frequencies and is computationally less expensive. Moreover, as all filters so derived are
geometrically similar it is simpler to compare their outputs.
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Figure 1: Setting the Gabor filters’ parameters

We choose to set the Gabor functions using the information from the Fourier trans-
form of the texture. Unlike Super and Bovik ([12]), who sample the whole 2D frequency
plane, we make a selection of Gabor filters using ridges in the Fourier transform of the
image. In our algorithm every ridge determines a set of Gabor filters that covers the corre-
sponding values of frequencies. Every ridge therefore determines different instantaneous
frequencies and thus different distortion measures.

2.2 Setting the Gabor Filter Parameters

Let us consider a 1D cosine (figure 1(a)). The signal has length of 128 samples and fre-
quency #@ ~ 0.42 rad/s (where 7 rad/s is by convention the biggest admissible frequency).
Figure 1(b) represents its spectrum amplitude, two symmetric spikes at the corresponding
frequencies (= +0.42 rad/s). A chirp is shown in figure 1(c), i.e. a cosine with frequency
varying from i =~ 0.42 rad/s to i ~ 1.27 rad/s. Figure 1(d) illustrates its spectrum, where
significant non-zero values span that range.

Analogously we show a 2D image generated by a 2D cosine with frequency |ii| & 0.42
rad/s (figure 1(e)) and its spectrum (figure 1(f)), given by symmetric spikes on the fre-
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quency value. And we compare them to figures 1(g) and 1(h), the image of a 2D cosine
with frequency ranging from |ii| & 0.42 rad/s to |@t| &~ 1.27 rad/s and its spectrum (circles
are fully explained later). In the latter, significant non-zero values form a ridge corre-
sponding to that range. Figures 1(g) and 1(h) were actually generated by slanting (see
section 3) image 1(e) through 38°. The ridges of the amplitude of the Fourier transform
of the image represent the 2D frequencies contained in the texture.

The algorithm we propose analyzes the spectrum of the texture to determine its ridges,
and then uses this information to define the sets of Gabor functions used. Figure 1(h)
shows the chosen set of central frequencies u (the centres of the circles) and the set of
spatial constants ¥ (their radii); half of the spectrum is considered because of its redun-
dancy. There is significant overlapping (50%) to produce a robust LSF estimation. How-
ever, unlike in [12], where 63 central frequencies and spatial constants sample the whole
2D frequency plane, here the number used varies with the image. 7 w’s and 7’s are used in
figure 1(h). This implies a significant reduction of the computational expense: in [12] 63
uw’s and }’s correspond to 378 convolutions (the Gabor filter and its first order derivatives
and an equivalent number of post-smoothing filters); our algorithm in this case uses 7 u’s
and 7’s, meaning 42 convolutions, therefore a computational saving of about 89%.

We now consider the case of multiple frequencies. Figure 1(i) shows the cosine from
the previous example (|@t;| = 0.42 rad/s) on which we have superposed another cosine,
with frequency |iiz| /2 0.63 rad/s, separated by 45° degrees from the first in the frequency
plane. The amplitude of the spectrum of the image (figure 1(j)) shows four peaks, corre-
sponding to the values of the two frequencies of the cosines. In this case we can associate
two instantaneous frequencies to each point, which in fact coexist at every pixel. Figure
1(k) shows the result of applying the same slant as in figure 1(g): each cosine has now
a continuously-varying frequency. Moreover the two LSFs change independently from
each other. In fact the first cosine acquires the same continuously-varying frequency as
in the previous section, and the second equivalently acquires a range of 2D frequencies
varying in the direction of the slant. This is what the amplitude of the spectrum in figure
1(1) shows. In it we can observe two ridges, each of them associated with the original
cosines, the spread indicating a variation or distortion due to the slant.

Our algorithm detects the two ridges and sets two groups of Gabor filters. In each
group a series of values for the central frequencies, u’s, and the spatial constants, }’s,
are defined, so as to determine the filters to cover the respective ridge area (figure 1(1)).
Every set of filters is processed as in the previous example, i.e. as if the texture contained
only one corresponding LSF. Thus each set of filters reconstructs an instantaneous fre-
quency for each pixel. These are used to measure the deformation of the texture due to
the slanting, are processed independently and finally the results are combined (details are
in section 4). In this sense we exploit the multi-scale nature of the texture, because all
different-scale frequencies are considered in the final result.

3 Projection of Texture

Here we describe the viewing geometry and a projection model, to provide a relationship
between the surface and the image plane as a function of the orientation. We then present
a surface texture model.
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Figure 2: Viewing geometry and projection model

3.1 Viewing Geometry and Projection Model

We adopt the viewing geometry and projection model of [12]. They assume a pin-hole
camera model and their coordinate systems are given in figure 2. In it the origin of the
world coordinate system X,, = (X, w,2w) coincides with the focal point and the optical
axis coincides with the —z,,-direction. The image plane coordinate system x; = (x;,y;) is
placed at z = f < 0, with | f| being the focal length, such that x; = x,, and y; = y,,. The
orientation of the surface is described using the slant-tilt system: the slant ¢ is the angle
between the surface normal and the optical axis, with values ranging from 0° to 90°; the
tilt 7 is the angle between the x;-axis and the projection on the image plane of the surface
normal, with values between —180° and 180°. The surface is described by the coordinate
system X; = (Xs,Ys,2s): the xs-axis is aligned with the perceived tilt direction, the z-axis
is aligned with the surface normal, y; forms a right handed orthogonal coordinate system
and the origin of X; is on the intersection of the surface with the z,,-axis, at z,, = z9 < 0.

[12], to which we refer for details of the derivation, obtains the equations for trans-
forming 2D surface to 2D image coordinates, and vice versa, under perspective projection.
Most importantly, they derive the relationship between the instantaneous frequencies on
the image plane w; = (u;,v;) and those on the surface plane u; = (ug, vs):

u, = J'(xi,X,) - u;. “)

J', the transpose of the Jacobian determinant of the coordinate transformation, is

sinc [x; y; f |cosocost cososint
t
Ty = S22 G g Ljes )
Zw Zw | —sinT COST
. . 20COS O
with  z, =z0 —xsinoc = f 6)

sino(x;cosT+y;sinT) + fcoso

We use the above to backproject a LSF computed on the image plane to the surface plane.

3.2 Surface Texture Model

We model textures as due to variations of surface reflectance, the proportion of incident
light reflected. We assume that the surfaces have a Lambertian reflection, and that the
texture is therefore ‘painted’” on them, without roughness or self-occlusion.
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Surface reflectance, #;(xX;), and image reflectance, #;(x;), are related by the following:
ti(xi) = k(x;) - 1[5 (x:)], (7

where x,(X;) represents the perspective backprojection, while k(x;) is a multiplicative
shading term. [4] shows how to estimate and remove k. However, if the scale of variation
of ¢, is small compared to the scale of variation of the shading term, then the latter can be
assumed to be constant in any small neighborhood. Moreover, our method automatically
normalizes for slow variations in illumination, shading and surface texture contrast, be-
cause it uses frequencies rather than amplitudes. Also no assumption is made about the
textural nature of #;(x;), thus it might apply to various patterns, e.g. lines, blobs, etc.

4 Computing Surface Orientation

We explain here how our algorithm processes the image texture to produce the orientation
of the surface texture.

As discussed in the introduction, we assume homogeneity, in the specific form that
the relevant LSFs of the textured surface are constant in the surface region under analysis.
Our assumption includes as a corollary that the variance of each LSF on the surface plane
is zero. The theoretical zero value means a minimum in the case of real data, and this
assumption is used to compute the surface orientation, i.e. the slant ¢ and tilt 7.

The structure of the proposed algorithm is therefore:

e The spectrum amplitude of the image texture is analyzed and ridges are detected.

e Each ridge determines a set of Gabor functions and their first derivatives, so that
the filters cover the frequencies pertaining to the particular ridge.

e For each set of filters the following steps are repeated:

— the image is convolved with the Gabor filters and their derivatives, and the
outputs are smoothed with a Gaussian to reduce noise;

— the Gabor filter with largest amplitude output is selected at each point;
— the (signed) instantaneous frequencies are computed at each point (eq. 3);

— a 2D search over the plane -7 is implemented: for each couple (o,7) the
instantaneous frequency is backprojected using equation 4, and the variance
Vs,r is computed;

— the values of ¢ and 7 corresponding to the minimum variance are chosen, and
the variance is also returned.

e The algorithm chooses the best couple (o,7) as that giving the lowest variance.

The minimum variance (Vs ;) method requires the estimated instantaneous frequen-
cies to pertain to the same slanted and tilted LSF in every group. This is not assured if
we use a grid of Gabor filters and choose the largest amplitude output, as in [12]. In this
case, maximum outputs might then correspond to different groups of LSFs for different
pixels in textures with more than one dominant frequency, which invalidates the orienta-
tion estimation. Our algorithm allows us to estimate instantaneous frequencies pertaining
to distinct groups because it uses separated sets of filters. This improves its robustness.
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Figure 3: Images synthesized from Brodatz textures

Image(True 1 76, |tgr — 7| Ture |Turc — 7|True o) o6L |06L — O OnLC|OHLC — O]
D20 160 |160.45 0.45 [160.05 0.05 37 B37.36 036 P37.53 0.53
D52 -60 |-60.28 0.28 |-61.08 1.08 50 49.55 045 4958 042
D57 90 [91.00 1.00 |91.41 1.41 70 [70.37 0.37 67.30 2.70
D65 60 |5948 0.52 |55.00 5.00 50 48.71 129 54.38 4.38
D82 90 |89.63 0.37 |90.71 0.71 50 49.16 0.84 U¥8.62 1.38
D84 135 |134.16 0.84 [128.58 6.42 35 3532 032 3326 1.74
D95 -155 15492 0.08 |158.57 3.57 27 25.89 1.11 P845 1.45

Table 1: Tilt and slant results of our method (TG, Ogr) on images synthesized from
Brodatz database textures, compared to the results of [8] (Tyrc, Onrc) (angles in degrees)

All the relevant frequencies are used. Eventually, we choose the pair (¢,7) with the
lowest Vs r as we assume that lower values of residual variance, closer to the ideal zero
value, correspond to better orientation estimates. As results from all ridges are accurate,
future work might address combining these to produce better estimates.

Finally, the algorithm lends itself well to parallel implementations, because each ridge
and filter can be processed independently and implemented by different units.

5 Results

We demonstrate our method on two sets of images. The first (figures 3(a)-(g)) is derived
from [8], whose results we use for comparison. The images in this set were synthesized
by mapping real textures from the Brodatz database ([2]) onto an inclined surface and
then rendering it as a new image. Table 1 shows the results achieved compared with those
from [8]. Our average estimation errors for T and ¢ are 0.51° and 0.68° respectively,
while Hwang et al. ([8]) achieve corresponding values of 2.6° and 1.8°. The accuracy
of our method is significantly higher. As in [8], we add various levels of white Gaussian
noise (SNR ranging from 20 to —5 dB) to the images of the textures D20, D52, D82, D95
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Figure 4: Real images of texture planes

(the latter with SNR=—5dB is shown in figure 3(h)). Note that our estimates are always
closer to the noiseless result than those of [8], thus indicating increased robustness.

The second set (figures 4(a)-(k)) consists of real images. All of them are the central
128x128 parts of 640x480 pictures. Figure 4(1) presents the whole image from which
figure 4(i) was derived. As can be seen, the textured object was laid flat on a panel of
known orientation (obtained using a multiple camera system prior to the experiment) and
photographed with a Pulnix TM-6EX camera. The chosen textured objects were mainly
fabrics, but also included some different materials. It is clear that the pictures are af-
fected by variations in illumination and self shadowing (4(h)), creases (4(e)), imperfec-
tions (4(b), 4(a)) and occlusions (4(d)). Table 3 shows the results we obtained, compared
to the ground truth. On average, tilt and slant were estimated with an error of 1.3° and 1.5°

SNR (dB)

Image (7/0) oo 20 10 0 -5
D20 (160/37) || 160.4/37.4|159.5/37.1 | 159.6/36.8 | 159.6/37.3 | 157.3/37.3
D52 (-60/50) || -60.3/49.5 | -58.7/47.6 | -64.4/49 | -67.2/46.6 | -61.6/34.3
D82 (90/50) 89.6/49.2 | -89.1/51.3 | 90.6/52.3 | 86.1/45.4 X
D95 (-155/27) ||-154.9/25.9|-158.8/25.2|-159.8/26.2{-160.8/25.4|-160.6/24.5

Table 2: Surface orientations (7/0) estimated using our method on noisy images - true
values are in parenthesis (X indicates that the results were not reliable) (angles in degrees)
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Image True v TGL |TGL — T| True ¢ OoGL |GGL — G|
rubber 118.8 | 1183 0.5 35.3 334 1.9
pagel -152.8 | -153.3 0.5 23.6 234 0.2
page2 123.6 | 121.3 23 36.9 34.0 29
pyjamas | -152.8 | -151.2 1.6 23.6 20.2 34
p’casel -123.6 | 123.2 0.4 36.9 344 2.5
p’case2 -146.5 | -147.7 1.2 32.7 33.6 0.9
shirt 103.2 | 107.5 4.3 33.6 31.2 24
sponge -158.3 | -157.9 0.4 25.5 25.1 04
towel 146.4 146.2 0.2 38.8 39.9 1.1
trousers 118.8 | 118.7 0.1 35.3 35.2 0.1
T-shirt 123.6 | 121.3 23 36.9 35.7 1.2

Table 3: Tilt and slant results of our method (7gz,061) on real images (angles in degrees)

respectively. These data confirm both the accuracy and the robustness of our algorithm.

All processed images were 128x128 pixels with 256 levels of gray. The backprojec-
tion of the computed LSFs for each value (o, 7) was done just for the middle section of
the image (here 64x64), so as to avoid edge effects. The constant fractional bandwidth is
one half, and the space constant of the post-smoothing Gaussian filter is 1/12 of the im-
age. We could not apply our method to those images in [12] because we could not gather
all the data of the original setup. Processing the 18 images, 46 ridges of the Fourier trans-
form were detected, that determined 232 Gabor functions. On average the number of
convolutions per image was therefore 77.33. Compared to [12], where 378 convolutions
per image are used, we save 79.54% in computational power.

As stated in section 1, the homogeneity assumption requires some sort of periodic-
ity/stationarity: the algorithm can deal with as little as 6 cycles/picture.

Finally, we address the possibility that ridges might superimpose. This may be the
case when a texture composed of close frequencies is slanted. Such a superposition can
easily be spotted by our algorithm, as it results in gaps in the frequency estimation. We
solve it by considering a smaller patch of the image, e.g. 96x96 instead of 128x128. In
this way the range of variation of frequencies analyzed by the Fourier transform is smaller
and hence there is less chance of observing the superposition.

6 Conclusions

The study presented here has characterized the variations of the dominant LSFs in textures
via the ridges of their Fourier transforms, and used those to estimate the orientation of sur-
face textures. Numerical results have been given on both semi-synthetic and real images
and compared where possible with other work. Our algorithm is more accurate, simple to
implement, and has the potential to be extended to more complex surface shapes.

To our knowledge, the proposed algorithm is the first to consider the multi-scale nature
of texture to the extent of exploiting all main LSFs. Furthermore, it is robust against
shading, variations in illuminations, and occlusions, and performs well in the presence of
added Gaussian noise. Finally, it is based on the Fourier transform of the image and on a
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minimal number of convolutions, results are therefore computationally fast.
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Abstract

The paper proposes a new edge-based multi-object tracking framework, MO-
TEXATION, which deals with tracking multiple objects with occlusions us-

ing the Expectation-Maximization (EM) algorithm and a novel edge-based
appearance model. In the edge-based appearance model, an object is mod-
elled by a mixture of a non-parametric contour model and a non-parametric
edge model using kernel density estimation. Visual tracking is formulated
as a Bayesian incomplete data problem, where measurements in an image
are associated with a generative model which is a mixture of mixture models
including object models and a clutter model and unobservable associations
of measurements to densities in the generative model are regarded as miss-
ing data. A likelihood for tracking multiple objects jointly with an exclu-
sion principle is presented, in which it is assumed that one measurement can
only be generated from one density and one density can generate multiple
measurements. Based on the formulation, a new probabilistic framework of
multi-object tracking with the EM algorithm (MOTEXATION) is presented.
Experimental results in challenging sequences demonstrate the robust perfor-
mance of the proposed method.

1 Introduction

Visual tracking is an important research area of computer vision. Previous work on edge-
based contour tracking includes contour tracking with Kalman filtering [3] or particle
filtering [9], contour tracking with the EM algorithm [14], which are all for single object
tracking. Some similar previous work on joint tracking of multiple objects was presented
in [12, 10, 17]. In [10, 17] multi-object tracking with particle filtering was proposed.
However the number of samples will grow exponentially with the number of objects, and
usually the depth order of multiple objects is needed or needs to be jointly estimated. In
[12] Joint Probabilistic Data Association (JPDA) with the exclusion principle is applied
to multiple contour tracking in comparison with Probabilistic Data Association (PDA) for
single contour tracking in CONDENSATION [9]. Due to the complexity of enumerat-
ing all feasible events, the extension to track more than two objects is computationally
expensive and also the depth order needs to be estimated and used in the likelihood. On
the other hand, many iterative algorithms were proposed for color-based tracking(though
only for single object tracking), including mean-shift algorithm with color histogram [6],
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kernel-based tracking with spatial-color non-parametric model [8], EM-like tracking with
spatial-color Gaussian mixture model [18].

This paper proposes a new edge-based multi-object tracking framework, MOTEXA-
TION, which deals with tracking multiple objects with occlusions using the EM algorithm
and a novel edge-based appearance model. The proposed approach differs from previous
similar work on contour tracking [3, 9, 12] mainly in three aspects: object model, like-
lihood and inference used. In the edge-based appearance model, an object is modelled
by a mixture of a non-parametric contour model and a non-parametric edge model using
kernel density estimation similar to that for color-based non-parametric model [8]. Visual
tracking is formulated as a Bayesian incomplete data problem where measurements in an
image are associated with a generative model which is a mixture of mixture models in-
cluding object models and a clutter model and unobservable associations of measurements
to densities in the generative model are regarded as missing data. A likelihood for tracking
multiple objects jointly with an exclusion principle is presented where it is assumed that
1. one measurement can only be generated from one density 2. one density can generate
multiple measurements. The first assumption incorporates the same exclusion principle
essential to track objects during occlusion as that of [12], based on JPDA, whereas the sec-
ond assumption is relaxed like that of Probabilistic Multi-Hypothesis Tracker (PMHT)
[15] to allow one density to generate multiple measurements rather than one measure-
ment only. This significantly reduced the complexity of enumerating all feasible events in
comparison with JPDA. Tracking multiple objects jointly will increase the dimensional-
ity of state space and often the likelihood will become sharply peaked [16], which makes
tracking with particle filtering difficult. The iterative EM algorithm is employed for multi-
object tracking due to its monotonicity property which can seek the mode of the likelihood
or the posterior despite high dimensional state space and sharply peaked likelihood. In
addition it is also possible to combine edge features with color features using the iterative
algorithm, for more robust tracking.

The organization of the paper is as follows. Tracking is formulated in Sec. 2; Multi-
object tracking with the EM algorithm is presented in Sec. 3; Results are given in Sec. 4
and the paper is concluded in Sec. 5.

2 Tracking formulation

State vector is denoted agt) = [x(t) y(t) a(t) b(t)]" where[x(t) y(t)]" is the spatial
position of the object centreg(t) andb(t) are the width and height of the object re-
spectively. A second order auto-regressive model is employed as the dynamical model,
X(t) = A1x(t — 1) + Axx(t — 2) + Bow(t) wherew(t) is Gaussian noise/ (w(t);0,1).

2.1 Gating and clustering

Edge measurements are first detected by Canny edge detector [5]. The gating procedure of
PDA is then applied. A validation region is computed based on the predicted state vector
using dynamical model for each object so only measurements from within the validation
region of the predicted state vector are used [1].

The clustering procedure from JPDA is also employed [1] for multi-object tracking.
Multiple objects are first grouped into clusters and then are tracked jointly in each cluster.
It often occurs that more than one object are grouped into the same cluster if there are
occlusions between objects. After clustering, measurements in validation regions of all
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objects in a cluster are used for jointly tracking multiple objects in that cluster. Measure-
ments in a cluster are denotedzs- {z};, whereN is the number of measurements

Ui

in a clusterzi = , Ui = [xi,yi]T andv; = 8 € [0,2m) are the spatial position and

i
orientation ofith edge measurement respectively.

2.2 Object model

The edge-based object appearance mogel) is a mixture of a non-parametric contour
modelpcon(z), which consists of contour sample points, and a non-parametric edge model
Pedgd(Z), Which consists of edge pixels inside the object contpl(z) = TeonPcon(z) +
TedgdPedgd Z) WhereTgon andrqgeis the mixture weight of contour model and edge model
respectivelyyton+ Tedge= 1.

For the non-parametric contour model,

Mcon Mcon

= Jeon(Z;Meonj,2) =
Mcon JZ:L con( conl ) Mcon =

Pcon(2) A (U; Uconj, Zu)Hu.con(V; Veonj, Zv)

Ucon

where Meonj = [ ] Uconj andVeonj = Bconj € [0, 1) are the spatial position

Veon
and orientation of the normal gth contour sample respectively,= { Zc;, ZO } 2y
V
and %, = o3 are the fixed covariance of spatial position and orientation respectively,
B dgon(e‘econj)

4 con(V;Veonj, Zv) O e 205 anddcon(6, Bconj) € [—3, 3]. Object contour is ex-
pressed parametrically gcon = f(s,X) wheresis the contour parameter. An ellipse can

be used for head tracking and more complex contours can be represented by B-spline [4].

For the non-parametric edge model,

Medge Medge
pedge(z) = M Z <7£/edge(Z; medgejaz) = M Z =/V(U;Uedgej7Zu)=}{v,edge(V;Vedgej7Zv)
edge =1 edge =1
u i . .
wheremeggej = V:;’g:; } , Uedgej @NdVedgej = Bedgej € [0, 27) are the spatial position

and orientation ofth edge pixel inside the object contour respectivety/eqgd V; Vedgej 2v)

9 ®Oedge;)
Oe 203 anddeqgd 6, Bedgej) € [—TT, 7).

Note that contour modegb.on(z) can be regarded as a “stable” component and edge
model pedgdZ) as a “wandering” component in the object model [11]. Rewpjtg) as

M ) ) M Mcon Tledge Medge
p|(z)_jzle(/i/(u,uj,Zu)Ji(,,,-(v,vj,Zv)Where{w,-}j_l—{{,\’,m}j1 ’{dege}j:l }

{m; }?":l = {{mconj }'j\gﬂ {medgej}?ﬂjige}, M = Mcon+ Meggeand later on for brevity,
it will not be specified whether a density is from contour model or edge model.

2.3 Clutter model

A clutter modelpc(z) is used to assimilate the measurements not from objects. It also

corresponds to a “lost” component [11]. Uniform density is use@$a) = pc = \ﬁ
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(b)

Figure 1:Comparison of (a) joint tracking likelihoop(Z |x1,x2) with exclusion principle and (b)
separate tracking likelihoop(Z |x1) p(Z|x2).

where\,, andV, are the volume of validation region and of feature space without valida-
tion respectively [1].

2.4 Likelihoods

To explain measurements of a cluster with more than one object, the generative model is
a mixture of mixture models including transformed mixture models of all objects in that
cluster and a clutter model. The generative model can be writtexizs) = m.pc(z) +

L

S 1ipi(z|x), wherex = {x|}f‘:1 includes state vectors &f objects in a clusterg and
1=1

T are the mixture weight of thigh object model and clutter model respectively apd-
1=

L M
Sn=Lpzx)= zl @ A (U Tu(Uj, X ), Zu) A4, (Viij, Zv) is the transformetth
2 ; ;

object model assuming unchanged orientation feature védiandc) ; are the number
of densities angth mixture weight in théth object model respectively.

Assuming measuremersare drawn independently from the generative maqugelix),
the likelihood given the incomplete dafais

N N
P(Z[x) = D p(zix) = i|:|

Despite its simplicity, the same exclusion principle as that in [12] is included in the
likelihood 1 in comparison with likelihood of tracking multiple objects separately

L
TEDc+|;TED| (Zixl):| (1)

L L N
Z(x) = D P(Z|x) = Bﬂ [Tepe + (1.0 1%) p(zi[x1)] ()

Fig. lillustrates a 1D example with 4 measurements and 2 objects with 1 density each
as thatin [12].

In practice the assumption of independent measurements is not valid if measurements
are close to each other as there are strong correlations between measurements [16]. A
more practical likelihood is to incorporate measurement weights described in section 2.5,

L

N di
P+ ) Tpi(zilx )} (3)
1

P(Z[x) = i|:|

whereaq; is weight forith measurement.
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From the viewpoint of the Bayesian incomplete data problem, the missing data of
association of measurements with densities are introduced and dendte¢ k; }. ,
andk; = {k!,k?} wherek! € {1,---,L,c}, k! = c indicates the association with clutter,
andk! =1, € {1,---,L} association with objedt k? € {1,--- Ma} gives the association
with one of the mixture densities kfth model. Assuming that 1. a measurement can
have only one source 2. more than one measurement can originate from a density, where
the first assumption is the same as that of JPDA known as exclusion principle in [12] and

L
the second assumption is relaxed similar to that of PMHT, therélare (¥ M, + 1)N
I=1

feasible event§ x,, wil. The likelihood given the complete data is

P(Z,K=K(xn)X)O [ Tepc ﬂ e jA (Ui Tu(urjX1), Zu) 40,0, (Vis Vi, Zv)
ikl (xn)=c KL (xm) =!

W)

4
For comparison, JPDA can also be viewed in light of Bayesian incomplete data prob-

lem with a slightly different assumption that 1. a measurement can have only one source 2.
min(N,M)

no more than one measurement can originate from a density, so theregre ——M:N:
n=0

(M—n)I(N—n)!In!
feasible events. Denotdy(xn) as number of densities which have no allocated measure-
ments and\1 (xn) as number of densities which have only one allocated measurement in
a feasible evenky, the likelihood given complete data in JPDA is

P(Z,K = K (Xn)[X) O pNM00) e (N — Ni(Xn)) (1 — Py Pg)NotXn) (P )N xn) (NNt
< AU Tu (U, X)), Zu) 25, (Vis Vi, Zv)

il k]2<X )j
whereP is the detection probabilityys is the probability that the true measurement will
fall in the validation regionpe (n) is the probability mass function of the number of false
measurements [1].

After marginalization of equation (4p(Z|x) is factorized ta\ terms in equation (1)
min(N,M)

in comparisonwith ¥ MiN! m > N terms in marginalized likelihood of JPDA.
n=0

(M—m)!(N—

2.5 Measurement weighting

Histogram back-projection is used to incorporate background information. A background
edge orientation hlstograkﬁh.} with Ng bins of orientation is built by using the edge
pixels in a rectangular window surroundmg each object. The background histogram is
adapted online by weighted sum of previous background histogram and background his-
togram built given current object state estimation.

A ratio h|stogram{r|}| ) is computed by; = min (H ) whereh = min (hi). Mea-

ithi>0

7) x 55, where

|§ Th(zj)

surement weightr; is computed from the ratio histogram es=

b(z) denotes the bin to which belongs andr is a constant.
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G2 ¥

Lower Bound

6
Iteration

(a) Initial estimation (b) Final estimation (c) Lower bound

Figure 2:Iterative update of EM algorithm where edge measurements are marked in yellow: (a)
initial estimation, (b) final estimation, (c) lower bound increasing monotonically.

Measurements with orientations occurring most commonly in the background will
have the lowest weight and measurements with orientations which are not in the back-
ground will have the highest weight. If the ratio histogram is uniform, it degenerates to
the case that each measurement has the same vmeigh% X 2%2

3 Multi-object tracking with the EM algorithm

State vecto(t) is estimated by either Maximum Likelihood (ML) estimati@t) =
argmaxp(Z (t)|x(t)) or Maximum a Posteriori (MAP) estimatictit) = arg maxp(x(t)| Z(t)),
X(t) X(t)

whereZ(t) = {Z(j)}‘jzo, using the EM algorithm [7] and its generalization [13].
From Jensen’s inequality it can be shown that

L M P (U T X)), Z0) 2 (Vivi 2y
logp(Z|x) = Za|og[’”’°< Got 5 quunm" - (ULJ;'J)A,,- Lt )}
>3 0 G log TR Z Z Giy.jlog 2 /V(U"Tu(ul'l’:ill)”sz)J/Vv'vJ<V|'V|,Jvz\/) }

i=

whereg;i ¢ = p(k! = c), gi;,j = p(k! =1,k? = ]) are the probabilities of missing dataand
L M
Gict Y Zl gi),j = 1. So the lower bound of likelihoodw (Q,x(t)) for ML estimation
15151

and lower bound of posteridkap(Q, X(t)) for MAP estimation are

@ A (Ui Tu (U % (8),20) A4, (Vi j,2v)

a. |Ognf:pc2| +Z quljlog G

MQXD) = 3 a

(5)
IMar(Q;X(1)) = IuL(Q,x(t)) +log p(x(t)| 2 (t — 1)) (6)

N
whereQ = {Qi,m {{Qi,l-,] }’jvlzll}:_:l}i:l'

The prior is given by

L
p(x(t)|Z(t-1)) = |_lp(><| Oz (t-1) =
=
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Algorithm 1 Multi-Object Tracking with the EM Algorithm (MOTEXATION)
1. Predict by equation (7)

2. EM algorithm
k=1, xO(t) =x(t)
(i) E-step by equation (8)
(ii) M-step by equation (9) or equation (10)
if ( x" (1) 7x|<k*1)(t)H <&l=1,--,Lthen
%(t) =x®(t) and stop
else
k=k+1go to (i)
end if

whereX, (t) = A% (t — 1) + A% (t — 2) andP, (t) ~ BoB}] are the predicted state vector
and covariance dtth object respectively,
In E-step, given fixeat ) (t), maximizedw (Q,X(t)) or Juap(Q,X(t)). LetTu(u, ;% (t))

=W, jx (t) whereW, j is Jacobian of the transformation. At iteratirQ(® is

qi(,l,j O ﬁoﬂ,iﬂ(uiiwu,jxfkm (), Zu) 00,5 (Vi v, Zv) ®)
L M .

de+3 3 dyj=li=1-N
I=1j=1 "’

In M-step, giverQ™, maximizeJu (Q,x(t)) or Juap(Q,x(t)). At iterationk, x(t) is
given by

M “1rwm
K =kt (k)1 (k
it = | S w5 s ) ®
= =
or
® M smhy s ] [T 00 5 1
Xmap(t) = | > W2y Wij+P(t) ZWI,szj O +P %) (10)
=1 j=1
K g aiqf}l(?jui ~
Whereﬁl( j> ==L s the synthetic measurement azﬁ) = 2 is the synthetic
’ s aigy; ’ s aigly;
= il = il j
covariance.

The main stages of multi-object tracking with the EM algorithm are given in algorithm
(1) and the iterative update of MAP estimation is shown in Fig. 2 where the lower bound
of posterior is also verified to be increased monotonically.

4 Results

The experiments are carried out in challenging test sequences with heavy occlusions. With
unfully optimized C++ code, it runs comfortably at averd@g@71s per object per frame



t=5210 t=5286 t=5380 t=5420 t=5430
Figure 3:Tracking results ofoffice” sequence©Mitsubishi Electric ITE 2005.

t=425 t=433 t=450 t=460 t=475

Flgure 4:Tracking results ofhead” sequence.

AR
gt

N

t=1060 t=1180 t=1280 t=1296 t=1380
Figure 5:Tracking results ofCaviar OneShopOneWait2corSequence.

on 3GHz Pentium IV. Note that to illustrate joint tracking of multiple objects in a cluster,
white lines show the links between objects which are tracked jointly in the same cluster.

Three results of multiple head tracking are shown and the size of head also varies
from small ones to large ones. Fig 3 shows multi-object tracking results dioffiee”
sequence, in which there are dramatic appearance changes, scale changes and four heavy
occlusions. The light green ellipse occluded dark green ellipse from frame 5280 to 5320,
from frame 5340 to 5370 and from frame 5380 to 5410. The red ellipse occluded both
light green and dark green ellipses from frame 5410 to 5424.

The results ofhead” ! are then given in Fig. 4 where there are two heavy occlusions
from frame 420 to 442 and from frame 452 to 468.

Fig. 5 shows the results ¢Caviar 2 OneShopOneWait2corequence where the
size of target heads are quite small and there are two heavy occlusions from frame 1166
to 1176 and from frame 1276 to 1292.

To track more complex contours, a B-spline contour model is learned as that of [2, 4].
Results of‘Caviar EnterExitCrossingPathslcor2%equence are given in Fig 6 where
there are large appearance changes, scale changes and one heavy occlusion from frame
86 to 100.

Fig. 7 presents the results &€aviar OneStopMoveEnterlcor28equence, a very
crowded and cluttered scene involving large appearance changes, scale changes and also
one heavy occlusion from frame 256 to 272.

1The sequence is from http://vision.stanford.edu/ birch/headtracker/.
2The EC Funded CAVIAR project/IST 2001 37540, see http://homepages.inf.ed.ac.uk/rbf/CAVIAR/.
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t=0 t=80 t=90 t=150 t=350

t=0 =262 =276 t=300 =480

Figure 8: Examples of tracking failure. (a)(b) tracking multiple objects separately using the EM
algorithm, (c) contour tracking with CONDENSATION, (d) mean-shift tracking with color his-
togram.

It should be noted that if multiple objects are tracked separately using the EM algo-
rithm with likelihood 2, which does not have exclusion principle, objects may be lost
during occlusion as shown in Fig. 8(a)(b). The proposed method has also been compared
with contour tracking using CONDENSATION [9], color tracking using mean-shift [6]
and both failed when there are heavy occlusions. Examples of tracking failure are shown
in Fig. 8(c)(d).

5 Conclusions

The paper proposes a new edge-based multi-object tracking framework, MOTEXATION,
which deals with tracking multiple objects with occlusions using the EM algorithm and

a novel edge-based appearance model. In the edge-based appearance model, an object
is modelled by a mixture of a non-parametric contour model and a non-parametric edge
model using kernel density estimation. Visual tracking is formulated as a Bayesian in-
complete data problem where measurements in an image are associated with a generative
model which is a mixture of mixture models including object models and a clutter model

and unobservable associations of measurements to densities in the generative model are
regarded as missing data. A likelihood for tracking multiple objects jointly with an ex-
clusion principle is presented. Based on the formulation, a new probabilistic framework
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of multi-object tracking with the EM algorithm (MOTEXATION) is presented. Results
in challenging sequences demonstrate the robust performance of the proposed method.
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Abstract

This paper describes a method for articulated 3D upper body tracking in
monocular scenes using a graphical model to represent an articulated body
structure. Belief propagation on factor graphs is used to compute the margi-
nal probabilities of limbs. The body model is a loose-limbed model including
attraction factors between adjacent limbs and constraints to reject poses re-
sulting in collisions. To solve ambiguities resulting from monocular view,
robust contour and colour based cues are extracted from the images. More-
over, a set of constraints on the model articulations is implemented according
to human pose capabilities. Quantitative and qualitative results illustrate the
efficiency of the proposed algorithm.

Figure 1: Upper body tracking. First row: original image, front, right side and top views
of the obtained limbs positions with a single camera. Second row: background subtrac-
tion, contours, face colour map and energy motion distance map.

1 Introduction

Algorithms for body tracking must cope with a high dimensional space in which the
joint probability function is highly multimodal and sharp. In this context, deterministic
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Figure 2: Limbs interactions (Left): nodes correspond to limbs, articulation constraints
are represented by solid lines and dashed lines are additional non-collision constraints
between head and hands. Upper body model (Right): arms and forearms are modeled by
cylinders and the head by a sphere. Other limbs (hands torso and clavicles) are represented
by 2D patches. Limb interaction factors are computed with the distances (Dn, Ds, De, Dw)
between them. Other joints constraints are determined by the angles 64, ¢ and 8¢. The
neck is located at equal distance from both clavicles.

methods can track in real time with stereo cameras [5], but may fail for monocular view
because of the many local optimums owing to ambiguities in monocular scenes [13].

Due to articulation constraints, consistent poses are bounded in a smaller subspace
making learning based tracking methods efficient if their learning set sufficiently covers
this subspace. Various regressions methods, aiming at deducing a pose directly from an
image, have been tested on walking sequences with constrained environments [2]. Non
negative matrix factorisation [1] can enhance such methods by rejecting non discrimina-
tive data. Other methods like GPDM [15] introduce probabilities in the computation of a
latent space to smooth the resulting pose, but test scenes are restricted to cyclic motions.
Other methods that perform a comparison between an image and a learning base require
a huge database even when robust locally-weighted regression between candidates poses
is used [10]. Increasing the data base may slow down drastically the comparison process
and, to speed up the selection of a subset of nearest neighbours, the comparison process
can use locally sensitive hashing and Hamming distance [14]. The likelihood of a body
pose is computed with this previous method using a Bayesian framework but some poses
that are dissimilar to the learned ones are not correctly estimated and generally, the huge
pose space and the variability in external parameters such as clothing or hairstyle is the
major cause of failure in learning based methods.

Stochastic algorithms are useful in monocular vision to resolve ambiguities resulting
from 2D to 3D pose inference, particularly when a multi-hypothesis algorithm, such as
particle filtering [4], is used. The main drawback with such methods is the high dimen-
sional pose space. A way to avoid this problem consists in using a loose-limbed body
model [11] where the likelihood of each limb is evaluated independently. In this manner,
a particle filter can be associated with each limb reducing the search space dimension
to the number of dof of a limb [3]. Influence between limbs is taken into account by
propagating limb beliefs through a factor graph using belief propagation [8]. A similar
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Figure 3: Factor graph. Circles corresponds to variable nodes (limb states) and black
squares to factor nodes (temporal coherence T and interaction or non-collision factors
y*Y). For clarity, only two consecutive frames with two temporal factor links are shown
and the factor nodes corresponding to the observations Y'* are omitted.

technique is used in monocular scenes [7] with only motion energy as cue to detect arms
and forearms position.

In this paper, the number of cues is increased to enhance the robustness of the tracking.
Moreover, the use of interacting particle filters with belief propagation [3] simplify our
algorithm by computing recursively an estimation in a discrete space instead of using, for
example, a Gibbs sampler in a continuous one [11]. More general articulation constraints
rules are built in the compatibility factors computation instead of learning them from
specific walking sequences with a mixture of Gaussians [11]. The proposed algorithm
performs at six fps using a standard webcam.

2 Recursive Bayesian tracking

The upper body is modeled as a graph including M limbs represented by nodes and links
corresponding to articulations or non collision constraints between limbs (figure 2). Ba-
sically, a Markov network can be used to represent this structure but the non-collision
constraints between the head and the hands generate a three nodes clique. A factor graph
is constructed to simplify the model by using only pairwise factors [3]. The joint proba-
bility can be decomposed as a products of these factors. The complete graph includes the
previous states to take into account the temporal coherence (figure 3). Given a limb p,
its state Xt“ at time ¢ and the image observations Y, the model parameters are the obser-
vations compatibility factors ¢ (X*,Y*), the time interaction factors T* (X!, X" |), and
the interaction factor for the link between limbs p and v: y*V(X* XV). Adopting these
notations, the joint probability knowing all observations from time 0 to 7 is:
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Figure 4: Articulations constraints. Arm and forearm: dashed lines show limb forbidden
areas. The angular constraints are |6,.| < 15° for clavicles and |6| < 25° for head.
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The marginal probabilities of the limbs’ state are obtained using the belief propagation
algorithm on a factor graph [3]. As the graph includes cycles, the obtained marginal is
an approximation of the true one. This approximation further depends on the messages
update order. To simplify the algorithm, the messages are propagated to all nodes within
the current frame for a fixed number of iterations (10 in our case) and then propagated
only once from a frame to the following one. Therefore, the estimation of a marginal
at any time t does not depend on the observations after time ¢, and the estimation of the
marginals can be computed recursively.

The messages are represented by sets of weighted samples. From one frame to the
next, they are calculated using a particle filter scheme consisting in a re-sampling step
followed by a prediction step based on the time coherence factors [4]. The loopy belief
propagation algorithm is then reduced, for the current frame, to a loopy propagation algo-
rithm for discrete state spaces, the space state for each limb being restricted to its samples.
Moreover the marginal probability is then simply represented as a weighted sum of the
same samples. In this manner, a full recursive estimation is obtained. The algorithm is
equivalent to a set of interacting particle filters, where the sample weights are re-evaluated
at each frame through belief propagation to take into account the links between limbs.
This algorithm is relatively fast because for a frame ¢, as opposed to [11], the image based
compatibility factors ¢* (X', ¥*) have to be evaluated only once for each sample, and the
link interaction factors only once for each pair of samples for all connected limbs.
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3 Application to monocular upper body tracking

The model is applied to articulated upper-body tracking using monocular colour images
from a webcam. Head and hands are tracked using image colour information and grey
levels are used to compute cues: background subtraction, motion energy and orientation
contour map (figure 1).

3.1 Initialisation

An accurate face detector [6] is used to detect the face in the colour image. Once detected,
a starting pose corresponding to the arms along the body with the torso vertical and facing
the camera is supposed. The tracker can easily recover the real pose as long as it is not
too far from this hypothesis. The detected face is also used to initialise a face colour
histogram.

3.2 Body model and link interaction factors

Figure 2 shows the body model. 3D limbs are represented by a sphere for the head and
cylinders for arms and forearms. Hands, clavicles and torso are represented by 2D patches
using respectively circles, triangles, and a rectangle. Limbs are discretized using a grid
of regularly distributed points around them. A Gaussian of the distance between two link
points is used to compute the link interaction factors (see figure 2 for distances Dn, Ds, De
and Dw). This Gaussian is zero centred for the shoulder-arm and arm-forearm joints, and
on a reference distance for the head-neck and forearm-hand joints. Other constraints are
added giving zero factor for angles 6/ and 6¢ above a fixed threshold (figure 4). Three
additional links are defined, which simply give a zero probability to solutions where hands
and head intersect (non collision constraints).

3.3 Time coherence factor

The time coherence factors TH (Xt“ 7Xfi ,) are simple Gaussian, independent for each pa-
rameter, centred on the value in the previous frame. For hands, which can move fast and
rapidly change speed, the time coherence factors is a mixture of two similar Gaussian, one
centred on the previous parameter and the other centred on the prediction of the current
parameter using previous hand speed. The standard deviation is chosen to be 10 cm for
hands positions, and 5 cm for other limb positions. For angles, the standard deviation is
setto /8.

4 Image features

The image compatibility factors (i)“(X,“ ,Y,“ ) are computed from scores S representing
the compatibility between a limb hypothesis y and cue f extracted from the image. Con-
trary to stereo [3], monocular images needs more cues to reach a sufficient level of ro-
bustness. Thus, multicues image based compatibility terms are fused to provide an overall
score: SH =T S?. To avoid taking into account background distractors, a robust back-
ground subtraction [9] is used.
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Figure 5: Finding the torso. The bottom grid points (black pixels) representing the pelvis
moves horizontally in order to maximise the correspondence between the points and the
positive background subtraction pixels (white pixels). The maximum energy is reached
when the grid is centred on the bottom positive background subtraction zone. The top of
the torso is located at equal distance between the two clavicles.

4.1 Face and hands tracking

Considering the head position detected during initialisation step (§ 3.1), a colour model
is provided by computing a normalised colour histogram of the head. The pixels p cor-
responding to the projected points belonging to the head or the hands are compared with
this model by computing the colour score:

St =Y H(p) @
p

The function H(p) returns the histogram bin value corresponding to the pixel p colour.

4.2 Torso tracking

The torso is hard to detect because of clothes deformations or occlusions produced when
a person moves. Suposing that the pelvis is located at the bottom of images, its position
can be found using a rectangular grid of weighted points p interacting with a background
subtraction to slide on the bottom of the image (figure 5). The torso score is:

§'=Y W(p)Bg(p) ©)
pEt
Where W (p) is the weight of p corresponding to the Gaussian distance between p and the
grid center. Bg(p) returns the probability that pixel p belongs to the foreground according
to a background subtraction [9]. The upper torso point corresponds to the neck located at
half distance of the two clavicles.

4.3 Arms, forearms and clavicles tracking

Arms tends to move rapidly and are subject to many partial occlusions. Thus, to reach
a sufficient level of robustness, a fusion of a contour based cue and motion energy is
implemented. An accurate contour based score can be estimated by not only considering
the contours magnitude but also their orientations. Given M(|| 7'||) = %H?Htanh( ” 2 | ),

a function that penalise low and high magnitude contour points || 7’| with A a tuning
parameter, a score Sh, for a limb hypothesis u is computed by considering the Gaussian
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Figure 6: Quantitative results. For each joint, the error corresponds to the distance be-
tween estimated and true joint positions. As [12, 14], the mean error made on estimating
the three joints is computed to provide the overall joint mean error.

difference Gg(.) between the limb orientation 6y;,,;, and each pixel contour orientation 6,
that corresponds to projected limb points p onto the image plane:

Sho="Y M P1)Gol6iim» — 6)) 4)
pel

The motion energy score is computed considering the Gaussian distance G(d(p)) be-
tween each projected limb point p and the nearest pixel where a motion has been detected:
Sh =1+ Y(pen) G(d(p)). Motion detection is provided by adjacent frame difference.
This formula ensures that the motion score is at least 1 even if no motion is detected.
Only the contour score is used for clavicles because they are strongly constrained by head

position during belief propagation.

S Experimental results

The system was tested on sequences grabbed with a standard webcam. Quantitative re-
sults were obtained comparing the estimated pose with a ground truth provided by a
magnetic motion sensor. The true joint positions are measured for the right arm joints
(shoulder, elbow and hand). The test sequence includes full 3D movements with limb
occlusions and cluttered background (figure 9). Instead of only computing the overall
limb mean error [12, 14], our results are complemented by the estimation error for each
limb (figure 6). Qualitative results are shown on figure 7 where various user on different
backgrounds and clothes are successfully tested.
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Figure 7: Monocular 3D tracking. Challenging poses are shown including occlusions,
cluttered background and unconstrained environment (lighting and clothes).

Error (cm) Shoulder Elbow Wrist Overall Mean Error
Mean 1.7 7.1 9.7 6.1
Max 6.1 24.1 31.0 134

Std. Dev. 1.0 3.5 6.6 2.6

Average Speed (cn.s~ ") 2.83 428 8.5

Table 1: Mean, maximum and standard deviation of the estimated position error for shoul-
der, elbow and wrist. Overall mean error is the mean error made on estimating the pose of
theses three joints. Average speed is computed for the whole test sequence on each joint.

In monocular tracking, significant errors are usually made on depth estimation. It is
the case in the test sequence around frame 500 owing to a wrong estimated elbow position
that constrains the wrist in an exaggerated forward position. A similar problem occurs
around frame 850 where forearm bends perpendicularly to the image plane and wrist
depth is wrongly estimated by our algorithm (figure 8). Anyway, the maximal estimated
pose error stays below 31 cm and below 15 cm considering the measure protocol used in
[12, 14] (table 1). The comparison with other tracking algorithms is a difficult task owing
to the disparity between used test sequences. However, the obtained results outperform or
are as accurate than those computed with existing algorithms [12, 14].

6 Conclusion

We have presented an algorithm for monocular upper body tracking performing at 6 fps
using a standard webcam with unconstrained environments (lighting and clothes). The
used cues based on contours provide sufficient robustness to succeed on unconstrained
environments. Belief propagation provides a judicious solution in order to reduce the
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Figure 8: Examples of wrong depth estimation on frames 581 (first row) and 850 (second
row). In both cases, right forearm is not bended sufficiently involving errors larger than
25 cm on wrist pose estimation.

space dimension of the generated hypothesises making particle filtering framework suit-

able.

Articulation constraints are easily integrated into factors computation to provide

consistent resulting poses. Future work will include a learning based image compatibility
term to handle occlusions and more accurate depth estimation.
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Abstract

We present a multi-view change detection approach aimed at being robust
with respect to common “disturbance factors” yielding image changes in real-
world applications. Disturbance factors causing “slow” or “fast-and-global”
image variations, such as light changes and dynamic adjustments of camera
parameters (e.g. auto-exposure and auto-gain control), are dealt with by a
proper single-view change detector run independently on each view. The
computed change masks are then fused into a “synergy mask” defined into a
common virtual top-view, so as to detect and filter-out “fast-and-local” image
changes due to physical points lying on the ground surface (e.g. shadows cast
by moving objects and light spots hitting the ground surface).

1 Introduction

Detecting changes in video sequences plays a crucial role in many computer vision appli-
cations since the performance of higher-level processing modules, such as objects track-
ing and classification, often relies on the accuracy of the computed change masks. In the
space of all the possible image changes a good change detector should be able to discrim-
inate between “semantic” (i.e. due to variations of the scene geometry) and “appearance”
(i.e. due to other causes, that we call “disturbance factors”) changes. In particular, a
change detection algorithm should be robust with respect to disturbance factors arising
both in the imaged scene (e.g illumination changes) and in the imaging device (e.g. noise,
dynamic adjustments of device parameters such as auto-exposure and auto-gain control).

Most of the single-view change detectors proposed in literature (e.g. [3], [10]) can
deal effectively with camera noise and “slow” scene appearance changes (e.g. scene illu-
mination changes due to time of the day). To this purpose, a temporally adaptive per-pixel
statistical modelling of the scene background appearance is exploited. To avoid the in-
clusion of foreground objects in the background appearance model, the model adaptation
rate must be chosen accurately, depending on the foreground objects foreseen velocity. In
particular, the lower the foreground objects foreseen velocity, the lower the background
model adaptation rate. Hence, in general only quite slow appearance changes can be dealt
with by these algorithms. Some approaches have been proposed (e.g. [2],[71,[91,[11])
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which can deal effectively also with “fast-and-global” scene appearance changes, that
is fast changes modifying pixel intensities by a unique mapping function. Examples
of such changes are those due to fast-and-global scene illumination changes (e.g. light
switches, a cloud passing by the sun) and to dynamic adjustments of camera parameters
(e.g. auto-exposure and auto-gain control). “Fast-and-local” scene appearance changes
(e.g. shadows cast by moving objects, light spots hitting a nearly lambertian surface) are
a hard-to-solve problem for single-view approaches.

Multi-view change detection can exploit more information and therefore deal more
effectively with disturbance factors. As regards the way information is exploited, we
define:

c.1) temporal consistency constraint: given a view-point v, the processed frames are
images of the same scene taken at different times;

c.2) spatial coherence constraint: given a time ¢, the processed frames are images of the
same scene taken from different view-points;

By applying only the spatial coherence constraint the basic multi-view change detection
approach is carried out. In practice, at each time ¢ the output is computed by comparing
all the simultaneous images captured from the different view-points. However, all the
available information can be exploited by applying both the constraints. This is in theory
the most effective approach. We present a multi-view change detection algorithm of this
type. In particular, we apply the temporal consistency constraint as a first processing step
by carrying out single-view change detection on each original view. Then, the spatial
coherence constraint is applied by “fusing” the single-view change masks into a virtual
top-view. Such an approach allows for filtering-out the appearance changes due to the
major disturbance factors, including sudden-and-local illumination changes.

The paper is organized as follows. In section 2 the state-of-the-art in multi-view
change detection is outlined. The proposed algorithm is presented in section 3. Experi-
mental results are discussed in section 4, conclusions are drawn in section 5.

2 Related Work

In [5] a “lighting independent” multi-view change detection algorithm is presented. Sta-
tionarity of the capturing devices as well as of the scene background surface geometry
is assumed, so that the geometric transformations warping one of the views, called “pri-
mary” view, into all the other “auxiliary” views can be computed off-line. On-line, just
the change mask in the primary view is computed. Moreover, only the spatial coherence
constraint is applied. In practice, at each time, the colour of every pixel in the primary
view is compared with the colour of corresponding pixels in the auxiliary views, using the
geometric transformations. If colour is similar, according to a simple metric consisting
in the absolute value of the Euclidean distance, the pixel in the primary view is marked
as background; otherwise, it is marked as foreground. This approach inherently suffers
from both false and missed detections. False detections, called “occlusion shadows”, oc-
cur when a background pixel in the primary view is occluded by a foreground object in
the auxiliary view. Missed detections occur when an evenly coloured foreground object
occludes a pair of corresponding pixels, for colour being very similar. The authors pro-
pose to filter-out false detections by using more than two views (at least two auxiliary
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views) and ANDing the binary masks attained by comparing the primary view to each of
the auxiliary views. However, they do not discuss how to deal with missed detections.

The work in [8] is aimed at improving the approach proposed in [5]. As in [5], the
change mask in the primary view is computed by applying only the spatial coherence
constraint. However, the following improvements are proposed:

a) a slightly more complex and effective metric (i.e. a normalized colour difference
averaged on a n X n neighborhood of pixels) is used to measure colour similarity
between corresponding pixels in different views;

b) the false detections problem is addressed from a sensor planning perspective. In
particular, it is shown how occlusion shadows can be removed by using just two
views, provided that a suitable configuration of the capturing devices is adopted;

c) the missed detections problem is tackled as well. The particular sensors configura-
tion adopted to filter-out occlusion shadows yields missed detections localized only
at the lower portion of each detected foreground blob. This is exploited to fill-in
possible missed detections by means of a quite complex heuristic procedure.

Both [5] and [8] rely on the assumption that a patch of the scene background surface yields
a very similar colour into simultaneous images taken from different view-points. If this
is true, invariance to temporal changes of the radiance emitted by the scene background
surface (i.e. to slow or fast and global or local scene illumination changes) is achieved,
since such changes will affect simultaneous views identically. However, in practice this
assumption may not be satisfied. In fact, dynamic adjustments of the camera parameters
(e.g. auto-gain and auto-exposure control) may occur in the different views at different
times and by a different intensity mapping function. These adjustments cannot be handled
inherently by either [5] or [8]. In turn, [5] recommends explicitly to disable the auto-
gain mechanism of the capturing devices. However, disabling these dynamic adjustment
mechanisms is a strong limitation in many practical applications, especially as regards
outdoor installations.

The most related work to our approach is presented in [6]. It is focused on tracking
but relies on multi-view change detection as the first processing step. People moving
on a ground plane are tracked by their ground locations, that is feet. At each process-
ing time feet are detected by a multi-view change detection approach, that we call here
“change maps fusion”: the ground plane homographies warping a reference view into
each of the other views are inferred off-line. On-line, single-view change detection is
carried out independently on each view to compute a change probability map. To this
purpose, a well-known background subtraction algorithm based on statistical temporally
adaptive background modelling by mixture of gaussians is deployed ([10]). Hence, the
computed change probability maps are warped in the reference view by using the in-
ferred homographies and then multiplied together, thus attaining a “synergy map”. It is
easy to understand how this map gives, for each pixel in the reference view, the proba-
bility to be the image of a ground plane patch for which the emitted radiance is changed
(with respect to the current appearance background model and according to the chosen
single-view change detection algorithm). Finally, the synergy map is thresholded. By this
procedure, the authors assume to detect only the ground plane locations of people, that is
their feet. Hence, feet are tracked in the reference view by a spatio-temporal clustering
approach (graph cuts). However, the proposed use of the change maps fusion approach



693

will inherently detect as foreground not just feet but also other possible ground plane ap-
pearance changes, such as shadows cast by moving objects on the ground plane or light
spots hitting the ground plane. In fact, such changes are not filtered-out by the single-view
change detection approach in [10].

3 The proposed algorithm

We assume stationarity of the capturing devices as well as of the scene background sur-
face geometry, so that geometric registration of background over different views can be
computed off-line. Moreover, we take into consideration a planar background, hereinafter
called “ground plane”. Hence, for each original view v, we infer off-line the homogra-
phy H": R? 3 p"  p’ € R? warping each pixel p* imaging a ground plane patch in the
original view into the pixel p’ imaging the same patch in a common virtual top-view
T. By considering a set of N >4 original view < top-view points correspondences, the
homographies are inferred by least squares regression. A data normalization procedure is
adopted to make the necessary matrix calculations less prone to numerical errors ([4]).

As far as on-line processing is concerned (Figure 1), at each time ¢ first the temporal
consistency constraint is applied by carrying out single-view change detection indepen-
dently on each original view ([2],[7]), thus computing a set of V binary change masks C},
one for each original view v = 1,...,V (Figures 1(d-f)). The spatial coherence constraint
is then applied by projecting all the change masks! into the virtual top-view, thus attaining
a set of V top-view change masks C; d (Figures 1(g-1)):

= H(C)) (1)

Then, a common top-view change mask CtT is obtained by computing the intersection of
all the top-view change masks (Figures 1(j)):

Vi
= @

The procedure outlined so far is substantially equivalent to the change maps fusion ap-
proach presented in [6]. The only difference is that we carry out change maps binarization
directly as the final step of the temporal consistency constraint application. On the other
hand, in [6] binarization is carried out in the virtual top-view after the spatial coherence
constraint has been applied as well. We call “change masks fusion” this slightly different
approach and “synergy mask” the binary mask of Equation 2. However, we deploy the
synergy information within the top-view in a “dual” manner with respect to [6]. In fact,
the synergy mask contains the pixels characterized by a high probability to be the image of
a ground plane patch for which the emitted radiance is changed. These pixels correspond
to people feet as well as to possible ground plane appearance changes, such as those due
to shadows cast by people or to light spots hitting the ground plane. Therefore, instead of
using the synergy mask to detect foreground objects ground locations (people feet), we
use it to filter-out ground plane appearance changes, like shadows or light spots. In partic-
ular, instead of considering the synergy mask as the final output of the multi-view change
detection, we back-project the synergy mask into all the original views, thus obtaining a

lactually, just the change masks portion inside the ground plane limits are projected
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Figure 1: On-line main processing steps of the proposed multi-view approach.

set of V original view synergy masks C;"":
TV (Hv)—l (CT) (3)

Then, for each view v we filter-out from the original view change mask C; the foreground
pixels belonging to the original view synergy mask CtT’V, thus attaining a set of V final
change masks C ;”f (Figures 1(k-m)):

vof vy 0 if CIT’V(PV) =1
¢ ) = { C/(p") otherwise @
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Hence, another difference with respect to [6] is that we compute a set of V change masks,
one for each original view, instead of a single change mask in the virtual top-view. More-
over, the change masks will include most of a person’s body (ideally, the entire body but
the feet). Unlike [5] and [8], our approach handles dynamic adjustments of camera pa-
rameters provided that a proper change detection algorithm (i.e. [2],[7]) is run on each
original view. It is worth pointing out that algorithms such as [2] and [7] can also deal
very effectively with sudden and global light changes.

The proposed approach is “general-purpose”, in the sense that all the scene appear-
ance changes detected by the employed single-view change detection algorithm which
satisfy the spatial coherence constraint (i.e. which arise “near” the ground plane in a 3-
dimensional sense) are filtered-out. In fact, no selectivity criterion is used in the removing
rule of expression 4. In practice, just a geometrical constraint is applied, without consid-
ering any photometric information. On one hand this approach i