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Foreword

It is with great pleasure that we welcome you to BMVC 2007 at Warwick Univer-
sity. This year we received just over 300 submissions which is the second-highest
number of submissions for BMVC, after an unpredictably large number of sub-
missions last year. We believe that a growing number of international submissions
to BMVC reflects its international prominence.

The task of reviewing was distributed over 87 experts (listed overleaf), each of
whom on average reviewed 10 papers. The final selection took place at a meeting
of the 23 Area Chairs on 18 June 2007 at the Computer Science Department,
University of Warwick. A total of 114 papers were selected, 41 for oral presen-
tation and 73 for poster presentation.

We are very pleased to have keynote addresses by Professor Hans Knutsson from
the Linköping University in Sweden and Professor Mubarak Shah from the Uni-
versity of Central Florida. We are also delighted to have an invited tutorial on
the emerging area of Visual SLAM by Dr Andrew Davison from the Imperial
College, and Dr Andrew Calway and Dr Walterio Mayol-Cuevas from the Uni-
versity of Bristol.

We are grateful to Siemens and Warwick Warp for sponsoring the best security
paper prize. The best science paper, the best poster, and the Sullivan thesis
prizes are sponsored by the BMVA.

The organisation of the conference would not have been possible without the self-
less help of many people whom we would like to thank. The reviewers and area
chairs did a fantastic job of providing timely reviews and devoting much of their
precious time to participate in the paper selection meeting. The CAWS team at
Manchester University have been helpful in answering our queries related to the
CAWS online system used for the conference. Manuel Trucco (BMVC’2006) was
always very generous in providing tips and helpful advice on most matters regard-
ing conference organisation. Majid Mirmehdi and Andrew Fitzgibbon (BMVA)
offered almost instant help with general administrative as well as technical mat-
ters whenever asked. Catherine Pillet, our finance officer, has been invaluable in
handling the registrations and delegate queries. Our thanks also to Jean Trevis
of Warwick Conferences.

We would like to thank the staff and PhD students in the Computer Science
Department at University of Warwick, especially those in the Signal and Image
Processing and Medical Informatics and Medical Image Computing (MiMIC)
research groups, for their help during the conference week. A special thanks to
Muhammad Arif for double-checking the conference programme for us.
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We hope that you find the conference informative and stimulating, and that you
enjoy your stay at Warwick.

Nasir Rajpoot and Abhir Bhalerao
Warwick, July 2007
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Abstract

In most previous works, histograms are simply treated as n-dimensional
arrays or even reshaped into vectors when measuring the distances between
them. However many histograms have their intrinsic topologies, such as
HSV histogram (cone), shape context (polar), orientation histogram (circle).
The topologies are important for so-called cross-bin distance, because they
determine the similarities between histogram bins, and influence the cross-
bin distances between histograms. In this paper, we proposed the topology-
preserved diffusion distance to take the topology into account. This method
extracts the distance by measuring the heat diffusion process defined on the
topology of the histogram. Moreover, a fast implementation with time com-
plexity O(N) is developed. Experiments on image retrieval and interest point
matching show the effectiveness and efficiency of the proposed method.

1 Introduction
Histograms are widely used in many applications of image analysis and computer vision,
such as interest point matching [8, 9], shape matching [2], image retrieval [12] and tex-
ture analysis [11]. They are very effective due to the rich information captured by the
distribution. However, it is well known that histogram is sensitive to the changes of il-
lumination and viewpoints, as well as quantization effects [2], therefore the design of a
robust histogram distance is a challenging task.

According to the type of bin correspondence, histogram distance is divided into two
categories [12], i.e. bin-to-bin and cross-bin distance. The former just compares each bin
in one histogram to the corresponding bin in the other. The Minkowski distance (such
as L1 and L2), histogram intersection, and χ2 statistics belong to this category. These
distances are sensitive to distortions, and suffer from the quantization effect. In contrast,
the cross-bin distances allow the cross-bin comparison, and therefore are more robust
to distortions. Quadratic Form distance (QF) [4], Earth Mover’s Distance (EMD) [12],
EMD-L1 [7], EMD-Embedding [5], Pyramid Matching Kernel (PMK) [3] and diffusion
distance [6] fall into this category.
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Almost all of the previous works simply treated the histogram as an n-d interval. How-
ever in practice, many histograms have their special topological structures. For example,
HSV colour histogram has a cone-shaped structure, orientation histogram is a circle, and
shape context is based on the polar coordinate system. The simple treatment as an interval
results in great distortions of the similarities between some bins, and then degrades the
accuracy of the cross-bin distance. Take 1-d orientation histogram as an example. It’s
often represented as an interval [0,2π), though it’s a circle actually. Given a small posi-
tive ε , two orientations 0 and 2π− ε are almost the same. However, with the traditional
representation, the two locate at two extremes of the interval, respectively. The distance
between them is almost the longest, which means the smallest similarity. It contradicts
with human perception. The similar contradictions also exist in HS colour histogram with
the first dimension for Hue and the second for Saturation, which is usually represented
as a 2-d interval [0,1)× [0,1]. Compared to the polar representation, the distances be-
tween colours locate at different sides of the line H = 0 are enlarged improperly, and the
same for the distances between colours with small saturations. Similar problems exist in
some other histograms, such as Scale-Invariant Feature Transform (SIFT) [8] and shape
context [2], when they are represented as n-d intervals.

In the paper, we proposed the topology-preserved diffusion distance for histogram
matching, which is inspired by Ling and Okada’s work [6]. In their work, the cross-
bin relations are simulated by the heat diffusion on the n-d interval, and the distance is
the integral of the diffusion process. Different from [6], the proposed method solves
the diffusion process on the histogram’s intrinsic topology, rather than the interval. By
preserving of the topology, it’s more consistent with human perception. Sophisticated
numerical method for Partial Differential Equation (PDE) is used to handle the non-trivial
topology. Compared to the convolution in [6], it has solid mathematical background, such
as the error bound and the numerical stability. The time complexity of the distance is
O(N), where N is the number of bins. The experiments are conducted on image retrieval
and interest point matching. The proposed distance is compared with other state-of-the-art
methods, and hypothesis tests are conducted to show its superior performance.

The rest of the paper is organized as follows. Section 2 discusses the related works.
Our work is described in Section 3. Experiments are reported in Section 4 and then
conclusion is drawn in Section 5.

2 Related Works
In this section, we briefly review the cross-bin distances, because our method belongs to
this category. For more comprehensive discussion, please refer to [11, 12].

QF [4] is an early proposed cross-bin distance. Given two histograms h1 and h2, the
distance is defined as

QF(h1,h2) = (h1−h2)T A(h1−h2), (1)

where A = [ai j] is the weight matrix and the weights ai j denote similarities between bins
i and j. In the comparison of colour histograms [4], the topology is taken into account by
defining

ai j = 1−di j/dmax, (2)

where di j is the L2 distance between colours i and j, and dmax = maxi, j(di j). QF makes
each bin in one histogram to correspond to all the bins in the other, and thus tends to
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overestimate the mutual similarity without a pronounced mode [12]. Different from QF,
Our method use the diffusion process to simulate the cross-bin relations, and the bin in
one histogram dynamically corresponds to some neighbouring bins in the other.

EMD dynamically selects the correspondences by solving a transportation problem.
Although it achieves good performances in image retrieval [12] and texture analysis [11],
its computation is costly, and usually large than O(N3), where N is the number of bins.
Several fast approximations have been proposed. [5] embeds the EMD metric into a
Euclidean space, and the EMD can be approximated by the L1 distance in the space after
embedding. Its time complexity is O(Nd log∆), where N is the number of features, d is
the dimension of the feature space and ∆ is the diameter of the union of the two feature
sets. PMK [3] is proposed for feature set matching. First, a pyramid of histograms of a
feature set is extracted, and then the similarity between two feature sets is defined by a
weighted sum of histogram intersections at each level of the pyramid. EMD-L1 [7] utilizes
the special structure of the L1 ground distances on histograms for a fast implementation
of EMD.

The major difference between our method and the EMD related distances above is
that the topology of the histogram is not considered in the latter. EMD uses ground dis-
tances defined on the n-d interval, and the other approximate methods are all developed
for this specific type of ground distance. Although EMD may handle non-trivial topol-
ogy by using properly defined ground distance, it’s costly to compute (> O(N3)). Our
method is much faster (O(N)). Besides the major difference, our method differs from
PMK in another two ways. First, PMK focuses on feature distributions in the image do-
main [3], while ours focuses on comparison of histogram-based descriptors, such as SIFT.
Second, PMK uses intersection to allow partial matching, which is important for handling
occlusions for feature set matching. In contrast, we employ the L1 distance, because the
histograms are all normalized.

Diffusion distance [6] measures histogram distance by heat diffusion. The difference
of two histograms h1 and h2 is treated as the initial condition of a heat diffusion process
u(x, t), and the distance is defined as

K(h1,h2) =
∫ T

0
‖u(x, t)‖1 dt, (3)

where T is a constant, and ‖·‖1 represents the L1 norm. [6] convolutes the initial con-
dition with a Gaussian window iteratively to approximate the diffusion, and sums up the
L1 norms after each convolution to approximate the integral. The bin correspondences
are implicitly determined by the diffusion. Its time complexity is O(N), where N is the
number of bins.

Similar to the diffusion distance, our method is also defined as the integral of the dif-
fusion process. However, there are some significant differences. First, we define diffusion
process on the histogram’s intrinsic topological structure, while diffusion distance solves
the process on an n-d interval. Second, we utilize numerical methods for PDE, i.e. finite
volume method [1] and backward Euler scheme [10], to solve the diffusion process. In
contrast, diffusion distance uses convolution to approximate the diffusion, which cannot
handle the non-trivial topology.
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3 Our Work
In this section, we first introduce the numerical method for heat diffusion equation, and
then present the topology-preserved diffusion distance. At last, a fast implementation is
described.

3.1 Numerical Method for Heat Diffusion Equation
We discretize the heat diffusion equation with Neumann boundary condition

∂u(x, t)
∂ t

= ∇ ·∇u(x, t), x ∈Ω, (4)

∂u(x, t)
∂x

= 0, x ∈ ∂Ω, (5)

and then solve it numerically. The approach is briefly introduced as follows.
First, the spatial derivative ∇ ·∇u(x, t) is discretized by finite volume method [1].

With division D , the domain Ω is divided into N cells {ck}N
k=1, and the solution u is

approximated in each cell as a constant, i.e.

u(x, t)≈ uk(t), x ∈ ck. (6)

Integrating both sides of (4) over cell ck, and using Gauss theorem and the boundary
condition, we can approximate (4) and (5) with the spatial discretized equation

Vk
duk

dt
= ∑

j∈Nk

αk j(u j−uk), (7)

where Nk is the set of neighbours of the cell ck, and Vk and αk j are constants related to
the topology of domain Ω and the division D only.

By including the solutions of all cells, (7) can be rewritten in matrix form

M
du
dt

= Au, (8)

where diagonal matrix M and operator matrix A consists of {Vk}N
k=1and

{
ak j

}N
k, j=1, re-

spectively, and column vector u = [u1,u2, . . . ,uN ]T consists of solutions in all cells.
Second, the time domain [0,T ] is discretized into a series of time steps 0 = t0 < t1 <

· · · < tL = T . Using the backward Euler scheme [10] to approximate the time derivative,
the linear ordinary differential equation (8) becomes completely algebraic equation

M
u(k)−u(k−1)

∆tk
= Au(k), k = 1,2, . . . ,L, (9)

where u(k) = u(tk) is the solution at the k-th time step, and ∆tk = tk − tk−1. In nu-
merical computation, we usually use fixed time step ∆tk = ∆t. Defining matrix B =
(M−∆tA)−1M, we can simply advance solution by

u(k) = Bu(k−1). (10)
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Further more, we can get the solution at any time point directly by

u(m) = Bmu(0). (11)

Due to the properties of the backward Euler scheme [10], our discretization (9) is
stable for any positive time step ∆t. The accuracies of both the spatial and temporal
discretization are first-order. Therefore, the error in the numerical solution is O(∆t) +
O(∆x), where ∆t is the size of the time step, and ∆x is the size of the cells.

3.2 Topology-Preserved Diffusion Distance
Some notions are introduced first. A normalized histogram h is a probability density
function defined on domain Ω, which is embedded in a normed space X . The topology
of h is actually the topology of Ω. For example, the domain of colour histogram for Hue
and Saturation is a disk embedded in the 2-d plane. The histogram ĥ often referred in
computer vision is the discrete version of h. It corresponds to a division D , which divides
Ω into cells {ci}N

i=1. The integral of h over a cell is the value of the corresponding bin in
ĥ. We use “ˆ” to represent discrete histogram and other related functions.

To compute the topology-preserved diffusion distance between two histograms, the
heat diffusion equation with their difference as the initial condition is solved first. And
then, the distance is extracted by integrating the L1 norm of the process along time. Given
two histograms, h1(x) and h2(x), their corresponding initial condition is

u(0,x) = h1(x)−h2(x). (12)

Given the solution of heat diffusion equation (4) with conditions (5) and (12), the topology-
preserved diffusion distance is defined as

K(h1,h2) =
∫ T

0

∫

Ω
|u(x, t)|dxdt. (13)

If Ω is an n-d interval and the division D is uniform, (13) reduces to the diffusion distance.
The method introduced in Section 3.1 is used to compare discrete histograms. Given

two histograms ĥ1 and ĥ2, (4) and (5) are spatial discretized according to their common
division D , and the initial condition is

u(0) = ĥ1− ĥ2. (14)

We can get the discretized temperature field u(t) at any time t by (11). Since the integral
over Ω can be approximated by L1 norm, and the integral along time can be approximate
by summation, (13) can be rewritten as

K̂(ĥ1, ĥ2) =
L

∑
i=0
‖u(Ti)‖1 (15)

where T0 < T1 < .. . < TL are time points. L is usually set to 2 or 3. The time complexity
of this distance is O(LN2), where N is the number of bins. In the next section, a fast
implementation is introduced, and its complexity is O(LN).

A toy example is given in Figure 1 to illustrate the advantage of the proposed method.
In the three Hue-Saturation histograms in Figure 1(a), only one bin in each is nonzero.
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Figure 1: Toy example to show the advantage of the proposed method. (a) Histograms on disks. (b) Histograms on rectangles.
(c) Diffusion process of ĥ1 and ĥ2 on the disk. (d) Diffusion process of ĥ1 and ĥ2 on the rectangle. (e) Diffusion process of ĥ1
and ĥ3 on the disk. (f) Diffusion process of ĥ1 and ĥ3 on the rectangle. Time points and L1 norms of the temperature fields are
shown above the images.

Intuitively, the similarity between ĥ1 and ĥ2 is larger than the one between ĥ1 and ĥ3,
because the ground distance between the nonzero bins in the former pair is smaller. Cut-
ting along the red line in Figure 1(a), i.e. H = 0, and performing some transformation,
we get the common histograms in Figure 1(b). The diffusion processes on both disk and
rectangle with different initial conditions are illustrated by Figure 1(c), (e), (d) and (f)
respectively. The L1 norms above the images show that the process in Figure 1(c) decays
faster than the one in Figure 1(e). But there’s no similar phenomenon in Figure 1(d) and
(f). In fact, the L1 norm of the last image in Figure 1(d) is even slightly larger than the
corresponding one in Figure 1(f). The topology-preserved distances of Figure 1(c) and (e)
are 3.6564 and 5.6270, respectively. This is consistent with the intuition. In contrast, the
diffusion distances of Figure 1(d) and (f) are 3.2331 and 2.8826, respectively. Obviously,
the diffusion distance fails in this case.

3.3 A Fast Implementation
Because of the linearity, the diffusion process with initial condition (12) can be viewed
as the difference of two sub-processes, which use two histograms as the initial conditions
respectively. The same holds in the discrete case. Plug (14) and (11) into (15), we get

K̂(ĥ1, ĥ2) =
L

∑
i=0

∥∥(Bmi ĥ1)− (Bmi ĥ2)
∥∥

1, (16)
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where mi = bTi/∆tc. Since the division D , the domain Ω, the time step ∆t and the time
points T0 < T1 < .. . < TL are all predetermined, B can be computed in advance. Therefore
both vectors, i.e. Bmi ĥ1 and Bmi ĥ2, can be computed at feature extraction step. The online
computation only includes the differences of the vectors and the L1 norms, and thus the
online complexity is O(LN) = O(N).

4 Experiments
The proposed methods are tested on natural image retrieval and interest point matching.
Seven distances are compared, including L1, L2, χ2, QF, EMD, Diffusion Distance (Dif-
fusion) and Topology-Preserved Diffusion Distance (Topology). The weight matrix of
QF is determined according to [4]. For the diffusion distance, we set σ = 0.5 as [6], and
use 3× 3 window for image retrieval and 3× 3× 3 window for interest point matching.
L2 ground distance on the n-d interval is used in EMD. For the proposed method, we
empirically choose time points {0,1,2} for image retrieval and {0,2,4} for interest point
matching.

4.1 Natural Image Retrieval
This experiment is performed on the widely used Corel-5000 database [13], which con-
sists of 5000 images. 8×8 HS colour histogram is used as the only feature. 1000 images
(10 categories) with relatively significant colour characteristics are selected as the queries.
For each query, the nearest 100 images are returned.

The average precisions of different distances are plotted in Figure 2 with respect to the
scope. The time costs of different distances are shown in Table 1. EMD outperforms all
the other methods, but its time cost is too high. The proposed method places the second,
with much smaller time cost. L1 and diffusion distance perform almost the same, and
they are both the third. Although topology is taken into account, QF is worse than L1,
which is only a bin-to-bin distance. It confirms the analysis in Section 2, i.e. the static
correspondence limits QF’s performance. χ2 and L2 are the last.

Distance Topology Diffusion L1 χ2 L2 QF EMD
Times (s) 18.0 14.1 6.3 13.4 7.2 238.4 8023.4

Table 1: Time costs in image retrieval

To further confirm the improvement, hypothesis tests are conducted. For a specific
scope and a specific distance, the average precisions of 10 categories are treated as i.i.d.
samples drawn from some distribution. The proposed method is compared with the oth-
ers using these samples. Since the distribution is unknown, non-parametric Wilcoxon’s
signed rank test (one-sided) for two related samples is adopted. The p-values of the tests
are listed in Table 2. Except EMD, all the others are small than 0.05, which means the
improvements over the corresponding methods are all statistically significant.
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Figure 2: Retrieval precisions with respect to the scope in image retrieval

Scope Diffusion L1 χ2 L2 QF EMD
20 0.0469 0.0371 0.0039 0.0020 0.0020 0.5566
40 0.0020 0.0059 0.0039 0.0020 0.0020 0.6250
60 0.0039 0.0273 0.0039 0.0020 0.0137 0.7695
80 0.0098 0.0117 0.0059 0.0020 0.0420 0.6250

100 0.0039 0.0059 0.0039 0.0020 0.0322 0.6953

Table 2: p-values of hypothesis tests in image retrieval

4.2 Interest Point Matching
This experiment is performed on the Affine Covariant Regions Dataset [9], which consists
of 40 image pairs with known plane projective transforms. We extract SIFT like descrip-
tors from the interest regions detected by the Hessian-Affine detector [9]. The descriptor
differs from SIFT by ignoring the tri-linear interpolation [8] and by being normalized by
L1 norm. The number of local descriptors varies from 200 to 4000 per image depending
on the content.

The evaluation strategy in [9] is utilized. For each pair of images, the ground truth
correspondences are first determined by the known transform. Then, we use the threshold-
based strategy to match descriptors, i.e. two descriptors are matched if the distance be-
tween them is below a threshold. Varying the threshold, a Receiver Operating Character-
istic (ROC) curve can be obtained. For some image pairs, it’s hard to obtain the complete
ROC curve with any distance because the precision keeps low. It’s probably due to the
limitations of the detector and/or the descriptor. For this reason, 21 image pairs are se-
lected, and ROC curves in Figure 3 of different methods are the averages on these pairs.

Compared to image retrieval, similar ranking are shown in Figure 3. EMD is the best,
followed by the topology-base diffusion distance. The diffusion distance and L1 place the
third, and then QF, L2 and χ2. The margin between Topology and Diffusion (or L1) is
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Figure 3: ROC curves in interest point matching

1−Precision Diffusion L1 χ2 L2 QF EMD
0.2 7.9802e-005 1.2267e-004 5.9570e-005 5.9570e-005 7.1872e-005 0.7823
0.4 0.0033 4.1887e-004 5.9570e-005 5.9570e-005 6.4356e-004 0.5829
0.6 6.1791e-004 5.4342e-004 5.9570e-005 5.9570e-005 3.5792e-005 0.8392
0.8 0.0037 4.1887e-004 5.9570e-005 5.9570e-005 5.0872e-005 0.5929

Table 3: p-values of hypothesis tests in interest point matching

roughly 1%. In spite of the superior performance, the computation of EMD costs about
300 hours. In contrast, our method uses only about 10 minutes, and the diffusion distance
uses about 7 minutes.

The same hypothesis tests are conducted. For a specific precision and a specific dis-
tance, the recalls of different image pairs are treated as i.i.d. samples, on which the com-
parisons are based. The p-values are listed in Table 3. Again, the improvements over
the other methods are significant, except EMD. Compared to Table 2, the p-values are
smaller, which means the improvements are more significant in the sense of statistics, in
spite of the smaller margins showed in Figure 3.

5 Conclusions
In this paper, we extend the diffusion distance by combining the idea of topology preserv-
ing. The proposed method defines the diffusion process on the topology of the histogram,
and measures the distance by integrating the L1-norm of the process along time. It outper-
forms most existing histogram distances by preserving the topology, and also outperforms
topology-based QF by utilizing the diffusion process. Among the methods with complex-
ities lower than O(N2), the proposed one is the most accurate. Moreover, it’s also very
efficient with the complexity O(N).
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Abstract

We propose an approach to image retrieval that does not require any distance
computations. The idea is to represent images and corresponding image fea-
tures by means of the two sets of vertices of a bipartite graph. Even though in
such a graph the images are not directly related, the degrees to which the fea-
tures are present in an image allow for defining partial orders. If the degrees
of presence are normalized such that they form probability distributions, sim-
ilarity rankings result from the stationary distributions of stochastic diffusion
processes over the graph. The method is closely related to recent approaches
to ranking on manifolds but does not involve the computation of parame-
terized affinity and Laplacian matrices. Experiments with a standard image
retrieval data set demonstrate the efficacy of the approach. Compared to a
corresponding distance-based approach, it yields a higher overall precision.

1 Introduction

Content-based image retrieval (CBIR) from large databases has become a task of consid-
erable practical importance. Admen, artists, designers, and journalists need fast access
to appropriate icons or pictures to illustrate advertisements, journals, jingles or whatever
else requires visual amelioration nowadays. However, the sheer size and speed of growth
of present day image repositories create a crucial problem: consistent semantic annota-
tions can hardly be provided single-handedly anymore. Neither can teamwork guarantee
consistency. Experience withfolksonomiesgathered and maintained by online communi-
ties shows that spurious and ambiguous labels occur inevitably. Figure 1 illustrates what
this implies in practice; it displays a choice from the 40 top ranking results obtained from
typing “tiger” into Google’s image search.

State of the art retrieval systems therefore apply computer vision techniques that are
fine tuned to the task at hand by means of user feedback [3, 12, 14]. In the so called
human-in-the-loopapproach, the user repeatedly rates selections of images according to
how well they match the current query. Based on this relevance feedback, characteristics
of appropriate and inappropriate images are determined and a hopefully better suited set
of images is retrieved from the database. This interactive process continues until the user’s
demands are met.

In a series of influential papers, Rui and Huang [11, 12] presented interactive CBIR
systems based on a hierarchical model that combines different features and adaptable
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Figure 1: Some of the top ranking results when searching Google Images for “tiger”.

distance measures. Even though their model and many of its successors enable flexible
searches for images similar to the user’s intent, the way the different distances between
features are defined appears to be solely technically motivated and is hard to grasp intu-
itively. More recent approaches [3, 14] apply more sophisticated reasoning and adaptation
processes, but at their heart, too, lies the problem of defining distances between images
that would allow for producing similarity rankings.

The reason why we emphasize this issue here is that it became clear some time ago
that sets of images of a semantic class tend to form nonlinear manifolds whose global
structure cannot be captured by simple metrics (see the examples in [2, 10, 13]).

Dealing with the problem of CBIR, the question then is how define similarities be-
tween objects residing on such manifolds. Or, in other words, what is needed is a method
to rank such objects. As a matter of fact, this problem has been addressed in several re-
cent contributions [1, 7, 8, 15, 16]. It has even been studied with respect to information
retrieval in general [5] and image retrieval in particular [6]. Since these approaches are
closely related to the idea presented in this paper, we will discuss them in more depth later
on. For now, we simply point out that all these approaches derive the global structure of
a set of data by considering local relations among individual elements which are again
based on some notion of distance.

In this paper, we consider only a single iteration in an interactive CBIR system and
focus on the problem of image ranking. Our approach determines similarities among im-
ages but does not require any distance computations. The idea is to represent a collection
of images and a set of meaningful image features by means of the two sets of vertices of a
bipartite graph. Assuming the edges between images and features to denote transitions in
a Markov process immediately provides an ordering scheme: if we model a user query as
an initial distribution over the vertices corresponding to images, a ranking results from the
stationary distribution of a corresponding Markov chain that starts from this initial state.

In the next section, we detail this idea and the computational approach. We will see
that there is a simple closed form solution to compute image rankings from an arbitrary
query. We will discuss that, similar to the approaches in [1, 7, 8, 15, 16], our approach
leads to a graph diffusion kernel. In contrast to existing methods, however, the kernel
naturally results from the probabilistic model and its derivation does not require manual
adjustment of free parameters. In section 3, we present experiments that demonstrate
the efficacy of the proposed approach. On a standard data set it yields useful precision
and outperforms a distance-based retrieval method considered for baseline comparison.
Finally, section 4 concludes this paper and points out promising next steps of research.
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Figure 2: Example of a bipartite graph. Although there are no direct relations among the
verticesui , their relations with the verticesv j define a similarity and thus allow for partial
ordering. With respect to vertexu3, for instance, the order isu3 w u4 w u1 w u2

2 Ranking as a Markov Process over Bipartite Graphs

The idea for the CBIR approach presented in this paper occurred while we were exploring
novel mechanisms for collaborative filtering for automatic recommender systems. In the
discussion that follows, we will thus frequently resort to rather metaphorical language and
make use of terms such asvote foror ratewhich we feel convey the underlying ideas.

2.1 Mathematical Model

Assume labeled bipartite graphG = (V,E) as shown in Fig. 2. Its sets of verticesV is
partitioned such thatV = V1∪V2 andV1∩V2 = /0. Then verticesu1,u2, . . . ,un in the set
V1 correspond to entities (such as users, images, . . . ). In a slight abuse of notation we will
identify vertices and their labels and represent a labeling of the vertices inV1 by means
of a vectoru = [u1,u2, . . . ,un]T . Them verticesv1,v2, . . . ,vm in the setV2 correspond to
rated items or features that are voted for (e.g. books, RGB color bins, gradient directions,
. . . ) and their labels are stored in a vectorv = [v1,v2, . . . ,vm]T .

In a recommender systems, each entityui ∈ V1 votes for (a subset of) the items in
V2. Dealing with CBIR, we may think of the votes as indicators to what extend a certain
feature inV2 is present in an image represented byui . In both cases, votes or frequency
counts can be represented by means of directed, weighted edges (see Fig. 3(a)).

Even though there are no immediate relations (i.e. no edges) among the elements in
V1, their voting behavior allows for determining partial orders. Given an entityui , its
fellow entities can be ranked according to how much their voting behavior resembles the
one ofui . In contrast to common distance measures between vectors of votes or frequency
counts, the bipartite graph model seamlessly accounts for indirect relations as well. In the
example shown in Fig. 2, for instance,u2 is related tou3 andu4 alike. However, while the
nature of its relation tou4 is of first degree because both entities share a vote, its relation
to u3 is a second degree relation because it is mediated throughu4.

The key idea is now to understand relations of arbitrary degree as the outcome of
a stochastic diffusion process over the bipartite graph. To this end, we normalize the
votes cast by an entity so that they sum to 1. If all the votes of all the entities are stored
in a column stochasticm× n matrix R, and entity vectors are normalized so that they
sum to 1, too, individual or weighted combined ratings result fromvt = Rut . With these
assumptions, we obviously are considering probabilistic mappings fromV1 to V2.
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Figure 3: Example of the beginning of a stochastic diffusion process over a bipartite
graph. Staring with the distributionu0 = [0010]T produces a distributionv0 which in turn
leads to the updated distributionu1.

Given the transition matrixR, each itemv j ∈V2 can deducewhich entities do vote for
it for this information is essentially contained in the transpose of the transition matrix. If
S∝ RT was normalized so that it is a column stochastic matrix, too, a set of rated items
can (in turn) vote for entities (see Fig. 3(b)). An updated distribution over the entities in
V1 would then result from

ut+1 = Svt = SRut
!= Hut . (1)

Note that then× n matrix H introduced in last step of this derivation is a doubly
stochastic matrix whose rows columns and rows sum to 1. It is square and non-negative
and its eigenvaluesλk are characterized by|λk| ≤ 1.

Also, note thatH defines a Markov process over the setV1. Therefore, even though no
direct relation among theui ∈V1 were available in the first place, we now have a tool for
ranking. Assume an initial distributionu0 with only a few non zero entries. Then, after
t steps, the probabilities inut = Htu0 will be higher for entities which are more closely
related to the initially active elements and less high for less closely related ones.

However, in this most simple form, the model cannot produce reasonable rankings
if the underlying Markov chain is irreducible and contains positive-recurrent states. In
this (practically very likely) case, the process converges to a uniform distribution over the
elements inV1 which does not allow for any ranking. We therefore assume the initial dis-
tribution u0 to be a steady source of probability mass that constantly feeds the stochastic
process. With this modification, the update rule for distributions is given by

ut+1 =
1
2

[
Hut +u0

]
(2)

where the scaling factor12 ensures thatut+1 does sum to 1 just asut andu0 do. With
some algebra it is easy to see that, written as a power series, the recursive expression in
(2) amounts to

ut =
(1

2
H

)t
u0 +

1
2

t−1

∑
i=0

(1
2

H
)i

u0 (3)

Recall thatH is a doubly stochastic matrix whose eigenvaluesλk satisfy|λk| ≤ 1. For
the limit t → ∞, we therefore have

lim
t→∞

(1
2

H
)t

= 0 and lim
t→∞

t−1

∑
i=0

(1
2

H
)i

=
[
1− 1

2
H

]−1
. (4)
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Hence, the iteration in equation (2) is guaranteed to converge. Once the process has
converged, the vectoru it converged to is characterized byu = 1

2

[
Hu +u0

]
which directly

leads to the closed form solution

u =
1
2

[
1− 1

2
H

]−1
u0. (5)

Therefore, given an arbitrary initial distributionu0 that might represent a single entity
or –just as well– a mixture of entities, we can immediately determine the corresponding
stationary distribution and the ranking it implies.

2.2 Discussion

It is interesting to note that the matrix in equation (5) constitutes a diffusion kernel [8]. In
fact, from the derivation, we recognize another instance of thekernel trick. The similari-
ties among vectorsu ∈ Rn that are contained inH = SR result from mapping the vectors
back and forth to a (usually higher dimensional) spaceRm.

Diffusion kernels for the purpose of computing similarities on manifolds or graphs
have recently been studied by several authors [1, 7, 8, 15, 16]. In two contributions closely
related to this paper, Zhou et al. [15, 16], investigate the problem of ranking on manifolds.
They manifolds they are concerned with are represented by means of adjacency graphs.
Given an unstructured set of feature vectors, they compute a matrix that represents local
structures in the data by means of the distances between each data point and itsk nearest
neighbors. The adjacency matrix is then transformed into a similarity matrixK using a
Gaussian kernel with parameterσ . GivenK , they show that diffusion processes on this
adjacency graph are governed by the matrix(1−α)

[
1−αK

]−1
. This, of course, closely

resembles the result in (5).
In fact, from settingα = 1

2, we recognize stochastic diffusion over a bipartite graph to
be a special case of the problem studied [15, 16]. However, some comments appear to be
in order. While our derivation did not involve any free parameters, the approach by Zhou
et al. requires at least three of them (k, σ , α). Moreover, while our approach avoids the
computation of distances between vectors of ratings or features, the approach by Zhou
et al. requires distance computation for constructing the adjacency matrix as well as the
corresponding similarity matrix. Finally, the matrixH in our approach is a stochastic
matrix and thus allows for a concise interpretation of the ranking procedure in terms of a
Markov process. The matrixK in the approach by Zhou et al., in contrast, eludes such an
interpretation.

Ranking on manifolds has already been applied in systems for document and image
retrieval [5, 6]. However, to the best of our knowledge, all known such systems consider
diffusion processes over adjacency graphs that represent local neighborhoods similar to
the way discussed above. They therefore leave the user with the problem of choosing
suitable distances and parameters. Our approach, on the other hand, is parameter-free.
In the next section, we present initial experiments which demonstrate that it nevertheless
yields useful results for the problem of CBIR.
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3 Experiments

In this section, we report first results obtained from our approach to image similarity
ranking. Note that, in our experiments, we did not pay too much attention to the selection
of features suitable for the task of CBIR. Therefore, the figures and examples presented
below should not be considered the maximum achievable performance. Rather, they are
meant to illustrate the potential of ranking based on diffusion over bipartite graphs.

3.1 Setting

All our experiments considered the Corel 1000 data set [9]. It contains 1000 color images
showing scenes or objects from 10 different categories; for each category, there are a 100
examples.

Since the idea of thedegree of presenceof a feature, which we alluded to in the
last section, naturally translates to the use of histograms, we considered histogram-based
descriptors to characterize entire images in the data set. In order to represent information
due to the geometric structure of the image content, we decided to apply histograms of
oriented gradients as introduced by Dalal and Triggs [4]. We used 12 bins to store gradient
directions computed over a 9×9 grid of cells. The nonlinear normalization of different
histograms was computed with respect to 3× 3 blocks of cells. In order to represent
information contained in the color distributions of the images, we adopted the idea by
Dalal and Triggs to color histograms. Here, we considered 5×5 cells which again were
normalized using 3× 3 blocks. The color histograms in each of the cells contained 20
bins; the corresponding prototypical colors were determined from clustering the pixels of
all images in the database into different sets. Other than that, no preprocessing steps were
applied; in particular, we did not perform brightness adjustments or color normalization
such as proposed in [4].

Given these image descriptors, we tested how our approach performed when the de-
scriptors were considered individually as well as how it performed when they were com-
bined into a larger vector. For baseline comparison, we also verified how a retrieval pro-
cedure performed that determines image similarities based on the cosine distance between
feature vectors.

The figures in the Tables 1 to 3 resulted from issuing 10 different queries for each
category and averaging over the results. In accordance with the traditional approach in
information retrieval, we characterize the different algorithms in our test with respect to
theprecisionthey achieved.

3.2 Results

Tables 1, 2, and 3 list the precision valuesat 5, at 10, andat 20, respectively, and thus
indicate how many relevant documents were returned among the top 5, top 10, and top 20
ranking documents. Results obtained from the histogram of gradients features are found
in the columns markedHOG, the ones obtained from histograms of colors are displayed in
the columns markedHOC, results yielded by the combined descriptors are labeledboth.

Although some images seem to defy retrieval (e.g. the pictures of Mountains), the re-
sults obtained from stochastic diffusion processes over bipartite graphs generally appear
reasonable and useful. Moreover, on average, our approach consistently outperforms the
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stochastic diffusion cosine distance

HOG HOC both HOG HOC both

New Guinea 82 82 82 10 50 44
Beaches 80 90 94 46 54 44
Rome 40 20 32 14 44 32
Busses 80 52 78 76 56 78

Dinosaurs 96 100 100 72 100 100
Elephants 20 78 70 22 66 50
Flowers 60 72 78 34 94 54
Horses 22 76 74 96 90 94

Mountains 4 24 18 8 42 34
Food 26 36 66 0 58 58

average 51 63 69 38 65 59

Table 1: Precision @ 5 obtained on the Corel 1000 data set.

stochastic diffusion cosine distance

HOG HOC both HOG HOC both

New Guinea 76 76 76 5 52 41
Beaches 73 84 90 40 39 41
Rome 35 21 33 14 37 31
Busses 74 45 74 71 48 71

Dinosaurs 89 97 97 59 100 100
Elephants 21 68 65 15 61 42
Flowers 62 74 78 33 88 49
Horses 19 68 64 92 85 89

Mountains 4 21 17 5 36 25
Food 22 32 59 5 55 48

average 48 59 65 34 60 54

Table 2: Precision @ 10 obtained on the Corel 1000 data set.

baseline method, if it considers the combination of gradient and color features. Prelimi-
nary results like this are promising and justify further work on CBIR based on parameter-
free diffusion over bipartite graphs.

Figures. 4 through 6 exemplify another interesting and promising feature of our ap-
proach: since it avoids the computation of distances, it does not only apply to ranking
with respect to individual elements on a manifold but can be seamlessly applied in order
to rank with respect to sets of elements. The figures illustrate, how this can aid CBIR.

In its lower row, Fig. 4 shows the top 5 ranking images that were returned when the
image in the upper row was used as the query example. The ranking resulted from using
the combined gradient and color features and starting the Markov chain with an initial
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stochastic diffusion cosine distance

HOG HOC both HOG HOC both

New Guinea 65 65 65 9 54 37
Beaches 69 77 82 32 38 40
Rome 30 18 26 15 27 26
Busses 66 37 71 60 48 64

Dinosaurs 80 90 90 42 100 98
Elephants 20 56 53 16 57 42
Flowers 58 66 74 27 80 50
Horses 21 58 60 88 79 86

Mountains 6 22 17 10 35 25
Food 19 34 52 7 52 40

average 43 52 59 30 57 51

Table 3: Precision @ 20 obtained on the Corel 1000 data set.

Figure 4: A single query image and the 5 top ranking results.

distributionu0 = [0. . .010. . .0]T . Figures 5 and 6 show the outcome of the process when
started with a distributionu0 = 1

M [0. . .010. . .010. . .0]T whereM = 3 elements were
set to 1

M . From Fig. 5 we see that, if these elements index visually similar images, the
retrieved images appear similar to these images, too. If the initial distribution covers a set
of less similar images, the ones that will be returned among the top ranking images will
also show a greater variety (see Fig. 6).

4 Summery and Outlook

In this paper, we described a novel approach to image ranking for content-based image
retrieval. The interesting characteristics of this approach are that it is parameter-free and
that it determines image similarities without computing distances. Given a collection of
images together with a corresponding set of normalized feature vectors, the idea is to un-
derstand both sets as the disjoint sets of vertices of a bipartite graph. If the edges between
images and features are assumed to denote transitions in a Markov process and if given
queries are taken to be the initial distribution, an ordering with respect to a query results
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Figure 5: Three similar query images and the 5 top ranking results.

Figure 6: Three less similar query images and the 5 top ranking results.

from the stationary state of the chain. By design –and in contrast to other recent ap-
proaches to manifold ranking– our approach allows for a rigorous interpretation in terms
of Markov processes. Since these are completely characterized by the underlying stochas-
tic matrix, a user does not have to adjust free parameters and distance measures. On the
contrary, feature frequency counts or histograms immediately lead to necessary transition
probabilities.

Preliminary results obtained with this approach are promising and justify further in-
vestigation as to what features might further improve precision. In addition, the method
itself offers interesting perspectives for future research. An obvious idea is to apply it to
classification: given a feature vectorv derived from an unknown input image and a set of
known images, the new image can be classified by, for instance, a majority count of the
top ranking entities in the vectoru that results from a query with the initial distribution
u0 = Sv. Another direction worth pursuing further appears from noting that equation (2)
resembles the systems one deals with in linear quadratic control. The noticeable differ-
ence is that, in equation (2), the control matrix is set to1. Especially from the point of
view of interactive content-based retrieval, ways of adapting this matrix to better meet the
user’s intent seem a worthwhile topic.
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Abstract

In this paper a novel approach for improving automatic image annotation
methods is proposed. The approach is based on the fact that accuracy of cur-
rent image annotation methods is low if we look at the most confident label
only. Instead, accuracy is improved if we look for the correct label within the
set of the top−k candidate labels. We take advantage of this fact and propose
a Markov random field (MRF) based on word co-occurrence information for
the improvement of annotation systems. Through theMRF structure we take
into account spatial dependencies between connected regions. As a result, we
are consideringsemanticrelationships between labels. We performed exper-
iments with iterated conditional modes and simulated annealing as optimiza-
tion strategies in a subset of the Corel benchmark collection. Experimental
results of the proposed method together with ak−nearest neighbors classifier
as our annotation method show important error reductions.

1 Introduction

The task of assigning semantic labels (words) to images is known as image annotation.
This is a very important step towards developing more precise image retrieval systems.
For text-based image retrieval systems, annotations are indispensable features; while for
content-based image retrieval methods, annotations can provide them with semantic in-
formation for improving their performance. Image annotation, however, is not an easy
task; manual annotation is both infeasible for large collections and subjective. Therefore,
there is an increasing interest in developing automatic methods for image labeling.

There are two ways of facing this problem, at image level and at region level. In the
first case, labels are assigned to the entire image as an unit, not specifying which words are
related to which objects within the image. In the second approach, which can be conceived
as an object recognition task, the assignment of labels is at region level; providing a
one-to-one correspondence between words and regions. The last approach can provide
more semantic information for the retrieval task, although it is more challenging than the
former. Within the region-level automatic image annotation (AIA) task, we can distinguish
two approaches for assigning labels to regions, these are soft and hard annotation. Hard
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Figure 1: Graphical schema of our approach. We start from an image that is segmented into
regions; attributes are obtained from each region; next these attributes are used with a soft-AIA
method that returns a set of candidate labels, together with a relevance weight, for each region in
the image. Then the method proposed in this paper is applied, and it returns an unique correct label
for each image.

annotation consist of the task of assigning, with probability 1, an unique label to each
region; soft annotation, on the other hand, ranks the labels according to their relevance
to being the correct annotation for a given region. Accuracy of soft annotation systems
is superior to that of hard systems, though assigning a set of labels to a single region is
both confusing and impractical. On the other hand, accuracy of hard annotation systems
is poor, though it is more understandable and practical assigning a unique label to each
region.

In order to take advantage of the high precision of soft annotation methods as well as
the clarity of hard approaches, we proposeMRFI, a probabilistic model based on word
co-occurrence information for improving image annotation systems.MRFI considers the
top−k candidate labels for each region within an image and, by using word co-occurrence
information together with spatial context, it re-ranks each candidate label. Then we select
the unique top label for each image, according to this ranking. In Figure 1 the proposed
approach for improvingAIA methods is graphically described. We used ak−nearest
neighbor classifier as ourAIA system and experiments on a subset of the benchmark Corel
collection were performed. Experimental results show significant improvements by using
KNN+MRFI over singleKNN, furthermoreKNN+MRFI outperforms several others state
of the art annotation methods.

The rest of this document is organized as follows. In the next Section we review
related work. In Section 3 some background information is described. Next in Section
4 theMRFI method is proposed. Then in Section 5 experimental results are presented.
Finally, in Section 6 conclusions and future work directions are discussed.

2 Related work

A wide variety of methods for image labeling have been proposed since the late nineties.
However, none of current methods have taken advantage of label’s semantics for improv-
ing their performances. A very early attempt that used word co-occurrence information
is the work by Mori et al [13], in which every word assigned to the entire image is inher-
ited by each region; regions are visually clustered and probabilities of the clusters given
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each word are calculated by counting the occurrence of common words within these clus-
ters. A recent approach that attempts to take advantage of co-occurrence information is
that proposed by Li et al [12]. They use a probabilistic support vector machine classi-
fier for ranking candidate labels for each region within an image. Co-occurring words
in the candidate labels for regions in the same image are weighted high; then candidate
labels are re-ranked, top ranking labels are assigned as annotation for the entire image.
Our approach is different to the previous methods because we obtained the co-occurrence
information from an external corpus and considered spatial dependencies between con-
nected regions. Instead of just considering co-occurrence of labels within the same image
[12] or clusters of regions [13]. Moreover in such works co-occurrence information is
used ad-hoc for their annotation method; while in this work we propose a method that can
be used with other soft-annotation systems.

A work close in spirit to ours is due to Carbonetto et al [4]. In this work the authors in-
troduce spatial information into aMRF for object recognition. This approach is different
to the one we adopted; since Carbonetto et al define the potential function for discover-
ing the unknown association between visual features extracted from each region and the
considered labels; furthermore theMRF is entirely based on a single collection of anno-
tated images. While in this work we use semantic information, obtained from an external
source, for modeling word association between neighboring regions. Dealing with a dif-
ferent problem: that of selecting an unique label given a set (a subset of the vocabulary)
of candidate ones; which can be seen as a re-ranking strategy. Conditional random fields
(CRF’s) have also been applied to pixel-level image labeling [9], and object recognition
[14]. These works have obtained positive results in different scenarios, although their
applicability is still limited to segmentation ([9]) and two-class object recognition ([14]).
However using conditional random fields forAIA can be an immediate future work direc-
tion. The above described approaches take into account dependencies between connected
regions [4, 9, 14]; although none of these have used semantic knowledge together with
spatial context for improving performance of object recognition methods.MRFI, on the
other hand, does not attempt to induce thevisual-features to wordrelationship by con-
sidering spatial information. InsteadMRFI takes advantage of semantic information and
attempts to select the best configuration of labels for the regions contained in the same
image. Semantic information is obtained off-line from a word co-occurrence matrix cal-
culated from an external collection of manually annotated images.

3 Background

3.1 KNN as annotation system

Thek−nearest neighbors (KNN) classifier is an instance based learning algorithm widely
used in machine learning tasks. In this work we used this method as our annotation
system due to the fact that it can outperform other state of the art methods (see Section
5); furthermore,KNN can be adapted to work in the hard and soft annotation schemas.

KNN starts from a training data set{X,Y} consisting ofN pairs of examples of the
type{(x1,y1), . . . ,(xN,yN)}, with thex′isbeingd−dimensional feature vectors and they′is
being the labels ofx′is. In this work eachxi contains visual attributes extracted from a
region. While eachyi is one of the|V| labels we can assign to a region. The training
phase ofKNN consist of storing all available training instances. When a new instance,xt ,
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needs to be classifiedKNN searches, in the training set, for{xt
1, . . .x

t
k}, the topk−objects

more similar toxt ; then in a hard annotation schema it assigns toxt the class of the most
similar neighbor in the training set, we call this approach1-NN.

In order to applyMRFI with KNN as annotation method we need to turnKNN into
a soft-annotation method. That is, candidate words for a given region should be ranked
and weighted according to the relevance of the labels to being the correct annotation for
such a region. We used the distance of the test instance to the top−k nearest neighbors
as relevance weight. In this way we can infer relevance weights directly related to the
proximity of the neighbor to the test instance. Relevance weighting is obtained using
Equation (1)

PR(yt
j ) =

d j (xt)

∑k
i di(xt)

(1)

with d j(xt) being the inverse of the Euclidean distance in the attribute space of instance
xt

j , within thek−nearest neighbors, toxt , the test instance. As we can see, the sum of the
priors for all the candidate labels is one, therefore this relevance weighting ofKNN can
be taken as the prior probability for theMRFI method. Note that this relevance weight
is accumulative; that is, labels appearing more than once will accumulate their weights
according to the times they appear in the top−k labels. In this way we are implicitly
accounting for repeated labels.

3.2 Obtaining co-occurrence information

Word co-occurrence is a form of word association that has been widely used by informa-
tion retrieval models [1]. In the simpler schema, bags of words of documents and queries
are compared (that is, word co-occurrences are calculated) for retrieving the documents
whose bags of words are moresimilar to that of the query. This form of word association
can be used with labels in the vocabulary forAIA tasks for taking into account semantic
information between neighboring labels.

The co-occurrence information matrix(Mc) is a |V|X|V| square matrix in which each
entry Mc(wi ,w j) indicates the number of documents (counted on an external corpus) in
which wordswi andw j appeared together. That is, we considered each pair of words
(wi ,w j) ∈VXV and searched for occurrences, at document level, of(wi ,w j). We did this
for each of the|V| ∗ |V| pairs of words and for each document in our textual corpus. The
collection of documents we considered for this work was the set of captions of a new
image retrieval corpus: theIAPR-TC12[8] benchmark. This collection consists of around
20,000 images that were manually annotated, at image level; therefore, if two words
appear together in the captions of such collection, they are very likely to be visually
related. Captions consist of a few text lines indicating visual and semantic content. From
the entries of theMc matrix we can estimate conditional and joint probabilities if we

take: P(wi |w j) = P(wi ,w j )
P(w j )

≈ c(wi ,w j )
c(w j )

, andP(wi ,w j)≈
c(wi ,w j )

|D| , wherec(x,y) indicates the

number of timesx andy appear together in the corpus (that is, an entry of theMc matrix);
and |D| is the number of documents in our textual corpus. If we repeat this process for
each pair of words in the vocabulary we obtain a matrix of probabilities ((PM)), which
may contain conditional or joint probabilities. Preliminary experiments showed that the
use of conditional probabilities resulted in more significant improvements than those with
joint probabilities; therefore, we used in this work conditional probabilities for(PM).
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A problem with thePM matrix is the sparseness of data, that is, many entries of the
matrix have zero values, which can affect the performance of our approach; this is a
very common issue in natural language processing [6]. In order to alleviate this problem
we applied a widely used smoothing technique known as interpolation smoothing [6],
described on Equation (2)

P(wi |w j )≈ Λ∗
c(wi ,w j )

c(w j )
+(1−Λ)∗

c(w j )
|W|

(2)

whereΛ is an interpolation parameter1 and|W| is the number of words in the collection.

This formula is an interpolation between the empirical estimate (
c(wi ,w j )

c(w j )
) and the empir-

ical distribution of the termw j (c(w j)). Therefore if two terms never co-occur in the
co-occurrence matrix (Mc) we will not have a zero value inPM.

4 MRFI: A Markov random field for improving AIA

A random field is a collection of random variables indexed by sites [11]. We consider a
set of random variablesF = F1, . . . ,FM associated to each site in the site’s systemS. Each
random variable takes a valuefi from a set of possible valuesL. A Markov random field
(MRF) is a random field with the Markov propertyP( fi | fi−1, fi−2, . . . f1) = P( fi |N( fi)),
whereN( fi) is the set of neighbors offi . A typical application ofMRF’s is to obtain the
most probable configuration(F∗) for the MRF; given some restrictions represented by
local probabilities, also known as potentials. We can express the joint probability of a
MRF, ′′F ′′, given the observation,′′G′′, as the product of the potentials:

PF |G( f ) = ν ∏
c

Pc(X) (3)

With ν constant, potentials (Pc(X)) can be thought of as restrictions that will favor or
punish certain configurations ofF . In this way,F∗ can be considered as the configuration
that have the highest compatibility with the local probabilities (Pc(X)). We can express
the potentials as energy functions in exponential form, that is:Pc(X) = e−Uc(Xc), with
Uc(Xc) being an energy function. Then using Equation (3) we have an unique energy
functionUp( f ) = ∑cUc(Xc). In consequence Equation (3) can be reformulated as:

PF |G( f ) =
1
Z
∗exp−Up( f ) (4)

with Z being a normalization constant. For a first order neighborhood, as the one we
considered in this work, we have:

Up( f ) = ∑
c

Vc( f )+λ ∑
o

Vo( f ) (5)

WhereVc corresponds toPF , the domain information given by the neighbors; andVo cor-
responds toPG|F , the information given by the observations;λ is a constant that weights
the contribution of each term. In our case, we would like to select the best configuration
of labels assigned to the regions in each image. Making a compromise between the visual

1Usually the value ofΛ is chosen empirically. Intuitively a low value ofΛ should be used with sparser data.
After a few trial and error experiments we selectedΛ = 0.5.
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Figure 2: Left: graphical interpretation ofMRFI for a given configuration of labels and regions.
Right: spatial dependencies are shown for this configuration. ThepR

o ’s correspond to the rele-
vance weight attached to each candidate label; thea′is represent the unknown association between
connected regions.

properties of the region (Vo) and the semantics of its neighboring regions (Vc). Therefore,
we used the above described framework for approaching this problem.

The observed variables in our task are the relevance weight attached to each label
pR

1 , . . . pR
Mn

, for each regionR; and the top−k candidate labelsw1, . . .wK , for each region.
Observing this variables we define potential functions that exploit spatial dependencies
between labels assigned to spatially connected regions within each image. The structure
of MRFI and the dependencies it consider are shown in Figure 2. For this work we
consider a regionr i is connected (spatially related) to another regionr j , if r i is next-to rj .
Note that the next-to relation is symmetric and thatMRFI depends on the segmentation.
MoreoverMRFI can not deal with problems like over-segmentation. However, as we will
see in Section 5, if we have no available an accurate segmentation tool we can always
divide an image into squared patches. Although poor, the use of this simple partition
in AIA has outperformed methods based on sophisticated algorithms just has normalized
cuts (see Section 5 and [4, 3]). Also we can make the square patches as small as we want;
smaller patches will provide finer grain segmentations. Potentials forMRFI are defined
in Equations (6) and (7) for the consideration of context and observation information,
respectively.

Vc( f ) = ∑
c

(P(wc|wi))n (6)

Vo( f ) =
( 1

pR
o(wi)

)n (7)

Conditional probabilities in Equation (6) are obtained from the word co-occurrence ma-
trix, as described in Section 3.2. While relevance weightspR

o ’s, are obtained from the
AIA system. The problem of selecting the correct annotation for each region within a
given image reduces to the selection of the configuration that minimizes Equation (5).
The selection of thisoptimalconfiguration is solved by standard optimization algorithms.
In this work we performed experiments with two widely used algorithms: iterated con-
ditional modes (ICM [2]) and simulated annealing with metropolis criteria (SA[10]). In
Section 5 we report results of experiments with these two search strategies.

5 Experimental results

In order to evaluate the performance ofMRFI several experiments on a subset of the Corel
collection were performed. The data set we used is described in Table 1. It is a single
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Data set # Images Words Training blobs Testing blobs
A-NCUTS 205 22 1280 728

A-P32 205 22 3288 1632

Table 1: Subset of the Corel image collection we used in the experimentation withKNN-
MRF

Figure 3: Comparison of KNN against other semi-supervised methods (dML1 [7];
dML1O,gML1,gMLO,[3]; gMAP1[5]; gMAP1MRF[4]), using a Box-and-Whisker plot. The cen-
tral box represents the values from the 25 to 75 percentile, outliers are shown as separate points.
Left: accuracy at the first label. Right: accuracy at the top−5 labels. The upper dotted line repre-
sents a random bound, while the bottom dotted line represents a naı̈ve method that always assigns
the same label to all regions.

data set composed of 205 images segmented with normalized cuts [15] (A-NCUTS) and
grid segmentation (A-P32). The attributes we considered for each region are the follow-
ing: area, and color attributes. First we comparedKNN against other semi-supervised
object recognition methods [7, 4, 5, 3] (see caption of Figure 3), which are extensions and
modifications to the reference work proposed by Duygulu et al [7]. In order to provide an
objective comparison, we used the code provided by P. Carbonetto2. This code includes
implementations of the above mentioned methods. In Figure 3 a comparison between
KNN and the semi-supervised methods for theA-NCUTSdata set is shown. In this plot,
error is computed using the following equation:

e=
1
N

N

∑
n=1

1
Mn

(
1−δ (a−nu = amax

nu )
)

(8)

whereMn is the number of regions on imagen, N is the number or images in the collection;
andδ is an error function which is 1 if the predicted annotationamax

nu is the same as the
true labela−nu. Results with the test sets are averaged over 10 trials.The left plot in Figure
3 shows error at the first label (hard annotation). Error is high for all of the methods we
considered, however1-NNoutperforms in average all of the semi-supervised approaches.

2htt p : //www.cs.ubc.ca/∼ pcarbo/
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Method k Its λ n Context Time Improved #−runs AVG-I
ICM-P32 20 100 0.1 1 Next-to 1.8 134 4500 41.3

ICM-NCUTS 20 100 5 0.5 Full 0.78 56 4500 -0.7
SA-P32 20 50 0.1 2 Next-to 1.5 144 2700 98.6

SA-NCUTS 20 25 10 0.5 Next-to 0.5 54 2700 27.5

Table 2: Parameters for the best configurations.k is the number of candidate labels in
KNN; Its is for iterations;λ andn are parameters for Equation (5); context indicates the
type of neighborhood considered; time is the average time in seconds required to analyze
an image withMRFI. Improvedis the number of annotations improved. #−runs is the
number of experiments performed andAVG-I is the total of annotation improvements
averaged by #−runs

gMl0 is the closest in accuracy to1-NN, though it obtains an average error which is above
1-NN by 4.5%. In the right plot of Figure 3 we consider a label is correctly annotated
if the true label is within the top−5 candidate labels, (soft annotation). As we can see,
error for all methods is reduced, this clearly illustrates the fact that accuracy of annotation
systems is high considering a set of candidate labels instead of the first one. In this case
gMAP [5] outperforms5-NN by 0.9% in average. All other approaches obtain a higher
average error than that of5-NN.

In the second experiment we compared the performance ofKNN+MRFI to that of
KNN alone as well as to the previous methods. Note that we have several parameters
to fix for MRFI. These are:k, the number of candidate labels for each region;λ andn,
parameters for Equation (5); the number of iterations is a parameter for the optimiza-
tion algorithms; furthermore, we performed experiments with spatial context (see Figure
2) and with full spatial context, that is, assuming all regions in an image are connected
to each other. Given thatMRFI is an efficient method we could perform many experi-
ments with both data sets in order to determine the average improvement ofMRFI+KNN
over singleKNN. The parameters of the best configurations for each data set consid-
ering both optimization strategies are shown in Table 2. We also show the average of
accuracy improvement and processing time. From Table 2 we can point out several inter-
esting observations. First, as expected, the more candidate labels we consider, the more
improvements we gain. We performed experiments withk ∈ {3,5,10,20} and the best
results were obtained withk = 20. ICM needs a higher number of iterations to converge
thanSA. A small value ofλ works well for theP32data set, which means that a small
weight is given to the co-occurrence information. While a high value ofλ performs bet-
ter for NCUTS, giving more importance to co-occurrence information. We can see that
for NCUTSa value ofn = 0.5 performs well, while this parameter do not significantly
affected the performance ofMRFI. The use of spatial information, through thenext-to
relation, results in larger improvements than if consider each region is connected to each
other in the image. Improvements are consistent through the number of experiments per-
formed. The lowest average improvement was obtained withICM-NCUTS. While with
the grid segmented data (P32) we obtained the largest improvement, 98 annotations per
run in average; which is a very significant improvement. An important result showed in
Table 2 is the processing time3 required to process an entire image withMRFI. These
results show the efficiency ofMRFI.

3All experiments were carried out on a PC with 1 GB in RAM and a 2.7 GHzpentiumR processor
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Figure 4:Comparison ofKNN andKNN+MRFI against other semi-supervised methods (see cap-
tion of Figure 3) for images segmented with normalized cuts (left) [15] and with the grid approach
(right); error is measured at the first label, see caption in Figure 3.

In all experiments performed using grid segmentation, which is faster than the other
method, outperformed in accuracy segmentation with normalized cuts [15]. This result
agrees with previous work [4, 5]. InMRFI this can be due to the fact that with grid seg-
mentation (P32) the structure of theMRF is equal for all images. While for normalized
cuts we have a different segmentation, according to the image’s content, and therefore
a different structure for theMRF. The use ofSA instead ofICM does not result in sig-
nificant improvements,SAoutperformedICM by 0.5%, which means that we have not
many local minima. In Figure 4 we compare the best configurations ofMRFI (Table 2)
with the other methods. From Figure 4 we can clearly appreciate the improvement we
can get by applyingMRFI+KNN, instead of1-NNalone, for both data sets. The improve-
ments ofMRFI+KNN over 1-NN are of 7.5% and 10.3% for theP32 andNCUTSdata
sets, respectively. These percentages represent around 140 (forP32) and 46 (forNCUTS)
annotations that were enhanced; this is a very significant improvement in accuracy. Fur-
thermore, the difference in performance betweenMRFI+KNN and the other methods is
dramatically increased. The semi-supervised method with closest average accuracy is
gML0. MRFI+KNN improvedgML0 in average by 18.9% and 14.7% for theP32 and
NCUTSdata sets, respectively. Results from this Section give evidence thatKNN+MRFI
is an effective image annotation method. Furthermore,MRFI can be applied with any
other annotation system, though more experimentation should be performed in order to
evaluate its impact with other methods.

6 Conclusions

We have presentedMRFI, a method for the improvement ofAIA systems. InMRFI spatial
dependencies are considered through aMRF model. Semantic information between la-
bels is incorporated using word co-occurrences. Co-occurrence information is calculated
off-line from an external collection of captions, which is a novel approach. Experimen-
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tal results of our method on a subset of the Corel collection, give evidence that the use
of KNN+MRFI results in significant error reductions. Our method is efficient since the
co-occurrence matrix is obtained off-line, and in most of the cases we just need a few
iterations to obtain a good configuration (around 1.1 seconds per image). Furthermore,
MRFI can be used with othersoft-annotationsystems.

The improvement of the co-occurrence matrix is an immediate step towards the en-
hancement ofMRFI. Other future directions include the consideration of global image
labels intoMRFI and considering other models thanMRF’s, such asCRF’s as well as
experiments with probabilisticAIA methods.

Acknowledgements.We would like to thank K. Barnard, P. Carbonetto and M. Grubinger for
making available their data and the reviewers by their useful commentaries that helped to improve
this paper. This work was partially supported by CONACyT under grant 205834.

References
[1] R. Baeza-Yates and B. Ribeiro-Neto.Modern Information Retrieval. Pearson E. L., 1999.

[2] J. Besag. On the statistical analysis of dirty pictures.J. Roy. Stat. Soc. B, 48:259–302, 1986.

[3] P. Carbonetto. Unsupervised statistical models for general object recognition. Master’s thesis,
C.S. Department, University of British Columbia, August 2003.

[4] P. Carbonetto, N. de Freitas, and K. Barnard. A statistical model for general context object
recognition. InProc. of 8th ECCV, pages 350–362, 2005.

[5] P. Carbonetto, N. de Freitas, P. Gustafson, and N. Thompson. Bayesian feature eeighting for
unsupervised learning. InProc. of the HLT-NAACL workshop on Learning word meaning from
non-linguistic data, pages 54–61, Morristown, NJ, USA, 2003.

[6] S. F. Chen and J. Goodman. An empirical study of smoothing techniques for language mod-
eling. InProc. of the 34th meeting on Association for Computational Linguistics, pages 310–
318, Morristown, NJ, USA, 1996.

[7] P. Duygulu, K. Barnard, N. de Freitas, and D. Forsyth. Object recognition as machine trans-
lation: Learning a lexicon for a fixed image vocabulary. InProc. 7th ECCV, volume IV of
LNCS, pages 97–112. Springer, 2002.

[8] M. Grubinger, P. Clough, and C. Leung. The iapr tc-12 benchmark -a new evaluation resource
for visual information systems. InProc. of the International Workshop OntoImage’2006 Lan-
guage Resources for CBIR, 2006.

[9] X. He, R. Zemel, and M. Carreira. Multiscale conditional random fields for image labeling.
In Proc. of CVPR’04, volume 2, pages 695–702. IEEE, 2004.

[10] S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by simulated annealing.Science,
220(4598):671–680, 1983.

[11] Stan Z. Li.Markov Random Field Modeling in Image Analysis. Springer, 2nd edition, 2001.

[12] W. Li and M. Sun. Automatic image annotation based on wordnet and hierarchical ensembles.
In CICLING, volume 3878 ofLNCS, pages 417–428, Mexico, City, 2006.

[13] Y. Mori, H. Takahashi, and R. Oka. Image-to-word transformation based on dividing and
vector quantizing images with words. In1st Int. Worksh. on Multimedia Intelligent Storage
and Retrieval Management, 1999.

[14] A. Quattoni, M. Collins, and T. Darrel. Conditional random fields for object recognition. In
NIPS, 2004.

[15] J. Shi and J. Malik. Normalized cuts and image segmentation.PAMI-IEEE, 22(8):888–905,
2000.

609



Image Retrieval through Qualitative 
Representations over Semantic Features 

 

Zia Ul-Qayyum, A.G. Cohn 
zia@comp.leeds.ac.uk, A.G.Cohn@leeds.ac.uk  

 

Abstract 
 

We propose a qualitative knowledge-driven semantic modelling approach for 
image retrieval based on qualitative relations over local semantic concepts of 
images. The relative similarity of two images is proportional to their qualitative 
similarity. The similarity measure is calculated for each query by exploiting the 
notion of conceptual neighbourhood – a measure of closeness between 
qualitative relations. The approach is motivated by the need to perform semantic 
querying using qualitative relations and bridge the semantic gap between a 
human user and that of CBIR systems. Three qualitative representations (and 
several variants) and a corpus of 700 natural scene images have been used to 
evaluate the effectiveness of image retrieval using this approach. 

1. Introduction 
Advances in digital technologies along with the growth of the Web have resulted in 

universal access to very large archives of digital data. This has lead to an increasing 
requirement for systems with more flexible and robust techniques to handle dynamic and 
complex visual content at a higher semantic level. Content based image classification and 
retrieval systems have thus gained more importance and have become an active research 
area [1]. In all such systems, image interpretation and understanding plays a vital role. 
Most of the research in this area is primarily based on use of low level image features like 
colour, texture, shape etc [9, 18]. Although low level image processing algorithms and 
methodologies are quite mature, such systems are hard to be used effectively by a novice 
due to the semantic gap between user perception and understanding, and system 
requirements. Bridging this gap between low level synthetic features and high level 
semantic meanings is, therefore, generally regarded as an open problem [1]. Humans tend 
to describe scenes using natural language semantic keywords/concepts like sky, water etc 
and specify queries like “an image with water next to fields and sky above....” or “… has 
a small lake with high peaks of mountains behind and fields on left...”. This suggests that 
use of underlying semantic knowledge in a qualitative representation language may 
provide a way to model the human context and is a natural way to bridge semantic gap for 
better image understanding, categorization and retrieval capabilities. 

This paper thus proposes a qualitative knowledge-driven semantic modelling 
approach for IR. Qualitative representation of the local semantic contents of an image 
allows for representation and reasoning of content structures at a higher abstraction level 
than low level features. In earlier work [13], we showed how category descriptions for a 
set of images could be learned using qualitative spatial representations (QSR) over a set 
of local semantic concepts (LSC) such as sky, grass. There were six global categories 
(e.g. coasts, forest etc) [19] and we used three kinds of QSR techniques to demonstrate 
that supervised learning using QSR of semantic image concepts can rival a non 
qualitative approach for image categorization [19,13], and moreover result in a more 
intuitive and more human understandable image description.  
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Our hypothesis in this paper is that the qualitative representations which were able 
to effectively support categorization may also provide an effective and natural way to 
support content-oriented querying. A query can either be directly described in the 
qualitative representation, or in the evaluation of our approach described below, a query 
can be given as a sample image (i.e. query by example: QBE) – the system then forms a 
qualitative description of it by a conjunction of qualitative relations between the semantic 
concepts. In both cases the system then compares the query qualitative description with 
qualitative descriptions of images in the database of images, and uses a qualitative 
similarity measure to retrieve qualitatively similar images, and show how retrieved 
images can be ordered accordingly. We do not assume that images have already been 
assigned categories/classes. The qualitative similarity measure is based on the notion of a 
conceptual neighbourhood (CN) [10] – see §4.  

In experiments, using this technique on the different QSRs, we observed that the 
various representations had different levels of performance for different categories of 
images; this lead us to investigate the use of voting schemes in order to combine the 
different QSR to enhance the performance of the retrieval system overall. 

A quantitative metric based evaluation of approaches based on qualitative 
representations has always been difficult. In order to evaluate the performance of this 
approach to IR, we take advantage of manually assigned categories for the image DB in 
our experiments. Although we are not performing image categorization, and the retrieval 
algorithm does not use the category information, success of retrieval is evaluated by 
counting the number of highly ranked images in the same category as the query. 

The experimental data set is a collection of 700 natural scenes images, provided and 
hand labelled with categories by Vogel et al, who developed a semantic modelling 
framework for image categorisation and retrieval [19]. Our approach builds on her work, 
an overview of which is presented in §3. 

The rest of the paper is structured as follows. Related work is briefly discussed in 
§2. §3 describes our approach to image description using QSR.  A qualitative similarity 
based IR approach is presented in §4. §5 presents the results and evaluation of the 
approach, while §6 presents our conclusions and suggestions for future work. 

2. Related Work 
In the IR literature, image description and better understanding of underlying 

semantic content play important roles as the nature and structure of the query depends on 
the underlying image description. In this section, we first we describe the most relevant 
work from allied disciplines of content-based IR and then briefly survey the field of QSR. 

CBIR systems have become an active research area in computer vision. [7,9,15,18] 
review the state of the art in segmentation, indexing and retrieval techniques in a number 
of CBIR systems. Despite increased work in aspects related to high level semantics of 
image features, the gap between low level image features and high level semantic 
expressions is a bottleneck in accessing multimedia data from databases. These surveys 
reveal that almost all existing approaches rely on using low level image features for 
image description, categorization and retrieval. Since image understanding is key to all 
content-based image categorisation and retrieval systems, so a human understandable 
image description may yield more robust systems since humans normally tend to use 
semantic and qualitative terms to describe a situation/image. Therefore, a retrieval system 
based on qualitative description of underlying semantic knowledge may help a non-
expert user query such systems more effectively. Research has already been done 
focusing on the use of labelling the image regions with semantic concepts and carrying 
out key-word based IR. One such probabilistic approach [4] is to assign small image 
areas labels such as “man-made” and “natural”, and global labels such as “inside”, 
“outside” to whole images using class likelihoods from colour-texture features of images 
for semantic IR. Local regions of images have been annotated with 11 and 10 semantic 
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categories respectively [17,20]; in [17] a global label is not assigned to images, so 
retrieval is based on local semantic concepts only. An IR approach based on semantically 
labelled image regions is demonstrated in [1]. These image regions have been 
hierarchically classified based on their semantics using low level image features. 
Retrieval is based on these semantic keywords attached to particular images.  

In an approach [21] for semantic retrieval based on content and context of image 
regions and which supports both keyword and QBE queries, images are segmented using 
a semantic codebook based on colour and texture classification. The content and context 
describe a region’s low level features and their relationships respectively. It uses only 
dominant semantic categories of an image and the most typical images in that category 
are selected manually from an image database which can best model the codebook 
representing colour and texture classification for that particular semantic category. 
Another query by semantic example (QBSE) approach is based on posterior concept 
probabilities of each concept in an image [14]. QBSE is accomplished by comparing the 
probability simplexes of the query image and all database images to find the closest 
neighbours. The perceptual segmentation approach in [8] has not been applied in their 
work for image categorization and retrieval, but the relative effectiveness of their 
approach to image segmentation and labelling can be used to perform keyword based IR. 
The VISENGINE system [16] relies on segmenting image regions by clustering visual 
features like colour, texture, shape etc and differentiating them into foreground and 
background regions. The approach is largely user-centred, and therefore results may vary 
depending on human perception and context. Since only large regions are identified 
during segmentation, small image areas do not contribute towards the retrieval process 
which may inhibit a true semantic similarity in the retrieved images. Progress can also be 
made algorithmically, e.g. it has been shown that classification and retrieval accuracy can 
be boosted by combining different approaches [11]. The use of ontologies and metadata 
representation languages is another recent trend for annotating and retrieving images 
[12]. A prerequisite for this approach is the construction of generic and possibly domain 
specific ontologies from which the detailed annotations are constructed. 

One crucial research question for QBE systems is how to measure the level of 
similarity, and assess the accuracy of such a technique. Defining a notion of similarity is 
difficult since context may play a pivotal role. Moreover, when using a qualitative 
representation, where feature descriptions do not take quantitative values, the very notion 
of a metric becomes problematic; approaches to qualitative similarity are discussed in [3].  
In computer vision and image processing, metric approaches have generally been used to 
compute scene similarity, e.g. a measure based on normalised distance for a semantic 
ordering of natural scenes in categories such as forest and mountains, mountains and 
rivers/lakes [19]. 

The field of QSR has become increasingly more active within AI as it arguably 
provides cognitively or intuitively relevant representations for spatial information – 
typical spatial expressions in natural language are qualitative rather than quantitative. 
Moreover, qualitative representations abstract away from noise and uncertainty in 
perceptual data. It has increasingly been used in different application domains like GIS, 
NLP, robotics, computer vision etc, see [6] for a review. There are many QSR, covering 
aspects such as topology, distance, orientation, and shape. Rather than attempt an 
exhaustive analysis of the utility of all these calculi, we concentrate on a small set of 
QSR here; we do not claim these are necessarily the best calculi for image description, or 
even for the particular kinds of images in the database we use here, but leave that for 
further work. Our aim is simply to illustrate the use of qualitative calculi for IR and to 
demonstrate their potential applicability and suitability for CBIR.  

In the qualitative framework, in which images are described using a small finite set 
of relations or qualitative values, similarity can be computed by using the distance in the 
CN graph. The notion of a CN was first put forward [10] in the context of a set of 13 
pairwise and disjoint relations between temporal intervals and was defined as “two spatial 
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or temporal relations are conceptual neighbours if one can be transformed into the other 
by a single [continuous] transformation/transition”. Given two such qualitative image 
descriptions, their similarity is proportional to the number of such transformations 
required to turn one into the other [5]. 

3. Qualitative Image Description 
Our approach builds on Vogel et al’s work [19] in which images from a 700 image 

corpus were divided into a grid of 10x10 regions (instead of using segmentation 
techniques) and nine local1 and discriminating semantic concepts were identified: sky, 
water, grass, foliage, flowers, field, mountain, snow, trunks and sand. Vogel et al 
manually annotated 99.5% of the images with these concepts, and used this as input to 
supervised learning techniques to annotate image patches automatically. A label “rest” is 
used for unidentified patches or occurrences of other semantic categories. Images were 
represented by frequency histograms of local semantic concepts and based on a semantic 
typicality measure; images were categorized into one of the six semantically meaningful 
categories sky_clouds (34), coasts (143), landscapes_with_mountains (lwm) (178), fields 
(128), forests (103), waterscapes (114). (The numbers in brackets show total number of 
images for the respective category.) This approach is partially spatial through its division 
of the image into horizontal bands (e.g. top (T), middle (M) and bottom (B)) but is 
mainly based on the metric value of the percentages of discriminant semantic concepts. 

We use the hand labelled data set in the experiments reported here in order to 
evaluate using the “gold standard” rather than be affected by the particular model learned 
for annotation. The images are described using the following QSRs: 
1)   The relative size (measured in grid squares) for all possible pairwise combinations of 
the semantic labels. Each may be regarded as an attribute of the image with possible 
values of ‘Greater than’ (>), ‘Less than’ (<) and ‘Approximately Equal to’ (≈) – we allow 
a ±10% tolerance for  ≈. 
2)   Allen relations [2] (measured on vertical axis between the intervals representing the 
maximum vertical extent of each concept occurrence).  The 13 relations are: ‘before’ (<), 
‘meets’ (m), ‘overlaps’ (o), ‘during’ (d), ‘starts’ (s) and their inverses ‘after’ (>), ‘met-by’ 
(mi), ‘overlapped-by’ (oi), ‘contains’ (di), ‘started-by’ (si), ‘finished-by’ (fi) respectively, 
and ‘equal’ (=). A 14th relation ‘no’ is used if neither attribute is present. 
3)   Chord patterns [15] of semantic concepts applied to each grid row. Each semantic 
feature is a ‘tone’ and each row forms a ‘chord’ of tones. The 10x10 grid generates 10 
chords, one for each row, such as “foliage sky” or “grass sky sand water”2 etc.  
4)   A binary ‘Touching’ relationship (additional to the above 3 representations already 
used in our work [13]), which records whether one patch type is spatially in contact with 
another in the image. Note that, although apparently similar, the Allen ‘meets’ relation is 
not equivalent since the 2 patches may be at different sides of the picture.  
 For comparison purposes, we also ran experiments with a purely quantitative metric 
based retrieval scheme based on the respective percentages of each of the semantic 
concepts in each image in the style of [19]. This representation is labelled as 
“Percentages” in Table 1. Similarity is computed using the sum of absolute differences in 
percentage values for each attribute in a pair of images. 
 Fig. 1(b) illustrates the chord representation while Fig. 1(a) the relative size and 
Allen relationships. Several variants of the above QSRs were also investigated; we report 

                                                           
1 There are 9 semantic concepts in [19], while the data set provided and which has been used in our 

experiments contains 2 extra ones (mountain and snow) – however these occur infrequently and the basis 
for comparison will be thus essentially unaffected. 

2 This representation can be regarded as an abstraction of the relation used by [19] – whereas they record the 
percentage of each attribute in each horizontal band, in the chord representation it is only the presence or 
absence which is recorded. 
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on just one here where the relative size representation is recorded separately within 3 
image areas: Top (T: top 3 rows), Middle (M: rows 4-7), Bottom (B: rows 8-10). 

  
   (a)                (b) 
Fig. 1. QSR using (a) relative size and Allen’s calculus  (b) chord representation 

4. IR Based on Qualitative Similarity 
We envisage a CBIR system in which a query is specified either by giving an 

example image or by a symbolic query expressed in terms of the qualitative relations 
defined above, e.g. “retrieve images with rocks touching water and more water than 
foliage”. In the former case, we can compute a qualitative description of the image using 
one more of our qualitative schemes, but in this case it is more likely that no image will 
exactly match – this could also happen in the latter case. It would clearly be convenient to 
be able to retrieve images which nearly match the query (which ever way it is specified). 
The problem is to define what “nearly matches” means, since in a qualitative 
representation we do not have raw numbers available. In the remainder of this section we 
define notions of qualitative similarity for each the qualitative representations. 

The CN of Allen relations is presented in Fig 2(a) below. The links connect 
neighbouring relations – ones which are most similar – as one traverses more links from a 
particular relation, the relations become progressively less similar. Thus if in image 1 sky 
< grass, and also in image 2, then they are identical (in this comparison); if in image 3  
sky m grass, then image 3 is similar to image 1, whilst if image 4 has  sky o grass, then 
image 4 is also similar to image 1 but not as similar as image 3, and so forth. Since there 
are many attributes in each description of an image (e.g. 66 in Allen representation), we 
have to find a way to combine the similarities of each pairwise comparison. The CN for 
the Allen relations is already a partial order, and it is clear that the cross product across 
all the attributes is even more so. To achieve a total ordering we assign a weight of 1 to 
each arc in the CN, and sum the number of arcs traversed across all the attributes in order 
to transform one description into another (using the shortest route). Clearly we could 
assign non uniform weights to the different arcs but in the absence of any particular 
reason to do this, a uniform weighting appears to be the obvious choice. The situation 
where one of the relations from a particular pair of images for a pair of attributes is “no” 
whilst the other is not, deserves some discussion – what should be the weight in this case 
(since “no” does not appear in the CN)? One possibility is to choose a weight of 7 (one 
more than the maximum weight otherwise in the Allen CN), though other choices could 
clearly also be used, and indeed we also experimented with the choice of zero3 and 
values greater than and less than 7. In an implementation for an end user, this could be a 
parameter (perhaps a slider in the interface). 

                                                           
3 This was particularly motivated by classes such as “lwm” where the set of concepts present can vary 

considerably, and penalizing image with a different set of concepts to the query image had a great effect on 
the results. A penalty weight of 0 implies that the similarity of images is determined only by the relationship 
between common semantic concepts in the query and database images, and missing concepts do not 
contribute towards total penalty weight.  
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The CN for the relative size representation is much simpler with just three nodes, 
one for each of the three relations, with ≈ neighbouring each of   <   and   > and the 
maximum weight is 2. For missing patch types we do not need a ‘no’ relation in this 
representation since their size is zero and the existing three relationships are still 
applicable.  

For the case of the chord representation, we can think of the CN as being equivalent 
to a complete lattice generated by the power set of the set of patch types; effectively this 
means that the similarity is directly proportional to the number of insertions and deletions 
required to transform one chord into another. 

For the representation of spatial touching, there are just 2 nodes in the CND 
(touching and not-touching) and a single link connecting them. We experimented with 
this representation, however eventually used a similarity measure which also takes 
account of the degree of touching. Each patch in the rectangular grid can touch up to 8 
other patches. For a pair of given patch types p1 and p2, we compute how many patches 
of type p1 touch a patch of type p2, and vice-versa for p2 and p1; the maximum of these 
2 values is then recorded as one of the attributes in this representation of an image. To 
compute the degree of similarity between two images using this representation we simply 
take the sum of the absolute differences in each of the corresponding attribute values for 
each image. This representation thus combines a very qualitative representation, 
touching, which is a purely topological relationship, with a metric measurement of its 
applicability to a particular image. Thus, for example, for an image with extended sky-
grass spatial connection will be more similar than ones with small amount of spatial 
connection between the two concepts. 

Thus given a representation “R” with attributes , and a function 
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We then can compute rank of an image y in the database for query image x  as: 
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5. Results and Evaluation 
We have conducted experiments with each of the representations above individually 

and also in various combinations. To illustrate the results obtained, we first present (fig. 
2(b)) a sample query image and the top 5 results according to the qualitative similarity 
measures described in §4 for Allen representation. This does not give any quantitative 
evaluation of the quality of the retrieval and we next turn to this question. To provide a 
more thorough quantitative analysis of the performance of the various representations, we 
used the following experimental setup. Each of the 700 images in the database was used 
as a query image in turn, and a similarity ordering computed for all the other 699 images. 
However this does not tell us whether images high in the ordering really are intuitively 
similar to the query image. As a proxy for an extensive user evaluation of each of these 
rank orderings, we use the hand assigned category labels used for previous work on this 
dataset for supervised learning of category descriptions [19,13]. 

Given a query image in category c, we can evaluate the number and hence the 
percentage of images in the same category in the top k images in the rank ordering. For 
cases where the number of images of a particular category in the DB is less than k clearly 
100% scores cannot be achieved.  
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The number k may be user defined, or be determined by conditions such as how 
many images of a certain size fit on a user’s screen, or could be determined by analysis of 
the actual similarity values. Table 1 shows, for each class, the number of retrieved images 
of that class in the top ranked 20 and the top k images (where k is the number of images 
in the respective class, e.g. k=34 for sky_clouds), each row giving the values for a 
different representation. The last two rows in Table 1 shows the statistics when using the 
percentage of each semantic attribute as the representation for comparison with the 
quantitative techniques of [19]. The results reveal the following interesting conclusions: 
- The recall rate clearly validates the measures of similarity used,  since as the number of 
images retrieved increases, the accuracy of retrieved images goes down (measured by 
successive retrieved images of the same category). 
- the recall percentages are well above the baseline statistical likelihood of each category 
of images in the population. 
- The chord representation performs relatively well. Arguably this is because it closely 
resembles the human cognition of similarity because a human may describe or compare 
an image in terms such as “having sky in the top, foliage and water in the middle, water 
and sand at the bottom of image” – remembering that the semantic categories were 
assigned by a human (though without being aware of the possibility of subsequently 
using the chord representation (or indeed any other). 

    
  (a)     (b) 

Fig. 2. (a) CN for Interval Calculus [42] (b) Query & top 5 retrievals using Allen’s Rep  
 
- The representation ‘relative size’ performs surprisingly well, given the low information 
content. Moreover, the relative size on TMB regions of image representation performs at 
least as well if not even better in overall compared to the purely metric representation 
(Percentages and Percentages on TMB). 
- The touch based representation does not perform particularly well – arguably it does not 
encode sufficient information to be able to adequately distinguish cognitive similarity in 
the image dataset. 
Table 1 only considers individual representations. Since the performance of  
representations varies across categories (and bearing in mind that we assume we do not 
know the category of an image – we are using this information here purely for evaluation 
purposes), we also experimented with similarity measures based on combinations of four 
different qualitative representations4 – Allen, relative size, chord and touching. 

There have been a number of approaches in image categorization research involving 
bagging/boosting while in IR, multiple query processing or use of low level and semantic 
labels has been used to improve the retrieval accuracy. We investigated voting 
approaches based on combining the respective penalty weights of images in individual 
representations, and on combining the ranks of retrieved images in each selected QSR.  

                                                           
4 Of course each representation might itself be viewed as a hybrid representation with the 66 attributes (or 

whatever number of attributes used in the particular representation) combining together to assign an overall 
similarity to an image pair. 
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In order to count the accumulative effect of penalty weights in all of the 4 selected 
representations and also the overall ranking of an image in the list of database images, 
several other kinds of weighted voting schemes (V1 – V4) were investigated ( Table 2): 
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for each image in the DB for a query x and then sort in ascending order: (variant of V1). 
 Although the weights within in each representation may be regarded as comparable, 
it is arguable as to whether this also holds with respect to the weights in other 
representations. We thus investigated schemes based solely on the rank within each of the 
four representations.  
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where “Max” and “Max2” compute the maximum and 2nd highest values respectively. 
The results suggest the following conclusions: 

-   The purely qualitative approaches perform comparably or even slightly better in some 
cases to the quantitative ones. The former have added advantage that they also allow 
retrieval based on simple linguistic descriptions using qualitative descriptions over the 
semantic attributes.  
-   The voting schemes based on accumulative weighted votes and weighted rank votes 
(V1 – V4) perform better than the approaches using a single representation only. 
- The overall accuracy of the retrieval process compared with the actual class labels is 
somewhat problematic due to the fact that many images may be categorized as either 
“lwm” or “coast”   – i.e. most of the images in the DB have some aspects of “lwm” or 
“coast”, and arguably it is a matter of degree or personal preference when an lwm with 
sky above becomes a “sky_clouds”.  Similarly, there is lot of potential confusion in 
images categorised in classes like “fields” and “sky_clouds”. This fact was also 
established in [13, 19] while learning the class descriptions. 
-   The voting schemeV1 performs much better in the top 20 and the top k experiments as 
it is based on accumulative row weights of an image corresponding to 4 representations 
chosen. Its performance is comparable to the quantitative approach. Furthermore, both of 
the basic voting schemes, V1 and V3, are better than the individual representations in 
terms of accuracy of IR using the “ground truth” of the hand assigned labels. 
-   It can be seen that coasts and waterscapes do relatively badly compared to the other 
categories, and this is also true about sky_clouds and fields categories in some of the 
representations, which is not altogether surprising from a semantic/intuitive viewpoint. If 
these two categories are combined into a single category then the rate of accuracy 
improves significantly. This fact has also been observed in the confusion matrices of 
different learning schemes in [13]. 
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Categories / 
QSRs 

  Coasts  
  Out of 

   Field 
   Out of 

   Forest  
    Out of 

    LWM 
    Out of 

 Sky_Clouds 
    Out of 

   wscapes  
    Out of Overall 

 20 k 20 k 20 k 20 k 20 k 20 k 20 k 
Allen only      56 33 38 26 66 41 84 48 49 35 46 26 59 36 
Touch 57 33 40 27 73 51 85 52 51 40 42 22 61 38 
Chord 56 41 66 34 91 68 82 59 91 89 47 36 70 50 
Size only 63 46 57 34 86 66 88 61 60 44 51 37 70 49 
Size on TMB 67 45 68 38 92 75 88 65 93 82 47 34 74 53 
Percentages-
%s 62 47 70 36 92 69 84 61 93 91 47 36 73 52 
%s on TMB 64 48 69 36 93 72 84 62 94 92 48 35 73 53 

 
Table 1. Recall percentages on per category and overall basis in top 20 & number of 
images in each category (k) for all representations used.5

 

Categories / 
QSRs 

  Coasts 
  Out of 

  Field  
   Out of 

  Forest  
  Out of 

  LWM 
   Out of 

  
Sky_Clouds
   Out of 

  Wscapes 
  Out of    Overall 

    20    k    20    k    20    k    20    k    20     k    20    k    20    k 
V1   67   45   69   35   95   78   92   69   88   78   51   35   76   54 
V2   55   33   37   26   65   42   83   48   50   35   47   27   59   36 
V3   66   44   60   33   93   72   93   65   79   63   50   33   74   51 
V4   66   42   60   34   87   64   90   60   69   48   51   33   72   47 

 
Table 2. Recall percentages on per category and overall basis in top 20 & number of images 
in each category (k) for weighted voting schemes. 

6. Conclusions And Further Work 
We have presented an approach to CBIR based on semantic knowledge and QSR. 

The approach does not rely either on segmentation techniques applied directly or on low 
level image features for an image description. We have presented similarity measures of 
the qualitative spaces based on the conceptual neighbourhoods that typically accompany 
qualitative calculi and experimental results for IR using a variety of qualitative 
description languages and several combinations of these. We are not necessarily arguing 
that these are the best languages either for this particular data set or in general. It is the 
overall approach we present which we believe is the most important result of this 
research, which shows that qualitative representations can rival metric ones, whilst 
providing more intuitive descriptions. We have also presented a variety of voting 
schemes for combining representations and evaluated their success on the image dataset. 
The evaluation was based on a hand labelled categorization which although it has some 
disadvantages, does provide a cognitive basis for evaluating the retrieval results. It may 
be noted that in all cases, the recall percentages are well above the baseline statistical 
likelihood of each category of images in the population. 

A variety of further work suggests itself including the evaluation on other data sets, 
using actual user analysis to evaluate the results (cf the psychophysical experiments in 
[19]), experimentation with other qualitative calculi, and combining qualitative and 
quantitative representations. We already have a prototype user interface to an IR system 
based on the ideas presented here; this could be further improved to provide a flexible 
interface based on query by image or by qualitative description, or a combination of the 
two, with the user free to select the kinds of descriptions, similarity measures and voting 

                                                           
5 Bold figures in Table 1 and Table 2 indicate best ones in qualitative and quantitative representations, while 

k=143,128,103,178,34 and 114 for above mentioned six classes – in order as these appear in table. 
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schemes most appropriate to their needs. The analysis here provides the basis for 
reasonable default choices. 
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Abstract

Conditional random field (CRF) has been widely used for sequence labeling
and segmentation. However, CRF does not offer a straightforward approach
to classify whole sequences. On the other hand, hidden conditional random
field (HCRF) has been proposed for whole sequences classification by view-
ing the segment labels as hidden variables. But the objective function of
HCRF is non-convex because of its hidden variable structure. In this paper,
we propose a classification oriented CRF (COCRF) adapted from HCRF for
natural scene categorization by taking an image as an ordered set of local
patches. Our approach firstly assigns a topic label to each segment on the
training data by the probabilistic latent semantic analysis (PLSA) and train
a COCRF model given these topic labels. PLSA provides a higher level of
semantic grouping of image patches by considering their co-occurrence rela-
tionships while COCRF provides a probabilistic model for the spatial layout
structure of image patches. The combination of PLSA and COCRF can not
only classify but also interpret scene categories. We tested our approach on
two well-known datasets and demonstrated its advantage over existing ap-
proaches.

1 Introduction
This paper addresses the problem of natural scene categorization. Scene understanding
underlies many other problems in visual perception such as object recognition and en-
vironment navigation. Although scene categorization can be achieved at a glance by a
human, it poses great challenges to a computer vision system. Different instances of the
same category can vary a lot in their color distribution, texture patterns and more impor-
tantly, a scene category does not have a well-defined shape as an object category does.

Recent work in scene image classification focus on image classification based on an
intermediate level of features. They can be further divided into two categories. The first
relies on self-defining the intermediate features. Oliva and Torralba [7] proposed a set
of perceptual dimensions (naturalness, openness, roughness, expansion and ruggedness)
that represent the dominant spatial structure of a scene. Each of these dimensions can be
automatically extracted and scene images can then be classified in this low-dimensional
representation. Vogel and Schiele [8] used the occurring frequency of different concepts
(water, rock, etc) in an image as the intermediate features for scene image classification,
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and they need manual labeling of each image patch in the training data. While manual
labeling can improve the semantic interpretation of images, it is still a luxury for a large
dataset and it can also be inconsistent in defining a common set of concepts [8]. The
second kind of approach is aimed to alleviate this burden of manual labeling and learn
the intermediate features automatically. This is achieved by making an analogy between
a document and an image and taking advantage of the existing document analysis ap-
proaches. For example, Fei-Fei and Perona [2] proposed a Bayesian hierarchical model
extended from latent dirichlet allocation (LDA) to learn natural scene categories. Bosch
et al. [1] achieved good performance in scene classification by combining probabilistic
latent semantic analysis (PLSA) [3] and a KNN classifier. A common point of these ap-
proaches is that they represent an image as a bag of orderless visual words. An exception
is the work done by Lazebnik et al. [6] where they proposed spatial pyramid matching for
scene image classification by partitioning an image into increasingly fine sub-regions and
taking each sub-region as a bag of visual words.

As a simple but discriminative enough representation, the bag of visual words has
shown its advantage in the above approaches. However, its assumption of an orderless
bag makes it inevitably sacrifice certain amount of discriminative capability. The order
statistics are actually quite helpful in our understanding of scenes. At least two cues
can be applied. The first is the spatial layout of the patches. For example, sky always
appear in the upper part of an image and ground almost always appear in the bottom part.
Lazebnik et al. [6] have demonstrated the advantage of this cues, but they did not do it
in a probabilistic model. The second cue is the spatial pairwise interaction between two
neighboring patches. For example, it is more likely to find a water patch as the neighbor as
a sand patch in a beach scene, while in a coast scene water patches are usually adjacent to
stone patches. None of the existing approaches have modeled both of these two relations
explicitly in a probabilistic model.

A good candidate for modeling a set of ordered local patches is the conditional ran-
dom field (CRF) [5]. For example, Kumar and Hebert [4] attempted to use a discriminant
random field to model contextual interaction between image patches. But their work was
for image region classification, instead of whole image classification. Generally speaking,
CRF is aimed for segment labeling and segmentation. It does not offer a straightforward
approach to classify whole sequences and requires the labeling of the segments in the
training data. Hidden conditional random field (HCRF) [9] was proposed for whole se-
quences classification by viewing the segment labels as hidden variables, but the hidden
variable structure makes the objective function of HCRF non-convex and only local opti-
mum can be achieved in training. In this paper, we proposed a combinational approach of
PLSA and a classification oriented CRF (COCRF) adapted from HCRF for natural scene
categorization by taking an image as an ordered set of image patches. COCRF takes the
advantage of automatic labels generated by PLSA and is capable of reaching a global op-
timum in the training stage. The motivations of PLSA here are not only that it can provide
labeling of the image patches, but also that it is complimentary to COCRF, i.e., PLSA can
discover the co-occurrence relationship between image patches, while COCRF can only
model spatial relation between patches. Thus our PLSA+COCRF model can take into
account both of these two factors. An obvious advantage of our approach is to provide a
probabilistic way to model both the spatial layout of image patches and their neighboring
interaction. We tested our approach on two scene image image datasets and show that it
outperforms existing approaches.
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The rest of this paper is organized as follows. Section 2 describes the topic labeling
of image patch by PLSA. Section 3 introduces COCRF and focus on the features we have
deployed. Section 4 discusses the learning and inference of COCRF for classification.
We show some experimental results in section 5 and conclude in section 6.

2 Automatic Topic Labeling of Image Patches via PLSA
In our approach, an image is represented as a number of image patches. Each patch is
assigned a topic label automatically through PLSA [3]. PLSA can be summarized as
follows. Suppose we have a collection of text documents D={d}, a vocabulary W ={w}
and a number of topics S ={s}. Each document d is represented as a bag of words, i.e,
we keep only the counts n(d,w) which indicates the number of occurrence of word w
in document d. PLSA assumes that each word in a document is generated by a specific
topic. Given the topic distribution of a document, its word distribution is independent
from the document. More precisely, the probability of a word w in a document d is a
marginalization over topics, i.e.,

P(w|d) = ∑
s∈S

P(w|s)P(s|d) (1)

Given D and P(w|d), the parameters P(s|d) and P(w|s) can be estimated by an EM
algorithm [3]. To adapt PLSA to image data, we transform images into the bag of visual
words representation by the following procedures: (i) Partition each image into a number
of small patches. (ii) Learn a visual vocabulary on the descriptors of a subset of local
patches by k-means clustering. (iii) Assign a visual word to each local patch. After a
PLSA model is learned from the training images, we can obtain the topic labeling s of a
visual word w in a specific document d by the following equation

P(s|w,d) =
P(w|s)P(s|d)

P(w|d)
(2)

The ending results of PLSA is that each image patch has a topic label.

3 Classification Oriented Conditional Random Field
(COCRF)

Our final objective is to assign a scene category label to a given image. The training data
is {(y(k),x(k),s(k))}, where y(k) is the category label, x(k) = {xk

1,x
k
2,x

k
nk
} are the visual

features of each image patch, s(k) = {sk
1,s

k
2,s

k
nk
} are the corresponding topic labels of the

image patches obtained by PLSA. k is the index of the training image. The graphical
structures of CRF, HCRF and COCRF are illustrated in Fig. 1. In these graphic models,
we have taken an image with four local patches (which we also refer to as segments) as
an example. The scene category label is denoted by variable y and s = {s1,s2,s3,s4} are
the topic labels of the image patches. The image observation is denoted by variables x =
{x1,x2,x3,x4}. The edges between nodes represent their inter-dependence. The shaded
nodes in HCRF indicate these nodes are hidden variables. In our model, we consider the
graphic structure of nodes s as a lattice with pairwise potentials. In a CRF model, we have
only the topic labels and the image observation. In HCRF we have an additional node y
but s is not observed. In COCRF we have the node y and all the nodes s are observed.
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Figure 1: Graphical models of conditional random field (CRF), hidden conditional ran-
dom field (HCRF) and classification oriented conditional random field (COCRF).

Following the definition of a CRF model, the conditional probability for the topic
labels s and the category label y given the observation x can be expressed as

P(y,s|x;θ) =
eψ(y,s,x;θ)

∑y′,s′ eψ(y′,s′,x;θ) (3)

where θ represents the parameters of the model. eψ(y,s,x;θ) is the potential function.
In COCRF, we consider three types of potential and we write the log potential function
ψ(y,s,x;θ) as the summation of three terms. Each term can be viewed as a different type
of features deployed for classification.

ψ(y,s,x;θ) = ψa(y,s,x;θ)︸ ︷︷ ︸
node appearance potential

+ψe(y,s,x;θ)︸ ︷︷ ︸
edge potential

+ ψs(y,s;θ)︸ ︷︷ ︸
node spatial potential

(4)

3.1 Appearance Potential
The appearance potential measures the compatibility between a topic label and its appear-
ance. This potential is a kind of low-level features and it is shared among different scene
categories.

ψa(y,s,x;θ) =
m

∑
j=1

φ(x, j) ·θ a(s j) (5)

where j is the index of a segment (patch) and m is the total number of segments. φ(x, j)∈
Rd is a feature extraction function which maps the observation at site j to a d-dimensional
feature vector. θ a(s j) is the appearance parameter vector corresponding to the segment
label s j ∈S .

Considering the diversity in appearance of each topic, we map the local observation
to a feature vector by a Gaussian Mixture Model (GMM). Suppose we have a set of
Gaussian components {g1,g2, . . . ,gd}, each of which has its own parameters of the mean
and variance. The feature extraction function is represented as,

φ(x, j) =
[
g1(x j),g2(x j), · · · ,gd(x j)

]t (6)

where x j is the appearance descriptor of segment j. To obtain the set of Gaussian com-
ponents {g1,g2, . . . ,gd}, we firstly collect a subset of local patches of each topic and fit a
GMM to each topic. The final set of Gaussian components are the combination of all the
Gaussian components for each topic.
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3.2 Edge Potential
The edge potential models the interaction between neighboring patches. It is similar to
that in CRF but it is category dependent. This provides COCRF more discriminative
capability between different categories, as follows

ψe(y,s,x;θ) = ∑
( j,k)∈E

θ e(s j,sk,y) (7)

where θ e is symmetric with respect to s j and sk. E is the set of all the edge links between
the segment nodes depending on the 2-D lattice structure.

3.3 Spatial Layout Potential
Here we take an explicit approach by dividing the image area into 3× 3=9 sub-regions.
We examine the the spatial layout distribution of each topic on this 3×3 grid.

ψs(y,s;θ) =
m

∑
j

θ s(y,s j,η( j)) (8)

where η( j) ∈ {1,2, . . . ,9} denotes the deterministic mapping function of a site j into the
sub-region it sits in. It is worth noting that if θ s does not depend on the spatial location of
node j, this potential will degrade to the one as same as that in HCRF [9].

4 Learning
In the training process we learn the model parameter θ̂ by maximizing its log likelihood
on the training data. Assume the training data is i.i.d., θ̂ is obtained by,

θ̂ = argmax
θ

L (θ) = argmax
θ

n

∑
k=1

L k(θ) (9)

where L k(θ) is the log likelihood of the k-th sample and n is the total number of training
samples. Since s(k) is observed, we have

L k(θ) = logP(y(k),s(k)|x(k);θ) = log

(
eψ(y(k),s(k),x(k);θ)

∑y′,s′ eψ(y′,s′,x(k);θ)

)
= ψ(y(k),s(k),x(k);θ)−log ∑

y′,s′
eψ(y′,s′,x(k);θ)

(10)

This equation is different from that in HCRF [9], where the topic labels s(k) have to
be marginalized out because they are not observed. Unlike HCRF, L k(θ) is concave
because the first term is a linear function of θ and the second term is a log-sum-exp
which is convex. The optimization is based on the quasi-newton algorithm, so we need
the first-order derivatives of the log likelihood with respect to the model parameters θ .
For convenience, we reformulate ψ(y,s,x;θ) as a linear function of the model parameters
[5, 9], i.e.,

ψ(y,s,x;θ) = ∑
j

∑
l∈L1

θ 1
l f 1

l ( j,y,s j,x)+ ∑
( j,k)∈E

∑
l∈L2

θ 2
l f 2

l ( j,k,y,s j,sk,x) (11)
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where θ 1
l is the clamped parameters of θ a and θ s. θ 2

l is the clamped parameters 1 of
θ e. f 1

l and f 2
l are the corresponding binary feature functions. The dependency of f 1 and

f 2 on site index j and k is for the general formulation. In our problem, we have only one
feature function for nodes and edges respectively, i.e., |L1| = |L2| = 1. We consider the
derivative with respect to the node potential parameters θ 1

l based on this formulation. For
simplicity, we omit the upper index k for a specific training sample so that (y,s,x) actually
refers to (y(k),s(k),x(k)). It can be derived that,

∂L k(θ)
∂θ 1

l
= ∑

j
f 1
l ( j,y,s j,x)− ∑

y′, j,a
P(y′,s j=a|x;θ) f 1

l ( j,y′,a,x) (12)

Similarly, the derivative with respect to the edge potential parameters θ 2
l can be writ-

ten as

∂L k(θ)
∂θ 2

l
= ∑

( j,k)∈E
f 2
l ( j,k,y,s j,sk,x)− ∑

y′, j,k,a,b
P(y′,s j=a,sk=b|x;θ) f 2

l ( j,k,y′,a,b,x) (13)

where,
P(s j=a,y|x;θ)=P(s j=a|y,x;θ)P(y|x;θ) (14)

P(s j=a,sk=b,y|x;θ)=P(s j=a,sk=b|y,x;θ)P(y|x;θ) (15)

By belief-propagation (BP) [10], we can calculate the two marginals in Eq. (14) and
Eq. (15). As a by-product, BP can also calculate the partition function,

Z(y,x;θ) = ∑
s

eψ(y,s,x;θ) (16)

so that we can calculate the marginal P(y|x;θ) as

P(y|x;θ) = ∑s eψ(y,s,x;θ)

∑y′,s′ eψ(y′,s′,x;θ) =
Z(y,x;θ)

∑y′ Z(y′,x;θ)
(17)

Given the observation x of a new image and the learned parameter vector θ̂ , we infer
its category label ŷ by maximizing the posterior probability. Since predicting the class
label ŷ is our ultimate goal, we marginalize out the topic labels s, giving out

ŷ = argmax
y ∑

s
P(y,s|x; θ̂) = argmax

y
P(y|x; θ̂) (18)

As noted in the above section, this can be efficiently calculated by BP.

5 Experiments

5.1 Datasets
We used two well known scene image datasets for our experiments: the Oliva and Torralba
[7] dataset which we referred to as the OT dataset, and the Vogel and Schiele [8] dataset,

1The whole set of parameter is represented by a vector and the vector again is divided into blocks. The
parameters in the same block can be updated together. Clamped means several parameters are put in the same
block, this is for the convenience of implementation.
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coast forest mountain open country

highway inside cities tall building street

Figure 2: Sample images from the OT datasets.

waterscapes forests fields mountains sky clouds coast

Figure 3: Sample images from the VS datasets.

referred to as the VS dataset. The OT dataset contains grayscale images of 8 scene cate-
gories. The category labels and the number of images of each category (in brackets) are:
coasts (360), forest (328), mountain (374), open country (410), highway (260), inside of
cities (308), tall buildings (356) and streets (292). All the images are in the same size as
250×250 pixels. The VS dataset contains 700 color images of 6 categories. The category
labels and the number of images (in brackets) are: coast (142), waterscape (111), forest
(103), field (131), mountain (179) and sky clouds (34). All the images in the VS dataset
have been resized to 250 pixel in the maximum dimension. In Fig. 2 and Fig. 3 we show
some sample images from these two datasets. Grayscale images are from the OT dataset
and color images are from the VS dataset. We are aware that there are other datasets with
more categories. The most complete set to our best knowledge is the 15 scene categories
proposed by Lazebnik et al. [6], of which the OT dataset is only a subset. We have not
chosen this one mainly because at this stage we have paid no effort on the speed of our
algorithm. Working on the OT subset, we can have a more comprehensive evaluation. It
is worth noting that although COCRF is computational more expensive compared to other
approaches, it provides a probabilistic model to interpret the scene categories which other
approaches cannot. The Bayesian approach by Fei-Fei and Perona [2] has this capability
but they can not interpret the spatial layout structures of scenes.

5.2 Implementation
In our implementation, we partition each image into patches of 18×18 pixels and over-
lapping by 9 pixels. The number of patches of each image varies from 700 to 961. For
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Table 1: Classification results in percentage on the OT and VS datasets.
Performance on OT dataset

Method [1] [6] Task 1 Task 2 Task 3
Accuracy 86.65 86.85 82.3 87.13 90.2

Performance on VS dataset
Method [1] [8] Task 1 Task 2 Task 3

Accuracy 85.7 74.1 84.2 87.1 88.0

the grayscale images from OT dataset, we use SIFT descriptor as the feature vector for
each patch. For the color images from VS dataset, we concatenated SIFT descriptor with
another 6 dimensional color descriptor. The color descriptor represents the mean and vari-
ance of R,G and B. The visual vocabulary is generated by clustering a subset of 50000
image patches into 500 visual words on these two dataset respectively. PLSA is applied
to group these visual words into 8 topics for both OT and OS. In generating the Gaussian
components, the appearance of each topic is modeled by a mixture of 2 Gaussian com-
ponents. Thus the final local appearance feature vector is a 2×8=16 dimensional vector.
On the OT dataset, we take 100 images from each category for the training and the rest
images for test (the same setup as [2] and [6]). On the VS dataset, we take half of the
images from each category as training and the rest as testing (the setup as [1]). We have
done several experiments including: (1) In task 1, we train COCRF with node potential
but ignore the spatial location of each patch and edge potential. (2) In task 2, we train
COCRF with spatial layout potential but without edge potential. (3) In task 3, we train
COCRF with spatial layout potential and edge potential.

5.3 Results
Table 1 shows the classification results on the two datasets. The classification accuracy
is calculated as the average of the classification accuracy of each category. In the fol-
lowing discussion we focus on the OT dataset. Task 1 is equivalent to take the number
of occurrence of each topic in an image as the features and train a logistic classifier for
image classification. Compared to the result (86.65%) in [1], our result (82.3%) in task 1
is a little worse. This is because their approach takes more training samples and trains a
KNN as a non-linear classifier although the features are similar while ours is equivalent
to a linear classifier. In task 2 we consider the number of occurrence of each topic and
also the spatial layout of topics. This incorporation of spatial information of patches raise
the recognition rate to 87.13%. It is better than that of [1] and [6] (86.65%). In [6], they
also takes into account the spatial layout of each patches. Nevertheless, the result of their
approach listed in Table 1 is conservative because we have taken out the classification
accuracy of 8 categories from their 15 scene categories classification results. With less
categories, the classification performance is expected to be slightly better. The best per-
formance of of 90.2% is obtained in task 3. With 5 runs of task 3, each having a differnt
partition of training and testing set, the deviation is 0.4%. This shows that the combina-
tion of spatial layout of individual patch and the pairwise interaction between patches is
helpful for classification. The experimental results on the VS dataset shows the similar
behavior.

As mentioned before, a benefit of COCRF is that it can discover the spatial layout
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Figure 4: Spatial distribution of topics per category. Each column illustrates two scene
categories and the spatial distribution of a specific topic. The blue dots superimposed on
the images illustrated the location of those image patches labeled as the corresponding
topics. See text for explanation. (This figure is best viewed in color).

distribution of local patches and their pairwise interaction for a category. The ability of
probabilistic modeling can not be achieved by those approaches such as those of Bosch
et al. [1] and Lazebnik et al. [6]. In Fig. 4 we illustrate the learned 3×3 spatial layout
distribution of different topics in some categories. In this figure, we compare the spatial
layout distributions of a specific topic of two categories in each column. The first row
shows the two distribution probability maps of a certain topic for the two categories. For
example, in the first row and the first column, we show the spatial layout distribution of
topic 6 for a coast scene in the left and that for a mountain scene in the right. The second
and third rows in each column show an instantiation for each category respectively. The
blue dots superimposed on the images illustrated the location of those image patches
labeled as the corresponding topics. The fourth row is the text description explaining
which categories and which topic are compared. It is interesting to discover that topic 6
in the moutain scene has a special distribution (mass in left top and right top part of an
image) while the same topic in a coast scene is more evenly distributed in the top part of
an image. In Fig. 5, we show the pairwise interaction potential map between different
topics for four categories. The intensity of the cell in row i and column j represents the
probability of that topic i and topic j appear as neighbors to each other. Since in scene
images, it is very common that the same topic appears as neighbors, we have depressed
the pairwise interaction between two same topics (diagonal cells). This is to highlight
the pairwise interaction potential between different topics. From this figure we can find
that different categories can have very different pattern of pairwise interaction potential
between patches.

6 Conclusion
We have presented a classification oriented conditional random field (COCRF) for natu-
ral scene categorization. COCRF is adapted from HCRF and is a fully observed model
for classifying a whole sequence instead of labeling each segment of a sequence. Our
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inside cities open country street tall building

Figure 5: Illustration of the pairwise interaction potential between topics for four cate-
gories. The intensity of the cell in row i and column j represents the probability of that
topic i and topic j appear as neighbors to each other.

approach is based on representing each image as an ordered set of local image patches.
The training of COCRF needs both the topic labels and category labels of the training
data. However, we do not need manual labeling of each segment. This is achieved by an
automatic segment labeling process based on PLSA. PLSA can provide a higher level of
semantic grouping of local patches by taking into account the co-occurrence relationship
between different patches. COCRF provides a discriminative probabilistic model of the
spatial layout of patches and their spatial pairwise interaction. Unlike HCRF, the objective
function of training a COCRF model is convex, so we can avoid the concerns about local
optimum and careful initialization. We have done experiments on two well-known scene
image datasets. Our results demonstrate that COCRF outperforms the existing approaches
for scene categorization.
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Abstract

This paper presents a method for object recognition, novel object detection,
and estimation of the most salient object within a set. Objects are sampled
using a scale invariant region detector, and each region is characterized by
the subset of texture and color descriptors selected by a Genetic Algorithm
(GA). Using multiple views of an object, and multiple regions per view, ob-
jects are modeled using mixtures of Gaussians, where each object represents
a possible class for a particular image region. Given a set of objects, the GA
learns a corresponding Gaussian Mixture Models (GMM) for each object in
the set employing a one vs. all training scheme. Thence, given an input image
where interest regions are detected, if a large majority of the regions are clas-
sified as regions of object O then it is assumed that said object appears in the
imaged scene. The GA’s fitness function promotes: 1) a high classification
accuracy, 2) the selection of a minimal subset of descriptors, and 3) a high
separation among models. The separation between two GMMs is computed
using a weighted version of Fisher’s linear discriminant, which is also used
to estimate the most “salient” object among the set of modeled objects. Ob-
ject recognition and novel object detection are done using confidence-based
classification. Hence, when a non-modeled object is sampled, the detected
regions are thereby identified as belonging to an unseen object and a new
GMM is trained accordingly. Experimental results on the COIL-100 data set
confirm the soundness of the approach.

1 Introduction

Currently, many computer vision systems address the problems of object detection and/or
recognition using a sparse representation of image information through locally prominent

630



Figure 1: Abstract view of common object recognition vision systems.

image regions [8, 3], see Figure 1. A training phase consists on detecting stable image
regions on an object using interest region detectors, and characterizing said regions using
discriminative local descriptors [5, 3, 11, 10]. In this way, by relying on sparse local
information the method is robust to partial object occlusions. During testing, an image is
taken as input and the same region detection/description process is repeated. However, the
extracted local information is now compared with stored object models and if appropriate
matching criteria are met it is possible to identify known objects within the scene. This
approach relies on the assumption that different local regions on an object will be highly
separated in descriptor space, and thus requires highly discriminative region descriptors.
This assumption will not hold true for objects with regular or repetitive patterns across
their surface, i.e. a football or tomato. Furthermore, if object representations are learned
in this manner, an intuitive comparison between two object models is not evident. For
instance, if three object representations are learned, how can a measure of similarity be
computed? These considerations are pertinent for a system that automatically identifies
the “most salient” object, or image, from a given set. Automatic novelty detection is a
line of research where these questions are essential [4]. Another application area relates
to the automatic identification of visual landmarks; in robot navigation, for example, the
norm is to use artificial or human selected landmarks.

This paper presents an approach where every region λ detected on an object O is
taken as an instance of the same class, and is characterized with a feature vector of statis-
tical descriptors computed in a feature space Φ of texture and color information. A GA
searches within Φ for the smallest subspace F ⊆ Φ of statistical descriptors, of both tex-
ture and color, that yield the highest classification accuracy using a one vs. all scheme of
maximum likelihood classification. The GA also searches for the best possible between-
class separation of learned models. Therefore, the proposed approach does not require
highly discriminative features because it uses a robust classifier, a known trade-off be-
tween descriptor design and classifier training. A GMM representation is used for each
class (object), and a heuristic extension of Fisher’s linear discriminant is used to estimate
an “apparent” measure of class separation among models with more than one component.
Based on this measure of model separation the most salient object is identified by select-
ing the object with the highest between-class separation using a min-max operation. A
further advantage of using a GMM based classifier is the ability to use confidence esti-
mation to identify regions extracted from unknown objects as outliers and label them as
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samples of a new class. Hence, it is possible to automatically train a new one vs. all
classifier for the newly identified object. Experimental results in this paper only deal with
objects in scenes with simple backgrounds. Nevertheless, the use of a multimodal models
should allow the approach to extend to real world scenes where more within class vari-
ation is likely to occur. Recently, Markou and Singh [4] propose a similar system that
carries out both novelty detection and classification, however several differences exist:

1. The current work is concerned with object recognition, on the other hand, the work
in [4] only addresses ROI classification.

2. The work in [4] relies on prior segmentation, a drawback because segmentation is
an ill-posed problem; this is avoided by using locally salient image regions.

3. The proposed feature space Φ is more compact than the one used in [4], with less
redundant information. Furthermore, the GA used for feature selection maximizes
accurate classification, minimizes the set of descriptors used, and maximizes the
between-class separation of learned models. The authors in [4] use the sequential
floating forward selection algorithm and do not consider between-class separation.

4. The proposed measure for class separation is based on Fisher’s linear discriminant
which gives a closed form estimation computed directly from the learned GMMs;
the Bhattacharya distance is employed in [4] along with NNet classifiers.

5. Novelty detection in the present work utilizes confidence-based classification of
region descriptors, whereas [4] uses an heuristic criteria based on NNet output.

6. Finally, the COIL-100 data set used in the present work includes objects with in-
formation in feature space that tends to overlap, such as two toy cars with similar
texture or two objects with the same color. On the other hand, [4] uses classes with
marked differences among them, such as sky and chair classes.

2 Background

This section will give a brief review on some of the main concepts used throughout this
work: scale invariant region detection, genetic algorithms, Gaussian mixture models,
Fisher’s linear discriminant, and the texture and color feature space employed.

Scale Invariant Region Detection. Selecting a characteristic scale for local image
features is a process in which local extrema of a function response, embedded into a linear
scale-space, are found over different scales. The interest operator applied in the current
work was synthesized with Genetic Programming, optimized for high repeatability and
global region separability [9, 10], named KIPGP1∗ which is based on DoG filtering,

KIPGP1∗(x; t j) = Gt j ∗ |Gt j ∗ I(x)− I(x)| , (1)

where j = 0,1, ...,k, and k is the number of scales to be analyzed, here it is set to k = 15.
The size of a region is proportional to the scale at which it obtained its extrema value.
For the sake of uniformity, all regions are scaled to a size of 41×41 pixels using bicubic
interpolation before region descriptors are computed. Figure 2 shows sample interest
regions extracted with the aforementioned detector.
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Figure 2: Detected regions on three images from the COIL-100 data set.

Features Description
Gradient information Gradient, Gradient magnitude and Gradient Orientation

(∇,‖ ∇ ‖,∇φ ).
Gabor filter response The sum of Gabor filters with 8 different orientations (gab).
Interest operators † The response to 3 stable interest operators: Harris, IPGP1

and IPGP2 (KHarris,KIPGP1,KIPGP2).
Color information All the channels of 4 color spaces: RGB, YIQ, Cie Lab, and

rg chromaticity (R,G,B,Y, I,Q,L,a,b,r,g).

† KIPGP1 is proportional to a DoG filter, and KIPGP2 is based on the determinant of the Hessian [9, 10].

Table 1: The complete feature space Φ.

Texture and Color Features. In order to appropriately describe each image region
the search space Φ of possible features includes 18 different types of color and texture
related information, see Table 1. To characterize the information contained along dif-
ferent channels, six statistical descriptors are computed: mean µ , standard deviation σ ,
skewness γ1, kurtosis γ2, entropy H and log energy E. This yields a total of 108 possible
descriptor values for the multivariate GMMs. Because general statistical information is
used, the descriptors will mostly be rotationally invariant.

Genetic Algorithms (GA) are stochastic heuristic search techniques that model, in
an abstract manner, the principles of natural evolution [2]. The basic principles that a
canonical GA follows are survival of the fittest (selection), recombination and replication
of fit genetic material (crossover), and the introduction of novel genetic information (mu-
tation), all of which are modeled as stochastic processes. These techniques operate over a
set of parameterized solutions using population-based metaheuristics. GAs can manage a
number of constraints and design decisions, and carry out a search in an intrinsic parallel
manner; thence, GAs can be considered as a global optimization and search method. In
the current work, the canonical GA with a binary string chromosome is employed.

Gaussian Mixture Models are a useful tool when it is necessary to model multimodal
data, or as an approximation to different types of more complex distributions. The GMM
pdf is defined as a weighted sum of Gaussian pdfs,

p(x;Θ) =
C

∑
c=1

αcN (x; µc,Σc) , (2)

where N (x; µc,Σc) is the cth multivariate Gaussian component with mean µc, covariance
matrix Σc, and an associated weight αc. Estimation of the mixture model parameters is
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done using the EM algorithm when a fixed number of components is assumed. Alterna-
tively, if a variable number of component is desired, with a maximum bound, it is possible
to use the the Greedy-EM [7]. Classification with GMMs can be done through Bayes rule,
or using confidence-based classification [7]. A confidence value κ ∈ [0,1] and confidence
region R ⊆ Φ for a pdf are 0≤ p(x) < ∞, ∀ x ∈ Φ. κ is a confidence value related to a
non-unique confidence region R such that

∫

Φ\R
p(x)dx = κ . (3)

A sample x that lies within R is considered a true member of the class modeled by p,
otherwise it is classified as an outlier.

Fisher’s Linear Discriminant. Fisher defined the separation between two distribu-
tions Ni and N j as the following ratio

Si, j =
(w(µi−µ j))

2

(wT (Σi +Σ j)(w))
, (4)

where w = (Σi + Σ j)
−1(µi − µ j) [1]. Note that S is defined for unimodal pdfs, hence

a weighted version Ŝ that accounts for the weight αi and α j of the associated Gaussian
components in a GMM is proposed, such that

Ŝi, j =
Si, j

1+αi +α j
. (5)

Hence, the separation between components with a small combined weight (they have
less influence over their associated models) will appear to be larger with respect to the
separation between components with larger weights. Therefore, let Ca and Cb represent
the number of components of pa(x;Θa) and pb(x;Θb) respectively, then Sa,b represents
the apparent separation matrix of size Ca×Cb that contains the weighted separation Ŝi, j

of every component of pa with respect to every component of pb. The final apparent
separation measure S between pa and pb is given by

S
a,b = in f (Sa,b) . (6)

3 Proposed Approach

This section describes the details of the proposed approach to object recognition, novel
object detection, and salient object estimation; a flowchart view is depicted in Figure 3.

3.1 Learn Object Models

First, there is an initial off-line step in which interest regions from every object O ∈ M
are extracted and labeled accordingly; moreover, all 108 descriptor values are computed
for each region. Afterwards, the GA performs feature selection, and learns appropriate
GMMs for a subset N of the objects in M. Figure 3a shows the basic flow chart of a
canonical GA, the two main aspects to discuss is how candidate solutions are represented
and how fitness assignment is done. The other processes in the GA are standard: fitness
proportional selection, mask crossover, single bit mutation and elitist survival strategy.
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Figure 3: An overview of the proposed approach, a) Genetic Algorithm, b) Learn object
models, c) Novel object detection.

Solution Representation: Each individual in the population is coded as a binary
string B = (b1,b2, ...b108) of 108 bits. Each bit is associated with one of the statistical
descriptors in Φ. Therefore, if bit bi is set to 1 its associated descriptor will be selected,
with the opposite being true if bi = 0. The feature vector xλ for each region λ is thereby
given by the concatenation of the set of selected descriptors F ⊆Φ.

Fitness Evaluation: Here is where object models are learned and fitness is assigned
to each individual in the population. For every object O j ∈ N a corresponding GMM
p j(x;Θ j) is trained with a one vs. all strategy with 70% of the regions, using the descrip-
tor values selected by B. The GMM classifiers are trained with the EM algorithm. After
training, a set P = {pi(x;Θi)} of |N| GMMs, on each ∀ Oi ∈ N. Afterwards, the remain-
ing 30% of image regions are used for testing and a corresponding accuracy score Ai

is computed using Bayes rule. Optimization is posed as a minimization problem, hence
fitness is assigned by

f (B) =





Bones +1
A ′ · in f (S pi,p j)

∀ pi, p j ∈P , i 6= j , when ∀ Ai > 0 ,

K ·Bones +1
A ′+ ε

otherwise .

(7)

In the above equation, Bones is the number of ones in string B, A ′ is the average accuracy
score of all the GMMs in P , a penalization term set to K = 2, and ε = 0.01; hence,
fitness depends upon testing and not training accuracy. The first case in Eq. 7 is applied
when all of the classifiers where able to obtain an accuracy score, fitter individuals will
minimize the number of selected descriptors and maximize the average testing accuracy
A
′. Furthermore, the term in f (S pi,p j ) promotes between-class model separation by

selecting the infimum of all the apparent separation measures computed for every object
in N. On the other hand, the second case in Eq. 7 is applied when the EM algorithm fails
to produce a valid GMM for one of the objects in N.

After a fixed number of iterations the GA stops and returns the fittest individual Bo
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found so far. The best individual Bo is re-trained using the Greedy-EM instead of the basic
EM, this is done for two reasons. First, the Greedy EM did not prove to be appropriate
during evolution because it required more computation time and produced more runs
that failed to converge. Secondly, once the GA has produced a valid high performance
solution, the associated object models can be further enhanced by using the Greedy EM
on Bo. Therefore, the GA returns the selected subset of descriptors F that characterize the
objects in N, and a set of trained GMMs Po. Finally, the most salient object Oo in N is
said to be modeled by the GMM po that satisfies the following,

po← arg max
pi

(S pi,p j) ∀ pi, p j ∈Po with i 6= j . (8)

3.2 Object Recognition and Novel Object Detection

In order to test the ability of the described approach to recognize known objects and de-
tect novel objects (those without a corresponding pi ∈Po) the process in Figure 3c is
followed. Given an image of an object Oi ∈ M, interest regions are detected and their
corresponding descriptors, specified in F , are computed. The extracted regions are clas-
sified using confidence estimation with the models in Po. A confidence region within
each GMM in Po is defined, with the confidence threshold set to κ = 0.95. Therefore,
if a large majority, over 60%, of the regions lie within the confidence region of a given
p j ∈Po then it is said that object Oi = O j, thereby accounting for a successful recogni-
tion. Otherwise, if regions are classified as outliers from all known classes, it is possible
to tag them as belonging to an object not modeled in Po. Hence, if the percentage of
regions classified as outliers is Aout > 60%, then the sampled object Oi is labeled as a
new object, and a corresponding GMM is learned and added to P

o.

4 Experimental Results

This section presents three different experiments to test the proposed object recognition
system. The code was written mostly in MATLAB, the GMMBAYES Toolbox1 was used
for GMM training, and the Genetic Algorithms for Optimization Toolbox2 was used as
part of the GA code. The images used for testing are taken from the COIL-100 data set,
Figure 4 shows the first 40 objects in the data set [6]. Every object is seen from 72 different
views, interest regions are extracted from all of the views and tagged accordingly as the
ground truth for each object. The basic parameters of the algorithm are the same in every
run, only modifying the number of different objects used, the size of sets (M,N). Three
experiments are presented: Exp. 1 (10,5) with objects 1 - 10 from the data set; Exp. 2
(20,10) with objects 20 - 40; and Exp. 3 (40,25) with objects 1 - 40. The GMM classifiers
were trained using EM with one Gaussian component, and if a solution was not found,
the algorithm is restarted with 2 components, and so on. The results presented for each
experiment are shown for object recognition and novel object detection. Table 2 shows the
average accuracy score obtained after the initial object models are generated (Figure 3b),
along with the fitness value, the number of features, the set of selected features F , errors
in object recognition, and the salient object within the set. Table 3 presents the accuracy

1GMMBAYES Matlab Toolbox http://www.it.lut/project/gmmbayes
2Genetic Algorithms for Optimization Toolbox by Andrey Popov http://automatics.hit.bg
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Figure 4: These are the first 40 objects in the COIL-100 data set used in the reported
experimental runs. The images used with the first two experiments are marked, while all
40 are used in the third. Salient objects selected by the separation criterion are circled.
Object 32 is the only one for which novel object detection failed with h = 60%.

Exp. A ′ f(Bo) Bo
ones Features Error Oo

1) 99.6 0.5 27 ∇(γ2,H), ‖ ∇ ‖(σ ,γ2), ∇φ (γ2)
, KHarris(E), none 4

KIPGP1(σ), R(µ ,H), G(σ ,γ1), B(µ ,σ ,γ1,H),
Y(µ ,γ2,H ,E), I(σ ,H), L(σ ,E),

a(µ ,σ), b(σ ,E), g(µ)

2) 99.2 1.5 43 ∇(µ ,σ ,γ2 ,E), ‖ ∇ ‖(σ ,γ2,H), ∇φ (µ ,σ ,γ2)
none 25

KHarris(γ1,H), KIPGP1(µ ,E), KIPGP2(γ1,E),
gab(γ1), R(µ ,σ ,E),G(µ),B(σ ,γ1,γ2,H), Y(µ ,γ2 ,H ,E),

I(σ ,H), Q(γ2,H), L(µ),a(µ ,σ ,H),
b(µ ,σ ,E), r(µ ,σ), g(E)

3) 98.7 6.4 37 ∇(µ ,σ ,γ2), ‖ ∇ ‖(µ ,σ ,γ1 ,γ2,H ,E), ∇φ (γ1,γ2,H), none 4

KHarris(γ2,E),KIPGP1(H), KIPGP2(γ2,H),
gab(µ), R(µ ,γ1,E), G(µ), B(γ2,H), Y(µ ,σ ,γ2 ,H ,E),

I(E), Q(µ ,γ1), a(γ1), b(σ), r(σ ,H), g(µ ,σ)

Table 2: Performance when initial class models are learned; see text for further details.

A ′M Errors Salient Objects
Exp.1 99.72 none objects 4, 7, 3
Exp.2 99.04 object 32 objects 36, 38, 25
Exp.3 98.68 object 32 objects 36, 28, 4

Table 3: Performance for novel object detection. Note that A
′

M represents the accuracy of
region classification after a corresponding model is learned for every object O ∈M.
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score once a corresponding model is learned for every object O ∈ M, the incorrectly
classified objects, and the three most salient objects found in each case. Given the high
level of accuracy in both sets of results, in can be concluded that the problem of object
recognition is almost perfectly solved for the set of images employed. Figure 5 shows the
convergence graphs of each GA run, plotting the fitness of the best individual Bo found
so far. The experiments were executed with 30, 30 and 40 iterations respectively.

Figure 5: Convergence plots that show the log( f (Bo)) of the best individual found thus
far by the GA in each of the experimental runs.

5 Discussion and Conclusions

The results presented in the previous section exhibit promising performance patterns. For
all three experiments the algorithm was able to train extremely accurate classifiers using
a fraction of the available descriptors. It is important to note that in Table 2 even do all
experiments produce similar values for accuracy and number of descriptors, their associ-
ated fitness scores are different. This is due to the model separation measure in f (S pi,p j )
in the fitness function, because with more objects the space of possible objects models
becomes crowded. All the classifiers trained in each experiment finished with a single
Gaussian component, an unexpected outcome that can nevertheless be explained. Every
object is small and tends to exhibit regular patterns across their surface; therefore, it was
possible to characterize them with a single component in feature space. This suggests
that GMMs would be more appropriate dealing with images that have a larger variations
in descriptor space. Additionally, the convergence graphs in Figure 5 show two different
patterns. First, starting from the random population the initial iterations produce very
poor results, individuals in these generations are evaluated using the second case of the
fitness function because the EM fails to find a valid model for at least one of the objects.
Therefore, initial iterations attempt to find solutions B that are able to produce a classifier
for every object in N. Once a good solution is found, and its genetic material begins to
propagate throughout the population, the GA begins to optimize using the first case of the
fitness function. With a valid classifier for every object it is then possible for the GA to
explore the pruning of the feature space. Regarding novel object detection, the approach
produced nearly perfect results with only one false negative, object 32. However, object
32 is almost identical to object 29, they only differ slightly in color space. Perhaps an
interest operator that uses color information explicitly could help avoid ambiguous situ-
ations such as this. Finally, regarding the estimation of the most salient object within a
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set, the algorithm also produced coherent selections. The objects selected as most salient,
shown in Figure 4, are appreciably different than the rest, these objects tend to lack texture
and exhibit small color variations. Furthermore, all of the other objects in the data set tend
to have at least one similar counterpart, i.e. more that one toy car, and various small boxes.
In conclusion, the proposed approach produced promising initial results for object recog-
nition, novel object detection and salient object estimation. Future work concentrates on
using images with complex backgrounds, in order to perform scene classification of real
world images where the benefits of a multimodal model are expected to become evident.
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Abstract

This paper proposes a physics-based methodology for the analysis of op-
tical flows displaying complex patterns. Turbulent motion,such as that ex-
hibited by fluid substances, can be modelled using fluid dynamics principles.
Together with supplemental equations, such as the conservation of mass, and
well formulated boundary conditions, the Navier-Stokes equations can be
used to model complex fluid motion estimated from image sequences. In this
paper, we propose to use a robust kernel which adapts to the local data geom-
etry in the diffusion stage of the Navier-Stokes formulation. The proposed
kernel is Gaussian and embeds the Hessian of the local data asits covari-
ance matrix. The local Hessian models the variation of the flow in a certain
neighbourhood. Moreover, we use a robust statistics mechanism in order to
eliminate the outliers from the estimation process. The proposed method-
ology is applied on artificial vector fields and in image sequences showing
atmospheric and solar phenomena.

1 Introduction
Classical optical flow estimation methods work on the assumption that image intensity
structures are approximately constant under motion [1, 8].Robust estimation employing
either median statistics or diffusion has been used to eliminate outliers from the optical
flow [4] and to smooth colour images while preserving edges [3], respectively. Recently,
robust statistics and diffusion have been embedded in a smoothing kernel for jointly pro-
cessing the data statistics and the local geometry in noisy optical flows [6]. This method
was shown to preserve data characteristics as well as the boundaries of the moving objects,
while resulting in smoothed optical flows.

Very often, the natural phenomena modelling involve the motion of dynamic fluids
which differs radically from that of rigid bodies. Classical optical flow estimation algo-
rithms would fail in such cases. The use of fluid flow modellingfor motion estimation
can be traced back to the work of Fitzpatrick [7], who compared optical and fluid flow
methods. The computation of flows depends largely on the specific nature of the ap-
plication. Using Fitzpatrick’s analysis as a basis, Song and Leahy [12], employed the
equation of continuity as an additional constraint to Horn and Schunck’s algorithm [8]
in order to obtain better motion estimation of the beating heart. Navier-Stokes equations
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have been extensively studied in fluid mechanics for modelling the behaviour of fluids un-
der various conditions and constraints [9]. The Navier-Stokes and optical flow constraint
equations have been employed for modelling Karman flows in [10]. Bertalmioet. al.
applied the Navier-Stokes equations to image and video inpainting [2]. Their approach
uses the vorticity-stream formulation of the fluid flow equation, which can be attributed
to the image intensity-Laplacian relationship. Corpettiet. al. used the vorticity-stream
formulation to recover dense motion of water vapours [5].

Navier-Stokes equations have been used in computer graphics for visualising flames
and building animation tools based on fluid-like motion [11,13, 14]. The stable fluid
solver (SFS) algorithm implements Navier-Stokes equations and consists of a set of con-
secutive processing steps [13], such as: advection, diffusion and mass conservation. The
boundary conditions are important in constraining the fluidmotion [9]. The boundaries
have been processed as a set of constraints on a grid [14], by enforcing repetition and
employing the Fast Fourier Transform (FFT) [13] or by using level sets [11]. In this
study, we extend the SFS solver methodology and apply it for smoothing vector fields
estimated from image sequences representing turbulent moving fluids. In our approach,
the diffusion step is anisotropic and robust by consideringa median of the Hessian dif-
fusion kernel [6]. The proposed hybrid SFS method processesthe local geometry and
data statistics consistently with the flow motion. The proposed approach is applied for
smoothing artificial vector fields and in two image sequences. The paper is structured as
follows: Section 2 outlines the SFS algorithm, while Section 3 describes our hybrid solver
applied for modelling vector fields. Experimental results and their analysis are presented
in Section 4, while Section 5 concludes the paper.

2 The Stable Fluid Method
Navier-Stokes methodology represent the basis for modelling a large variety of phenom-
ena such as those characterising weather, ocean currents, water flow in a pipe, the air flow
around a wing, the motion of stars inside a galaxy, blood flow,economics behaviour, etc
[9]. In engineering, they are used in the analysis of the effects of pollution, the design of
aircraft and of power stations, etc. Navier-Stokes methodology has been applied in Com-
puter Graphics in order to visualise and create the effects given by the complex movement
of fluids such as that of coloured gases, air, clouds, liquids, smoke, fire, etc., [11, 13]. The
explicit model is generally used for precise computation offluid dynamics and involves
heavy computational complexity [9]. The Von Neumann’s stability analysis, as shown in
[9], highlights that the implicit model of discretisation when calculating Navier-Stokes
equations is unconditionally stable, although it requiresa complex numerical implemen-
tation scheme. The SFS algorithm proposed by Stam represents an implementation of the
Navier-Stokes methodology in an implicit scheme [13, 14].

In order to achieve visual effects, the Navier-Stokes equations are used for both den-
sity and velocity in the SFS algorithm [13, 14]. Unlike in theoriginal SFS approach, in
this study we consider only the modelling of motion based on the Navier-Stokes equa-
tions. The area of investigation (in our case an image or a segmented region from an
image) is split into cells located on a grid and we associate aparticle to each grid loca-
tion. Let us assume that the SFS system moves the particles around according to a vector
field, where each vector corresponds to a grid location. The Navier-Stokes equation for
a given system is derived using the conservation of mass, momentum, and energy for an
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arbitrary control volume [9] and is given by :

∂u
∂ t

=−(u ·∇)u−
∇P
ρ

+ν∇2u+ f (1)

where the change of velocityu over time is represented with respect to the advection,
gradient of the pressureP, diffusion and external forcing functionf, while ν is a viscosity
constant that characterises the fluid andρ is a parameter. The pressure is assumed to be
constant in the given field and its gradient is zero,i.e. the change in pressure from one
spatial position to another in the vector field is negligible. Consequently, the equation
employed by the SFS method is :

∂u
∂ t

=−(u ·∇)u+ν∇2u+ f (2)

The diffusion termν∇2u characterises fluids which are assumed incompressible and New-
tonian. Moreover, for incompressible fluids it is importantto enforce the conservation of
mass [9]: ∇ ·u = 0 (3)
which states that the divergence of velocity components is zero for infinitesimal time
steps. The density of a particle is constant between iterations, thereby the total mass of
the field is conserved within the given region.

for k← 1 to � convergence / number of iterations
do

1 add force:u1 = u0 + f ∆t
2 advect:u2(x) = adv(u1(x,−∆t))
3 transform:û2 = FFT(u2)
4 diffuse: û3(z) = û2(z)/(1+ν∆tk2)
5 conserve:̂u4 = conserve(û3)
6 transform:u4 = FFT−1(û4)

Figure 1: The stable fluid solver algorithm.

The SFS algorithm proceeds to calculate the velocity componentsu as described in
Fig. 1, [13]. For each iteration, the first step consists of adding the external forcing func-
tion f which determines the initial conditions in the processing cycle. The second step
represents the advection term in equation (2), which corresponds to the following :

(u ·∇)u =

(

ux
∂ux

∂x
+uy

∂ux

∂y
,ux

∂uy

∂x
+uy

∂uy

∂y

)

(4)

whereu = (ux,uy). The analysis of the advection process in real physical phenomena is
provided in [9]. The process described by equation (4) is known as the self-advection
of velocity. The advection step from the SFS algorithm is implemented by moving the
motion vector of each grid cell back in time with−∆t by backtracking the velocity field.
The third step transforms the velocity field to the frequencydomain using the Fast Fourier
Transform (FFT). The requirement to set specific boundary conditions is eliminated by
extending the spatial repeatability of the area under consideration and by applying FFT.
The diffusion term (fourth step) represents the decay of high spatial frequencies in the
velocity field and is computed in the Fourier domain with a Gaussian filter processing
the velocity componentu by using the time step∆t and the fluid kinematic viscosity
ν . The finite difference implicit scheme is used here to discretise the diffusion term in
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order to obtain an unconditionally stable system [13]. The fifth step enforces the local
incompressibility of the optical flow which requires that the amount of flow entering in a
specific area should be equal with the flow exiting that area. The final step projects the
flow back from the frequency domain to the spatial-time domain using the inverse FFT
transform. This algorithm was modified in [14] by replacing the FFT transformations and
the processing in the frequency domain with defining a set of boundary constraints on a
grid-based representation of the flow.

3 The Robust Hybrid Fluid Solver

Figure 2: Robust hybrid solver.

The implementation of the stable fluid solver [13] provided rather poor performance in
modelling turbulent optical flow estimated from image sequences. This is mainly caused
due to the uncertainty in the initial estimation of the optical flow which leads to noise,
particularly in image sequences displaying complex motion. In order to improve the
performance on optical flow, we propose to embed a robust anisotropic kernel [6] in the
diffusion step of the SFS. Fig. 2 shows a flow diagram of the proposed robust hybrid fluid
solver. The initial flow can be estimated using the block matching algorithm as in [4]
or other motion estimation algorithms [1]. Optical flows provided by block-matching or
by using temporal gradient estimation are invariably noisy[4], particularly in the case of
image sequences representing moving fluids or other complexphenomena.

The first processing block corresponds to a reinforcement step and in the proposed
method is implemented by adding a proportion of the velocityfrom the previous iteration
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to the current velocity :

u1(t +∆t) = (1− ε)u0(t)+ ε∆tu5(t) (5)

whereu5(t) is the motion vector from the previous iterationt, ε ∈ (0,1) is a weighting
factor modelling the degree of the reinforcement andu0(t),u1(t +∆t) represent the mo-
tion vector reinforced by force at timest and t + ∆t, respectively. At the first iteration
there is no reinforcement,i.e. ε = 0. The SFS algorithm described in Section 2 proposes
to advect the initial flow at Step 2 from Fig. 1. However, that algorithm produces unreli-
able estimation when applied to noisy vector fields. The optical flow should have a degree
of smoothing before advection can be applied. In our approach, we propose to diffuse the
noisy flow before proceeding to the advection stage. The transfer function of the original
smoothing algorithm is a Gaussian function appropriately defined within the frequency
domain [13]. In our approach, we propose to implement a Hessian based diffusion that
jointly processes the local geometry and the statistics of the local vector field as in [6] :

û2(t +∆t) =

∑
xi∈η(zc)

u1,i(t)exp[−(xi−zc)
TH−1(xi−zc)]

∑
xi∈η(zc)

exp[−(xi−zc)TH−1(xi−zc)]
(6)

whereû2(t +∆t) is the intermediate diffused value,H represents the local Hessian,u1,i(t)
is the vector at locationi within a neighbourhoodη(zc), centred at the locationzc. The
Hessian of the optical flow is calculated locally as :

H =

[

∂ 2u
∂x2

∂ 2u
∂x∂y

∂ 2u
∂y∂x

∂ 2u
∂y2

]

(7)

The eigenvector corresponding to the largest eigenvalue shows the local direction of
the optical flow. This diffusion kernel is anisotropic and adapts to the local structure of
the optical flow. Significant optical flow transitions are detected and consequently not
smoothed over by the Hessian-based kernel. However, anisotropic diffusion does not deal
properly with outliers as shown in a study provided in [6]. Inorder to properly process the
local statistics and eliminate outliers, the median algorithm is considered for robustifying
the Hessian based diffusion in the neighbourhoodη(zc).

At the advection stage, our model is only concerned with the nonlinearity of the ad-
vection term from equation (4). As mentioned in the previousSection, the self-advection
term represents the ability of the velocity components to move their own values from one
position to another on a grid in a time step interval,∆t. This procedure involves inter-
polating the velocity at the grid points, using a neighbourhood approximation, from the
previous time step back to the position in the current time step [14].

The model is dependent on the initialisation and on boundaryconditions of the sys-
tem under study. Boundary condition are specifically provided onto the grid in order to
represent the physical limits of the optical flow. Such boundary conditions can be the
result of image or motion segmentation algorithms or ofa priori information about the
image sequence. There are two boundary conditions to consider. The first condition is
determined by the physical boundary. This is represented bythe Von Neumann condition
which specifies the normal component of the flow to the boundary surface as :

∂u
∂n

∣

∣

∣

∣

Ω
= 0 (8)

644



whereΩ represents the boundary andn is its surface normal. This means that the wall
absorbs any flow particles coming towards it. For the sake of reducing the required com-
putation complexity, the walls of the domain,Ω are represented by zero values on a ge-
ometric grid, which are enforced at every stage of the computation in order to preserve
the stability and integrity of the numerical calculation. Since our proposal incorporates
both explicit and implicit finite differencing schemes, it is absolutely imperative that the
model adheres to the stability criteria, given by∆t/(∆x)2≤ 1/2, where∆x represents the
location change during the time interval∆t.

The second condition relates to the conservation of mass of the velocity field. The
conservation of mass, given by equation (3), should be maintained in order to ensure the
incompressibility of the flow. In order to maintain a divergence free velocity field for
every stage of computation, the conservation of mass is enforced after both diffusion and
advection stages. The conservation of mass stage corresponds to a data normalisation
process. The conservation of mass is enforced by using the Helmholtz-Hodge decompo-
sition [13] of the velocity field. This decomposition provides an exact solution so that
the mass conserved incompressible flow can be obtained by extracting the gradient of
the flow from the current vector field. This decomposition maintains the incompressibil-
ity and smoothness of the estimated velocity field. Mass conservation is important for
realistically estimating optical flow of fluids. For exemplification, the Helmholtz-Hodge
decomposition of the exact closed cavity laminar flow (artificial data experiment provided
in Section 4) at the 1000th iteration is shown in Fig. 3.

Current Flow = Incompressible Flow + Gradient Flow

Figure 3: Helmholtz-Hodge decomposition of a closed lid driven cavity laminar flow.

4 Experimental Results
We present results when the proposed algorithm is evaluatedon a synthetic vector field
and on the optical flow estimated from two real-world image sequences. The synthetic se-
quence is created using the original Navier-Stokes equations [9] depicting the air flow gen-
erated within a lid driven closed cavity. The synthetic flow is created using the vorticity-
stream formulation of the Navier-Stokes equations insteadof the classic velocity-pressure
formulation. Fig. 4(a) represents the simulated syntheticfield that visualises the air flow
moving with a fixed velocity from left to right inside the top area of a closed cavity. This
flow has been obtained after applying the Navier-Stokes equation for a thousand itera-
tions. Fig. 4(b) shows flow degradation after adding Gaussian noise with zero mean and
varianceσ2 = 0.25. Modelling results using the modified SFS (SFSM) algorithm [14]
adapted for usage on vector fields is shown in Fig. 5(a), whilevector field smoothing us-
ing Black’s anisotropic diffusion algorithm [3] is provided in Fig. 5(b). Fig. 5(c) shows
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the effects of using MED-2DH which is a robust Hessian based diffusion algorithm de-
scribed in [6], while the robust hybrid fluid solver embedding the median of 2D Hessian
diffusion kernel (MedH-SFS) algorithm, as described in Section 3, is shown in Fig. 5(d).

(a) Ground truth synthetic flow (b)σ2 = 0.25

Figure 4: Synthetic closed lid-driven cavity flows

(a) SFSM (6) (b) Black (3)

(c) MED-2DH (4) (d) MedH-SFS (5)

Figure 5: Artificial vector field smoothing comparisons. Forbetter visualisation, the
vector from the upper-right corner of the SFSM vector field in(a) has been rescaled.

The results in Fig. 5 are obtained at convergence when the mean square error differ-
ence between vector fields at two successive iterations is less than 0.01. The number of
iterations necessary to achieve convergence is provided inthe parentheses from the cap-
tion of each result plot of Fig. 5. From these results, we can observe that the vector field
modelled by SFSM is still noisy at convergence, while the noise has been significantly re-
duced in the other smoothed vector fields. It can be observed that MedH-SFS provides the
best results and the flow vortex recovered is better located when compared to the vortices
recovered using Black and MED-2DH.
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Gaussian Noise (σ2) SFSM SFS MedH-SFS Black MED-2DH

0.01 0.7525 0.6211 0.7634 0.7226 0.7383
0.10 0.6020 0.5616 0.7327 0.6554 0.6997
0.25 0.4538 0.4523 0.6849 0.5584 0.6424
0.30 0.4373 0.4624 0.6704 0.5567 0.6058
0.40 0.4005 0.4184 0.5799 0.4958 0.5556

Table 1: Mean cosine error (MCE) of smoothed vector fields.

For numerical comparisons, we consider the mean cosine error (MCE) between the
recovered smoothed flow and the ground truth flow. The MCE is calculated as:

MCE =
∑L

i=1ui · ûi

‖ui‖ ‖ûi‖ L
=

cos(θi)

L
(9)

whereL is the total number of vectors,ui is the ground truth before considering the noise
and smoothing, and̂ui is the result achieved after smoothing the noisy vector fieldat
locationi. The MCE is the normalised dot product between two vectors which provides
the cosine of the angle between them, denoted asθi . The closer MCE is to 1.0, the more
similar are the two vector fields. The MCE results are provided in Table 1 after one
iteration of smoothing. SFS algorithm was described in Section 2 and was adapted from
[13], while SFSM was described in [14]. Both these algorithms have been adapted to
work on vector fields. It can be observed that SFS provides good results for a vector field
corrupted with low noise variance. However, its performance deteriorates significantly
when the noise increases, because the corrupted vector fielddeparts significantly from
the Navier-Stokes underlying model. The robust diffusion hybrid fluid algorithm MedH-
SFS provides better results than either SFS or SFSM methods in terms of MCE when
considering additive Gaussian noise as it can be observed from Table 1. MedH-SFS is
also consistently better than Black [3] and MED-2DH [6] anisotropic smoothers.

We have applied the proposed methodology on optical flows estimated from image
sequences. Fig. 6(a) represents a frame from “Tornado” image sequence, while Fig. 6(b)
shows a frame from the “Solar Flare” sequence obtained from Kanzelh ¨ohe Obervatory’s
solar and environmental research website. The first sequence represents a complex atmo-
spheric phenomenon while the second image is used to observeand analyse solar surface
activity. The initial optical flows have been estimated using block matching algorithm
(BMA) and are shown in Fig. 6(c) and Fig. 6(d), respectively.The complexity of the
motion in the scenes as well as the compression artefacts influence negatively the perfor-
mance of the BMA algorithm. Fig. 6(e) and Fig. 6(f) show the smoothing result when
using MedH-SFS algorithm on the optical flow estimated from the “Tornado” sequence
and from the “Solar Flare” optical flow, respectively, both after one iteration. The im-
provements provided by the Med-SFS over the initial opticalflows are significant. We can
clearly identify the moving twister and its boundaries after using the proposed methodol-
ogy as it can be observed in the optical flow from Fig. 6(e). Turbulent movements of the
solar surface can be properly identified in Fig. 6(f).

5 Conclusions
We have presented a physics based model that smoothes and models optical flow repre-
sentations estimated from images representing complex andturbulent fluid motion. The
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(a) Original “Tornado” frame 341 (b) Original “Solar Flare”frame 220

(c) Initial BMA “Tornado” optical flow (d) Initial BMA “SolarFlare” optical flow

(e) MedH-SFS smoothed “Tornado” flow (f) MedH-SFS smoothed “Solar Flare” flow

Figure 6: Smoothing optical flows in image sequences displaying turbulent motion.

Stable Fluid Solver (SFS) model is based on the Navier-Stokes equations for incompress-
ible fluid. The SFS algorithm, originally developed in computer graphics for visualis-
ing fluid like movement and for building animation tools, hasbeen modified in order to
be used on optical flows. The proposed model is highly efficient and stable under cer-
tain conditions. The flow incompressibility condition is achieved by imposing the mass
conservation through the Helmholtz-Hodge decomposition.We embed a robust Hessian
based kernel in the diffusion step of the Navier-Stokes formulation in order to improve the
performance of the proposed method for smoothing vector fields. This kernel ensures that
smoothing occurs along the structure of the motion field while maintaining the general
optical flow structure and the main optical flow features. Theproposed kernel ensures ro-
bust statistics capability in order to reduce the impact of outliers and thus to enhance the
smoothness of the resulting optical flow. The new model is shown to provide good results
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in both artificial data and in optical flow from two image sequences, showing turbulent
atmospheric and solar activity phenomena.
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Abstract

In previous work, we developed a novel data association algorithm with
graph-theoretic formulation, and used it to track a tennis ball in broadcast
tennis video. However, the track initiation/termination was not automatic,
and it could not deal with situations in which more than one ball appeared in
the scene. In this paper, we extend our previous work to track multiple tennis
balls fully automatically. The algorithm presented in this paper requires the
set of all-pairs shortest paths in a directed and edge-weighted graph. We
also propose an efficient All-Pairs Shortest Path algorithm by exploiting a
special topological property of the graph. Comparative experiments show
that the proposed data association algorithm performs well both in terms of
efficiency and tracking accuracy.

1 Introduction
In automatic video annotation, high-level descriptions rely on low-level features. In the
context of a ball game, such as cricket, football, tennis, table tennis or snooker, the tra-
jectory of the ball provides important information for high level annotation. Indeed, re-
constructing the ball trajectory is essential for a complete understanding of a ball game.
However, tracking a ball in a complex scene can be a difficult task. In the case of tennis
ball tracking, the ball’s small size, high velocity, abrupt motion change, occlusion, and
the presence of multiple balls all pose strong challenges. The scope of this paper is to
develop a robust algorithm for tracking tennis balls in broadcast tennis video.

Let us assume we have a ball candidate generation module, where a ball is detected as
a candidate with a certain probability along with some clutter-originated false positives.
The data association problem, i.e. the problem of determining which candidates are ball-
originated and which are clutter-originated, is the key problem to solve in tennis ball
tracking. In [5], a data association algorithm was proposed under the name of Robust
Data Association (RDA), and was used to track a tennis ball. The key idea of RDA is
to treat data association as a dynamic model fitting problem. In RDA, a RANSAC [2]
paradigm is employed. A sliding window containing several frames is moving over a
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sequence. Candidate triplets are randomly drawn from all the candidates in the current
interval, and are used to fit dynamic models. The fitted models are evaluated using a cost
function. The model is found that is best at explaining the candidates inside the interval.
An estimate of the ball position in one frame, e.g. the middle frame in the interval, is then
given by this model. As the sliding window moves, eventually ball positions in all frames
are estimated.

RDA works well under moderate clutter level, and when certain assumptions are sat-
isfied. However, several weaknesses of RDA have been noticed (see [8] for details).
Inspired by RDA’s model fitting approach to the data association problem, in our previ-
ous work [8], we proposed a two-layer data association algorithm (dubbed L2DA in this
paper) to remedy some of the weaknesses of RDA. Although L2DA provides improved
speed and robustness over RDA, like RDA, it is a single-object tracking algorithm, and
requires an additional track initiation/termination mechanism. This means L2DA is not
applicable for real world tennis sequences that have complex track initiation/termination
scenarios of multiple balls. In this paper, we extend L2DA to handle multiple objects and
to automate the track initiation/termination. This is achieved by using an All-Pairs Short-
est Path (APSP) formulation instead of the Single-Pair Shortest Path (SPSP) formulation
at the second layer of L2DA, and by adding a third layer, path level analysis, onto L2DA.
The resulting algorithm is dubbed L3DA in this paper.

The rest of this paper is organised as follows: Section 2 gives a brief review of L2DA.
Section 3 describes the third layer, path level analysis, of L3DA. This layer works on
the set of all-pairs shortest paths in a graph. In Section 4, we propose an efficient APSP
algorithm. Experimental results are presented in Section 5. Finally, conclusions are given
in Section 6.

2 The L2DA Algorithm
In L2DA, the data association problem is sliced into two layers: candidate level associa-
tion and tracklet level association. Assume the frames in a sequence are numbered from
1 to K. At the candidate level, a sliding window containing 2V + 1 frames is moving
over the frames. At time i, the interval Ii centres on frame i and spans frame i−V to
frame i+V , where i ∈ [1+V,K−V ]. Now instead of randomly sampling as in RDA, we
exhaustively evaluate for each candidate in frame i whether a small ellipsoid around it in
the column-row-time 3D space contains one candidate from frame i−1 and one candidate
from frame i + 1. If it does, we call the 3 candidates inside the ellipsoid a “seed triplet”,
and fit a constant acceleration dynamic model to it. The fitted model is then “improved” by
re-fitting another model using candidates in the sliding window that are consistent with it.
This process is repeated recursively until convergence, forming what we call a “tracklet”:
a small segment of a trajectory. Compared to RDA, this “hill-climbing” scheme signifi-
cantly reduces the algorithm’s complexity: as the proportion of true positives drops, the
complexity grows approximately linearly.

A tracklet T consists of a parameterised dynamic model M (position and velocity at
time i, and the constant acceleration), and a set S of candidates that support the converged
model (“supports” of the model). In other words, T , {M,S }. At time i, there may
be multiple tracklets generated. We threshold them based on the number of candidates
in their support sets, or their “strengths”. Only tracklets that are “strong enough” are
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Figure 1: An illustrative example of the topology of G . Each node is a tracklet. Nodes
generated in the same sliding window position are aligned vertically. Striped red nodes:
the first and last ball-originated nodes. Red nodes and red edges: the shortest path between
these two nodes.

retained, and the jth retained tracklet in interval Ii is denoted by T j
i = {M j

i ,S
j

i }.
As the sliding window moves, a sequence of tracklets is generated. These tracklets

may have originated from the ball or from clutter. Now we need a data association method
at the tracklet level. We formulate tracklet level association as a SPSP problem. A
directed and edge-weighted graph G = {N ,E } is constructed, where each node n j

i ∈
N represents the tracklet T j

i , and the weight wl,m
u,v of a directed edge el,m

u,v ∈ E , which
connects nl

u to nm
v , is defined according to the “compatibility” of T l

u and T m
v , i.e. the

smaller the wl,m
u,v , the more likely T l

u and T m
v have originated from a same object (see [8]

for details). We assume that there is only one ball in the sequence, and that the first and
last tracklets (nodes) that have originated from this ball are already known. The ball-
originated candidates are then contained in the support sets of the nodes in the shortest
path between these two nodes, i.e. the path with smallest total edge weight (see Fig. 1).

3 Extending L2DA to L3DA
L2DA assumes there is only one ball to track in a sequence. However, this is not always
the case. For example, there may be multiple plays in one sequence, and the second play
can start while the ball used for the first play is still in the scene. Moreover, track initia-
tion/termination, which is taken for granted in L2DA, is not a trivial problem, especially
when multiple objects are present.

In this section, we extend L2DA to L3DA to deal with multiple objects and to automate
the track initiation/termination. This is achieved by using APSP instead of SPSP at the
tracklet level, and by introducing one more layer on top of that, namely, path level analysis
with a Paths Reduction (PR) algorithm.

For a given pair of nodes nl
u and nm

v in G , there may be paths connecting nl
u to nm

v ,
or there may not. Assume the shortest paths between all pairs of nodes that have at least
one path connecting them have already been identified. Let P be the set of such all-pairs
shortest paths, and p is the number of paths in P . p is in the order of N2, where N is the
number of nodes in the graph. Now observe that no matter how many balls there are to
track, or where each of the ball trajectories starts and terminates in the graph, the paths
that correspond to the ball trajectories form a subset of P . The question now is how to
reduce the original set of APSP P to its subset that contains only paths that correspond
to the ball trajectories.

We propose a simple Paths Reduction (PR) algorithm to achieve this. The PR algo-
rithm reduces the set of APSP to the Best Set of Compatible Paths (BSCP) B, providing
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two assumptions are satisfied: first, the p paths in P can be ordered according to their
“qualities”; and second, a pair-wise “compatibility” of the paths in P is defined. The PR
algorithm is summarised as follows:

• Initialisation: P has p paths, and B is empty.

• While P is not empty:

– Remove the best path P∗ in P from P;

– If P∗ is compatible with all paths in B, add P∗ to B.

Now we define the relative quality of the paths. Recall that the weight of a path is the
sum of the weights of all edges the path goes through. Note that the term “shortest path”
used in the previous sections should have been “lightest path”. However, we chose to
use “shortest path” for the sake of consistency with the terminology used in other papers.
We define the strength of a path to be the number of supports in all its nodes, or more
precisely, the size of the union of the support sets in all its nodes. Intuitively, a “good”
path is one that is both “light” and “strong”. However, there is usually a trade-off between
the weight and the strength of a path: a stronger path tends to be heavier. Taking this into
account, we define the relative quality of two path P1 and P2 as follows:

P1

 >
=
<

P2 if (W1−W2)

 <
=
>

α · (S1−S2) (1)

where the relation operators “>”, “=” and “<” between P1 and P2 stand for “is better
than”, “has the same quality as”, and “is worse than”, respectively; W1 and W2 are the
weights of P1 and P2, respectively; S1 and S2 are the strengths of P1 and P2, respectively;
and α is a controllable parameter with the unit of pixel. According to this definition, if a
path P1 is “much stronger” but “slightly heavier” than a path P2, then P1 is said to have a
better quality than P2. Note that this definition does not assume any relationship between
W1 and W2, or relationship between S1 and S2.

It easily follows that the set P equipped with an operator “≥” satisfies the following
three statements:

1. Transitivity: if P1 ≥ P2 and P2 ≥ P3 then P1 ≥ P3;

2. Antisymmetry: if P1 ≥ P2 and P2 ≥ P1 then P1 = P2;

3. Totality: P1 ≥ P2 or P2 ≥ P1.

According to order theory [1], P associated with operator “≥” is a totally ordered set.
The first assumption for the PR algorithm to work is satisfied.

The second assumption, the existence of pair-wise compatibility of the paths, is straight-
forward. Two paths are said to be compatible if and only if they do not share any common
support. It should be noted, however, two paths that do not share any common node are
not necessarily compatible, because different nodes can have common supports.
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(a) (b) (c) (d)

Figure 2: (a): ball candidates in an example sequence. Each black circle is a candidate.
(b): generated tracklets. (c): results of applying APSP and the PR algorithm: 3 paths in
Bth. Adjacent nodes in each path are plotted alternatively in blue and red. (d): recovered
class labels as given by Bth.

Figure 3: Ball trajectories (after interpolation and key event detection) superimposed on
mosaic images. From left to right: the first, second and third play in time order.

Now with SPSP replaced by APSP at the tracklet level, and with the PR algorithm at
the path level, we have extended L2DA to L3DA. We apply L3DA to an example sequence
(see Fig. 2). Semantically, the ball-originated candidates in this sequence belong to three
plays. In time order (from bottom to top in the figures), the first play (magenta circles
in Fig. 2 (d)) is a bad serve, where the ball lands outside the service box; the second
“play” (cyan circles in Fig. 2 (d)) is a player bouncing the ball on the ground preparing
for the next serve; and the third play (red circles in Fig. 2 (d)) is a relatively long one with
several exchanges. The objective of data association is to identify the number of plays in
this sequence, and to recover the class label of each candidate: clutter, first play, second
play, or third play. In other words, the objective is to recover the colour information in
Fig. 2 (d), assuming it is lost (see Fig. 2 (a)).

First, we “grow” tracklets from seed triplets (see Fig. 2 (b)), as in L2DA. By looking
for all-pairs shortest paths, a set P with p = 87961 paths is obtained. The PR algorithm
is then applied, which gives a BSCP B containing 11 paths. In descending order, the
numbers of supports (strengths) of the paths in B are: 411, 247, 62, 23, 20, 17, 17, 16,
15, 10, 9. It is a reasonable assumption that a path corresponding to a ball trajectory
has more supports than a path corresponding to the motion of a non-ball object, e.g.
a wristband worn by a player (which can be detected as ball candidates and can form
smooth trajectory as the player strikes the ball). We set a threshold Sth and keep only the

Figure 4: A possible arrangement of the paths in Bth. Magenta, cyan, and red paths
correspond to the first, second and third play in the sequence, respectively.
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paths that have more supports than Sth. This results in a thresholded BSCP Bth with 3
paths (see Fig. 2 (c)), where each path corresponds to a play in the sequence.

In tennis ball tracking, the points at which the ball changes its motion abruptly corre-
spond to key events such as hit and bounce, and provide important information for high
level annotation. We detect these key events by looking for motion discontinuities in the
trajectories. In Fig. 3, the 3 ball trajectories after interpolation and event detection are
superimposed on mosaic images.

A suggestion of how the 3 paths might be arranged in the graph G is shown in Fig. 4.
Note that there are 672 tracklets in this sequence. Far fewer nodes are plotted in Fig. 4
for ease of visualisation. Note also that two paths that are temporally overlapping are not
necessarily incompatible. In fact, the first and second plays in the example sequence do
overlap in time: the first play spans frame 16 to frame 260, and the second spans frame
254 to frame 321.

4 An Efficient APSP Algorithm
In L3DA, at the tracklet level, we need to solve an APSP problem for a graph G with N
nodes. In some sequences, N can be in the order of 103. An efficient APSP algorithm
is desirable. Several APSP algorithms have been reported in the literature. The Floyd-
Warshall algorithm solves APSP in O(N3) time [3]. Johnson’s algorithm has a complexity
of O(N2 logN +NE), where E is the number of edges in the graph [4]. Neither the Floyd-
Warshall algorithm nor Johnson’s algorithm makes any assumption about the topology of
the graph. Because of the way our graph is constructed, it has a special topological prop-
erty: its set of nodes N can be partitioned into subsets N1+V ,N2+V , ...,NK−V−1,NK−V ,
where Ni is the set of nodes generated in interval Ii, such that edges exist from nodes in
subset Nu to nodes in subset Nv only if u < v (see [8] for details). Using this property,
we derive an O(N2) APSP algorithm as follows.

The proposed APSP algorithm uses the concept of dynamic programming. Suppose
we are in the middle of the tracklet generation process. The sliding window now cen-
tres on frame i− 1, and tracklets in interval Ii−1 have been generated. Let G (i−1) =
{N (i−1),E (i−1)} be the graph constructed so far, where N (i−1) = {N1+V ,N2+V , ...,Ni−1};
E (i−1) is the set of edges that go into all nodes in N (i−1). Clearly, G (i−1) is a sub-graph
of the complete graph G . Assume the APSP problem in graph G (i−1) has been solved.
That is, in each node nm

v ∈ G (i−1), a table is maintained, where each entry corresponds
to a node in the sub-graph G (v−1). The entry corresponding to node nl

u ∈ G (v−1) keeps
two pieces of information about the shortest path from nl

u to nm
v in G (i−1). The first one

is the last node before nm
v in the shortest path, and the second one is the total weight of

the shortest path. With these two pieces of information for each node nl
u ∈ G (v−1) in each

node nm
v ∈ G (i−1), the shortest path between any pair of nodes in G (i−1) can be identified

by back tracing.
Next, we show how to solve the APSP problem in G (i) using the solution of the APSP

problem in G (i−1). Now the sliding window moves one frame forward, and the interval Ii
centres on frame i. Assume several tracklets are generated in Ii, forming the set of nodes
Ni. Now we need to construct for each node n j

i ∈Ni a table of APSP knowledge, where
each entry contains information about the shortest path in G (i) from a node in G (i−1) to
n j

i .
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Figure 5: Constructing the table of APSP knowledge for a node n j
i ∈Ni.

In Fig. 5, the sub-graph inside the big rectangle represents G (i−1), and a new node
n j

i ∈ Ni is plotted as a shaded node. Assume s nodes in G (i−1) are connected to n j
i with

edges. These s nodes are denoted by nl1
u1 ,n

l2
u2 , ...,n

ls
us , and are plotted as dashed nodes

in Fig. 5. Edges that connect these nodes to n j
i are denoted by el1, j

u1,i,e
l2, j
u2,i, ...,e

ls, j
us,i, and are

plotted as dashed edges. Obviously, the number of entries in the table of APSP knowledge
in n j

i is equal to the number of nodes in G (i−1). Without loss of generality, let us consider
one entry in the table, which keeps information about the shortest path in G (i) from a
node nl

u ∈ G (i−1) to n j
i . In Fig. 5, nl

u is plotted as a striped node. Now observe that the
shortest path in G (i) from nl

u to n j
i must go through one of the nodes in nl1

u1 ,n
l2
u2 , ...,n

ls
us

and the corresponding edge in el1, j
u1,i,e

l2, j
u2,i, ...,e

ls, j
us,i. Since APSP has been solved in G (i−1),

the information about the shortest path in G (i−1) from nl
u to nlr

ur is kept in the table in nlr
ur ,

where r = 1,2, ...,s. Let W (i−1)(nl
u,n

lr
ur) be the total weight of the shortest path in G (i−1)

from nl
u to nlr

ur , as kept in the table in nlr
ur . Specially, if the table in nlr

ur does not contain an
entry for nl

u, it means ur ≤ u, and we define for this case W (i−1)(nl
u,n

lr
ur) = ∞. The total

weight of the shortest path in G (i) from nl
u to n j

i is then:

W (i)(nl
u,n

j
i ) = min[W (i−1)(nl

u,n
lr
ur)+wlr , j

ur ,i],∀r ∈ [1,s] (2)

where wlr , j
ur ,i is the weight of edge elr , j

ur ,i. The last node before n j
i in the shortest path in G (i)

from nl
u to n j

i is nl∗
u∗ , where

{u∗, l∗}= arg min
{ur ,lr}

[W (i−1)(nl
u,n

lr
ur)+wlr , j

ur ,i],∀r ∈ [1,s] (3)

The two pieces of information for one entry in the table in node n j
i are thus obtained:

W (i)(nl
u,n

j
i ) and nl∗

u∗ are put into the entry for nl
u. This process is applied to each node in

G (i−1), whereupon the complete table in n j
i is constructed. Using the special topological

property of the graph G discussed at the beginning of this section, the shortest path in
G (i−1) between any pair of nodes in G (i−1) is also the shortest path in G (i) between the
same pair of nodes. When the new node n j

i and the associated edges el1, j
u1,i,e

l2, j
u2,i, ...,e

ls, j
us,i

are added to G (i−1), the tables in the nodes in G (i−1) remain the same. This means that,
simply by applying the above process as new nodes (and associated edges) are received,
when the complete graph G = G (K−V ) is constructed, the APSP problem in it is solved.
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SVM boundary -4 -3 -2 -1 0 1

rd 0.917 0.916 0.908 0.874 0.822 0.531

N̄ 12.2 9.0 5.1 0.9 0.1 0

Table 1: Detection rate and clutter level with various SVM boundaries.

The shortest path between any pair of nodes in G can be easily identified by back tracing.
The proposed APSP algorithm is summarised as follows:

• Assume: the APSP problem in G (i−1) has been solved.

• For each node n j
i ∈Ni:

– For each node nl
u ∈ G (i−1):

∗ add an entry labelled nl
u to the table of APSP knowledge in n j

i ;

∗ put W (i)(nl
u,n

j
i ) and nl∗

u∗ given by (2) and (3) into this entry.

Let hi be the number of nodes in Ni. The number of nodes in sub-graph G (i−1) is
then ∑

i−1
k=1+V hk. To solve the APSP problem in G (i), we need to construct a table of APSP

knowledge for each node in Ni. The number of operations of this process is in the order
of hi ∑

i−1
k=1+V hk. The number of operations of the proposed APSP algorithm is then in

the order of ∑
K−V
i=2+V (hi ∑

i−1
k=1+V hk). Simple manipulation shows that the complexity of the

proposed APSP algorithm is O(N2), where N = ∑
K−V
i=1+V hi is the number of nodes in G .

5 Experiments
We used 60 sequences from the 2006 Australia Open tournament Men’s final game for
our experiments. The number of plays in each sequence ranges from 2 to 4. In total the
60 sequences are approximately 16 minutes long, and contain 50,662 frames.

We used frame differencing to extract foreground moving objects. A Support Vector
Machine (SVM) was trained and used to classify the foreground blobs into ball candidates
and non-candidates. Features used in the SVM are the shape, colour and position of each
blob. By moving the decision boundary of the SVM, a trade-off can be made between the
ball detection rate rd and the average number of false candidates N̄ in each frame. Table 1
shows 6 SVM boundaries and the corresponding rd and N̄. Using these 6 configurations,
we can evaluate a tracker’s performance under various detection rate and clutter level.

RDA and another two tennis ball tracking algorithms from our previous work [6, 7],
one based on particle filtering, and the other based on the Viterbi algorithm, were also
implemented for comparison. For these three trackers, one instance of the tracker was
used to track each play in each sequence, and track initiation/termination of each play was
manually dealt with. In RDA, the number of trials, Nt , is chosen so that the probability
of finding a set that consists entirely of true positives is greater than a threshold γ . In our
experiments, γ was set to 0.99.
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SVM boundary -4 -3 -2 -1 0 1

particle 8.64% 9.61% 6.92% 6.63% 8.29% 19.16%

prop. of Viterbi 4.14% 3.88% 3.41% 3.23% 3.64% 4.12%

LOT RDA 17.06% 15.73% 12.43% 9.18% 6.99% 7.27%

Frames L3DA 4.40% 3.68% 3.57% 2.81% 2.41% 2.73%

Table 2: Proportion of loss-of-track (LOT) frames.

SVM boundary -4 -3 -2 -1 0 1

particle 21.0 23.2 25.1 26.6 28.8 30.7

processing speed Viterbi 31.3 36.7 40.4 42.2 45.9 47.3

(frames per sec) RDA 0.9 1.7 23.5 233.0 374.8 399.1
L3DA 46.3 59.4 72.8 93.6 116.2 142.4

Table 3: Processing speed.

To evaluate the performance of the trackers, ground truth of the tennis ball positions in
all frames was manually marked. Tracking results were then compared against the ground
truth. Tracking error is defined as the Euclidean distance between the ground truth and the
tracked (detected or interpolated) ball position. A loss-of-track (LOT) frame is defined as
a frame where the tracking error is greater than 6 pixels. Table. 2 shows the proportion
of LOT frames of each tracker with each SVM boundary. In brief, L3DA and the Viterbi-
based tracker outperform the other two trackers. When looking more carefully at Table. 2,
we can see the four algorithms have different failure modes.

When rd and N̄ are both low, the particle-base algorithm performs poorly. This is
because the ball changes its motion drastically after being hit by a player. Consequently,
the next detected ball-originated candidate can be very far from its predicted position.
This is especially the case when rd is low. As a result, the particle-based tracker can be
“trapped” by false candidates that have originated from the player, and cannot recover
until the ball is close to the player again. On the other hand, L3DA, being a non-iterative
algorithm, is much more robust against sudden change of motion direction.

RDA performs poorly when rd and N̄ are high. This is because in RDA, or more
generally in RANSAC, we make the implicit assumption that a model given by an un-
contaminated sample set is always “better” than that given by a contaminated sample set.
However, in a tennis sequence, especially when multiple balls are present, the ball being
tracked is not the only smoothly moving object. Candidates that have originated from
other balls, or even from part of a player, e.g. a wrist band, can form smooth trajectories.
As a result, a model given by candidates that have originated from the ball being tracked
can “lose” in the competition with a model given by candidates that have originated from
other objects. This problem is tackled in L3DA by enforcing motion consistency with the
shortest path formulation.

The Viterbi-based algorithm gives similar performance to that of L3DA. However,
L3DA has the advantage of being fully-automatic, while the Viterbi-based algorithm re-
quires an additional track initiation/termination mechanism.
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In Table 3, the speed of the four algorithms is compared. L3DA shares the top position
with the LDA. The fact that L3DA always starts model fitting from a seed triplet —
three candidates that have high probability of containing only true positives — allows
it to eliminate false candidates very quickly. The proposed APSP algorithm also helps
improve the efficiency of L3DA. It should be noted that as the SVM boundary increases,
RDA has the fastest growing processing speed. This is because the time complexity of
RDA is determined directly by Nt , which drops rapidly as the proportion of true positives
increases.

6 Conclusions
In this paper, we have extended our previous work L2DA, a semi-automatic single-object
tracking algorithm, to L3DA, a fully automatic multiple-object tracking algorithm. This
was achieve by using APSP instead of SPSP at the tracklet level, and by adding one more
layer, path level analysis, on top of L2DA. In this paper, we have also proposed an efficient
APSP algorithm by exploiting a special topological property of the graph. The proposed
L3DA algorithm was used to track tennis balls in broadcast tennis video. Comparative
experiments show that it performs well both in terms of efficiency and tracking accuracy.
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Abstract

Shape from texture has received much attention in the past few decades.
We propose a computationally efficient method to extract 3D planar surface
orientation from the spectral variations of a visual texture. Under the as-
sumption of homogeneity, the texture is represented by the novel method of
identifying ridges of its Fourier transform. Local spatial frequencies are then
computed using a minimal set of selected Gabor filters. Under perspective
projection, frequencies are backprojected and orientation is computed so as
to minimize the variance of the frequencies’ backprojections. A comparative
study with two existing methods, and experimentation on simulated and real
texture images is given.

1 Introduction
Shape from Texture was first introduced by Gibson 50 years ago. In [7] he suggests that
texture can provide an important shape cue. However for a machine the solution to this
problem is ill-posed. Shape from texture is generally about measuring the texture distor-
tion in an image, and then reconstructing the surface 3D coordinates in the scene ([6],
[8], [9], [11]). The model for the texture can be either deterministic or stochastic. The
second allows a wider variety of textures ([9], [11], [13]) and implies local spectral mea-
surements, usually with the Fourier transform ([11]), or more recently, wavelets ([8], [3]).

An initial assumption about the texture is always necessary, and few of the existing
papers are applicable to real surfaces because of restrictive assumptions. [10] deals with
texels, which are seldom found in nature, while [14] assumes isotropy, rarely the case.
Homogeneity is more frequently used ([9], [6], [3]), and is the one we choose here. For
deterministic textures it can be seen as periodicity, for stochastic textures it can be for-
malized as stationarity under translation ([11]). Under this condition we assume that all
texture variations are produced only by projective geometry.

We assume here a perspective or pin-hole camera model, as in [4] and [12], because
perspective effects (e.g. shrinking) are usually found in images of slanted planes. We do
not consider the weak perspective case as this preserves homogeneity and therefore gives
no information on plane orientation ([5] and references within).

The present work takes its motivation from [12]. The texture is analyzed using Gabor
filters to produce distortion information based on local spatial frequency (LSF). Unlike
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[12], we do not just rely on a dominant LSF, but we consider groups of LSFs. This
extends [12] to exploit the multi-scale nature of textures. To our knowledge the algorithm
presented here is the first to consider the multi-scale nature of texture to the extent of
exploiting all main LSFs, most of the related work uses only two preferred directions in
the spectral domain (e.g. [13]).

Section 2 explains in detail how the texture is analyzed to produce distortion informa-
tion, and justifies the chosen method. Section 3 presents the projective geometry. Section
4 shows how we can recover surface 3D coordinates from the measured texture distortion.
Finally, section 5 presents results, comparing them with those in [8].

2 Texture Description
Here we describe how to set 2D Gabor functions and their first derivatives from the infor-
mation on texture supplied by the Fourier transform. The former provide local analysis to
compute instantaneous frequencies, which are used to measure distortion and reconstruct
the 3D coordinates of the texture surface.

2.1 Estimating the Instantaneous Frequencies
The analysis of an image I(x) is usually done using a band-pass filter h(x,u), a function
of a point x = (x,y) and of a central frequency u = (u,v), which is convolved with the
image to provide the local spectrum. As in [12] we choose 2D Gabor functions:

h(x,u) = g(x)e2π jx·u where g(x) =
1

2πγ2 e
−(x·x)

2γ2 (1)

with j the unit imaginary and g(x) a 2D Gaussian function with variance γ2.
For a 2D cosine f (x) = cos(2πΩ(x)) the instantaneous frequency is given by

ũ(x) = (ũ(x), ṽ(x)) =
(

∂Ω
∂x

,
∂Ω
∂y

)
. (2)

Our goal is to measure ũ(x). [1] shows that this can be done by considering a Gabor
function h(x,u), and its two first order derivatives, hx(x,u) and hy(x,u):

|ũ(x)|= |hx(x,u)∗ I(x)|
2π|h(x,u)∗ I(x)|

|ṽ(x)|= |hy(x,u)∗ I(x)|
2π|h(x,u)∗ I(x)| . (3)

This estimate can be assumed to be correct if the frequency we are measuring is in the
pass-band of the filter. This method implies that we have to choose the central frequencies
u of the Gabor functions, and the spatial constants γ , in order to set the centre and width
of the filters. The filters have constant fractional bandwidth (bandwidth divided by its
centre frequency). This allows us to measure higher frequencies more locally than lower
frequencies and is computationally less expensive. Moreover, as all filters so derived are
geometrically similar it is simpler to compare their outputs.
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ũ≈ 0.42 rad/s

−4 −2 0 2 4
0

50

100

150

200

250

300

350

400

(b) Amplitude of the spec-
trum of the cosine in 1(a)

0 20 40 60 80 100 120 140
−1

−0.5

0

0.5

1

(c) 1D cosine with fre-
quency varying from ũ ≈
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−4 −2 0 2 4
0

50

100

150

200

(d) Amplitude of the spec-
trum of the cosine in 1(c)

20 40 60 80 100 120

20

40

60

80

100

120

(e) 2D cosine at frequency
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|ũ1| ≈ 0.42 rad/s and
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(k) Result of slanting the
image in 1(i) by 38◦
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Figure 1: Setting the Gabor filters’ parameters

We choose to set the Gabor functions using the information from the Fourier trans-
form of the texture. Unlike Super and Bovik ([12]), who sample the whole 2D frequency
plane, we make a selection of Gabor filters using ridges in the Fourier transform of the
image. In our algorithm every ridge determines a set of Gabor filters that covers the corre-
sponding values of frequencies. Every ridge therefore determines different instantaneous
frequencies and thus different distortion measures.

2.2 Setting the Gabor Filter Parameters
Let us consider a 1D cosine (figure 1(a)). The signal has length of 128 samples and fre-
quency ũ≈ 0.42 rad/s (where π rad/s is by convention the biggest admissible frequency).
Figure 1(b) represents its spectrum amplitude, two symmetric spikes at the corresponding
frequencies (≈±0.42 rad/s). A chirp is shown in figure 1(c), i.e. a cosine with frequency
varying from ũ≈ 0.42 rad/s to ũ≈ 1.27 rad/s. Figure 1(d) illustrates its spectrum, where
significant non-zero values span that range.

Analogously we show a 2D image generated by a 2D cosine with frequency |ũ| ≈ 0.42
rad/s (figure 1(e)) and its spectrum (figure 1(f)), given by symmetric spikes on the fre-
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quency value. And we compare them to figures 1(g) and 1(h), the image of a 2D cosine
with frequency ranging from |ũ| ≈ 0.42 rad/s to |ũ| ≈ 1.27 rad/s and its spectrum (circles
are fully explained later). In the latter, significant non-zero values form a ridge corre-
sponding to that range. Figures 1(g) and 1(h) were actually generated by slanting (see
section 3) image 1(e) through 38◦. The ridges of the amplitude of the Fourier transform
of the image represent the 2D frequencies contained in the texture.

The algorithm we propose analyzes the spectrum of the texture to determine its ridges,
and then uses this information to define the sets of Gabor functions used. Figure 1(h)
shows the chosen set of central frequencies u (the centres of the circles) and the set of
spatial constants γ (their radii); half of the spectrum is considered because of its redun-
dancy. There is significant overlapping (50%) to produce a robust LSF estimation. How-
ever, unlike in [12], where 63 central frequencies and spatial constants sample the whole
2D frequency plane, here the number used varies with the image. 7 u’s and γ’s are used in
figure 1(h). This implies a significant reduction of the computational expense: in [12] 63
u’s and γ’s correspond to 378 convolutions (the Gabor filter and its first order derivatives
and an equivalent number of post-smoothing filters); our algorithm in this case uses 7 u’s
and γ’s, meaning 42 convolutions, therefore a computational saving of about 89%.

We now consider the case of multiple frequencies. Figure 1(i) shows the cosine from
the previous example (|ũ1| ≈ 0.42 rad/s) on which we have superposed another cosine,
with frequency |ũ2| ≈ 0.63 rad/s, separated by 45◦ degrees from the first in the frequency
plane. The amplitude of the spectrum of the image (figure 1(j)) shows four peaks, corre-
sponding to the values of the two frequencies of the cosines. In this case we can associate
two instantaneous frequencies to each point, which in fact coexist at every pixel. Figure
1(k) shows the result of applying the same slant as in figure 1(g): each cosine has now
a continuously-varying frequency. Moreover the two LSFs change independently from
each other. In fact the first cosine acquires the same continuously-varying frequency as
in the previous section, and the second equivalently acquires a range of 2D frequencies
varying in the direction of the slant. This is what the amplitude of the spectrum in figure
1(l) shows. In it we can observe two ridges, each of them associated with the original
cosines, the spread indicating a variation or distortion due to the slant.

Our algorithm detects the two ridges and sets two groups of Gabor filters. In each
group a series of values for the central frequencies, u’s, and the spatial constants, γ’s,
are defined, so as to determine the filters to cover the respective ridge area (figure 1(l)).
Every set of filters is processed as in the previous example, i.e. as if the texture contained
only one corresponding LSF. Thus each set of filters reconstructs an instantaneous fre-
quency for each pixel. These are used to measure the deformation of the texture due to
the slanting, are processed independently and finally the results are combined (details are
in section 4). In this sense we exploit the multi-scale nature of the texture, because all
different-scale frequencies are considered in the final result.

3 Projection of Texture
Here we describe the viewing geometry and a projection model, to provide a relationship
between the surface and the image plane as a function of the orientation. We then present
a surface texture model.
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Figure 2: Viewing geometry and projection model

3.1 Viewing Geometry and Projection Model
We adopt the viewing geometry and projection model of [12]. They assume a pin-hole
camera model and their coordinate systems are given in figure 2. In it the origin of the
world coordinate system xw = (xw,yw,zw) coincides with the focal point and the optical
axis coincides with the −zw-direction. The image plane coordinate system xi = (xi,yi) is
placed at z = f < 0, with | f | being the focal length, such that xi = xw and yi = yw. The
orientation of the surface is described using the slant-tilt system: the slant σ is the angle
between the surface normal and the optical axis, with values ranging from 0◦ to 90◦; the
tilt τ is the angle between the xi-axis and the projection on the image plane of the surface
normal, with values between −180◦ and 180◦. The surface is described by the coordinate
system xs = (xs,ys,zs): the xs-axis is aligned with the perceived tilt direction, the zs-axis
is aligned with the surface normal, ys forms a right handed orthogonal coordinate system
and the origin of xs is on the intersection of the surface with the zw-axis, at zw = z0 < 0.

[12], to which we refer for details of the derivation, obtains the equations for trans-
forming 2D surface to 2D image coordinates, and vice versa, under perspective projection.
Most importantly, they derive the relationship between the instantaneous frequencies on
the image plane ui = (ui,vi) and those on the surface plane us = (us,vs):

us = Jt(xi,xs) ·ui. (4)

Jt , the transpose of the Jacobian determinant of the coordinate transformation, is

Jt(xi,xs) =
sinσ

zw

[
xi yi
0 0

]
+

f
zw

[
cosσ cosτ cosσ sinτ
−sinτ cosτ

]
(5)

with zw = z0− xs sinσ =
f z0 cosσ

sinσ(xi cosτ + yi sinτ)+ f cosσ
. (6)

We use the above to backproject a LSF computed on the image plane to the surface plane.

3.2 Surface Texture Model
We model textures as due to variations of surface reflectance, the proportion of incident
light reflected. We assume that the surfaces have a Lambertian reflection, and that the
texture is therefore ‘painted’ on them, without roughness or self-occlusion.
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Surface reflectance, ts(xs), and image reflectance, ti(xi), are related by the following:

ti(xi) = k(xi) · ts[xs(xi)], (7)

where xs(xi) represents the perspective backprojection, while k(xi) is a multiplicative
shading term. [4] shows how to estimate and remove k. However, if the scale of variation
of ts is small compared to the scale of variation of the shading term, then the latter can be
assumed to be constant in any small neighborhood. Moreover, our method automatically
normalizes for slow variations in illumination, shading and surface texture contrast, be-
cause it uses frequencies rather than amplitudes. Also no assumption is made about the
textural nature of ts(xs), thus it might apply to various patterns, e.g. lines, blobs, etc.

4 Computing Surface Orientation
We explain here how our algorithm processes the image texture to produce the orientation
of the surface texture.

As discussed in the introduction, we assume homogeneity, in the specific form that
the relevant LSFs of the textured surface are constant in the surface region under analysis.
Our assumption includes as a corollary that the variance of each LSF on the surface plane
is zero. The theoretical zero value means a minimum in the case of real data, and this
assumption is used to compute the surface orientation, i.e. the slant σ and tilt τ .

The structure of the proposed algorithm is therefore:

• The spectrum amplitude of the image texture is analyzed and ridges are detected.

• Each ridge determines a set of Gabor functions and their first derivatives, so that
the filters cover the frequencies pertaining to the particular ridge.

• For each set of filters the following steps are repeated:

– the image is convolved with the Gabor filters and their derivatives, and the
outputs are smoothed with a Gaussian to reduce noise;

– the Gabor filter with largest amplitude output is selected at each point;

– the (signed) instantaneous frequencies are computed at each point (eq. 3);

– a 2D search over the plane σ -τ is implemented: for each couple (σ ,τ) the
instantaneous frequency is backprojected using equation 4, and the variance
Vσ ,τ is computed;

– the values of σ and τ corresponding to the minimum variance are chosen, and
the variance is also returned.

• The algorithm chooses the best couple (σ ,τ) as that giving the lowest variance.

The minimum variance (Vσ ,τ ) method requires the estimated instantaneous frequen-
cies to pertain to the same slanted and tilted LSF in every group. This is not assured if
we use a grid of Gabor filters and choose the largest amplitude output, as in [12]. In this
case, maximum outputs might then correspond to different groups of LSFs for different
pixels in textures with more than one dominant frequency, which invalidates the orienta-
tion estimation. Our algorithm allows us to estimate instantaneous frequencies pertaining
to distinct groups because it uses separated sets of filters. This improves its robustness.
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(a) D20 (b) D52 (c) D57 (d) D65

(e) D82 (f) D84 (g) D95 (h) D95 with white Gaus-
sian noise (SNR=−5dB)

Figure 3: Images synthesized from Brodatz textures

Image True τ τGL |τGL− τ| τHLC |τHLC− τ|True σ σGL |σGL−σ |σHLC |σHLC−σ |
D20 160 160.45 0.45 160.05 0.05 37 37.36 0.36 37.53 0.53
D52 -60 -60.28 0.28 -61.08 1.08 50 49.55 0.45 49.58 0.42
D57 90 91.00 1.00 91.41 1.41 70 70.37 0.37 67.30 2.70
D65 60 59.48 0.52 55.00 5.00 50 48.71 1.29 54.38 4.38
D82 90 89.63 0.37 90.71 0.71 50 49.16 0.84 48.62 1.38
D84 135 134.16 0.84 128.58 6.42 35 35.32 0.32 33.26 1.74
D95 -155 -154.92 0.08 -158.57 3.57 27 25.89 1.11 28.45 1.45

Table 1: Tilt and slant results of our method (τGL, σGL) on images synthesized from
Brodatz database textures, compared to the results of [8] (τHLC, σHLC) (angles in degrees)

All the relevant frequencies are used. Eventually, we choose the pair (σ ,τ) with the
lowest Vσ ,τ as we assume that lower values of residual variance, closer to the ideal zero
value, correspond to better orientation estimates. As results from all ridges are accurate,
future work might address combining these to produce better estimates.

Finally, the algorithm lends itself well to parallel implementations, because each ridge
and filter can be processed independently and implemented by different units.

5 Results
We demonstrate our method on two sets of images. The first (figures 3(a)-(g)) is derived
from [8], whose results we use for comparison. The images in this set were synthesized
by mapping real textures from the Brodatz database ([2]) onto an inclined surface and
then rendering it as a new image. Table 1 shows the results achieved compared with those
from [8]. Our average estimation errors for τ and σ are 0.51◦ and 0.68◦ respectively,
while Hwang et al. ([8]) achieve corresponding values of 2.6◦ and 1.8◦. The accuracy
of our method is significantly higher. As in [8], we add various levels of white Gaussian
noise (SNR ranging from 20 to−5 dB) to the images of the textures D20, D52, D82, D95
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(a) Rubber rug (b) Page 1 (c) Page 2 (d) Pyjamas

(e) Pillow case 1 (f) Pillow case 2 (g) Shirt (h) Sponge

(i) Towel (j) Trousers (k) T-shirt (l) Towel in 4(i) - Whole
picture

Figure 4: Real images of texture planes

(the latter with SNR=−5dB is shown in figure 3(h)). Note that our estimates are always
closer to the noiseless result than those of [8], thus indicating increased robustness.

The second set (figures 4(a)-(k)) consists of real images. All of them are the central
128x128 parts of 640x480 pictures. Figure 4(l) presents the whole image from which
figure 4(i) was derived. As can be seen, the textured object was laid flat on a panel of
known orientation (obtained using a multiple camera system prior to the experiment) and
photographed with a Pulnix TM-6EX camera. The chosen textured objects were mainly
fabrics, but also included some different materials. It is clear that the pictures are af-
fected by variations in illumination and self shadowing (4(h)), creases (4(e)), imperfec-
tions (4(b), 4(a)) and occlusions (4(d)). Table 3 shows the results we obtained, compared
to the ground truth. On average, tilt and slant were estimated with an error of 1.3◦ and 1.5◦

SNR (dB)
Image (τ/σ) ∞ 20 10 0 -5
D20 (160/37) 160.4/37.4 159.5/37.1 159.6/36.8 159.6/37.3 157.3/37.3
D52 (-60/50) -60.3/49.5 -58.7/47.6 -64.4/49 -67.2/46.6 -61.6/34.3
D82 (90/50) 89.6/49.2 -89.1/51.3 90.6/52.3 86.1/45.4 X
D95 (-155/27) -154.9/25.9 -158.8/25.2 -159.8/26.2 -160.8/25.4 -160.6/24.5

Table 2: Surface orientations (τ/σ) estimated using our method on noisy images - true
values are in parenthesis (X indicates that the results were not reliable) (angles in degrees)
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Image True τ τGL |τGL− τ| True σ σGL |σGL−σ |
rubber 118.8 118.3 0.5 35.3 33.4 1.9
page1 -152.8 -153.3 0.5 23.6 23.4 0.2
page2 123.6 121.3 2.3 36.9 34.0 2.9
pyjamas -152.8 -151.2 1.6 23.6 20.2 3.4
p’case1 -123.6 123.2 0.4 36.9 34.4 2.5
p’case2 -146.5 -147.7 1.2 32.7 33.6 0.9
shirt 103.2 107.5 4.3 33.6 31.2 2.4
sponge -158.3 -157.9 0.4 25.5 25.1 0.4
towel 146.4 146.2 0.2 38.8 39.9 1.1
trousers 118.8 118.7 0.1 35.3 35.2 0.1
T-shirt 123.6 121.3 2.3 36.9 35.7 1.2

Table 3: Tilt and slant results of our method (τGL,σGL) on real images (angles in degrees)

respectively. These data confirm both the accuracy and the robustness of our algorithm.
All processed images were 128x128 pixels with 256 levels of gray. The backprojec-

tion of the computed LSFs for each value (σ ,τ) was done just for the middle section of
the image (here 64x64), so as to avoid edge effects. The constant fractional bandwidth is
one half, and the space constant of the post-smoothing Gaussian filter is 1/12 of the im-
age. We could not apply our method to those images in [12] because we could not gather
all the data of the original setup. Processing the 18 images, 46 ridges of the Fourier trans-
form were detected, that determined 232 Gabor functions. On average the number of
convolutions per image was therefore 77.33. Compared to [12], where 378 convolutions
per image are used, we save 79.54% in computational power.

As stated in section 1, the homogeneity assumption requires some sort of periodic-
ity/stationarity: the algorithm can deal with as little as 6 cycles/picture.

Finally, we address the possibility that ridges might superimpose. This may be the
case when a texture composed of close frequencies is slanted. Such a superposition can
easily be spotted by our algorithm, as it results in gaps in the frequency estimation. We
solve it by considering a smaller patch of the image, e.g. 96x96 instead of 128x128. In
this way the range of variation of frequencies analyzed by the Fourier transform is smaller
and hence there is less chance of observing the superposition.

6 Conclusions
The study presented here has characterized the variations of the dominant LSFs in textures
via the ridges of their Fourier transforms, and used those to estimate the orientation of sur-
face textures. Numerical results have been given on both semi-synthetic and real images
and compared where possible with other work. Our algorithm is more accurate, simple to
implement, and has the potential to be extended to more complex surface shapes.

To our knowledge, the proposed algorithm is the first to consider the multi-scale nature
of texture to the extent of exploiting all main LSFs. Furthermore, it is robust against
shading, variations in illuminations, and occlusions, and performs well in the presence of
added Gaussian noise. Finally, it is based on the Fourier transform of the image and on a
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minimal number of convolutions, results are therefore computationally fast.
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Abstract

The paper proposes a new edge-based multi-object tracking framework, MO-
TEXATION, which deals with tracking multiple objects with occlusions us-
ing the Expectation-Maximization (EM) algorithm and a novel edge-based
appearance model. In the edge-based appearance model, an object is mod-
elled by a mixture of a non-parametric contour model and a non-parametric
edge model using kernel density estimation. Visual tracking is formulated
as a Bayesian incomplete data problem, where measurements in an image
are associated with a generative model which is a mixture of mixture models
including object models and a clutter model and unobservable associations
of measurements to densities in the generative model are regarded as miss-
ing data. A likelihood for tracking multiple objects jointly with an exclu-
sion principle is presented, in which it is assumed that one measurement can
only be generated from one density and one density can generate multiple
measurements. Based on the formulation, a new probabilistic framework of
multi-object tracking with the EM algorithm (MOTEXATION) is presented.
Experimental results in challenging sequences demonstrate the robust perfor-
mance of the proposed method.

1 Introduction

Visual tracking is an important research area of computer vision. Previous work on edge-
based contour tracking includes contour tracking with Kalman filtering [3] or particle
filtering [9], contour tracking with the EM algorithm [14], which are all for single object
tracking. Some similar previous work on joint tracking of multiple objects was presented
in [12, 10, 17]. In [10, 17] multi-object tracking with particle filtering was proposed.
However the number of samples will grow exponentially with the number of objects, and
usually the depth order of multiple objects is needed or needs to be jointly estimated. In
[12] Joint Probabilistic Data Association (JPDA) with the exclusion principle is applied
to multiple contour tracking in comparison with Probabilistic Data Association (PDA) for
single contour tracking in CONDENSATION [9]. Due to the complexity of enumerat-
ing all feasible events, the extension to track more than two objects is computationally
expensive and also the depth order needs to be estimated and used in the likelihood. On
the other hand, many iterative algorithms were proposed for color-based tracking(though
only for single object tracking), including mean-shift algorithm with color histogram [6],
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kernel-based tracking with spatial-color non-parametric model [8], EM-like tracking with
spatial-color Gaussian mixture model [18].

This paper proposes a new edge-based multi-object tracking framework, MOTEXA-
TION, which deals with tracking multiple objects with occlusions using the EM algorithm
and a novel edge-based appearance model. The proposed approach differs from previous
similar work on contour tracking [3, 9, 12] mainly in three aspects: object model, like-
lihood and inference used. In the edge-based appearance model, an object is modelled
by a mixture of a non-parametric contour model and a non-parametric edge model using
kernel density estimation similar to that for color-based non-parametric model [8]. Visual
tracking is formulated as a Bayesian incomplete data problem where measurements in an
image are associated with a generative model which is a mixture of mixture models in-
cluding object models and a clutter model and unobservable associations of measurements
to densities in the generative model are regarded as missing data. A likelihood for tracking
multiple objects jointly with an exclusion principle is presented where it is assumed that
1. one measurement can only be generated from one density 2. one density can generate
multiple measurements. The first assumption incorporates the same exclusion principle
essential to track objects during occlusion as that of [12], based on JPDA, whereas the sec-
ond assumption is relaxed like that of Probabilistic Multi-Hypothesis Tracker (PMHT)
[15] to allow one density to generate multiple measurements rather than one measure-
ment only. This significantly reduced the complexity of enumerating all feasible events in
comparison with JPDA. Tracking multiple objects jointly will increase the dimensional-
ity of state space and often the likelihood will become sharply peaked [16], which makes
tracking with particle filtering difficult. The iterative EM algorithm is employed for multi-
object tracking due to its monotonicity property which can seek the mode of the likelihood
or the posterior despite high dimensional state space and sharply peaked likelihood. In
addition it is also possible to combine edge features with color features using the iterative
algorithm, for more robust tracking.

The organization of the paper is as follows. Tracking is formulated in Sec. 2; Multi-
object tracking with the EM algorithm is presented in Sec. 3; Results are given in Sec. 4
and the paper is concluded in Sec. 5.

2 Tracking formulation

State vector is denoted asx(t) = [x(t) y(t) a(t) b(t)]T where [x(t) y(t)]T is the spatial
position of the object centre,a(t) and b(t) are the width and height of the object re-
spectively. A second order auto-regressive model is employed as the dynamical model,
x(t) = A1x(t−1)+A2x(t−2)+B0w(t) wherew(t) is Gaussian noiseN (w(t);0, I).

2.1 Gating and clustering

Edge measurements are first detected by Canny edge detector [5]. The gating procedure of
PDA is then applied. A validation region is computed based on the predicted state vector
using dynamical model for each object so only measurements from within the validation
region of the predicted state vector are used [1].

The clustering procedure from JPDA is also employed [1] for multi-object tracking.
Multiple objects are first grouped into clusters and then are tracked jointly in each cluster.
It often occurs that more than one object are grouped into the same cluster if there are
occlusions between objects. After clustering, measurements in validation regions of all
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objects in a cluster are used for jointly tracking multiple objects in that cluster. Measure-
ments in a cluster are denoted asZ = {zi}N

i=1, whereN is the number of measurements

in a cluster,zi =
[

ui

vi

]
, ui = [xi ,yi ]

T andvi = θi ∈ [0,2π) are the spatial position and

orientation ofith edge measurement respectively.

2.2 Object model

The edge-based object appearance modelpl (z) is a mixture of a non-parametric contour
modelpcon(z), which consists of contour sample points, and a non-parametric edge model
pedge(z), which consists of edge pixels inside the object contour,pl (z) = πconpcon(z)+
πedgepedge(z) whereπcon andπedgeis the mixture weight of contour model and edge model
respectively,πcon+πedge= 1.

For the non-parametric contour model,

pcon(z) =
1

Mcon

Mcon

∑
j=1

Kcon(z;mcon, j ,Σ) =
1

Mcon

Mcon

∑
j=1

N (u;ucon, j ,Σu)Kv,con(v;vcon, j ,Σv)

where mcon, j =
[

ucon, j

vcon, j

]
, ucon, j and vcon, j = θcon, j ∈ [0,π) are the spatial position

and orientation of the normal ofjth contour sample respectively,Σ =
[

Σu 0
0 Σv

]
, Σu

and Σv = σ2
θ are the fixed covariance of spatial position and orientation respectively,

Kv,con(v;vcon, j ,Σv) ∝ e
− d2

con(θ ,θcon, j )

2σ2
θ anddcon(θ ,θcon, j) ∈

[−π
2 , π

2

]
. Object contour is ex-

pressed parametrically bymcon= f (s,x) wheres is the contour parameter. An ellipse can
be used for head tracking and more complex contours can be represented by B-spline [4].

For the non-parametric edge model,

pedge(z)=
1

Medge

Medge

∑
j=1

Kedge(z;medge, j ,Σ)=
1

Medge

Medge

∑
j=1

N (u;uedge, j ,Σu)Kv,edge(v;vedge, j ,Σv)

wheremedge, j =
[

uedge, j

vedge, j

]
, uedge, j andvedge, j = θedge, j ∈ [0,2π) are the spatial position

and orientation ofjth edge pixel inside the object contour respectively,Kv,edge(v;vedge, j ,Σv)

∝ e
−

d2
edge(θ ,θedge, j )

2σ2
θ anddedge(θ ,θedge, j) ∈ [−π,π].

Note that contour modelpcon(z) can be regarded as a “stable” component and edge
model pedge(z) as a “wandering” component in the object model [11]. Rewritepl (z) as

pl (z)=
M
∑
j=1

ω jN (u;u j ,Σu)Kv, j(v;v j ,Σv) where
{

ω j
}M

j=1 =
{{

πcon
Mcon

}Mcon

j=1
,
{

πedge
Medge

}Medge

j=1

}
,

{
m j

}M
j=1 =

{{
mcon, j

}Mcon

j=1 ,
{

medge, j
}Medge

j=1

}
, M = Mcon+Medgeand later on for brevity,

it will not be specified whether a density is from contour model or edge model.

2.3 Clutter model

A clutter modelpc(z) is used to assimilate the measurements not from objects. It also
corresponds to a “lost” component [11]. Uniform density is used sopc(z) = pc = 1

Vu×Vv
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Figure 1:Comparison of (a) joint tracking likelihoodp(Z|x1,x2) with exclusion principle and (b)
separate tracking likelihoodp(Z|x1)p(Z|x2).

whereVu andVv are the volume of validation region and of feature space without valida-
tion respectively [1].

2.4 Likelihoods

To explain measurements of a cluster with more than one object, the generative model is
a mixture of mixture models including transformed mixture models of all objects in that
cluster and a clutter model. The generative model can be written asp(z|x) = πcpc(z)+
L
∑

l=1
πl pl (z|xl ), wherex = {xl}L

l=1 includes state vectors ofL objects in a cluster,πl and

πc are the mixture weight of thel th object model and clutter model respectively andπc +
L
∑

l=1
πl = 1, pl (z|xl ) =

Ml

∑
j=1

ωl , jN (u;Tu(ul , j ,xl ),Σu)Kv,l , j(v;vl , j ,Σv) is the transformedl th

object model assuming unchanged orientation feature vector,Ml andωl , j are the number
of densities andjth mixture weight in thel th object model respectively.

Assuming measurementsZ are drawn independently from the generative modelp(z|x),
the likelihood given the incomplete dataZ is

p(Z|x) =
N

∏
i=1

p(zi |x) =
N

∏
i=1

[
πcpc +

L

∑
l=1

πl pl (zi |xl )

]
(1)

Despite its simplicity, the same exclusion principle as that in [12] is included in the
likelihood 1 in comparison with likelihood of tracking multiple objects separately

L (x) =
L

∏
l=1

p(Z|xl ) =
L

∏
l=1

N

∏
i=1

[πcpc +(1.0−πc)p(zi |xl )] (2)

Fig. 1 illustrates a 1D example with 4 measurements and 2 objects with 1 density each
as that in [12].

In practice the assumption of independent measurements is not valid if measurements
are close to each other as there are strong correlations between measurements [16]. A
more practical likelihood is to incorporate measurement weights described in section 2.5,

p(Z|x) =
N

∏
i=1

[
πcpc +

L

∑
l=1

πl pl (zi |xl )

]αi

(3)

whereαi is weight forith measurement.
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From the viewpoint of the Bayesian incomplete data problem, the missing data of
association of measurements with densities are introduced and denoted asK = {k i}N

i=1
andk i = {k1

i ,k
2
i } wherek1

i ∈ {1, · · · ,L,c}, k1
i = c indicates the association with clutter,

andk1
i = l , l ∈ {1, · · · ,L} association with objectl ; k2

i ∈ {1, · · ·Mk1
i
} gives the association

with one of the mixture densities ink1
i th model. Assuming that 1. a measurement can

have only one source 2. more than one measurement can originate from a density, where
the first assumption is the same as that of JPDA known as exclusion principle in [12] and

the second assumption is relaxed similar to that of PMHT, there areNe = (
L
∑

l=1
Ml + 1)N

feasible events{χn}Ne
n=1. The likelihood given the complete data is

p(Z,K = K(χn)|x) ∝ ∏
i:k1

i (χn)=c
πcpc ∏

i,l , j:
k1
i (χn)=l

k2
i (χn)= j

πl ωl , jN (ui ;Tu(ul , j ,xl ),Σu)Kv,l , j(vi ;vl , j ,Σv)

(4)
For comparison, JPDA can also be viewed in light of Bayesian incomplete data prob-

lem with a slightly different assumption that 1. a measurement can have only one source 2.

no more than one measurement can originate from a density, so there are
min(N,M)

∑
n=0

M!N!
(M−n)!(N−n)!n!

feasible events. DenoteN0(χn) as number of densities which have no allocated measure-
ments andN1(χn) as number of densities which have only one allocated measurement in
a feasible eventχn, the likelihood given complete data in JPDA is

p(Z,K = K(χn)|x) ∝ pc
N−N1(χn)µF(N−N1(χn))(1−PDPG)N0(χn)(PD)N1(χn) (N−N1(χn))!

N!
× ∏

i,l , j:
k1
i (χn)=l

k2
i (χn)= j

N (ui ;Tu(ul , j ,xl ),Σu)Kv,l , j(vi ;vl , j ,Σv)

wherePD is the detection probability,PG is the probability that the true measurement will
fall in the validation region,µF(n) is the probability mass function of the number of false
measurements [1].

After marginalization of equation (4),p(Z|x) is factorized toN terms in equation (1)

in comparison with
min(N,M)

∑
n=0

M!N!
(M−n)!(N−n)!n! ÀN terms in marginalized likelihood of JPDA.

2.5 Measurement weighting

Histogram back-projection is used to incorporate background information. A background
edge orientation histogram{hi}NB

i=1 with NB bins of orientation is built by using the edge
pixels in a rectangular window surrounding each object. The background histogram is
adapted online by weighted sum of previous background histogram and background his-
togram built given current object state estimation.

A ratio histogram{r i}NB
i=1 is computed byr i = min

(
ĥ
hi

,1
)

whereĥ = min
i:hi>0

(hi). Mea-

surement weightαi is computed from the ratio histogram asαi =
rb(zi )

N
∑

i=1
rb(zi )

× 1
2σ2 where

b(zi) denotes the bin to whichzi belongs andσ is a constant.
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(a) Initial estimation (b) Final estimation
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Figure 2: Iterative update of EM algorithm where edge measurements are marked in yellow: (a)
initial estimation, (b) final estimation, (c) lower bound increasing monotonically.

Measurements with orientations occurring most commonly in the background will
have the lowest weight and measurements with orientations which are not in the back-
ground will have the highest weight. If the ratio histogram is uniform, it degenerates to
the case that each measurement has the same weightαi = 1

N × 1
2σ2 .

3 Multi-object tracking with the EM algorithm

State vectorx(t) is estimated by either Maximum Likelihood (ML) estimationx̂(t) =
argmax

x(t)
p(Z(t)|x(t)) or Maximum a Posteriori (MAP) estimation̂x(t)= argmax

x(t)
p(x(t)|Z (t)),

whereZ (t) = {Z( j)}t
j=0, using the EM algorithm [7] and its generalization [13].

From Jensen’s inequality it can be shown that

logp(Z|x) =
N
∑

i=1
αi log

[
πcpc(zi)

qi,c
qi,c +

L
∑

l=1

Ml

∑
j=1

qi,l , j
πl ωl , jN (ui ;Tu(ul , j ,xl ),Σu)Kv,l , j (vi ;vl , j ,Σv)

qi,l , j

]

≥
N
∑

i=1
αi

[
qi,c log πcpc(zi)

qi,c
+

L
∑

l=1

Ml

∑
j=1

qi,l , j log
πl ωl , jN (ui ;Tu(ul , j ,xl ),Σu)Kv,l , j (vi ;vl , j ,Σv)

qi,l , j

]

whereqi,c = p(k1
i = c), qi,l , j = p(k1

i = l ,k2
i = j) are the probabilities of missing dataK and

qi,c +
L
∑

l=1

Ml

∑
j=1

qi,l , j = 1. So the lower bound of likelihoodJML(Q,x(t)) for ML estimation

and lower bound of posteriorJMAP(Q,x(t)) for MAP estimation are

JML(Q,x(t)) =
N
∑

i=1
αi

[
qi,c log πcpc(zi)

qi,c
+

L
∑

l=1

Ml

∑
j=1

qi,l , j log
πl ωl , jN (ui ;Tu(ul , j ,xl (t)),Σu)Kv,l , j (vi ;vl , j ,Σv)

qi,l , j

]

(5)

JMAP(Q,x(t)) = JML(Q,x(t))+ logp(x(t)|Z (t−1)) (6)

whereQ =
{

qi,c,
{{

qi,l , j
}Ml

j=1

}L

l=1

}N

i=1
.

The prior is given by

p(x(t)|Z (t−1)) =
L

∏
l=1

p(xl (t)|Z (t−1)) =
L

∏
l=1

N (xl (t); x̃l (t), P̃l (t)) (7)
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Algorithm 1 Multi-Object Tracking with the EM Algorithm (MOTEXATION)

1. Predict by equation (7)

2. EM algorithm

k = 1, x(0)(t) = x̃(t)
(i) E-step by equation (8)
(ii) M-step by equation (9) or equation (10)

if
∥∥∥x(k)

l (t)−x(k−1)
l (t)

∥∥∥ < ε, l = 1, · · · ,L then

x̂(t) = x(k)(t) and stop
else

k = k+1 go to (i)
end if

wherex̃l (t) = A1x̂l (t−1)+A2x̂l (t−2) andP̃l (t) ≈ B0BT
0 are the predicted state vector

and covariance ofl th object respectively,
In E-step, given fixedx(k−1)(t), maximizeJML(Q,x(t)) orJMAP(Q,x(t)). LetTu(ul , j ,xl (t))

= W l , jxl (t) whereW l , j is Jacobian of the transformation. At iterationk, Q(k) is

q(k)
i,c ∝ πcpc(zi)

q(k)
i,l , j ∝ πl ωl , jN (ui ;W l , jx

(k−1)
l (t),Σu)Kv,l , j(vi ;vl , j ,Σv)

q(k)
i,c +

L
∑

l=1

Ml

∑
j=1

q(k)
i,l , j = 1, i = 1· · ·N

(8)

In M-step, givenQ(k), maximizeJML(Q,x(t)) or JMAP(Q,x(t)). At iterationk, x(t) is
given by

x(k)
l ,ML(t) =

[
Ml

∑
j=1

WT
l , j Σ̃

(k)−1

l , j W l , j

]−1[
Ml

∑
j=1

WT
l , j Σ̃

(k)−1

l , j ũ(k)
l , j

]
(9)

or

x(k)
l ,MAP(t) =

[
Ml

∑
j=1

WT
l , j Σ̃

(k)−1

l , j W l , j + P̃−1
l (t)

]−1[
Ml

∑
j=1

WT
l , j Σ̃

(k)−1

l , j ũ(k)
l , j + P̃−1

l (t)x̃l (t)

]
(10)

whereũ(k)
l , j =

N
∑

i=1
αiq

(k)
i,l , j ui

N
∑

i=1
αiq

(k)
i,l , j

is the synthetic measurement andΣ̃(k)
l , j = Σu

N
∑

i=1
αiq

(k)
i,l , j

is the synthetic

covariance.
The main stages of multi-object tracking with the EM algorithm are given in algorithm

(1) and the iterative update of MAP estimation is shown in Fig. 2 where the lower bound
of posterior is also verified to be increased monotonically.

4 Results

The experiments are carried out in challenging test sequences with heavy occlusions. With
unfully optimized C++ code, it runs comfortably at average0.071s per object per frame
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t=5210 t=5286 t=5380 t=5420 t=5430

Figure 3:Tracking results of“office” sequence.c©Mitsubishi Electric ITE 2005.

t=425 t=433 t=450 t=460 t=475

Figure 4:Tracking results of“head” sequence.

t=1060 t=1180 t=1280 t=1296 t=1380

Figure 5:Tracking results of“Caviar OneShopOneWait2cor”sequence.

on 3GHz Pentium IV. Note that to illustrate joint tracking of multiple objects in a cluster,
white lines show the links between objects which are tracked jointly in the same cluster.

Three results of multiple head tracking are shown and the size of head also varies
from small ones to large ones. Fig 3 shows multi-object tracking results on the“office”
sequence, in which there are dramatic appearance changes, scale changes and four heavy
occlusions. The light green ellipse occluded dark green ellipse from frame 5280 to 5320,
from frame 5340 to 5370 and from frame 5380 to 5410. The red ellipse occluded both
light green and dark green ellipses from frame 5410 to 5424.

The results of“head” 1 are then given in Fig. 4 where there are two heavy occlusions
from frame 420 to 442 and from frame 452 to 468.

Fig. 5 shows the results of“Caviar 2 OneShopOneWait2cor”sequence where the
size of target heads are quite small and there are two heavy occlusions from frame 1166
to 1176 and from frame 1276 to 1292.

To track more complex contours, a B-spline contour model is learned as that of [2, 4].
Results of“Caviar EnterExitCrossingPaths1cor2”sequence are given in Fig 6 where
there are large appearance changes, scale changes and one heavy occlusion from frame
86 to 100.

Fig. 7 presents the results of“Caviar OneStopMoveEnter1cor2”sequence, a very
crowded and cluttered scene involving large appearance changes, scale changes and also
one heavy occlusion from frame 256 to 272.

1The sequence is from http://vision.stanford.edu/ birch/headtracker/.
2The EC Funded CAVIAR project/IST 2001 37540, see http://homepages.inf.ed.ac.uk/rbf/CAVIAR/.
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t=0 t=80 t=90 t=150 t=350

Figure 6:Tracking results of“Caviar EnterExitCrossingPaths1cor2”sequence.

t=0 t=262 t=276 t=300 t=480

Figure 7:Tracking results of“Caviar OneStopMoveEnter1cor2”sequence.

(a) (b) (c) (d)

Figure 8:Examples of tracking failure. (a)(b) tracking multiple objects separately using the EM
algorithm, (c) contour tracking with CONDENSATION, (d) mean-shift tracking with color his-
togram.

It should be noted that if multiple objects are tracked separately using the EM algo-
rithm with likelihood 2, which does not have exclusion principle, objects may be lost
during occlusion as shown in Fig. 8(a)(b). The proposed method has also been compared
with contour tracking using CONDENSATION [9], color tracking using mean-shift [6]
and both failed when there are heavy occlusions. Examples of tracking failure are shown
in Fig. 8(c)(d).

5 Conclusions

The paper proposes a new edge-based multi-object tracking framework, MOTEXATION,
which deals with tracking multiple objects with occlusions using the EM algorithm and
a novel edge-based appearance model. In the edge-based appearance model, an object
is modelled by a mixture of a non-parametric contour model and a non-parametric edge
model using kernel density estimation. Visual tracking is formulated as a Bayesian in-
complete data problem where measurements in an image are associated with a generative
model which is a mixture of mixture models including object models and a clutter model
and unobservable associations of measurements to densities in the generative model are
regarded as missing data. A likelihood for tracking multiple objects jointly with an ex-
clusion principle is presented. Based on the formulation, a new probabilistic framework
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of multi-object tracking with the EM algorithm (MOTEXATION) is presented. Results
in challenging sequences demonstrate the robust performance of the proposed method.
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Abstract

This paper describes a method for articulated 3D upper body tracking in
monocular scenes using a graphical model to represent an articulated body
structure. Belief propagation on factor graphs is used to compute the margi-
nal probabilities of limbs. The body model is a loose-limbed model including
attraction factors between adjacent limbs and constraints to reject poses re-
sulting in collisions. To solve ambiguities resulting from monocular view,
robust contour and colour based cues are extracted from the images. More-
over, a set of constraints on the model articulations is implemented according
to human pose capabilities. Quantitative and qualitative results illustrate the
efficiency of the proposed algorithm.

Figure 1: Upper body tracking. First row: original image, front, right side and top views
of the obtained limbs positions with a single camera. Second row: background subtrac-
tion, contours, face colour map and energy motion distance map.

1 Introduction
Algorithms for body tracking must cope with a high dimensional space in which the
joint probability function is highly multimodal and sharp. In this context, deterministic
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Figure 2: Limbs interactions (Left): nodes correspond to limbs, articulation constraints
are represented by solid lines and dashed lines are additional non-collision constraints
between head and hands. Upper body model (Right): arms and forearms are modeled by
cylinders and the head by a sphere. Other limbs (hands torso and clavicles) are represented
by 2D patches. Limb interaction factors are computed with the distances (Dn,Ds,De,Dw)
between them. Other joints constraints are determined by the angles θh, θc and θ t. The
neck is located at equal distance from both clavicles.

methods can track in real time with stereo cameras [5], but may fail for monocular view
because of the many local optimums owing to ambiguities in monocular scenes [13].

Due to articulation constraints, consistent poses are bounded in a smaller subspace
making learning based tracking methods efficient if their learning set sufficiently covers
this subspace. Various regressions methods, aiming at deducing a pose directly from an
image, have been tested on walking sequences with constrained environments [2]. Non
negative matrix factorisation [1] can enhance such methods by rejecting non discrimina-
tive data. Other methods like GPDM [15] introduce probabilities in the computation of a
latent space to smooth the resulting pose, but test scenes are restricted to cyclic motions.
Other methods that perform a comparison between an image and a learning base require
a huge database even when robust locally-weighted regression between candidates poses
is used [10]. Increasing the data base may slow down drastically the comparison process
and, to speed up the selection of a subset of nearest neighbours, the comparison process
can use locally sensitive hashing and Hamming distance [14]. The likelihood of a body
pose is computed with this previous method using a Bayesian framework but some poses
that are dissimilar to the learned ones are not correctly estimated and generally, the huge
pose space and the variability in external parameters such as clothing or hairstyle is the
major cause of failure in learning based methods.

Stochastic algorithms are useful in monocular vision to resolve ambiguities resulting
from 2D to 3D pose inference, particularly when a multi-hypothesis algorithm, such as
particle filtering [4], is used. The main drawback with such methods is the high dimen-
sional pose space. A way to avoid this problem consists in using a loose-limbed body
model [11] where the likelihood of each limb is evaluated independently. In this manner,
a particle filter can be associated with each limb reducing the search space dimension
to the number of dof of a limb [3]. Influence between limbs is taken into account by
propagating limb beliefs through a factor graph using belief propagation [8]. A similar
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Figure 3: Factor graph. Circles corresponds to variable nodes (limb states) and black
squares to factor nodes (temporal coherence T µ and interaction or non-collision factors
ψµν ). For clarity, only two consecutive frames with two temporal factor links are shown
and the factor nodes corresponding to the observations Y µ are omitted.

technique is used in monocular scenes [7] with only motion energy as cue to detect arms
and forearms position.

In this paper, the number of cues is increased to enhance the robustness of the tracking.
Moreover, the use of interacting particle filters with belief propagation [3] simplify our
algorithm by computing recursively an estimation in a discrete space instead of using, for
example, a Gibbs sampler in a continuous one [11]. More general articulation constraints
rules are built in the compatibility factors computation instead of learning them from
specific walking sequences with a mixture of Gaussians [11]. The proposed algorithm
performs at six fps using a standard webcam.

2 Recursive Bayesian tracking
The upper body is modeled as a graph including M limbs represented by nodes and links
corresponding to articulations or non collision constraints between limbs (figure 2). Ba-
sically, a Markov network can be used to represent this structure but the non-collision
constraints between the head and the hands generate a three nodes clique. A factor graph
is constructed to simplify the model by using only pairwise factors [3]. The joint proba-
bility can be decomposed as a products of these factors. The complete graph includes the
previous states to take into account the temporal coherence (figure 3). Given a limb µ ,
its state X µ

t at time t and the image observations Y µ

t , the model parameters are the obser-
vations compatibility factors φ µ(X µ ,Y µ), the time interaction factors T µ(X µ

t ,X µ

t−1), and
the interaction factor for the link between limbs µ and ν : ψµν(X µ ,Xν). Adopting these
notations, the joint probability knowing all observations from time 0 to T is:
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Figure 4: Articulations constraints. Arm and forearm: dashed lines show limb forbidden
areas. The angular constraints are |θc| ≤ 15◦ for clavicles and |θh| ≤ 25◦ for head.

P(X0:T |Y0:T ) =
T

∏
t=0

Φ(Xt ,Yt)Ψ(Xt)
T

∏
t=1

T (Xt ,Xt−1) , (1)

with:

• Φ(Xt ,Yt) = ∏
M
µ=1 φ µ(X µ

t ,Y µ

t ),

• Ψ(Xt) = ∏(µ,ν)∈Γ ψµν(X µ

t ,Xν
t ), where Γ is the set of links,

• T (Xt ,Xt−1) = ∏
M
µ=1 T µ(X µ

t ,X µ

t−1).

The marginal probabilities of the limbs’ state are obtained using the belief propagation
algorithm on a factor graph [3]. As the graph includes cycles, the obtained marginal is
an approximation of the true one. This approximation further depends on the messages
update order. To simplify the algorithm, the messages are propagated to all nodes within
the current frame for a fixed number of iterations (10 in our case) and then propagated
only once from a frame to the following one. Therefore, the estimation of a marginal
at any time t does not depend on the observations after time t, and the estimation of the
marginals can be computed recursively.

The messages are represented by sets of weighted samples. From one frame to the
next, they are calculated using a particle filter scheme consisting in a re-sampling step
followed by a prediction step based on the time coherence factors [4]. The loopy belief
propagation algorithm is then reduced, for the current frame, to a loopy propagation algo-
rithm for discrete state spaces, the space state for each limb being restricted to its samples.
Moreover the marginal probability is then simply represented as a weighted sum of the
same samples. In this manner, a full recursive estimation is obtained. The algorithm is
equivalent to a set of interacting particle filters, where the sample weights are re-evaluated
at each frame through belief propagation to take into account the links between limbs.
This algorithm is relatively fast because for a frame t, as opposed to [11], the image based
compatibility factors φ µ(X µ

t ,Y µ

t ) have to be evaluated only once for each sample, and the
link interaction factors only once for each pair of samples for all connected limbs.
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3 Application to monocular upper body tracking
The model is applied to articulated upper-body tracking using monocular colour images
from a webcam. Head and hands are tracked using image colour information and grey
levels are used to compute cues: background subtraction, motion energy and orientation
contour map (figure 1).

3.1 Initialisation
An accurate face detector [6] is used to detect the face in the colour image. Once detected,
a starting pose corresponding to the arms along the body with the torso vertical and facing
the camera is supposed. The tracker can easily recover the real pose as long as it is not
too far from this hypothesis. The detected face is also used to initialise a face colour
histogram.

3.2 Body model and link interaction factors
Figure 2 shows the body model. 3D limbs are represented by a sphere for the head and
cylinders for arms and forearms. Hands, clavicles and torso are represented by 2D patches
using respectively circles, triangles, and a rectangle. Limbs are discretized using a grid
of regularly distributed points around them. A Gaussian of the distance between two link
points is used to compute the link interaction factors (see figure 2 for distances Dn, Ds, De
and Dw). This Gaussian is zero centred for the shoulder-arm and arm-forearm joints, and
on a reference distance for the head-neck and forearm-hand joints. Other constraints are
added giving zero factor for angles θh and θc above a fixed threshold (figure 4). Three
additional links are defined, which simply give a zero probability to solutions where hands
and head intersect (non collision constraints).

3.3 Time coherence factor
The time coherence factors T µ(X µ

t ,X µ

t−1) are simple Gaussian, independent for each pa-
rameter, centred on the value in the previous frame. For hands, which can move fast and
rapidly change speed, the time coherence factors is a mixture of two similar Gaussian, one
centred on the previous parameter and the other centred on the prediction of the current
parameter using previous hand speed. The standard deviation is chosen to be 10 cm for
hands positions, and 5 cm for other limb positions. For angles, the standard deviation is
set to π/8.

4 Image features
The image compatibility factors φ µ(X µ

t ,Y µ

t ) are computed from scores Sµ

f representing
the compatibility between a limb hypothesis µ and cue f extracted from the image. Con-
trary to stereo [3], monocular images needs more cues to reach a sufficient level of ro-
bustness. Thus, multicues image based compatibility terms are fused to provide an overall
score: Sµ = ∏ f Sµ

f . To avoid taking into account background distractors, a robust back-
ground subtraction [9] is used.
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Figure 5: Finding the torso. The bottom grid points (black pixels) representing the pelvis
moves horizontally in order to maximise the correspondence between the points and the
positive background subtraction pixels (white pixels). The maximum energy is reached
when the grid is centred on the bottom positive background subtraction zone. The top of
the torso is located at equal distance between the two clavicles.

4.1 Face and hands tracking
Considering the head position detected during initialisation step (§ 3.1), a colour model
is provided by computing a normalised colour histogram of the head. The pixels p cor-
responding to the projected points belonging to the head or the hands are compared with
this model by computing the colour score:

Sµ
c = ∑

p
H(p) (2)

The function H(p) returns the histogram bin value corresponding to the pixel p colour.

4.2 Torso tracking
The torso is hard to detect because of clothes deformations or occlusions produced when
a person moves. Suposing that the pelvis is located at the bottom of images, its position
can be found using a rectangular grid of weighted points p interacting with a background
subtraction to slide on the bottom of the image (figure 5). The torso score is:

St = ∑
p∈t

W (p)Bg(p) (3)

Where W (p) is the weight of p corresponding to the Gaussian distance between p and the
grid center. Bg(p) returns the probability that pixel p belongs to the foreground according
to a background subtraction [9]. The upper torso point corresponds to the neck located at
half distance of the two clavicles.

4.3 Arms, forearms and clavicles tracking
Arms tends to move rapidly and are subject to many partial occlusions. Thus, to reach
a sufficient level of robustness, a fusion of a contour based cue and motion energy is
implemented. An accurate contour based score can be estimated by not only considering
the contours magnitude but also their orientations. Given M(‖−→p ‖) = 1

λ
‖−→p ‖tanh( λ

‖−→p ‖
),

a function that penalise low and high magnitude contour points ‖−→p ‖ with λ a tuning
parameter, a score Sµ

or for a limb hypothesis µ is computed by considering the Gaussian
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Figure 6: Quantitative results. For each joint, the error corresponds to the distance be-
tween estimated and true joint positions. As [12, 14], the mean error made on estimating
the three joints is computed to provide the overall joint mean error.

difference Gθ (.) between the limb orientation θlimb and each pixel contour orientation θp
that corresponds to projected limb points p onto the image plane:

Sµ
or = ∑

p∈µ

M(‖−→p ‖)Gθ [θlimb−θp] (4)

The motion energy score is computed considering the Gaussian distance G(d(p)) be-
tween each projected limb point p and the nearest pixel where a motion has been detected:
Sµ

m = 1 + ∑(p∈µ) G(d(p)). Motion detection is provided by adjacent frame difference.
This formula ensures that the motion score is at least 1 even if no motion is detected.
Only the contour score is used for clavicles because they are strongly constrained by head
position during belief propagation.

5 Experimental results
The system was tested on sequences grabbed with a standard webcam. Quantitative re-
sults were obtained comparing the estimated pose with a ground truth provided by a
magnetic motion sensor. The true joint positions are measured for the right arm joints
(shoulder, elbow and hand). The test sequence includes full 3D movements with limb
occlusions and cluttered background (figure 9). Instead of only computing the overall
limb mean error [12, 14], our results are complemented by the estimation error for each
limb (figure 6). Qualitative results are shown on figure 7 where various user on different
backgrounds and clothes are successfully tested.
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Figure 7: Monocular 3D tracking. Challenging poses are shown including occlusions,
cluttered background and unconstrained environment (lighting and clothes).

Error (cm) Shoulder Elbow Wrist Overall Mean Error
Mean 1.7 7.1 9.7 6.1
Max 6.1 24.1 31.0 13.4

Std. Dev. 1.0 3.5 6.6 2.6
Average Speed (cm.s−1) 2.83 4.28 8.5

Table 1: Mean, maximum and standard deviation of the estimated position error for shoul-
der, elbow and wrist. Overall mean error is the mean error made on estimating the pose of
theses three joints. Average speed is computed for the whole test sequence on each joint.

In monocular tracking, significant errors are usually made on depth estimation. It is
the case in the test sequence around frame 500 owing to a wrong estimated elbow position
that constrains the wrist in an exaggerated forward position. A similar problem occurs
around frame 850 where forearm bends perpendicularly to the image plane and wrist
depth is wrongly estimated by our algorithm (figure 8). Anyway, the maximal estimated
pose error stays below 31 cm and below 15 cm considering the measure protocol used in
[12, 14] (table 1). The comparison with other tracking algorithms is a difficult task owing
to the disparity between used test sequences. However, the obtained results outperform or
are as accurate than those computed with existing algorithms [12, 14].

6 Conclusion
We have presented an algorithm for monocular upper body tracking performing at 6 fps
using a standard webcam with unconstrained environments (lighting and clothes). The
used cues based on contours provide sufficient robustness to succeed on unconstrained
environments. Belief propagation provides a judicious solution in order to reduce the
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Figure 8: Examples of wrong depth estimation on frames 581 (first row) and 850 (second
row). In both cases, right forearm is not bended sufficiently involving errors larger than
25 cm on wrist pose estimation.

space dimension of the generated hypothesises making particle filtering framework suit-
able. Articulation constraints are easily integrated into factors computation to provide
consistent resulting poses. Future work will include a learning based image compatibility
term to handle occlusions and more accurate depth estimation.
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Abstract

We present a multi-view change detection approach aimed at being robust
with respect to common “disturbance factors” yielding image changes in real-
world applications. Disturbance factors causing “slow” or “fast-and-global”
image variations, such as light changes and dynamic adjustments of camera
parameters (e.g. auto-exposure and auto-gain control), are dealt with by a
proper single-view change detector run independently on each view. The
computed change masks are then fused into a “synergy mask” defined into a
common virtual top-view, so as to detect and filter-out “fast-and-local” image
changes due to physical points lying on the ground surface (e.g. shadows cast
by moving objects and light spots hitting the ground surface).

1 Introduction
Detecting changes in video sequences plays a crucial role in many computer vision appli-
cations since the performance of higher-level processing modules, such as objects track-
ing and classification, often relies on the accuracy of the computed change masks. In the
space of all the possible image changes a good change detector should be able to discrim-
inate between “semantic” (i.e. due to variations of the scene geometry) and “appearance”
(i.e. due to other causes, that we call “disturbance factors”) changes. In particular, a
change detection algorithm should be robust with respect to disturbance factors arising
both in the imaged scene (e.g illumination changes) and in the imaging device (e.g. noise,
dynamic adjustments of device parameters such as auto-exposure and auto-gain control).

Most of the single-view change detectors proposed in literature (e.g. [3], [10]) can
deal effectively with camera noise and “slow” scene appearance changes (e.g. scene illu-
mination changes due to time of the day). To this purpose, a temporally adaptive per-pixel
statistical modelling of the scene background appearance is exploited. To avoid the in-
clusion of foreground objects in the background appearance model, the model adaptation
rate must be chosen accurately, depending on the foreground objects foreseen velocity. In
particular, the lower the foreground objects foreseen velocity, the lower the background
model adaptation rate. Hence, in general only quite slow appearance changes can be dealt
with by these algorithms. Some approaches have been proposed (e.g. [2],[7],[9],[11])
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which can deal effectively also with “fast-and-global” scene appearance changes, that
is fast changes modifying pixel intensities by a unique mapping function. Examples
of such changes are those due to fast-and-global scene illumination changes (e.g. light
switches, a cloud passing by the sun) and to dynamic adjustments of camera parameters
(e.g. auto-exposure and auto-gain control). “Fast-and-local” scene appearance changes
(e.g. shadows cast by moving objects, light spots hitting a nearly lambertian surface) are
a hard-to-solve problem for single-view approaches.

Multi-view change detection can exploit more information and therefore deal more
effectively with disturbance factors. As regards the way information is exploited, we
define:

c.1) temporal consistency constraint: given a view-point v, the processed frames are
images of the same scene taken at different times;

c.2) spatial coherence constraint: given a time t, the processed frames are images of the
same scene taken from different view-points;

By applying only the spatial coherence constraint the basic multi-view change detection
approach is carried out. In practice, at each time t the output is computed by comparing
all the simultaneous images captured from the different view-points. However, all the
available information can be exploited by applying both the constraints. This is in theory
the most effective approach. We present a multi-view change detection algorithm of this
type. In particular, we apply the temporal consistency constraint as a first processing step
by carrying out single-view change detection on each original view. Then, the spatial
coherence constraint is applied by “fusing” the single-view change masks into a virtual
top-view. Such an approach allows for filtering-out the appearance changes due to the
major disturbance factors, including sudden-and-local illumination changes.

The paper is organized as follows. In section 2 the state-of-the-art in multi-view
change detection is outlined. The proposed algorithm is presented in section 3. Experi-
mental results are discussed in section 4, conclusions are drawn in section 5.

2 Related Work
In [5] a “lighting independent” multi-view change detection algorithm is presented. Sta-
tionarity of the capturing devices as well as of the scene background surface geometry
is assumed, so that the geometric transformations warping one of the views, called “pri-
mary” view, into all the other “auxiliary” views can be computed off-line. On-line, just
the change mask in the primary view is computed. Moreover, only the spatial coherence
constraint is applied. In practice, at each time, the colour of every pixel in the primary
view is compared with the colour of corresponding pixels in the auxiliary views, using the
geometric transformations. If colour is similar, according to a simple metric consisting
in the absolute value of the Euclidean distance, the pixel in the primary view is marked
as background; otherwise, it is marked as foreground. This approach inherently suffers
from both false and missed detections. False detections, called “occlusion shadows”, oc-
cur when a background pixel in the primary view is occluded by a foreground object in
the auxiliary view. Missed detections occur when an evenly coloured foreground object
occludes a pair of corresponding pixels, for colour being very similar. The authors pro-
pose to filter-out false detections by using more than two views (at least two auxiliary
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views) and ANDing the binary masks attained by comparing the primary view to each of
the auxiliary views. However, they do not discuss how to deal with missed detections.

The work in [8] is aimed at improving the approach proposed in [5]. As in [5], the
change mask in the primary view is computed by applying only the spatial coherence
constraint. However, the following improvements are proposed:

a) a slightly more complex and effective metric (i.e. a normalized colour difference
averaged on a n× n neighborhood of pixels) is used to measure colour similarity
between corresponding pixels in different views;

b) the false detections problem is addressed from a sensor planning perspective. In
particular, it is shown how occlusion shadows can be removed by using just two
views, provided that a suitable configuration of the capturing devices is adopted;

c) the missed detections problem is tackled as well. The particular sensors configura-
tion adopted to filter-out occlusion shadows yields missed detections localized only
at the lower portion of each detected foreground blob. This is exploited to fill-in
possible missed detections by means of a quite complex heuristic procedure.

Both [5] and [8] rely on the assumption that a patch of the scene background surface yields
a very similar colour into simultaneous images taken from different view-points. If this
is true, invariance to temporal changes of the radiance emitted by the scene background
surface (i.e. to slow or fast and global or local scene illumination changes) is achieved,
since such changes will affect simultaneous views identically. However, in practice this
assumption may not be satisfied. In fact, dynamic adjustments of the camera parameters
(e.g. auto-gain and auto-exposure control) may occur in the different views at different
times and by a different intensity mapping function. These adjustments cannot be handled
inherently by either [5] or [8]. In turn, [5] recommends explicitly to disable the auto-
gain mechanism of the capturing devices. However, disabling these dynamic adjustment
mechanisms is a strong limitation in many practical applications, especially as regards
outdoor installations.

The most related work to our approach is presented in [6]. It is focused on tracking
but relies on multi-view change detection as the first processing step. People moving
on a ground plane are tracked by their ground locations, that is feet. At each process-
ing time feet are detected by a multi-view change detection approach, that we call here
“change maps fusion”: the ground plane homographies warping a reference view into
each of the other views are inferred off-line. On-line, single-view change detection is
carried out independently on each view to compute a change probability map. To this
purpose, a well-known background subtraction algorithm based on statistical temporally
adaptive background modelling by mixture of gaussians is deployed ([10]). Hence, the
computed change probability maps are warped in the reference view by using the in-
ferred homographies and then multiplied together, thus attaining a “synergy map”. It is
easy to understand how this map gives, for each pixel in the reference view, the proba-
bility to be the image of a ground plane patch for which the emitted radiance is changed
(with respect to the current appearance background model and according to the chosen
single-view change detection algorithm). Finally, the synergy map is thresholded. By this
procedure, the authors assume to detect only the ground plane locations of people, that is
their feet. Hence, feet are tracked in the reference view by a spatio-temporal clustering
approach (graph cuts). However, the proposed use of the change maps fusion approach
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will inherently detect as foreground not just feet but also other possible ground plane ap-
pearance changes, such as shadows cast by moving objects on the ground plane or light
spots hitting the ground plane. In fact, such changes are not filtered-out by the single-view
change detection approach in [10].

3 The proposed algorithm
We assume stationarity of the capturing devices as well as of the scene background sur-
face geometry, so that geometric registration of background over different views can be
computed off-line. Moreover, we take into consideration a planar background, hereinafter
called “ground plane”. Hence, for each original view v, we infer off-line the homogra-
phy Hv : R2 3 pv 7→ pT ∈ R2 warping each pixel pv imaging a ground plane patch in the
original view into the pixel pT imaging the same patch in a common virtual top-view
T . By considering a set of N >4 original view ↔ top-view points correspondences, the
homographies are inferred by least squares regression. A data normalization procedure is
adopted to make the necessary matrix calculations less prone to numerical errors ([4]).

As far as on-line processing is concerned (Figure 1), at each time t first the temporal
consistency constraint is applied by carrying out single-view change detection indepen-
dently on each original view ([2],[7]), thus computing a set of V binary change masks Cv

t ,
one for each original view v = 1, . . . ,V (Figures 1(d-f)). The spatial coherence constraint
is then applied by projecting all the change masks1 into the virtual top-view, thus attaining
a set of V top-view change masks Cv,T

t (Figures 1(g-i)):

Cv,T
t = Hv (Cv

t
)

(1)

Then, a common top-view change mask CT
t is obtained by computing the intersection of

all the top-view change masks (Figures 1(j)):

CT
t =

⋂V

v=1
Cv,T

t (2)

The procedure outlined so far is substantially equivalent to the change maps fusion ap-
proach presented in [6]. The only difference is that we carry out change maps binarization
directly as the final step of the temporal consistency constraint application. On the other
hand, in [6] binarization is carried out in the virtual top-view after the spatial coherence
constraint has been applied as well. We call “change masks fusion” this slightly different
approach and “synergy mask” the binary mask of Equation 2. However, we deploy the
synergy information within the top-view in a “dual” manner with respect to [6]. In fact,
the synergy mask contains the pixels characterized by a high probability to be the image of
a ground plane patch for which the emitted radiance is changed. These pixels correspond
to people feet as well as to possible ground plane appearance changes, such as those due
to shadows cast by people or to light spots hitting the ground plane. Therefore, instead of
using the synergy mask to detect foreground objects ground locations (people feet), we
use it to filter-out ground plane appearance changes, like shadows or light spots. In partic-
ular, instead of considering the synergy mask as the final output of the multi-view change
detection, we back-project the synergy mask into all the original views, thus obtaining a

1actually, just the change masks portion inside the ground plane limits are projected
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Figure 1: On-line main processing steps of the proposed multi-view approach.

set of V original view synergy masks CT,v
t :

CT,v
t =

(
Hv)−1

(
CT

t

)
(3)

Then, for each view v we filter-out from the original view change mask Cv
t the foreground

pixels belonging to the original view synergy mask CT,v
t , thus attaining a set of V final

change masks Cv, f
t (Figures 1(k-m)):

Cv, f
t (pv) =

{
0 if CT,v

t (pv) = 1
Cv

t (pv) otherwise
(4)
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Hence, another difference with respect to [6] is that we compute a set of V change masks,
one for each original view, instead of a single change mask in the virtual top-view. More-
over, the change masks will include most of a person’s body (ideally, the entire body but
the feet). Unlike [5] and [8], our approach handles dynamic adjustments of camera pa-
rameters provided that a proper change detection algorithm (i.e. [2],[7]) is run on each
original view. It is worth pointing out that algorithms such as [2] and [7] can also deal
very effectively with sudden and global light changes.

The proposed approach is “general-purpose”, in the sense that all the scene appear-
ance changes detected by the employed single-view change detection algorithm which
satisfy the spatial coherence constraint (i.e. which arise “near” the ground plane in a 3-
dimensional sense) are filtered-out. In fact, no selectivity criterion is used in the removing
rule of expression 4. In practice, just a geometrical constraint is applied, without consid-
ering any photometric information. On one hand this approach is general-purpose, but on
the other hand a missed detections problem may arise due to the following two causes:

a) part of the foreground objects ground locations, especially people feet, may be re-
moved together with the actual false changes (e.g. shadows) from the final change
masks (Figure 1(k)). This is an inherent and easy to understand problem of the
proposed approach, since ground locations of foreground objects yield appearance
changes lying “near” the ground plane (i.e. they satisfy the spatial coherence con-
straint);

b) some “off-ground” portions of the foreground objects may be removed as well. This
may occur for the original views in which the ground plane appearance changes are
covered by foreground objects (Figure 1(l)). This is an inherent problem as well.
In general, the higher the number of foreground objects present in the scene, the
higher the probability of this problem to occur.

To face these two inherent problems we propose a less “general-purpose” removing rule,
that we call “shadows-focused” removing rule. In fact, by this new rule we try to achieve
a selective removal of just the ground plane appearance changes due to shadows. To
this purpose, we exploit simple, well-known and commonly used photometric properties
characterizing scene surfaces covered by shadows. The basic idea is that the measured
intensity of a pixel imaging a scene background surface patch decreases according to a
limited darkening factor d when covered by a cast shadow. Hence, the selective “shadows-
focused” removing rule is the following:

Cv, f
t (p) =


0 if

(
CT,v

t (pv) = 1
)
∧

(
dlow <

Fv
t
(
pv)

B̂v
t
(
pv) < 1

)

Cv
t (pv) otherwise

(5)

where dlow is the lower darkening factor assumed for shadows effect and Fv
t , B̂v

t are,
respectively, the current frame and the current background model used by the single-view
change detection algorithm in the original view v. In practice, for each view v the final
change mask Cv, f

t is not computed by filtering-out blindly all the foreground pixels of the
original view synergy mask CT,v

t from the original view change mask Cv
t . Instead, just the

foreground pixels satisfying the shadows photometric constraint are removed.

695



4 Experimental Results
Experiments have been carried out by running the proposed general-purpose and shadows-
focused multi-view change detection approaches on several test video sequences. All the
sequences have been captured by the same multi-view outdoor installation, consisting
of three synchronized capturing devices imaging a common scene from very different
view-points. Within the imaged scene, people walk and cast shadows on a planar ground.
Here we present the change detection results for four different processing times (i.e. for
four different triples of simultaneous frames) of a test sequence. In particular, the change
masks computed by the general-purpose (blind removing rule of Equation 4) and by the
shadows-focused (selective removing rule of Equation 5) approaches are directly com-
pared in Figures 2-3. In particular, a value dlow = 0.5 is used in the shadows-focused
removing rule. Shadows cast by moving people on the ground plane are removed effec-
tively by both the approaches. In fact, since shadows seen in each view lie on the ground
plane their entire shapes will be projected into the synergy mask and hence detected. This
works well for long as well as short shadows. However, the general-purpose approach
suffers from a missed detections problem, as expected. On one hand, in each view people
feet may be partially removed, independently from the reciprocal position of people and
cast shadows. In fact, feet yield a local change of the radiance emitted by the ground
plane. As an example, the change masks on the left and on the right of the centre row of
Figures 2(a,b) show how feet can be partially removed also in the very favourable situa-
tion of a single person moving in the scene without covering its cast shadow. On the other
hand, “off-ground” portions of people’s body may be removed as well when cast shadows
are covered by people. This is the case of Figure 2(a), top row, in the middle, where the
person covers almost completely its cast shadow. As a consequence, the lower portion of
the person’s body, that is the portion covering the cast shadow, is detected as unchanged,
as shown in Figure 2(a), centre row, in the middle. In general, the higher the number of
persons present in the scene, the higher the probability of this problem to occur, as shown
in Figures 3(a,b), centre row. As for the considered test sequences, the missed detections
problem is solved quite effectively by the shadows-focused approach, as regards both the
feet and the covered shadows problems (Figures 2-3(a,b), bottom row). However, it is
worth noticing that in general the persons’ body appearance impacts the actual effective-
ness of the shadows-focused approach in dealing with the missed detections problem.
Finally, we point out that a shadow removal approach based only on the application of the
photometric constraint in Equation 5 would be prone to the detection of false shadows not
lying on the ground plane.

5 Conclusions
We have presented a multi-view change detection approach aimed at being robust to the
major disturbance factors acting in real-world applications. On one hand, camera noise
and disturbance factors yielding slow or global background appearance changes are dealt
with by single-view change detection carried out independently on each original view. On
the other hand, fast-and-local appearance changes are filtered-out by fusing the single-
view change masks into a common virtual top-view and then back-projecting the attained
synergy mask into the original views. However, sudden changes due to specular reflec-
tions can not be dealt with by the proposed algorithm for the ground plane constraint does
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Figure 2: Change masks computed by the proposed general-purpose (centre row of (a)
and (b)) and shadows-focused (bottom row of (a) and (b)) change detection approaches
for frames 76 (top row of (a)) and 133 (top row of (b)).
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Figure 3: Change masks computed by the proposed general-purpose (centre row of (a)
and (b)) and shadows-focused (bottom row of (a) and (b)) change detection approaches
for frames 333 (top row of (a)) and 355 (top row of (b)).
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not hold in this case. Since a missed detections problem may arise due to causes which
are inherent to the presented approach, a less general-purpose version of the algorithm
has been proposed as well, focused on shadows removal. Since the appearance changes
occurring in the available multi-view test sequences are all due to shadows cast by mov-
ing people on the ground plane, the shadows-focused approach yields better results than
the general-purpose approach, as shown by experiments. Unlike other state-of-the-art
multi-view change detection algorithms, which compute a single change mask in a ref-
erence ([5],[8]) or a virtual ([6]) view, the output of our approach is a set of different
change masks, one for each original view. This output is suitable to be fed to a multi-view
tracking algorithm such as ([1]).
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Abstract

Dynamic textured sequences are characterized by the interactions be-
tween many particles or objects in the scene. Based on earlier work the im-
ages of the sequence are interpreted as the output of a linearautoregressive
process driven by white Gaussian noise. We extend earlier work by increas-
ing the amount temporal information included when learningthe motion in
the scene, allowing the models to capture complex motion patterns which ex-
tend over multiple frames, thereby increasing the perceptual accuracy of the
synthesized results. To overcome problems of dynamic modelstability, we
apply Burg’s Maximum Entropy Spectral Analysis technique for parameter
estimation, which is found to be reliably stable on smaller samples of training
data, even with higher-order dynamics.

1 Introduction
A dynamic texture is an image sequence characterized by the interactions between many
particles or objects in the scene. Examples of dynamic textures include, flames flickering,
leaves blowing, and crowds observed from a distance. For such scenes, learning the
motion by segmenting and tracking the trajectory of each component is computationally
intensive; a holistic representation of the scene and the motion is motivated.

One well-known approach is to infer linear, autoregressivemodels of dynamic tex-
tures. The frames of the image sequence are interpreted as the output of stochastic process
driven by white Gaussian noise. The appearance of the scene is described by a subspace
model and the dynamics of the scene are captured within this subspace by a generative
model that determines the hidden state of the system. Previous work using autoregres-
sive models for dynamic texture synthesis, [6] in particular, used a first-order dynamical
model. Incorporating only information from the preceedingstate prevents the capture
of oscillations and other motions that rely on higher-ordertemporal dependencies in the
image sequence. Also, with first-order models the perceptual quality of the synthesized
scene deteriorates within a short interval.

In this paper, we propose the use of higher-order autoregressive dynamic texture mod-
els. We find that increasing the amount of temporal information when learning the in-
terframe dependencies allows the model to capture complex patterns which extend over
multiple frames, increasing the perceptual accuracy of thesynthesized results.

When incorporating a higher-order dynamical model, issuesof model stability arise.
To overcome these issues we apply the Maximum Entropy Spectral Analysis (MESA)
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technique for linear prediction [3]. This approach is common in control theory but, to our
knowledge, not typically used in the field of computer visionand new to dynamic texture
modeling. This estimation technique is more reliably stable and perceptually accurate on
smaller samples of training data, even with a higher-order dynamical model, than when
using the Yule-Walker equations.

2 Related Work
Texture analysis and synthesis was pioneered by Julesz [12]with the observation of the
correlation between statistical and perceptual similarity of textured images. Since then,
many image-based rendering techniques have emerged for synthesizing static and dy-
namic textured scenes.

Non-parametric methods synthesize images using probabilistic sampling of the ob-
served data, either pixel by pixel [5, 9, 10, 27] or by copyingpatches [8, 15, 28]. In
non-parametric dynamic texture synthesis, notable results have emerged using patch-
based techniques, where image patches are interpreted as segments of the image sequence
[14, 22]. The synthesized temporal textures generated withthese methods tend to be per-
ceptually realistic, however, the images are limited to samples of the original sequence.
Moreover, because a model of the scene is not explicitly inferred, the synthesized results
cannot be generalized and further processing, viz. classification [4], is limited.

Parametric methods for dynamic textures were introduced in[18]. Modeling dynamic
textures as the output of a spatio-temporal autoregressiveprocess was shown to be suc-
cessful with certain classes of textures and motions [25], however, the framework could
not model spatially non-stationary motion, such as rotation. In [6], these limitations are
addressed by representing dynamic textures as the output ofa first-order subspace process
with a Gaussian driving distribution,

yt = Cxt (1)

xt = −Axt−1 +Wvt , vt ∼N (0, I). (2)

In their appearance model (1) each imageyt is considered an expansion of the state vari-
ablext which is defined in the principal component subspace. In their dynamic model
(2) the current hidden state of the system is derived from a linear combination of the el-
ements in the preceeding state, described by matrixA, and additive Gaussian noise with
covarianceWWT is used to stochastically drive the process.

In [6], the dynamic model parameters are learned within the appearance model sub-
space. If the dynamic and appearance information is non-separable, this approach deter-
mines only an approximation to the optimal parameter estimates. To guarantee an optimal
parameter estimate, the appearance and dynamic model parameters would be learned si-
multaneously. In [26] the dynamic model is computed in the original input space and the
appearance model is constructed to retain a maximum amount of the information with
respect to the dynamics of the system. In [23] an iterative approach is suggested where
the results of [26] are used for initialization. Unfortunately these techniques are compu-
tationally infeasible on common workstations, given high-dimension input such as image
data. Instead, we implement a closed-form solution to approximate the optimal parameter
estimates, as in [6].

In contrast to the prevalent use of first-order dynamical models in earlier work, we
advocate the use of higher-order models in the autoregressive process. We show that
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higher-order models produce improved synthesized sequences with perceptual quality
maintained over a longer time interval. The advantages of the autoregressive framework
are preserved: separating the appearance and dynamical components enables classifica-
tion [4], facilitates recognition applications [21] and provides a more manipulable model
to explore video editing [7]. Moreover, incorporating influence from states lagged fur-
ther in time captures the temporal dependencies that are capable of modeling oscillations.
Using higher-order dynamics, however, introduces issues of model stability. We draw on
a parameter estimation technique used in control theory to improve the stability of the
resulting model, the Maximum Entropy Spectral Analysis technique [3].

3 Autoregressive Model
In this work a dynamic texture is modeled as the output of an autoregressive process con-
sisting of an appearance model, which determines the state of the system, and a dynamic
model, which captures how the states change over time:

yt = Cxt +ut , ut ∼N (0,B), (3)

xt = −
µ

∑
i=1

Fµ,ixt−i +Wvt , vt ∼N (0, I). (4)

At time t, each imageyt , in column vector form, is defined by the expansion of a
hidden state variable,xt . In the generative appearance model (3) the matrixC projects the
subspace representation into the image space, and the zero-mean normally distributed ad-
ditive noise captures the uncertainty with covarianceB. The dynamic model (4) contains
a deterministic component (i.e. a Markov-model described by F = {Fµ,1,Fµ,2, . . . ,Fµ,µ})
and a stochastic component (i.e. a Gaussian driving distribution with covarianceWWT ).
As in [6], we ignore the additive appearance noiseut (i.e., takeut ≡ 0) and capture all
additive process noise within the driving distributionvt .

We learn the parametersC,F, andW for theµ-order autoregressive model of an image
sequence. Initializing the model with a set ofµ consecutive image frames, one can gen-
erate novel image sequences which resemble the original data. The model is successful if
the synthetic sequences are perceptually similar to the original sequence and, ideally, the
model parameters are sufficiently generalizable to supportrecognition tasks [21].

3.1 Appearance Model
While the optimal estimator findsC,F, andW simultaneously, following [6], we use prin-
cipal component analysis (PCA) to define the appearance model parametersC and we
learn the dynamical model parametersF andW within the PCA subspace. To determine
C, each image of the observed sequence is converted into column vector form, the mean
image is subtracted, and the resulting vectors are concatenated to formYτ

1 , a matrix of size
p×τ wherep is the number of pixels per image times the number of colour channels, and
τ is the number of images (τ < p). Let Yτ

1 ≡UΣVT be a singular value decomposition
(SVD) whereU is p× p, Σ is p× τ, andV is τ × τ. We chooseq≪ p and defineC≡ Û
whereÛ is a matrix containing the firstq principal directions found in the columns of
U . Let V̂ be the firstq columns ofV andΣ̂ be a diagonal matrix of theq largest singular
values fromΣ. We define the subspace representation ofYτ

1 to beXτ
1 ≡ Σ̂V̂T . There are

non-linear alternatives which, in future work, could be used within the appearance model;
in particular, [20] is developed specifically for spatial textures.
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3.2 Dynamic Model
The dynamic model comprises a deterministic linear model and a Gaussian driving dis-
tribution. The true dynamical process which generated the orignal sequence may contain
both linear and non-linear components. Nonetheless, we assume that a linear autoregres-
sive model is sufficient to describe the visual process. Information not captured within
the linear component is modeled in the stochastic componentof the dynamics.

The Yule-Walker equations can be used to solve for the coefficients of the dynamic
model in the least squares sense, as in [6]. However, this approach assumes the stationarity
of the training data sample statistics, an assumption whichbreaks down for short dynamic
texture segments. As the order of the dynamic model increases and accuracy of the sample
statistics deteriorate, the dynamic model determined withthe Yule-Walker method is often
unstable. In an unstable linear system, the predicted states tend towards infinity over time,
resulting in perceptually unrealistic synthesized sequences.

The Maximum Entropy Spectral Analysis (MESA) technique wasdeveloped for sin-
gle channel signals [3] and extended to handle multidimensional data [16, 24]. Although
common in the control theory literature, to our knowledge this technique has not been
applied to dynamic textures. When modeling dynamic textures, in practice only small
portions of the sequences are available. Inaccurate modelsresult when the higher-order
sample statistics do not adequately reflect the structure indata. The main contribution of
MESA is that by using a recursive approach the higher-order autocorrelations are never
calculated directly from the sample data, despite the assumption of stationarity. An addi-
tional advantage of MESA, is that the stability of the resulting model is guaranteed [13].
Moreover, compared to using the Yule-Walker equations, we found that fewer training
frames are necessary to obtain an accurate model [11].

MESA uses a recursive approach that depends on the coefficients of both forward and
backward models,

xt = −
µ

∑
i=1

Fµ,ixt−i +eµ,t , (5)

xt = −
µ

∑
i=1

Bµ,ixt+i +bµ,t . (6)

whereeµ,t and bµ,t are the forward and backward residuals. In (5), future states are
predicted using the past states of the system, whereas in (6)past states are predicted using
future data. The coefficients of anµ-order model are as follows,

Fµ =
[
I Fµ,1 Fµ,2 . . . Fµ,µ

]T
, (7)

Bµ =
[
Bµ,µ . . . Bµ,2 Bµ,1 I

]T
, (8)

whereI is an identity matrix of sizeq×q. These model coefficients have the following
recursive relationship [3],

Fµ =

[
Fµ−1

0

]
+

[
0
Bµ−1

]
Fµ,µ , (9)

Bµ =

[
Fµ−1

0

]
Bµ,µ +

[
0
Bµ−1

]
. (10)

MatricesFµ,µ andBµ,µ are called thereflection coefficientsand 0 is the zero matrix; all
are of sizeq× q. To solve forFµ in (9), we solve for the reflection coefficients in a
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least squares sense, minimizing the squared residual erroraveraged over the sequence.
The expected value of the reflection coefficients given the forward residual error is the
same as the solution given the backward residual error [3]. However, averaging the two
solutions is a more robust approach since we are dealing witha limited sample of the true
sequence. We solve for reflection coefficients which minimize the weighted sum of the
squared forward and backward residual errors averaged overthe sequence, i.e.,

Eµ =
τ

∑
t=µ+1

[
(eµ,t)

TQf eµ,t +(bµ,t)
TQbbµ,t

]
, (11)

where matricesQf andQb weight the impact of the forward and backward components.
The relative accuracy of the lower-order forward and backward models provides confi-
dence measures for current iteration. The higher the covariance of the driving distribu-
tion, the more uncertainty in the model and therefore the less confidence we have in the
resulting estimates for the reflection coefficients. We set the weights to the inverse of
the covariance of the driving distribution for the forward and backward models of order
M−1, called thepower matrices1, i.e.,

Qf = (Pf
µ−1)

−1
, Qb = (Pb

µ−1)
−1

, (12)

where,

Pf
µ−1 =

[
R0 R1 . . . Rµ−1

]
Fµ−1, (13)

Pb
µ−1 =

[
Rµ−1 RM−2 . . . R0

]
Bµ−1. (14)

andRi is the sample autocorrelation of the observed sequence under the assumption of
stationarity,

Ri =
1

τ− µ

τ

∑
t=µ+1

xt(xt−i)
T
. (15)

The power matrices are positive definite, and therefore invertible, in any physically real-
izable linear dynamic system [23]. Using nonsingular weight matrices provides a unique
solution to the minimization of (11) [24]. Moreover, choosing such weights simplifies
the equation significantly. By taking the derivative ofEµ with respect to the reflection

coefficientsFµµ and using weightsPf
µ−1 andPb

µ−1, the following is derived in [24],

HFµ,µ +Pb
µ−1Fµ,µ(Pf

µ−1)
−1D = −2G, (16)

which one can use to solve forFµ,µ . D andH are the covariance of the offset forward and
backward residuals respectively, andG is the correlation between the offset residuals:

D =
τ−µ

∑
t=1

εµ,t(εµ,t )
T
, H =

τ−µ

∑
t=1

βµ,t(βµ,t)
T
, G =

τ−µ

∑
t=1

βµ,t(εµ,t )
T
. (17)

1In the forward model shown in equation (4),WWT is the power matrix.
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The forward and backward offset residuals are defined as follows2,

εµ,t = xt+µ +
µ−1

∑
i=1

Fµ−1,ixt+µ−i , (18)

βµ,t = xt +
µ−1

∑
i=1

Bµ−1,ixt+i . (19)

We solve forBµ,µ using the generalized conjugate relationship [3],

Bµ,µ = (Pf
µ−1)

−1(Fµ,µ)TPb
µ−1. (20)

From (9), (10), (13) , (14) , and (20), the following recursive updates can be derived for
the power matrices [3],

Pf
M = Pf

µ−1− (Fµ,µ)TPb
µ−1Fµ,µ , (21)

Pb
M = Pb

µ−1− (Bµ,µ)TPf
µ−1Bµ,µ . (22)

Using this recursive definition, rather than (13) and (14), the higher-order autocorrelation
estimates are not calculated from the sample sequence.

To initialize the algorithm, in the zero-order model we assume the sequence is the
output of the stochastic component of the model. ThereforePf

0 = Pb
0 = R0, ε0,t = xt+1

andβ0,t = xt .
To summarize MESA: Given the coefficients for a model of orderµ −1, Fµ−1, and

the state-space projection,Xτ
1 , of the observed image sequence, (13) and (14) are used to

determine the power matrices,Pf
µ−1 andPb

µ−1, and (18) and (19) solve for the offset resid-
uals,εµ,t andβµ,t . The forward reflection coefficientsFµ,µ , which minimize the squared
sum of weighted residual errors, are determined by (16) and the backward reflection co-
efficientsBµ,µ are calculated using the generalized conjugate relationship (20). Using the
reflection coefficientsFµ,µ andBµ,µ , and the lower-order model parametersFµ−1, (9) and
(10) provide the coefficientsFµ for a model of orderµ .

4 Results
There are several ways one can evaluate and compare synthesized image sequences [1].
Here we use the one-step prediction error to quantify the quality of our results, as in [6],

errµ(i) = || yi +C(
µ

∑
j=1

Fµ, j(C
⋄yi− j)) ||2, (23)

whereC⋄ ≡CT(CCT)−1 is the pseudo-inverse ofC.
Higher-order dynamic models are shown to improve the average one-step prediction

error for the test sequences in Fig. 1. As more temporal information is used to gener-
ate subsequent image frames, the prediction error of the synthesized images decreases.

2The notation for the indices of the offset residuals is somewhat counter-intuitive. Nonetheless, it is used
throughout time-series literature and, for consistency, it will be used here as well. Residualsεµ ,t andβµ ,t use
the estimation from models of orderµ−1, however a different interval of states is used within the calculation.
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Figure 1: The effect of changing the orderµ of the dynamic model is shown for four
sequences: the fountain sequence [25] (blue), the fire sequence [25] (yellow), the house
plant sequence [11] (green), and the walking sequence [19] (red). A frame of each se-
quence is shown on the right. The house plant sequence was trained withτ = 200 frames
and the others withτ = 80. Appearance model consisted of 25-dimensions. The one-step
prediction error was average over allτ− µ sets of initialization frames.

Depending on the type of motion in the scene, the advantage ofsecond and third-order
dynamic models varies. In the house plant sequence the oscillatory swaying motion of the
leaves is not captured by first-order dynamics but can be modeled using second-order dy-
namics. Third-order dynamics, however, do not provide muchfurther improvement. This
improvement is illustrated on the left in Fig. 2. The effect of changing the length of the
sequence used for training the dynamical model, is also shown in Fig. 2. For each length
the mean error was calculated from 20 models trained on different intervals of the original
sequence. For each model, the median3 of the one-step prediction error is calculated over
40 initialization intervals sampled from the original sequence at regular intervals.

Although convenient for optimization, the one-step prediction error alone is not suffi-
cient for evaluating of the overall quality of a synthesizedsequence. Without the ability to
consider extended intervals of time, the stability of the system is not captured. Moreover,
the mean-squared error does not measure perceptual quality. For example, increasing the
dimension of the appearance model decreases the predictionerror, but beyond some small
dimension there was no difference in perceptual quality formost textured sequences.

We found a higher-order dynamical model to be necessary to capture pendulum-like
movement, such as the swaying of the leaves in the house plantsequence. In the synthetic
sequences generated by a first-order model the leaves flicker, whereas, the sequences
generated by a second-order model capture the swaying motion. In order to explore this,
one can analyze the temporal frequency of the image intensities; we expect the jittery
motion to exhibit more power at high-frequencies than the swaying motion. A set of
image positions were randomly sampled according to a uniform distribution. The image
sequence was spatially blurred by a Gaussian and then measured at the sampled locations.

3The median was used to accomodate short intervals of frames and increase robustness to the few instances
when the power matrix was ill-conditioned causing the errorto explode.
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Figure 2: Results for the synthesized house plant sequence.LEFT: The effect of increas-
ing the order of the dynamic model on house plant sequence syntheses. The one-step
prediction error results reflect the visually observed results: increasing from a 1st-order
(yellow) to a 2nd-order (green) dynamic model improves accuracy of the synthesized se-
quence more than increasing from a 2nd-order to a 3rd-order (blue) model. Models used
appearance models of 25-dimensions and training lengths from 70-2000 frames. RIGHT:
Average magnitude of the amplitude spectrum. The larger amount of high frequency
information in the 1st-order model (blue) is in loose agreement with the perception of
the jittery motion in the video. The results from the 2nd-order model (red) more closely
resemble the training data (green).

After taking the Fourier transform of the resulting temporal signal, the magnitude of the
frequency was averaged over all sampled positions to obtainone generalized signal for
each synthesized sequence. A cosine temporal window was used before taking the Fourier
transform to reduce windowing effects. The average amplitude spectrum for the first and
second-order synthesized sequences of the house plant video are shown on the right in
Fig. 2. The larger amount of high frequency information in the first-order model is in
loose agreement with the perception of the jittery motion inthe video.

When the autoregresssive model is provided with a sufficientnumber of frames for
training, relative to MESA, the Yule-Walker method finds parameters which generate im-
ages with a smaller one-step prediction error in the first fewframes. A full sequence
cannot be generated using these parameters, however, because the predictions become in-
accurate over time due to model instability. The stability of models learned with MESA is
guaranteed, but the results of the model are not necessarilyperceptually accurate. In par-
ticular, without a sufficient amount of training data, the power matrices are ill-conditioned
and the error is significant. It is important to note, however, that neither the Yule-Walker
method nor MESA will provide a useable model under such conditions.

4.1 Linear Model Limitations
Our results demonstrate that a significant amount of the movement in the scene can be cap-
tured with a linear autoregressive model, especially with higher-order dynamics. How-
ever, real-world visual scenes exhibit complex dynamics. As expected, there are non-
linear components within most observed motions which are not well described by our
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Figure 3: The higher-order dynamic models produce syntheses which resemble the orig-
inal data over a longer interval. From left to right, frame 52of the flame sequence syn-
tehsized from 1st

,2nd
,3rd-order dynamic models, and the corresponding frame from the

original sequence.

model.
The deterministic component of the dynamic model provides alinear prediction of

the subsequent state and the final estimation lies within a multidimensional Gaussian dis-
tribution centered at this prediction. Similar images occupy a more complex manifold in
the subspace and learning the manifold may require a lot of data to ensure a dense sample
of the image space [17]. Using linear dynamics with a Gaussian driving distribution will
not guarantee that predicted states remain on this manifold. Moreover, because the image
dataset is not convex slight inaccuracies in the predictioncause dispersion artifacts in the
synthesis. For example, in the fire sequence synthesis the flame filaments are distinct and
compact initially, like the original sequence. As the length of the synthesis increases,
the state predictions decrease in accuracy, drift further from the manifold and the flames
are dispersed across the image plane. As the order of the model increases, however, the
syntheses resemble the original data over a longer interval, as shown in Fig. 3.

5 Conclusion
The results of this work illustrate how higher-order dynamics contribute to the perceptual
accuracy of the novel synthesized sequences generated by autoregressive models. The
complicated motion patterns which extend over multiple frames of dynamic textures are
more adequately represented when additional temporal information is provided during the
learning process and when generating the motion in the scene.

Without sufficient training data, previously used techniques for learning autoregres-
sive model parameters produced unstable and inaccurate results, in particular when using
higher-order dynamic models. To overcome this limitation we applied MESA, a linear
prediction technique common in control theory literature which generates a reliably sta-
ble autoregressive model.

Dynamic textured sequences are complicated scenes with complex motion patterns.
We have found that a significant amount of the perceptually relevant information in the
scene is captured by higher-order linear autoregressive models. The models explored in
this work could be used either for an accurate prediction of afew frames ahead in the
sequence or to capture a general description of the motion upon which more detail could
potentially be incorporated. The latter opens an interesting direction for future research.
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Abstract

This paper considers the problem of modelling a 3-D scene from calibrated
images taken from multiple viewpoints. The initial 3-D information is ac-
quired using probabilistic space carving which provides a voxel representa-
tion consistent with the given set of images. The scene is afterwards mod-
elled as an implicit surface using radial basis functions (RBF). The mixture
of multiorder basis functions models a smoothed 3-D scene representation
while providing compactness. We use correspondences between pairs of im-
age patches in order to update the RBF centres for improving the 3-D scene
representation. The RBF centre updating leads to improvingthe consistency
between the 3-D model and the given set of images. The proposed method is
applied on a complex 3-D scene displaying various objects.

1 Introduction
Three dimensional object reconstruction from several images has lately attracted con-
siderable research interest [1, 8, 9, 12]. Nevertheless, real scenes are very complex and
involve several objects, usually occluding each other, while the effects of illumination and
material reflectivity cannot be ignored. The aim of this study is to reconstruct the entire
3-D scene from a sparse set of images by estimating both shapeand texture.

Space carving is a method which assigns voxels to a 3-D objector to its background
using the photoconsistency of a specific point with all its corresponding pixels from the
given set of images [9, 10, 12]. There is a lot of uncertainty in the evaluation of the proba-
bilities required for space carving, caused by the presenceof occlusions, surface disconti-
nuities, variation in the illumination conditions, cameracalibration errors, etc. The result-
ing voxel model from space carving is invariably noisy and often contains disconnected
components. Holes and excessively enlarged 3-D features emerge in the resulting voxel
model [9]. Surface refinement for mesh models initialised from volumetric reconstruction
has been performed in [5, 6]. In this paper we propose to employ a radial basis function
(RBF) in order to model the surface of the space carved data. RBF methods are known for
their data fitting, interpolation and generalisation properties and have been widely used in
pattern recognition. In our case we want to represent a smooth surface which interpolates
the voxels from the surface as accurately as possible to the real scene. Moreover, the RBF
model would require only few parameters when compared to thevoxel model in order to
represent the scene. Implicit RBFs have been shown to represent well surfaces in [4, 11].
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In this paper we use the multiorder basis function, proposedby Chen and Suter, which
fulfils a smoothness constraint in the first, second and thirdorder Laplacian [2]. The sur-
face of the objects from the scene is calculated as the zero level set of a weighted mixture
of basis functions. The basis functions centres are randomly initialised by using a Poisson
sphere random sampling scheme [3, 4].

Certain errors are propagated from the voxel model to the implicit surface resulting
in surface variations that do not correspond to the actual scene. In this paper we propose
to correct such errors by improving the consistency of the 3-D model with the given set
of images. In order to achieve good reconstruction accuracywe need to select a wide
baseline pair of images with good texture. The pair of imagescontain the projection of
the same part of the 3-D scene, defined around radial basis function centres. An updating
formula is derived such that the centre of a certain RBF unit is modified in order to fulfil
the consistency between the two projections of the 3-D scene. The proposed methodol-
ogy is applied on a complex scene representing several objects. The modelling of a 3-D
scene using space carving and the modelling using RBF is described in Section 2. The
initialisation of the RBF parameters as well as their subsequent updating is described in
Section 3. Experimental results are provided in Section 4, while the conclusions of this
study are drawn in Section 5.

2 Model initialisation

2.1 Space carving

Let us assume that we haveN images of a scene{I j| j = 1, . . . ,N}, acquired from various
viewpoints by calibrated cameras whose projective matrices Pj with respect to the scene
have been properly calculated. We would like to reconstructthe 3-D scene represented
by geometry as well as colour (texture) information. One of the most popular approaches
for representing 3-D scenes from multiple images is the space carving algorithm [1, 10,
12]. Probabilistic space carving starts with a parallelepiped formed from voxels. At each
iteration, a set of voxels is selected and their consistencywith the given set of images is
verified. Two assumptions are tested: if a voxel is part of thescenex ∈ V , and if it is
not, x /∈ V , wherex represents a voxel andV is the volumetric scene to be estimated.
The evaluation of the probability in each imageI j takes into account its corresponding
projection matrixPj and checks the photoconsistency of a voxel with its corresponding
pixels. Usually, uncertainty arises in the evaluation of the probabilities associating voxels
with corresponding pixels from images. Consequently, the resulting volumetric model
is invariably noisy. Esteban and Schmitt [5] proposed to usethe visual hull in order to
initialise a surface mesh which can be deformed under the influence of photoconsistency
constraints. In the following we propose to use implicit function modelling estimated
from the 3-D voxel data provided by the space carving algorithm.

2.2 Implicit surfaces using radial basis functions

Radial basis functions (RBF) are known for their data fitting, interpolation and general-
isation properties [4, 11]. In our approach we use the voxel representation provided by
the space carving algorithm by properly interpolating the voxels and smoothing the sur-
faces in the scene. Moreover, an RBF model would require fewer parameters in order to
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represent the scene. The surface of the 3-D scene is modelledas a zero level set of a func-
tion, f (z) ≥ 0. In our approach,f (z) is an RBF mixture consisting ofM basis functions
calculated at locationz as :

f (z) =
M

∑
i=1

wiφ(‖z−µi‖)+u(z) (1)

whereφ(·) is the basis function, considered radially symmetric,‖ · ‖ is the Euclidean
distance,µi is the basis function centre, andu(z) is a polynomial component. The function
f (z) is defined as positive inside the 3-D volume and negative outside. For f (z) = 0 we
obtain the surface enveloping the 3-D voxel model.

Gaussian RBF functions which are widely used in pattern recognition have been found
to oversmooth [4]. Chen and Suter derived a basis function which fulfils a constraint in
the first, second and third order Laplacian, [2] :

−δ∆ f (z)+∆2 f (z)− τ∆3 f (z) = 0 (2)

where∆ is the Laplacian operator in 3-D,δ is a parameter controlling the first order
smoothness andτ controls the third order smoothness. The function that minimises the
energy function from (2) is called multiorder basis function [2, 4] :

φ(‖z−µi‖) =
1

4πδ 2‖z−µi‖

(

1+
βe−‖z−µi‖

√
α

α −β
− αe−‖z−µi‖

√
β

α −β

)

(3)

where

α =
1+

√
1−4τ2δ 2

2τ2 ; β =
1−

√
1−4τ2δ 2

2τ2 (4)

are parameters which describe the shape of the basis function.

3 RBF parameter calculation

3.1 Initialising the RBF parameters

The RBF function has the property to approximate well the data in a specific neighbour-
hood as shown by the expression (3). The RBF function from (3)has the maximum in
the centreµi and quickly falls toward zero when the distance from its centre location
increases. In this study we use the Poisson sphere random sampling scheme for initial-
ising the RBF centres [4]. This algorithm has been proposed in [3] by Cook for solving
the aliasing problem in computer graphics. A Poisson spheredistribution is a 3-D ran-
dom point distribution in which all sphere centres are approximately equally distributed
in space. Let us consider a set of spheres asS(µk,ρ), k = 1, . . . ,M, each centred atµi and
with identical radius,ρ. The sphere radiusρ depends on the size of the voxel model,|V |.
The number of basis functionsM and consequently that of spheres depends on the desired
level of surface approximation and smoothness.

Centres of spheres are randomly generated within the given voxel space such that they
fulfil the following conditions :

‖µi −µ j‖ ≥ 2ρ (5)

where 2ρ is the minimum distance between two sphere centresi and j. Each sphere
determines a partition in the voxel model depending on the local compactness. Let us
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consider a set of at leastT connected voxels which are located within a radius ofρ from
the centre of the sphere :

{xc ∈ S(µi,ρ)|xc ∈ V ,‖x−µi‖< ρ, |xc| ≥ T} (6)

where| · | denotes set cardinality. The spheres which contain very fewvoxels as well as
unconnected voxels are discarded. The sphere generating algorithm terminates when the
voxel model is completely covered with spheres. Let us assume that a total ofM valid
spheresS(µi,ρ) are generated, each associated with an RBF centre,µi. The parameters
τ andδ determine the smoothing of the resulting implicit surface.These parameters are
chosen depending on the chosen resolution, the size of the voxel model|V |, and on the
desired level of smoothing [4].

We form the following system of equations :
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0











(7)

whereri j = ‖µi − µ j‖ is the Euclidean distance between two centres,λi for i = 1, . . . ,M
are added to the diagonal elements in order to condition better the matrix as in [4] and
u(z) = u0. For calculating the weighting factorswi, i = 1, . . . ,M we evaluate the basis
functionsφ(·) for the distances between pairs of centresri j. We considerf (µi) = 0 for
imposing the condition that most basis functions are located on the separation surface.
Certain centres correspond to the control basis functions,i.e. which have their centres
either inside the model or outside it. The weightswi, i = 1, . . . ,M are calculated by
inverting the matrix associated with basis function centres. Given the proposed RBF
centre initialisation described in the previous Section, the matrix from (7) is non-singular
and consequently invertible.

3.2 Updating the RBF centres using image disparity

The previous approaches adopted in space carving have been restricted to considering
per voxel consistency. In this Section we describe how the accuracy of the surface can
be improved by considering the image consistency across larger areas of the surface.
Invariably, given various sources of errors, the surface described by the implicit function
f (z) may not fit with its corresponding areas of the images. In thisSection we describe
how to find an updating transformation applied on the basis function parameters in order
to improve the consistency between the 3-D model given byf (z) and the image set{I j| j =
1, . . . ,N}. The surface, as defined by (7), passes through the radial basis function centres.
We can control the surface by changing the locations of the RBF centres. The first order
approximation of an RBF consists of the plane tangent to its surface in the neighbourhood
of its centre. For a small area well defined around the RBF centre we assume that the
surface functionf (z) can be locally approximated by a planar patch. Let us assume that
there are two images which contain projections of the 3-D patch. A plane in 3-D, such as
the one which approximates locally the surface around the basis function centre, induces
a homographyH between pairs of images [8]. By calculatingH from pairs of images it is
possible to recover the parameters of this plane and correctthe basis function centre and
thus that part of the surface, by constraining it to lie on that plane.
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A surface patch, corresponding to an RBF centre, is selectedif it displays a sufficient
amount of detail which can be used for finding matches betweenpairs of images. For each
chosen patch we select a pair of images such that they providethe smallest angle between
their positions and the surface patch normal. The angle between the camera locations
and the surface patch should be as large as possible in order to provide an appropriate
baseline to recover positions. LetPandP′ be two 3×4 matrices which describe the camera
projection from 3-D coordinates to homogenous image coordinates for the selected pairs
of images representing the patch. Lety = [u,v,1]T be the projection of a point in the patch
from the first camera andy′ = [u′,v′,1]T be the corresponding point from the second
camera. These points are related byy′ = Hy. Let us assume that the selected patch
belongs to a planeψ, wherezT ψ = 0 for all the pointsz which lie onψ. The homography
H between the pair of images is given as, [8] :

H = A−avT (8)

whereA anda are a 3×3 matrix and a 3×1 vector, respectively, given by :

[A | a] = P′
[

P
0 0 0 1

]−1

(9)

andv is a 3×1 vector, representing the displacement between the two images, given by
the following expression :

[

v
1

]

=

(

[

P
0 0 0 1

]−1
)T

ψ (10)

Given a point in one image, the corresponding point in another image can be constrained
to lie on a line known as the epipolar line [8]. Epipolar linesdepend only on the imaging
geometry and not on the shape of the scene, so it is possible totransform the images, using
v, in order to correspond to a pair of rotated ‘virtual cameras’, whose epipolar lines are
all horizontal and co-linear. This process is known as rectification and is often performed
as an initial step in stereo algorithms [7].

Let R andR′ be the rectifying 3×3 matrix transformations. The rectified images of
the patch are now related by considering a matrixHR :

R′y′ = HRRy (11)

The homographyH can be calculated by taking into account the rectifying transforma-
tions :

H = R′−1HRR (12)

After the rectification, the epipoles are horizontal, andHR is guaranteed to map eachv-
coordinate to its corresponding value in each pair of images. Consequently, it can be
expressed as :

HR =





s k t
0 1 0
0 0 1



 (13)

wheres, k and t, correspond to scaling, skew and translation, respectively (all in the u
direction). To calculate these parameters, the images of the patch are divided intol rows
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of pixels. When considering a single row of pixels, the skew and translation act together
to produce a single horizontal offset,o, since thev coordinate of each pixel is the same.

The normalised cross-correlation is computed between eachpair of rows at different
scale and offset values. The values which result in the lowest score, corresponding to the
best match, are recorded. As the scale should be the same for all rows, s is taken to be the
median of the values found for each row. Any values significantly outside the median are
deemed to be unreliable and are discarded. Using the offsetsfrom all rows, the skew and
translation parametersk andt can be calculated by solving a linear system:

[

k
t

]

=







v1 1
...

...
vl 1







−1





o1
...

ol






(14)

wherevl is thev coordinate of rowl.
With H at hand from (12), we calculate the displacement vectorv between the pair

of images corresponding to the given patch from (8). Consequently, the location of the
planeψ which should contain the basis function is calculated using(10). The location of
the basis function centre is updated as :

µ ′
i = µi +n

µT
i ψ

nT n
(15)

wheren is the surface normal direction of the planeψ, and theith basis function centre
µi is updated toµ ′

i , while being constrained to lie on the planeψ.
The matching based on cross-correlation requires that the colour variance in the image

patch is above a certain threshold in order to find the offsetsuniquely. Basis functions cor-
responding to patches which do not fulfil this condition are not updated by this procedure.
Additionally, false matches may be obtained due to the imagenoise or to patches which
span the physical boundary of an object. A limit is placed on the maximum distance that a
centre can move in order to prevent this from causing furthererrors in the surface. Some
of the basis function centres will converge towards neighbouring locations on the 3-D
surface causing singularity in the matrix from equation (7). If centres of multiple basis
functions occur in the immediate proximity of each other after updating, only one will be
preserved while the others will be removed.

4 Experimental results

The method outlined in this paper was tested on a real scene comprised of multiple
objects. For the experiments, 12 images of the scene were captured from various view-
points. A selection of four images is shown in Fig. 1. As it canbe observed from this
Figure, the objects exhibit various shapes and surface properties and occlude each other
in different views. Voxel carving assumes the camera positions (extrinsic calibration) to
be knowna priori. Targets printed on rectangular boards were placed around the outside
of the scene in order to provide the necessary information for camera calibration.

The initial voxel model was provided by the probabilistic space carving algorithm [1].
This algorithm assumes the scene to be contained within a finite bounding volume. In
this case, the background was manually segmented. The resulting model, which contains
773660 voxels, is shown in Fig. 4(a) and Fig. 4(b) for two different viewpoints. Con-
sidering the voxel representation, 4440 radial basis functions were sampled and used to
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(a) Frame 1 (b) Frame 3

(c) Frame 6 (d) Frame 9

Figure 1: Four images of a complex scene taken from various viewpoints.
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Figure 2: Two pairs of patches and their correction.

716



0

200

400200

400

600

−200

−100

0

0

200

400200
300

400
500

−200

−100

0

(a) RBF centres after updating. (b) RBF centres correction vectors.
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Figure 3: Directions of centre updating and their correctedpositions.

fit the implicit surface as shown in Figs. 4(c) and 4(d). A total of 1408 basis functions
met the criteria for updating (the visibility and the presence of sufficient local variation as
given by the colour variance). Of these, a suitable match wasobtained in 1075 cases. The
smoothing parameters, considered identical for all RBFs, are δ = 25,τ = 0.01, while the
centres are scaled such that they fit in a cube of size 1×1×1. The functions which were
successfully updated are shown in Fig. 3(a), marked with stars, while all the other basis
functions are marked with dots.

Two pairs of patches from the raw images, which are the projections of two different
3-D scene regions, one corresponding to the book and anotherto the box, are shown in
Figs. 2(a) and 2(e), respectively. The images from each pairare related by means ofH,
according to (8). The epipolar correction, as given byHR from (13), is shown in Figs. 2(b)
and 2(f), the offset vectors calculated from equation (14) are provided in Figs. 2(c) and
2(g), and the aligned patches after applying the transformation H to the second image
of each pair is illustrated in Figs. 2(d) and 2(h). Vectors representing the movement of
centres in 3-D to the corrected positions, according to (15), are shown in Fig. 3(b). The
updated surface, after correcting the RBF centres, for the two viewpoints, is shown in
Fig. 4(e) and Fig. 4(f), respectively. The surface of the horizontal book and vertical box
is clearly improved. However, the shape of certain objects,the kettle in particular, is not
well modelled due to their irregular shapes, lack of textureand surface specularity.

For numerical assessment we check the consistency between the surface of the book
from the estimated 3-D model with that from the real scene. The surface of the book
in the centre of the scene is planar and we measure the deviation from the planarity in
the estimated 3-D model. This deviation, measured in millimetres, was estimated for
the voxel model, the initial RBF surface, calculated according to the description from
Section 3.1 as well as for the surface updated according to the algorithm provided in
Section 3.2. The mean deviation was found to be 11.59 mm for the voxel model, 3.63
mm for the initial RBF estimation and 1.04 mm for the updated model. These numerical
results together with the visual interpretation from Fig. 4prove the capabilities of the
proposed algorithm to improve the surface representation when considering the proposed
RBF centre updating method based on image disparity estimation.
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(a) (b)

(c) (d)

(e) (f)

Figure 4: Voxel representation and RBF surface modelling ofthe scene for two different
view angles. (a), (b) voxel representation; (c), (d) initial RBF model; (e), (f) updated RBF
model.

718



5 Conclusion
A complex 3-D scene surface modelling method using multipleimages, taken from var-
ious viewpoints, is proposed in this paper. A voxel representation is estimated using the
space carving algorithm. Implicit multiorder radial basisfunctions are employed in or-
der to model the separation surface between the voxel model and the exterior. The RBF
model produce a smoother 3-D scene than the voxel representation while requiring much
less parameters. The 3-D representation is improved by using an RBF centre updating
algorithm. The proposed algorithm estimates the disparityerrors between pairs of images
after recovering their perspective distortions. The resulting 3-D surface representation
can be easily rendered and manipulated by geometrical transformations.
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Abstract

We introduce a novel approach to on-line structure from motion, using a
pipelined pair of extended Kalman filters to improve accuracy with a min-
imal increase in computational cost. The two filters, a leading and a fol-
lowing filter, run concurrently on the same measurements in a synchronized
producer-consumer fashion, but offset from each other in time. The leading
filter estimates structure and motion using all of the available measurements
from an optical flow based 2D tracker, passing the best 3D feature estimates,
covariances, and associated measurements to the following filter, which runs
several steps behind. This pipelined arrangement introduces a degree of non-
causal behavior, effectively giving the following filter the benefit of decisions
and estimates made several steps ahead. This means that the following filter
works with only the best features, and can begin full 3D estimation from the
very start of the respective 2D tracks. We demonstrate a reduction of more
than 50% in mean reprojection errors using this approach on real data.

1 Introduction
Structure from motion (SfM) is a well studied problem in computer vision. Most ap-
proaches begin with a set of salient 2D image features that are tracked from frame to
frame using optical flow or wide baseline feature matching. Feature selection, deter-
mining which features to use in the structure from motion, is critical to the accuracy of
results. Common approaches include RANSAC [8], robust regression [11] and filter-
ing approaches which use a camera motion model to determine outliers in systems using
Kalman or particle filter based 3D trackers [6, 7].

Our novel approach combines two extended Kalman filters that run concurrently on
the same measurements in a synchronized producer-consumer fashion, but offset from
each other in time. The leading filter generates initial estimates of sparse scene structure
and the camera motion by identifying 2D tracks called inliers in the total set of 2D fea-
ture tracks. The subset of inliers determined by the leading filter provide better informa-
tion about the camera pose. The leading filter passes their 3D estimates and covariances
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(which have been improved by the influence of many measurements) to the following
filter, which operates only on these good feature tracks with reliable initial 3D estimates.

In the experimental evaluation we demonstrate our pipelined approach on real data
where it reduces the reprojection errors of the estimated 3D points in the following filter
by more than 50%. This reduction in reprojection error reflects the fact that the pipelined
two-filter approach only employs measurements that have been found to be consistent
with the camera motion in the immediate future. While the improved estimates are de-
layed in time compared to the newest frame, which might be a concern for on-line appli-
cations, the approach allows the user to trade off this delay for improved performance.

In contrast to our approach which uses all temporal correspondence information over
multiple frames (chains of matches), typical previous SfM approaches only employ cor-
respondences from a single pair of frames. This is a result of the correlation of their
computational cost with the probability of correct correspondences. As the probability of
a chain of correspondences is significantly lower than for a single correspondence, previ-
ous approaches are often not efficient on chains of correspondences. (For a more complete
overview of robust estimation in computer vision we suggest [10].) Our approach is effi-
cient in that a naive approach to looking ahead w frames for inliers would run with O(wh)
complexity where h is the cost of one complete structure from motion estimation over all
of the frames, while our two-stage filtering approach requires only O(h) time.

In the next section we will discuss work related to the pipelined filter. Section 3 de-
scribes the pipelined filter architecture in detail and section 4 presents some experimental
results that demonstrate the improvement in reprojection errors by our two-stage (leading-
following) pipelined multi-filter approach.

2 Related Work
A key component of any structure from motion system is the estimation of the camera
motion in 3D space from 2D feature tracks. Typically the obtained tracks contain a fair
number of outliers. Hence the estimator has to simultaneously estimate the camera mo-
tion and to classify the tracks into outliers and inliers. Robust estimators are successfully
applied to solve this problem in many computer vision applications. The most common
technique to deal with outliers is the RANSAC algorithm [8, 20]. It solves the two prob-
lems of computing a relation that best fits the data and classifying the data as inliers
(correct matches) and outliers. The classification is done by employing a cost function
together with a threshold which depends on the expected measurement noise. The re-
lation is then selected as the one with the highest number of inliers or the largest robust
likelihood [8]. An inlier with respect to an error function has an error less than a threshold.

When the expected noise is not known beforehand it is difficult to determine the appro-
priate threshold. Then often robust regression methods are used to estimate the relation of
the images and the classification of the data into inliers and outliers [11]. These methods
achieve the greatest success when the data belong to a single signal corrupted with random
outliers. Miller and Stuart [12] extended the MINPRAN robust regression method [18] to
account for data that belong to multiple signals. The MINPRAN operator [18] tolerates a
large number of outliers and identifies regions composed completely of outliers.

Tang et al. [19] proposed a tensor voting based approach that poses the problem of esti-
mating the epipolar geometry (the focus of the paper which can be extended to many other
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estimation problems) as one of finding the most salient hyperplane in a multi-dimensional
space. Another popular technique is the Least Median of Squares (LMS) estimation [16].
LMS has been very successful when applied to a lone signal corrupted with outliers but
fails completely if the outlier rate is higher than 50%. LMS searches a space of hypothe-
sized fits using an objective function based on the median squared residual.

Another class of estimators adds a camera motion model to assist in detecting outliers.
This measurement selection approach is based on a smooth motion model and consensus
and is used with a Kalman filter in [1, 3] and a real-time particle filter in [7]. Davison
presents a real time extended Kalman filter based visual simultaneous localization and
mapping (SLAM) system in [6]. He uses a top down approach to measurement selection,
searching for 2D features only in the region they are expected to be in the image based on
estimation uncertainty, to minimize computational cost per frame.

Finally, we note that ideas for fixed point and fixed lag smoothing within a single
Kalman filter were introduced by Rauch et al. [13, 14, 15]. The basic idea is to recursively
estimate the state at some past time, either at some particular point in time, or following
the current time with a fixed delay, using all of the available measurements. By separating
the estimation into two pipelined filters we are able to prevent outliers from negatively
affecting the second (following) filter, while simultaneously providing the following filter
with non-causal initial estimates of the 3D points and covariances. In effect, we obtain
some of the benefits of fixed-lag smoothing, but using only the inliers.

3 Two-Stage Measurement Selection and Estimation
The two-stage measurement selection/initialization and final estimation 3D pose filter
is composed of two individual extended Kalman filters (EKF). We refer to them as the
leading and following filters. The two filters run concurrently on the same measurements
(images) in a synchronized producer-consumer fashion, but offset from each other in time.
They are identical except in the way that they initialize 3D feature estimates, where the
leading filter initializes points by triangulation and the following filter receives its initial
feature position and covariance estimates from the leading filter.
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Figure 1: Timing of pipelined leading and following filters for time offset w = 5.

Figure 1 shows an example of pipelined leading and following filters for time offset
w = 5. Once the initial w frames have been processed (the pipeline primed) then at each
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filter time step k the leading filter passes its latest feature set Fk−w for frame k−w to the
following filter. Omitting the w for clarity, the feature set Fk for frame k is defined as

Fk = {(xk
1, X̂

k
1 ,Σk

1), . . . ,(x
k
n, X̂

k
n ,Σk

n)} (1)

where xk
i is the actual measurement (2D projection) of a feature, X̂k

i is the estimated 3D
position that feature at time k, Σk

i is the corresponding 3D covariance of the estimate, and
n is the total number of features. The leading filter spends w time steps attempting to
estimate 3D feature locations for frame k−w, selecting only the best ones to pass on to
the following filter. In the remainder of this section we will first describe a single filter
and then describe how the two filters are combined to form the estimation system.

3.1 Individual Filter
While we use an extended Kalman filter for this work, we believe the pipelined approach
could be employed with any on-line 3D filters or other estimators. Our filters fuse mea-
surements from a 2D KLT tracker [9, 17], which is an optical flow based 2D tracker that
measures the motion of salient features from one frame to the next in a video sequence.
The filter’s process model uses a smooth motion model for the change in camera position
and orientation. It uses a first order Taylor series approximation to relate the state at time
k to time k + 1. This model assumes that the velocity is constant. The estimated 3D fea-
tures must be static with respect to the world frame to be included in the filter state, and
so they are modeled as having zero velocity.

The filter state Sk at time k is made up of the camera’s position Ck, orientation θ k,
velocity Ċk, orientation rate θ̇ k (rotational velocity) and estimates of the 3D position of
each of the n features being tracked Xk

1 ...Xk
n . The filter state is shown in Equation (2),

Sk =
[

Ck Ċk θ k θ̇ k Xk
1 . . . Xk

n
]T (2)

where again, n is the number of tracked features. The filter’s predicted measurement
equation is simply the projection of each estimated 3D feature i into the camera at time
k given calibration K. In Equation (3) R is the rotation matrix composed from the Euler
angle representation of the camera orientation Θk.

x̂k
i = K

[
RT k −RT k

Ck
]

Xk
i (3)

Note that we use the “hat” in x̂k
i to indicate it is an estimate of the measurement xk

i .
To predict the actual measurement the projected 3D point must be homogenized,

which requires dividing by the third homogeneous coordinate. This makes the projection
non-linear and precludes using a linear Kalman filter. The filter linearizes the projection
equation around the predicted camera system pose to form the Jacobian used in the EKF
equations. 3D feature estimates are kept in memory only so long as the feature is tracked
by the 2D tracker. This limits the total memory usage of the filter, enabling tracking
over large areas. It also means that the filter cannot perform loop completion which is a
common limitation of most structure from motion systems when processing long video
sequences covering large areas.

One of the main drawbacks of using the EKF is that as the number of tracked salient
features increases, the storage space required to store the filter’s covariance matrix in-
creases in a quadratic fashion because the matrix stores all of the feature covariances and
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their cross-covariances. The filter’s update cycle complexity is O(n3) where n is the num-
ber of features. This makes real time operation on large sets of features problematic. We
avoid this performance bottleneck by taking advantage of the statistical independence of
the salient features. So long as the features are stationary with respect to the world coor-
dinate frame, their cross-covariance terms are zero in the filter’s covariance matrix. This
yields a large, sparse matrix. The structure of this matrix could be exploited to speed up
the inversion step, which is part of the Kalman filter.

Another approach is to process the feature measurements, which are taken at the same
time, sequentially. This approach to processing in the Kalman filter is described in [2].
The filter update cycle starts by predicting the camera position and covariance at the next
time step. Then the filter processes each of the 2D feature measurements in sequential
fashion. In each sequential update a subset of the total state comprised of the camera
system state and a randomly selected 3D feature estimate is generated and processed to
update the filter’s state and covariance estimate as well as the position and covariance of
the 3D feature. Each 2D feature measurement that is processed reduces the uncertainty
of the camera pose a certain amount as well as the uncertainty of the corresponding 3D
feature. When processing the features sequentially, features that are processed earlier
tend to have a greater influence on the camera pose estimate but only because they cause
a correction to the state which later measurements support. So long as features are pro-
cessed in random order, over time sequential processing can be shown to behave similarly
to processing all features at once in a single update cycle [21].

One advantage of sequential processing is that it allows simple outlier detection and
rejection. Outliers are detected based on the difference between the estimated 3D point’s
projection and its corresponding measurement in the current frame. This error is the
filter’s residual which is an integral component of the Kalman filter. Outliers are not
allowed to influence the camera system state and covariance and are removed from the
total filter state.

Camera Motion Over Time
3D Feature and Covariance

Projected 3D Feature Estimate
Figure 2: Initial covariance sampling

The initialization of 3D features and their covariances is an important part of the filter
design. The filter should strive to initialize 3D estimates for 2D tracks only for inliers.
Feature initialization in the leading filter is done by triangulation across a minimum base-
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line. In addition, the angle between the rays to the feature is measured and a threshold
is applied to this angle. In this our filter implementation we chose a threshold of 10o.
This prevents features at infinity from being processed by the filter. (Features at infinity
give information about camera rotation but no information about translation and have very
large uncertainties, which could cause numerical problems.) Further, the triangulated 3D
point is projected into each of the cameras that it has been tracked in 2D so far in the
sequence. Only projected features that are within 1 pixel of their corresponding measure-
ments are passed into the filter. This threshold includes both expected measurement error
in the KLT tracker, as well as error in the filter’s camera pose prediction.

Initial 3D feature covariances are determined by generating a sampled probability
distribution in 3D. This is done by intersecting the perturbed rays corresponding to the
projected 3D feature estimate in the first frame it is tracked in and the current frame.
Each ray is perturbed by the expected amount of measurement noise in eight directions
around the projected 3D point in the horizontal, vertical and diagonal directions in the
two frames’ image spaces. A Gaussian distribution is then fit to this set of samples. A
simplified example of this sampling process, sampling only in the horizontal direction, is
shown in figure 2.

3.2 Two-Stage Extended Kalman Filter Pipeline
In the previous section we described the operation of a single structure from motion pro-
cess performed by an extended Kalman filter. Our novel approach combines two single
filters staggered in time and operating in parallel to improve SfM accuracy. The filter
leading in time selects the best set of inliers and initializes their estimated 3D coordinates
and uncertainties. Inliers are then passed to the filter following in time, which performs
SfM only on the inliers equiped with reliable initial estimates and covariances, improving
the SfM accuracy in the following filter.

The leading filter operates on the current frame in the video sequence and selects the
best 2D feature tracks, passing initial estimates of the 3D feature locations and feature
covariances to the following filter. The following filter operates a fixed number of frames
behind the leading filter in the video sequence. Because the following filter receives 3D
feature estimates and covariances from the leading filter, it is able to track 2D features
from the frame where the 2D track begins and does not have to wait to triangulate the
feature or convert feature tracks from a ray/depth/camera center formulation to full 3D
formulation, which is done in recent Kalman filter based SLAM implementations [4].
This increases the overall number of good features that are tracked in the following filter
each frame.

This two-stage architecture allows a simple and effective form of measurement selec-
tion. Features are selected to be passed to the following filter if they are triangulated and
then tracked in 3D for a fixed number of frames. Outlier 2D tracks may occasionally be
triangulated and added to the leading filter state. However, it is unlikely that these outliers
will continue for more than a couple of frames in the leading filter without being rejected
as outliers based on their higher reprojection errors due to their inconsistency with the
camera motion. By only passing back 3D features that last multiple frames in the leading
filter, the following filter processes only features which are consistent with the camera
motion. This makes the following filter’s camera pose and scene structure estimates more
accurate, as demonstrated by reduced reprojection errors. The feature initialization pro-
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cess is shown in figure 3. In that figure dashed lines represent measurements of the 3D
feature in a given camera.

Using this architecture the leading and following filters states are not bound together
and so the state estimates could drift apart over time. Still both of the cameras’ relative
motions should be approximately the same over a short time span. The 3D feature loca-
tions estimated by the leading filter, which estimates the 3D features in a world coordinate
frame, can be passed to the following filter by passing the feature’s position relative to the
leading camera pose which corresponds to the following filter’s current state. In this way
the two filters’ states are coupled together through the initial 3D feature estimates.Leading FilterCamera Poses Pt Pt+8Pt+4Following FilterCamera Poses

Leading FilterCamera PosesFollowing FilterCamera Poses
Pt
Pt Pt+4 Pt+12Pt Pt+4

2D feature measured at time t+4 is triangulated by leading filter over camera poses Pt+4 and Pt+8
3D feature estimate and covariance are copied back to following filter to be tracked in 3D from the beginning of its 2D measurements at time t+4

Figure 3: Initialization of a feature in the leading filter and passing the feature back to the
following filter

Our pipelined estimation approach is considerably more efficient that a naive looka-
head filter implementation. A naive implementation when estimating the camera pose
and scene structure at frame i would process all of the measurements for frames i to
i + w, where w is the number of frames looked ahead, to find the inlier correspondences
to integrate into the final estimate at frame i, repeating this process of looking ahead w
frames and then taking a single step at each frame. This would yield an overall compu-
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tational complexity of O(wh) where w is the number of frames looked ahead and h is the
cost of performing one complete SfM estimation on the video sequence. In contrast, our
two filter approach is able to determine which correspondences are reliable inliers with a
computation cost of only O(h).

4 Results
To demonstrate the improved performance of our two-stage approach we ran the tracking
system over ten seconds of video. The video was collected using a camera with known
intrinsic calibration and a field of view of approximately 40ox30o, frame rate of 30 frames
per second and resolution of 1024x768 pixels. The camera was rigidly coupled to an
inertial navigation system which was used to initialize the Kalman filter’s velocity and
rotational velocity estimates. This was necessary because the Kalman filter formulation
we use is tuned for a particular scale of motion and so the initial scaled translation and
rotation rates must be known. One could just as easily initialize the filter with a fiducial of
known size. Recently, Civera [5] has devised a parametrization of structure from motion
estimation for the Kalman filter that does not require scale initialization and that could be
used in our two-stage architecture to mitigate this limitation.
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Figure 4 shows the improvement in reprojection errors by selecting measurements
and initializing 3D feature estimates using the lookahead filter. The graph shows the
mean reprojection errors of all 3D features tracked in each frame, projected into every
frame in which they are tracked in 2D. One can clearly see that selecting only those
features that are tracked in 3D in the leading filter for 4 or more frames and tracking only
those features in the following filter significantly improves the tracking performance of
the following filter. No additional non-linear optimization is performed on these results.
Figure 4 shows the number of features tracked in 3D using only a single filter which is
identical to the leading filter vs. using the two-stage filter architecture. This demonstrates
the ability of the two-stage pipelined filter system to select a superior subset of the tracks
generated by a single filter system.

5 Conclusion
In this paper we have introduced a measurement selection and initialization approach
utilizing a two-stage filter architecture to determine the best set of features and initial-
ize their estimates and uncertainties. These features have lower reprojection errors when
processed, allowing for more accurate structure from motion estimation than approaches
that attempt to estimate structure from motion in the most recently captured frame with
no delay. Pipelined estimation is applicable to many types of robust estimation systems
including Kalman and particle filters and is applicable to any system of potentially un-
reliable sensors, where a reliable set of sensors must be selected and a small delay in
estimating the state is acceptable.

Future work on pipelined estimation may involve selecting an optimal set of good
features to process (minimal computational cost to process with maximal camera state
information) in the following filter which gives a reliable camera pose estimate while
minimizing the computational cost of operating multiple filters, allowing for real time
filter operation with high accuracy. Additionally, in the current architecture it is possible
for the leading filter’s scale to drift away from the following filter’s over time. Addressing
this potential weekness by correcting the leading filter’s state using the following filter’s
more reliable estimates (feeding them forward) would make the system more robust to
scale or other drift between the filters.
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Abstract

Traditional volumetric scene reconstruction algorithms involve the evalua-
tion of many millions of voxels which is highly time consuming. This paper
presents an efficient algorithm based of future frame prediction that can dra-
matically reduce the number of voxels to be evaluated in time varying scenes.
The new prediction method, combining scene flow and morphological dila-
tions, is evaluated against a simple model dilation method. Results show the
proposed method outperforms a simple dilation method and has the poten-
tial to improve the efficiency of volumetric scene reconstruction algorithms
while retaining quality given accurate optical flows.

1 Introduction
Volumetric scene representations use a compact three dimensional grid to record colour
and occupancy information at discrete points in space. Images taken from multiple cal-
ibrated cameras can be used to populate this voxel grid and many algorithms have been
proposed [11, 7, 3, 16]. These algorithms have mainly been targeted at static scenes with
their extension to video consisting of frame by frame processing. This results in useful
temporal information being ignored which could otherwise aid the reconstruction pro-
cess. This paper proposes a simple method of incorporating the observed optical flow
from each camera into the reconstruction process with a view to dramatically reducing
the number of voxels evaluated at each time frame. From per camera dense optical flows
the per voxel scene flow is calculated and used to produce a volumetric frame prediction
which is then dilated. This predicted model is then used to guide the voxel estimation of
the next frame. An overview of voxel reconstruction algorithms is given in Section 2 with
details of the proposed algorithm in Section 3. Section 4 shows results using the proposed
technique and conclusions are drawn in Section 5.

2 Review of Volumetric Reconstruction
This section provides details of some of the main volumetric reconstruction algorithms
relevant to this paper. A good overview of scene reconstruction techniques can be found
in [12].

The voxel colouring algorithm was introduced in [11] as a method of constructing a
set of voxels with associated colours from a set of calibrated colour images. If deemed
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Figure 1: Original synthetic frames from 2 cameras. Left to right: Frame 1, 7, 13 and 19.

to be colour consistent across the images, a voxel is marked as occupied and assigned
an average colour otherwise it is marked as transparent. Voxel occlusions are handled by
restricting camera placement to satisfy the ordinal visibility constraint.

Space carving is described in [7] as a generalization of voxel colouring. In [7] it
is shown that by starting with an overcomplete voxel representation of a scene then re-
moving non-photoconsistent voxels, a photo hull can be produced. The space carving
algorithm does not impose restrictions on camera placement by using a multi-sweep al-
gorithm. Generalized voxel colouring [3] and multi-hypothesis reconstruction [4] attempt
to solve the voxel visibility problem using slightly different techniques. In [3] each voxel
is carved based on its simultaneous photoconsistency in all camera views in which it is
visible while in [4] each voxel is assigned a number of colour hypotheses which are grad-
ually removed if inconsistent. While space carving-type algorithms [4, 3, 7] are more
general than voxel colouring [11] they still suffer from many of the same reconstruction
artifacts, notably fattened reconstructions where surfaces bulge out towards the cameras.

Basing the voxel occupancy decision on a local threshold generally results in a non-
optimal solution being reached. Rather, a globally optimum solution should be found.
Vogiatzis et al. [16] extract a photoconsistent object surface using a minimum cut solu-
tion of a weighted graph representation of a photoconsistency cost function. In [6] this
graph cut algorithm is enhanced by allowing adjacent voxels to contribute to the photo
consistency function and implicitly providing a smoothing term. This technique is cur-
rently limited to closed, watertight objects.

A number of techniques to bring voxel colouring closer to real-time performance are
suggested in [10]. Using temporal coherence to speed up voxel colouring of dynamic
scenes is suggested with a simple extension that takes the previous frame in a sequence,
dilates the occupied voxel set from that frame and then uses this set as the search space of
the current frame. While a speed up of around two is shown, the method is unsuitable for
fast moving scenes as no explicit motion parameters are calculated.

Some work has also been done with regard to modelling moving scenes using voxels.
In [15] a six dimensional voxel representation of a scene is proposed where voxels are
carved if they are inconsistent with images from two time instants or inconsistent with the
flow between the two times. This method also recovers the scene flow between frames.
The scene flow [14] can also be derived from per camera 2D optical flows which in [13]
is applied to interpolating between two already carved scene frames. Rather than using
two known scenes at consecutive times, this paper takes scene flow and uses it to project
a known scene forward in time to guide the estimation of the following scene frame.
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(a) H264 (b) Horn-Schunck (c) non-iterative L-K (d) hierarchical L-K

Figure 2: Optical flows for synthetic sequence, frame 1.

3 Methodology
A volumetric reconstruction method for moving scenes is proposed which consists of
three steps: voxel occupancy estimation, voxel scene flow estimation and voxel occupancy
prediction. A volumetric representation of the first frame in the sequence is estimated by
evaluating all voxels in the scene volume. This gives an occupancy and colour for each
voxel. The scene flow is then calculated from per camera optical flows and, combined
with a dilation step, used to predict the occupancy in the next frame. When subsequent
frames are processed only voxels which have been predicted as occupied from the previ-
ous frame are evaluated. More details are given below.

3.1 Voxel Occupancy Estimation
The voxel occupancy step can be any algorithm that takes calibrated input images and
produces a colour and occupancy for each voxel in the scene, such as voxel colouring
[11], voxel carving [3, 4, 7] or volumetric graph-cuts [16]. In the rest of this paper, voxel
colouring is used for the voxel occupancy estimation due to its simplicity.

3.2 Optical Flow
Video sequences are often analyzed using optical flow. A very brief overview of the
optical flow estimation techniques used in this paper is given below. More details can be
found in the original papers [5, 8, 2] and a performance analysis of techniques in [1]. If
optical flow is thought of as a simple translation, v = ( ∂u

∂ t ,
∂v
∂ t )

T , and intensity is assumed
to be conserved then the gradient constraint equation may be written

∇I(x, t) ·v+ It(x, t) = 0 (1)

where It(x, t) = ∂ I(x,t)
∂ t . A second constraint [1] must be used to solve this equation.

Horn and Schunck [5] use a global smoothness term to provide this extra constraint
and seek to iteratively minimize

E =
∫

D
(∇I ·v+ It)2 +λ 2(‖∇u‖2 +‖∇v‖2)dx (2)

Lucas and Kanade [8] assume optical flows are constant in a small neighbourhood and
seek to minimize the error function

E = ∑
x∈Ω

W 2(x) [∇I(x, t) ·v+ It(x, t)]2 (3)
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where W 2(x) is a window function with decreasing weights from its centre. An iterative
scheme may be applied where the source image is warped towards the target image after
each minimization step using the current estimate of the optical flow. The estimated
optical flow between the target image and warped source image is then computed and
added into the overall optical flow.

Both of these gradient based techniques assume small (less than a pixel) optical flows.
To combat this limitation a hierarchical scheme may be used [2]. A Gaussian pyramid is
constructed from two temporally adjacent original images and the optical flow estimation
run on the lowest resolution images in each of the pyramids. This flow information is then
propagated to the next highest resolution to form the starting point for that resolution. This
allows a straightforward integration into the iterative Lucas-Kanade algorithm.

Optical flow may also be solved directly using block matching techniques which are
commonly performed by searching in v to minimize the sum of squared differences be-
tween the source and target block. The reader is referred to [1] for a fuller discussion.
Such block matching algorithms are often found in motion based video compression
schemes such as MPEG-2 and H264 [9] with the motion vectors embedded into the com-
pressed video stream.

3.3 Scene Flow
In the scene flow estimation step the motion of each voxel is represented using scene flow
as introduced in [14] as a 3D extension of optical flow in 2D. Let x(t) = (x,y,z) be the
position of a 3D scene point (voxel centre) at time t and un(t) = (un,vn) be its projection
in image In then

dun

dt
=

∂un

∂x
dx
dt

(4)

where dun
dt is the optical flow in image n and dx

dt is the instantaneous scene flow. A system

of equations B dx j
dt = A can be set up with N ≥ 2 cameras where

B =




∂u1
∂x

∂u1
∂y

∂u1
∂ z

∂ v1
∂x

∂v1
∂ y

∂v1
∂ z

...
...

...
∂uN
∂x

∂uN
∂y

∂uN
∂ z

∂vN
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∂vN
∂y

∂vN
∂ z




, A =




∂u1
∂ t

∂v1
∂ t
...

∂uN
∂ t

∂vN
∂ t




(5)

By taking the singular value decomposition of B such that B = U.w.VT , a solution can be
found for the jth voxel as dxj

dt = V.diag( 1
wi

).UT .A. This solution minimizes the squared
error between the reprojected scene flow and the optical flow in each camera image. If
more cameras are used, a more robust scene flow estimation can be calculated. B is
calculated from the camera projection matrix at x(t). The scene flow is calculated for
each voxel marked as occupied to create a 3D volumetric model that includes per voxel
motion.
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Voxel evaluation method Average PSNR (dB)
All voxels 14.0272

4 dilations only 13.7315
Hierarchical Lucas-Kande + 3 dilations 13.6506

Lucas-Kanade + 3 dilations 13.5858
H264 + 3 dilations 13.2917

Horn-Schunck + 3 dilations 13.2564
3 dilations only 12.3454

Table 1: Average PSNR for different frame prediction methods for synthetic sequence.

3.4 Voxel Occupancy Predication
The next step is to predict the next scene frame based on the current frame. To do this
each voxel in the current scene frame is moved based on the scene flow vector assigned
to it with voxels which would be moved out of the volume being clamped to lie on the
edge of the volume. Using scene flow on its own is not sufficient for successful pre-
diction therefore this paper proposes that the predicted model is then expanded using a
3D version of the morphological dilation operator which dilates based on each voxel’s
six-face-connected binary occupancies. There are three motivations to doing this:

• Each predicted voxel is forced to lie on integer voxel coordinates whereas in reality
it lies between integer voxels and has an influence on the surrounding voxels.

• An unknown error is associated with each scene flow vector leading to voxels pos-
sibly being moved incorrectly.

• The forward flowed voxel model may have holes which would affect subsequent
reconstructions as voxels are only removed, never added, during voxel carving.

The number of dilations is found empirically based on the granularity of the voxel model
compared with the input images and the error associated with the optical flow field. With
a fine voxel model, a number of dilations may correspond to a single pixel change in the
input images meaning more dilations are needed.

4 Results and Discussion
For the evaluation of the proposed technique a synthetic 20 frame sequence1 (Figure 1)
and 20 frame natural sequence2 (Figure 7a) from 8 fully calibrated cameras were used.

In the synthetic sequence the highly textured figure rotates with its extremities moving
at 5 to 8 pixels per frame while its centre of rotation remains fixed. Optical flows were
recovered for every frame in every camera using three methods: Horn-Schunck, non-
iterative Lucas-Kanade (as in [1]) and hierarchical iterative Lucas-Kanade. In addition,
the block motion vectors from an H264 encoding of each camera sequence found using
the exhaustive search strategy [9] were extracted and upsampled to produce an H264
optical flow. For the spatial image derivatives a 5 point central difference kernel was used

1Original 3D model Copyright c©Andrew Kator, http://www.katorlegaz.com/
2Dataset from Interactive Visual Media Group, Microsoft Research [17]
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Figure 3: PSNR and voxel count using proposed technique on synthetic sequence with
hierarchical Lucas-Kanade optical flow and a varying number of dilations.
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Figure 4: PSNR and voxel count using proposed technique on synthetic sequence with
different optical flow estimation algorithms and 3 dilations.
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Figure 5: PSNR and voxel count comparing only using dilations, evaluating all voxels
and using proposed technique (Lucas-Kanade plus 3 dilations) for synthetic sequence.
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(a) original (b) all voxels (c) 3 dilations

(d) 4 dilations (e) H264 (f) Horn-Schunck

(g) Lucas-Kanade (h) hierarchical Lucas-Kanade

Figure 6: Frame 19 reconstructions for synthetic sequence.

(as in [1]) while the temporal derivative was calculated from a simple frame difference.
The original images were not pre-smoothed. Example flows for each method for frame 1
are shown in Figure 2. As expected the hierarchical iterative Lucas-Kanade (Figure 2d)
retrieves the most accurate optical flows with large motions correctly recovered. All the
optical flow algorithms struggled to obtain accurate flows for the ‘tail’ of the figure which
is near homogeneous in colour and in many images is the same colour as the background.

These four sets of optical flows were then used in the proposed reconstruction algo-
rithm using 3 dilations, chosen to give a balance between scene reconstruction quality
and voxel count. Figure 3 shows the sensitivity of the proposed algorithm to varying the
number of dilations. To assess the quality of the estimated model each frame was recon-
structed for each camera and a peak signal-to-noise ratio (PSNR) calculated between the
reconstruction and the original camera frame image. This PSNR was calculated over the
actual image area of the original 3D model based on a segmentation of the background
and foreground generated when the original scene was being rendered. The mean frame
PSNR over all cameras and the number of voxels evaluated at each frame, excluding
frame 1, are shown in Figure 4. Frame 1 has 2563 ≈ 107 voxels evaluated.

It is clear that the best performance is achieved using the hierarchical iterative Lucas-
Kanade optical flows. Notably there is a sharp drop in PSNR after the first frame in-
dicating the shift away from evaluating all voxels to evaluating only predicted voxels.
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(a) original (b) all voxels evaluated (c) proposed method

Figure 7: Frame 8 reconstructions for natural sequence
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Figure 8: PSNR and voxel count comparing only using dilations, evaluating all voxels
and using proposed technique (Lucas-Kanade plus 3 dilations) for natural sequence.

Interestingly, the H264 PSNR continues to drop until frame 10 whereupon it starts to rise
again. This can be explained by looking at the optical flows estimated for each frame from
the block motion vectors and noting that for the first 10 frames the direction of movement
at the head of the figure is incorrect3. In the later frames this block is estimated correctly.
Despite causing the most voxels to be evaluated (Figure 4), the Horn-Schunck optical
flows produce the worst reconstruction results due to the badly estimated optical flow in
areas with large pixel displacements (Figure 2b).

Taking the best performing optical flow (hierarchical Lucas-Kanade) allows a com-
parison to be made to a simple dilation method [10] as well as to evaluating all voxels
in the scene. As the motion predicted model based on scene flow is dilated three times
before being used, it is important to establish that the same effect could not be achieved
simply using 3 dilations alone. Figure 5 clearly shows that 3 dilations is insufficient to
track the object whereas incorporating optical flow brings the PSNR back up to a stable
state. Related to this PSNR drop is the drop in the number of voxels (Figure 5) being eval-
uated meaning that voxels are continuously being lost from the constant volume object.
Increasing the number of dilations to 4 brings the PSNR to a value similar to that obtained
using scene flow at the expense of an increase in the number of voxels evaluated. The di-
lations must expand the previous model enough to capture the largest motion in the scene
meaning a scene with large motions needs more dilations to capture the voxels associated

3Incorrect in terms of optical flow. The H264 estimated motion is actually that which minimizes the coding
cost and is most probably correct in this sense.
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with these motions. Using scene flow to guide the prediction allows large motions to be
present in the scene and still keep the number of voxels evaluated to a minimum.

Evaluating all voxels in a scene produces the best quality reconstruction but using the
proposed scene flow guided prediction model as a hypothesis for the next scene frame
leads to only a small drop in quality with a dramatic reduction in voxel evaluations per-
formed. As reconstruction time is directly proportional to the number of voxels evaluated
and the optical flow calculations are relatively fast, a significant processing time decrease
is achieved. A summary of the overall average frame PSNRs is shown in Table 1 while
Figure 6 shows the synthesis results for frame 19 from a single camera. The low overall
PSNR could be improved by using a more sophisticated voxel occupancy algorithm [16].

Results for the natural sequence are shown if Figures 7 and 8 with PSNR evaluated
over the entire image. The extremities of the dancer move upto 80 pixels between frames
leading to very poor optical flow estimation for these areas which leads to the observable
poor synthesis in these regions (Figure 7c). Even so, including optical flow still produces
higher quality syntheses than using only 3 dilations and is comparable to the synthesis
quality obtained when evaluating all voxels.

5 Conclusions and Future Work
Volumetric scene reconstruction algorithms usually focus on static scenes and do not take
into account temporal information when reconstructions are performed on moving scenes.
To address this weakness, this paper has suggested using a combination of scene flow and
morphological dilations applied to a standard voxel colouring algorithm. A number of
optical flow algorithms [5, 8, 2] have been used to obtain dense scene flow which has then
been applied to the prediction of future scene frames. Basing voxel occupancy estimation
on the predicted occupancy allows a dramatic decrease in the number of voxels which
need to be evaluated leading to a substantial computational speed gain with only a small
decrease in reconstruction quality. The proposed technique also improves on previous
model dilation techniques [10].

At present, evaluating all voxels in the scene for photoconsistency produces the high-
est quality reconstructions. In the future, techniques for increasing the reconstruction
quality based on scene flow will be explored, such as dynamically varying the number of
dilations based on optical flow confidences. The same scene flow based algorithm will
also be integrated with more advanced voxel occupancy estimation algorithms.
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Abstract

We focus on the problem of automatically extracting the 3D configuration of human
poses from 2D image features tracked over a finite interval of time . This problem
is highly non-linear in nature and confounds standard regression techniques. Our
approach effectively marries a non-rigid factorization algorithm with prior learned
statistical models from archival motion capture database. We show that a stand alone
non-rigid factorization algorithm is highly unsuitable for this problem. However,
when coupled with the learned statistical model in the form of a constrained non-
linear programming method, it yields a substantially better solution.

1 Introduction
Given a monocular video which features a single human in motion, our goal in this work is to re-
construct the 3D configuration (seen from an arbitrary choice of a world coordinate system). We
assume that we have as input anatomically well-defined landmark points (such as major joints)
recorded from an orthographic or weak-perspective camera. Our emphasis is not in feature track-
ing, but rather on recovering the lost depth during image formation from noisy and possibly
incomplete data.

Human motion comprises of an enormous amount of inherent subtlety and variability. Conse-
quently the problem of inferring 3D pose from 2D image sequences is highly non-linear in nature
and confounds standard regression techniques. Besides, even if we have a good knowledge about
the projection matrix of the camera, for any single input observation of a human pose in 2D, there
are possibly multiple valid body configurations. Correlate this with our lack of judgment when
we see the Necker cube. From a numerical point of view, estimating 3D structure and motion
from image sequences is a higher order (quartic) non-linear optimization problem (§Eq. 5), prone
to local minima. These local minima are intrinsic to the problem (termed as true illusions [1]).

Previous Work: A variety of statistical as well as deterministic methods have been developed
for extracting pose from single view image sequences. We can define a gross dichotomy on
the class of approaches: Ones that concentrate on learning a mapping from silhouette feature
space to 3D pose [2], and others that try to map feature points, usually localized to anatomically
meaningful landmark points such as elbows position, limb end-point position etc. to 3D poses [3,
4]. Our approach falls in the second category. For a curious reader, we suggest [5] which catalogs
most of the important works on 3D human tracking.
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The solution approach in all of the above cases sans [4] is formulated as an (approximate)
probabilistic inference problem. Given an observation, they try to pick a pose from a prior distri-
bution which best fits the current likelihood. Though this is an extremely powerful tool, we note
that the methods do not explicitly address geometric properties or algebraic details of the data.
Rather, the methods rely on these details being captured during the training stage and appear as
latent parameters. In essence, this transfers too much importance to the training stage.

An alternative less explored, is to borrow techniques from structure from motion (SfM) and
couple them with prior statistical knowledge. SfM [6] techniques are able to produce highly
accurate solution when the object is rigid, and is widely regarded as one of biggest success story
of computer vision. But, extending SfM to non-rigid scenario has turned out to be quite tricky.
One popular flavor of SfM algorithm is the Factorization algorithm [7–10].

In this work, we use a variant of recently proposed [10] non-rigid factorization method (NRF,
hereafter) for performing SfM.

Methodology: Factorization methods attempt to capture the implicit geometric invariants
present in a wide temporal window of input data. (An example invariant might be that two fea-
ture points from a single rigid body should have similar motion trajectories. These invariants
uncover themselves as reduced rank constraints [7, 8, 10] on the data observation matrix consist-
ing of stacked (x,y) points. This matrix can be factorized into two matrices, one representing
the rotation, and the other representing the shape of the object. A straightforward Singular Value
Decomposition (SVD) of this matrix results in the recovery of this factorization only up-to a gen-
eralized linear corrective transform (§Eq. 3). Solving this linear transform is a non-trivial task
for several reasons as has been recently observed in the literature.

Further, the current factorization based solutions are not directly adaptable to the human
movement problem (our interest) since the quality of the solution degenerates very rapidly when
the “deformations” are large1 .

Contribution: In this paper we propose a novel constrained factorization algorithm, which
effectively couples prior learned statistical knowledge about human shape variability (and the sub-
space it spans) from the ground truth motion capture data, with non-rigid factorization algorithm.
Specifically, we make use of motion capture data to build a prior reference pre-shape (§Sec. 3.1)
. We assume that the recovered shape from the NRF algorithm should be structurally similar to
the reference pre-shape. This is formulated as a constrained non-linear programming problem.
These constraints on the structure of shape subspaces reduces the search domain and renders the
problem well-posed (Eq. 6). We provide qualitative and quantitative results to demonstrate the
validity of our scheme.

Notation: We follow the notation used in [10]. a is a scalar, a is a vector and A is a matrix.
⊗ denotes Kronecker product. � denotes Hadamard product. vec(A) vectorizes A by stacking
its columns and vech(A) vectorizes only its lower triangular portion. A† denotes the generalized
inverse. vc(x,y) = vech(xyT +yxT−diag(x�y)). Note that vc(x,y) operator helps to represent
equations of the form vec(xTAy) when A is symmetric, more concisely as vc(x,y)T.vech(A)

Road Map In Section 2 we outline two different applications of existing NRF methods, which
are relevant in our context. We first describe how NRF can be used to de-noise and fill in miss-
ing entries of a noisy and possibly incomplete data sequence. This is followed up with a brief
overview of a straightforward way of using prior NRF methods, with our experiments that exposes
some problems. Section 3 formalizes our notion of shape and describes how shape variability of
an ensemble of data can be captured. Section 4 gives the details of a Sequential Quadratic Pro-
gramming based constrained optimization scheme which couples NRF algorithm with the learned
statistical data. We discuss our experiments and results in Section 5 and conclude in Section 6.

2 Non Rigid Factorization
Apart from structure from motion, factorization techniques can be applied to a wide range of
application like data segmentation, data de-noising and data imputation. Data de-noising and im-
putation are of significant interest to us since the feature tracks from the off-the shelf trackers are

1There has been some recent work on extending factorization methods for articulated structures [11, 12]. But these
methods require a very large number of features, whereas we work with a very sparse number of features and assume the
human body to be a deforming object
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Figure 1: A pictorial representation of a morphable model. The right hand side is the actual data seen but can be obtained by modifying
“basis” shapes.

typically noisy and contain missing information due to occlusion. The de-noising and structure
recovering capability of the factorization algorithm is reviewed in this section.

The Basics: A popular representation for image formation (for either non-rigid or articulated
objects) under orthographic or weak projective camera models is to write

W f = R f (
K

∑
i=1

c f iSi)

where W f is the observed 2D feature in frame f (out of F given frames), R f ∈ R2×3 is the
truncated row-orthonormal rotation matrix. K is the number of morph shapes needed to fully
represent the object, Si ∈ R3×P the ith morph shapes (where P refers to the number of feature
points tracked), and c f i, the morph weights corresponding to S in the f th frame. This is pictorially
represented in Fig. 1.

We build an observation matrix W ∈ R2F×P by stacking the position of P landmark points
observed in F frames. The structure of the observation matrix W appears in the left hand side of
Eq. 1. Here (xi j,yi j) refers to the 2D co-ordinates of the point j in frame i.

P =


x11 · · · x1P
y11 · · · y1P
... · · ·

...
xF1 · · · xFP
yF1 · · · yFP

 = MS =

 cT
1 ⊗R1

...
cT

F ⊗RF


︸ ︷︷ ︸

2F×3K

 S1
...

SF


︸ ︷︷ ︸

3K×P

(1)

This factorization can be performed modulo a gauge factor of G ∈ GL(3K,3K) [8](§Sec.2.2)
using SVD, if we assume an isotropic and Gaussian noise model2. But when there are outliers and
missing data, which indeed is the case with most real-life measurements due to tracking failure
and outliers, a straightforward SVD is no longer applicable.

2.1 Data denoising and missing information recovery
The most commonly used approach is to re-write the above problem with some robust ρ-function
where the contribution of each item is weighted according to its fitness to the subspace [13,
14]. The modified factorization problem is now to compute the maximum likely estimator of a
weighted L2 norm cost function.

εmle(M̃, S̃) = ||W� (P−M̃S̃)||2F (2)

where wi j ≥ 0 is a weighing factor which specifies the uncertainty in pi j and wi j = 0 if pi j is
missing

The literature on factorization with missing data falls into several categories: close-form solu-
tions, imputation methods, EM-akin alteration methods and direct non-linear minimization meth-
ods. An excellent comparative study between these various method can be found in [14].

2Note that though the factorization assumes that temporal dependices in the data are caught by the tracker, the rank
constraint enforces another layer of weak and subtle constraint on the contunity of motion.
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(a)

Uncorrupted Data Incomplete and Noisy Data Recovered Data

(b)

Figure 2: Surface and matrix plots (left and right hand side respectively) of noisy+incomplete data, de-noised data and Ground Truth.
Notice that the recovered data has a high similarity to the ground truth

Our Denoising Method: We make use of the second order damped Newton algorithm intro-
duced in [14] to de-noise the noisy point tracks. But we additionally perform modified Gram-
Schmidt orthogonalization on the current estimate of both M̃ and S̃ at each iteration. Note that
Eq. 2 does not impose any structure on M̃ or S̃, whereas SVD based solutions ensured that M̃ and
S̃ are orthonormal and form good bases. We find that enforcing the orthonormality at each step
makes the algorithm more numerically robust, rather than performing one single SVD toward the
end. We initialize the optimization with left and right subspace estimate from a sparse SVD [15]
of the incomplete data matrix. We weigh the visible features isotropically. These weights are
estimated by contrasting the singular value spectrum of the sparse SVD with the mean value of a
prior computed ensemble of spectrum of non-noisy, complete and typical data sets. The features
which are not visible are assigned zero weights. A typical example is shown in Fig. 2(a). The
deep trenches in the top figure corresponds to the missing data feature points. Observe that these
valleys disappear after the de-noising step (middle figure). Moreover, the recovered data has a
high similarity to the ground truth (bottom figure).

2.2 Recovering Motion and Shape
As mentioned earlier, unfortunately this factorization is not unique, but determinable only up to a
non-singular linear corrective transformation G as

M = M̃.G S = G−1.S̃ (3)

where we have the true scaled rotation matrix M and shape matrix S. The heart of the non-linear
factorization algorithm lies in solving for this corrective transform G ∈ GL(3K×3K) as described
briefly below.

Let xT
f and yT

f be the pair of rows in M which gives the projection for frame f . Notice that M
is made up of blocks of 2×3 scaled rotation matrices. Hence rows of each of these 2×3 blocks
must be orthogonal and of equal norm.

xT
f y f = 0 (orthogonality constraint)

x̃T
f GGT ỹf = 0⇒ vc(x̃f, ỹf)vech(GGT) = 0
xT

f x f = yT
f y f ⇒ (x f −y f )T (x f +y f ) = 0 (equal norm constraint)

(x̃ f − ỹ f )T GGT (x̃ f + ỹ f )⇒ vc(x̃f− ỹf, x̃f + ỹf)vech(GGT) = 0
Let L = [vc(x̃f, ỹf),vc(x̃f− ỹf, x̃f + ỹf)]T∀ f and QA = LLT

(4)
Note that M1:3 = M̃G1:3 ∈ R2F×3. It turns out that solving for G1:3 is sufficient to solve for

the rest of G [10]. The vanilla NRF computes G1:3GT
1:3 that minimizes the sum squared deviation

from orthogonality in the final motion matrix by least squares solving the system of equations
given by

OrthErrQA(G1:3) = vech(G1:3GT
1:3)

TQAvech(G1:3GT
1:3) (5)
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The symmetric matrix G1:3G1:3 is later decomposed to G1:3 by performing a rank-3 EVD (G1:3 =
VΛ0.5)

Significantly, it was recently shown [9] that these rotation constraints are not sufficient to
uniquely solve for the corrective transform G for articulate and non-rigid motions. More specif-
ically the general solution of the rotation constraints is GHGT , where H is the summation of an
arbitrary block skew symmetric matrix and an arbitrary block scale identity matrix. The culprit be-
ing the redundancy in the constraint matrix which leaves the solution to Eq. 5 under-constrained.
One way to overcome this ill-posedness is a heuristic scheme proposed by the authors of [9] where
shapes in K frames are assumed to be independent and will act as a set of bases. Unfortunately, in
general, this is not a good practice, since it tries to represent the shape space non-parsimoniously
with a finite set of local diffeomorphisms, and hence has questionable subspace representation
ability [16].

An alternative appears in [10] where Brand makes another relevant observations that approxi-
mation of Eq. 5 as a nested linear least square solution doesn’t do justice to the physical reality. It
overlooks a lot of co-variance information encoded in QA. Instead, the author solves G1:3 directly
from Eq. 5 using a variant of first order line search global optimization framework (the step sizes
are calculated by direct root finding). But, our experiments showed that the error surfaces gener-
ally have a rough terrain and many a times converge to the dreaded local minima. An example is
show in Fig. 3.

Figure 3: Non-rigid factorization algorithms have the tendency to flatten the body structure (notice the legs). The red colored human
model is the representation of the actual data and the pink colored model is a reconstruction from 2D data.

The vanilla NRF, does not make any assumption about the shape of the object in scene. But a
huge chunk of vision related engineering problems (in our case human pose extraction) do allow
us to make valid assumption regarding object shape subspaces and possibly get an estimate of the
subspace apriori. In the next section we describe how a good prior estimate of shape subspace
can be obtained.

3 Shape Analysis
The word “shape” is very commonly used in everyday language, usually referring to the appear-
ance of an object. Following Kendall [17] the definition of shape that we consider is:

Shape is all the geometrical information that remains when location, scale and rota-
tional effects are filtered out from an object

Important aspects of shape analysis are to obtain a measure of distance between shapes, to
estimate average shapes from a random sample and to estimate shape variability from a random
sample.

Procrustes analysis involves matching configurations with similarity transformations to be as
close as possible according to Euclidean distance, using least squares techniques. More formally,
given two mean centered configuration matrices X1 and X2, the full Procrustes distance between
X1 and X2 is

Dpro =
inf

Γ∈SO(3),β∈R ||Z2−βZ1Γ||

where Xr = Zr/||Xr||,r = 1,2
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Similarly, the full Procrustes estimate of mean shape [µ̂] is obtained by minimizing (over µ)
the sum of square full Procrustes distance from each Xi to an unknown unit mean configuration
µ , i.e

[µ̂] = arg infµ

n

∑
i=1

d2
F(Xi,µ)

For a more detailed exposition, we refer the readers to [18] and the original work of Kendall [17]

3.1 Creating The Reference Pre-Shape
In the last decade or so, principal component analysis (PCA) has become a favorite tool for
computer vision and graphics researchers [19, 20]. PCA is a simple, yet powerful technique to
collect and investigate the statistically variability of data which resides in linear spaces (R3 in our
case). To learn a good set of bases we need a corpus of accurate data with wide variability, which
now a days is publicly available in the form of archival motion capture data.

Each pose is parametrized as a single observation 60 dimensional column vector (vec(Qtrain))
containing the Euclidean positional information of all the land mark points3. We borrow tech-
niques from Procrustes Analysis introduced in the previous section to strip these vectors of posi-
tional, scale, and orientation details.

If µ̂ be a pre-shape corresponding to the full Procrustes mean shape, the aligned vectors can
be computed as

vF = (1−vec(µ̂ µ̂
T))vec(β̂iQtrainΓ̂i)

These aligned vectors are stacked into a data matrix Xmocap and we compute the principal com-
ponents of this data matrix. PCA performs a basis transformation to an orthogonal co-ordinate
system formed by the eigen vectors Vi of the covariance matrix of Xmocap. These orthogonal com-
ponents are ordered with respect to the descending values of their eigenvalues and are arranged
into Sref. We call Sref as Reference Pre-shape. For a full body motion with just 5 bases we are
able to represent more than 94% variation in the data.

4 Constrained Factorization
The primal idea behind our method is that shapes recovered by the NRF should having significant
similarity to the pre-learned Reference Pre-Shape. We express this as a constrained non-linear
programming problem.

More formally, we rewrite Eq. 5 as

E(G1:3) = vech(G1:3GT
1:3)

TQAvech(G1:3GT
1:3)

S.T trace(G1:3GT
1:3) = 1

D2
pro(G1:3, S̃S†

ref)≤−d
(6)

where Dpro(X,Y) gives the orthogonal Procrustes distance between X and Y and d is an user-set
parameter, which specifies the tolerance level for the structural variation and defines the feasible
area or the domain of the cost function (smaller the tolerance, narrower the feasible area) . In
our experiments we used 0.2 as the threshold. Though it is tempting to decrease the tolerance,
lesser tolerance makes the algorithm more prone to over-fitting (especially if the training set is
not exhaustive enough).

Notice that both our cost function and constraints are non-linear. While the cost function is
quartic, the constraints are of quadratic nature. Though constrained non-linear optimization (in
general) is still an open problem, many efficient, but approximate numerical schemes exist [21]
especially for relatively lower order cost function (quartic, in our case) and near linear constraint
functions (quadratic). We make use of Sequential Quadratic Programming, a well known and
used numerical solution for optimizing smooth non-linear cost functions under smooth non-linear
constraints [21,22]. It is Newton like in that it requires second derivatives of the cost function and
potentially provides quadratic convergence.

The goal is to extremize a scalar cost function E(x) subject to a vector of constraints c(x)≤ 0.
(Note that inequality constraints can be treated at par with the equality constraint by assuming its

3Note that the ordering (or the meta-knowledge about it) of this vector has to be consistent with the 2D observation
vector.
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respective Lagrange multiplier vanishes whenever the inequality is not strict [21] and is strictly
positive whenever the inequality is strict). Lagrange multipliers λ give an implicit solution.

5E +λ 5 c = 0 with c(x) = 0

We resolve this iteratively starting from some initial guess bx0. We approximate the cost to
second order and the constraints to first order at x0, giving a quadratic optimization sub-problem
with linear constraints.

min
δx

(
5E.δx+

1
2

δxT 52 f .δx
)
|c+5c.δx

This sub-problem has an exact linear solution(
52E 5cT

5c 0

)(
δx
λ

)
=−

(
5E

c

)
(7)

We solve for δx, update x0 to x1 = x0 +δx, re-estimate derivatives and iterate to converge.
The first order and second order derivatives of the Lagrange function in Eq. 6 are given in

Appendix A.

5 Experiments
Training Data: We use 700 frames from motion capture data included in the HumanEva
dataset [5] for learning the pre-shapes. These frames are selected by randomly sampling from
the training set provided in the dataset. Selected frames span poses from various set of human
action like walking, boxing, making hand gestures etc.

Testing: We test the performance of our algorithm on synthetic data with ground truth in-
cluded in the testing set of the HumanEva dataset, as well as videos which give us only 2D
information.

Motion-Capture Based Synthetic Data: In any choice of motion clip (from the motion cap-
ture data base) we know the 3D positions. We synthetically created a two dimensional projection
by randomly choosing a center of projection. To simulate tracking errors and the like, the result-
ing “features” are further corrupted by adding Gaussian noise and frames dropped randomly to
simulate quantifiable error and occlusion errors in the tracking process. This constituted the pro-
cess of creating the observation matrix. The incomplete and noisy observation matrix is denoised
using the method described in Section 2. Recall that the output of factorization is only accurate
up-to an arbitrary rotation and scale. So the error at each frame is defined to be the Procrustes
distance from the recovered orientation to the ground truth. We compare the performance of our
algorithm to that of the unconstrained case [10].

Fig. 4 shows ground truth (left) contrasted with the output of our algorithm (middle) and the
unconstrained case (right). The recovered pose by the unconstrained algorithm is nearly planar
(notice the stick figure’s left arm piercing its torso). The newly introduced boundary conditions
ensured that the recovered solution did not collapse into a degenerate solution unlike the uncon-
strained state, and is found to be quite similar to the ground truth.

Figure 4: Ground truth data contrasted with the output from the constrained (our method) and non-constrained factorization (prior
method) respectively.

Next, we compared the performance of both algorithms over a novel long sequence (show in
Fig. 5(a)). This sequence is novel in that it was not used for the computation of the reference
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pre-shape. We selected a complicated clip of a boxing motion consisting of 577 frames sampled
at 30Hz. The data is corrupted with 10% additive Gaussian noise and around 15% of its observa-
tions are masked out. Note that average performance of the constrained factorization algorithm
hovers around the 5–15% reconstruction error mark. One interesting variation in the plot is that
occasionally (frame numbers 290–320, 348–355 and 380–395) the error of the unconstrained al-
gorithm dips somewhat below that of its constrained counter part (our method). The reason for
this unexpected better performance is that during these frames, the actor is assuming a near planar
pose and the degenerate shape base extracted by the unconstrained factorization algorithm is bet-
ter able to explain these frames. Nevertheless, the unconstrained algorithm rapidly loses accuracy
in the more common situation, when the actor resumes his or her flexible movements.

The scatter diagram in Fig. 5(b) plots the average error recorded by the constrained factoriza-
tion algorithm (shown in yellow) and its unconstrained counterpart (shown in cyan) for various
data input (a total of 39 different inputs). Each of the data input was seeded with 2% additive
Gaussian error, and no occlusion condition was assumed. While carrying out these experiments
we further assumed that the inequality constraints are strict. Fig. 5(c) shows the performance of
both the version of the algorithm with three different sequence (walking , boxing and running)
when subjected to different amount of synthetic noise. While the dotted line records the perfor-
mance of the unconstrained version of the algorithm, the regular line record that of the constrained
one. Walking, Boxing and Dancing motion sequence are represented by the red, green and blue
lines respectively. Superior performance by the constrained version of the algorithm is amply
recorded in every experiment.
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Figure 5: Comparative Performance Evaluation

5.1 Data With No Ground Truth
In this experiment an 80 frame video sequence was semi-automatically tracked using the KLT
based tracker. We hand picked the features which conformed to the anatomically relevant land-
mark points. We re-picked the lost features after every 10 frames. Note that far superior tracking
schemes exist [23] for tracking humans from video. The purpose of this experiment was to test
the performance under non-linear error models which often appear in real data sequences. Two
different ‘pigeon’ views of the recovered orientation of the actor is shown along with actual data
is show in Fig. 6. As a post-processing step, the recovered data is smoothed out using a Kalman
smoother. More output including the video of the just explained experiment can be found at
http://www.cse.iitb.ac.in/appu/bmvc07/

6 Conclusion and Future Work
We have given a novel constrained non-rigid factorization algorithm that extracts 3D human poses
from 2D video sequences. Both qualitative and quantitative results were provided. Note that our
method can be applied to any deforming data sequences (apart from human motion), provided
accurate motion capture or similar high precision quantized data exists.

Future Work: The strength and weakness of factorization based techniques lies in its block
based nature. This potentially rules out any online scheme. We are currently exploring the pos-
sibility of having a windowed scheme, thereby making the algorithm semi-online. We are also
considering having an iterative refinement of reference pre-shape, hence equipping the algorithm
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Figure 6: The top row shows the raw frames with features overlayed. The middle and bottom shows the recovered 3d pose rendered
from two novel view points. The front view is identical and not shown.

to handle non-stationary data, and previously unseen data. Another possibility we wish to explore
is to merge the optimization given in Eq. 2 and Eq. 6 as a single optimization problem.

A Derivatives
The corresponding Lagrange function of Eq. 6 can be written as

L = vech(G1:3GT
1:3)

TQAvech(G1:3GT
1:3)+λ (vec(G1:3)Tvec(G1:3)−1)

+µ(vec(G1:3− S̃S†
refΓ)Tvec(G1:3− S̃S†

refΓ)−d) (8)

where Γi ∈ SO(3). Let Z = G1:3 and Ji j ∈ {0,1}3K×3 is all zeros except for element Ji j = 1

∂L (Z,λ ,µ)
∂Zi j

=2vech(ZZT)TQAvech(ZJT
ij +JijZT)+λvec(ZJT

ij +JijZT)

+ µ(vec((Z− S̃S†
refΓ)JT

ij +Jijvec((Z− S̃S†
refΓ)T)

∂L (Z, ,λ ,µ)
∂λ

=vec(G1:3)Tvec(G1:3)

∂L (Z, ,λ ,µ)
∂ µ

=vec(G1:3− S̃S†
refΓ)Tvec(G1:3− S̃S†

refΓ)

∂L (Z,λ ,µ)
∂ZijZkl

=2.vech(ZJT
kl)+JklZT)QA.vech(ZJT

ij +JijZT)

+(vech(ZZT)TQA +λ + µ)vech(JklJT
ij +JijJT

kl)

(9)
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Abstract

This paper presents a computationally efficient approach to estimate transla-
tional 3-D motion from range images sequences, that is adapted from a 2-D
motion estimation algorithm. An implementation of the algorithm is eval-
uated for computational efficiency as well as robustness in the presence of
noise for both synthetic and real-life range data acquired with a PMD device,
a high-speed low-resolution 3-D camera.

1 Introduction

Motion estimation for intensity video images is well researched, with a number of proven
concepts to create dense motion vector fields, possessing computational efficiency, or
robustness against sensor noise. However, 3-D motion estimation on range images lacks
fast and robust algorithmic concepts.

A current application field for translational 3-D motion estimation is given by the use
of 3-D cameras in cars, such as a PMD camera [3]. In road traffic scenes, the only notable
rotational motions are yaw movements which occur for cars bending off. Yet, even in this
case, translational motion dominates due to the considerable turn radius of cars.

This paper presents a novel method to estimate translational 3-D motion from range
images, that is adapted from a high-performance 2-D motion estimation algorithm. Its
central qualities are computational efficiency and robustness in the presence of noise.

2 Related Work

The issue of estimating 3-D motion or optical flow fields from range images has been the
subject of a number of publications. For example, an evaluation of 3-D motion estimation
algorithms was given in Eggert et al., 1997 [2]. Many 3-D motion estimation approaches
are based upon finding correspondences. These correspondences can be considered both
local (cf. [1]), or global by solving a total least squares framework [8]. The resulting flow
field of the latter method is dense, yet the complexity is high and real-time computation
is not feasible with current hardware.

A correspondenceless approach was pursued by Liu and Rodrigues, 1999, based upon
the cross matrix to estimate the motion parameters [6]. It is also possible to use the
shift of previously segmented surfaces in a range image for motion estimation [5]. This
approach is restricted to small relative motion between the camera and the scene and the
segmentation process in itself is complex.
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Apart from the cited work on 3-D motion estimation – which is only a selection –
2-D optical flow is a major topic of interest. Most of the 2-D motion estimation algo-
rithms used in video-encoders are designed to be computationally efficient, which is also
a constraint for real-time motion estimation.

However, to estimate 3-D motion in range images under real-time constraints, neither
2-D motion estimation based on difference measures nor 3-D motion estimation algo-
rithms with high complexity can be used. Therefore, this paper suggests adapting a 2-D
motion estimation algorithm for use on range images.

3 2-D Motion Estimation using PMVFAST

The Predictive Motion Vector Field Adaptive Search Technique (PMVFAST) is a block
based motion estimation technique based upon MVFAST [4], which is an essential part
of several video-coding standards, such as MPEG-1/2/4 [9]. PMVFAST has shown to be
faster than other motion estimators while retaining a motion estimation quality compara-
ble to a significantly slower full search algorithm.

PMVFAST uses a Diamond Search (DS) pattern (cf. Fig. 1a). Beginning in the centre,
the (0,0) motion vector (MV) is the initial starting point. Then the search path is mean-
dering circularly around the centre, performing a full orbit each time before increasing its
search distance up until the maximum search distance.
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Figure 1: Fig. a) shows a Diamond Search pattern used for 2-D motion estimation. Ex-
emplary PCS path building process: b) shows all (1,0,0) variations (#1-6), b) extends a)
with all (1,1,0) variations (#7-18), and c) extends b) with all (2,0,0) variations (#19-24).

At each point on the search path, a block in the previous frame is matched against a
block in the current frame. The block in the current frame is shifted by the (i,j) values of
the search path. The quality of the match is determined by a distortion measure. A widely
used distortion measure is the sum of absolute differences (SAD, see Eq. 1), which omits
the multiplications necessary for mean squared error but has a similar performance [9].
Blocks used in this paper are 5× 5 pixels, resulting in 25 summations per comparison.
Also, MVs are not calculated for every pixel, instead a regular grid is used with the grid
distance increasing logarithmically with the range image’s size.

SADDS(vx,vy) = ∑
i, j∈DS

∣∣Ik(x+ i,y+ j)− Ik−1(x+vx + i,y+vy + j)
∣∣ (1)

The search for the minimum SAD is performed with two differently sized diamonds
in [9]. The expected magnitude of motion is estimated by examining three neighbouring
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#28/29 (2-D) #28/29 (3-D)

#37/38 (2-D) #37/38 (3-D)

Figure 2: Motion vector fields of frame pairs #28/29 (increasing distance to car in front)
and frame pair #37/38 (decreasing distance) in the Torcs sequence. Motion vector field
(2D) shows the result using a 2-D full search algorithm, whereas (3D) shows the PCS
result. Blue arrows indicate an increasing distance, red arrows a decreasing distance. The
background shows the range images on which the motion estimation has been performed.

MVs at(x−1,y), (x,y−1), (x+1,y−1), the previous MV at(xk−1,yk−1), and the median
MV. The average of these MVs is then used as an estimation for the current MV.

If the estimated MV for (x,y) is small, a small search diamond is used with the (0,0)
MV as its centre. If the MV is estimated to be intermediate, a large diamond is used, again
with (0,0) MV as starting point. In the case of high estimated motion, the small diamond
is used with the estimated MV as its centre.

Regardless of the estimated motion, the (0,0) MV is examined first, and – if the dis-
tortion is below a chosen threshold – no further matching is done. Otherwise, the DS is
performed and the displacement featuring the minimum distortion is chosen as the cen-
tre point in the next cycle. The search algorithm terminates if the centre of the search
diamond is also the displacement with minimum distortion.

This concept holds for intensity images, yet in range images distance information
is represented by intensity. On convex surfaces, such as a sphere, this will induce a
difference-based 2-D motion estimation to detect a concentric outward motion if the dis-
tance is decreasing (it is implied, that small distances are represented by a high intensity),
and a converging motion if the distance is increasing.

The above behaviour does not heavily affect MPEG motion estimation, since the aim
there is not to calculate exact MVs, but to maximally reduce the video’s bit rate while
having as little visible quality loss as possible. However, for range images this effect
leads to the necessity to consider depth motion in order to get accurate motion vectors.

4 Extending Diamond Search for use on Range Images

The idea of using a diamond shaped search path is extendible towards a 3-D translational
motion estimation from range images. The least complex diamond shape in 3-D is a
regular octahedron which will be referred to asPoint Cut Search(PCS) path.

The PCS path will expand continuously, adding new layers around the origin in a point
cut shape. The first layer has a distance of 1 to (0,0,0) and consists of the six permutations
(1,0,0), (0,1,0), (0,0,1), (-1,0,0), (0,-1,0), and (0,0,-1) with varying signs.
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The following base coordinates are (1,1,0); (1,1,1); (2,0,0); (2,1,0); (3,0,0) etc. These
base coordinates are then permutated (maximum 6 permutations if all values are unique)
with changing signs for every value (maximum 8 sign combinations if no value is zero).
An illustration of the PCS path building process is given in Fig. 1b-d.

Both PMVFAST and PCS realise horizontal and vertical displacements by shifting the
observation window in the actual frame horizontally and vertically. In PCS, displacements
in distance in range images are represented as changes of intensity. Therefore, by adding
or subtracting the value corresponding to the range displacement to the intensity values in
the observation window, a displacement in distance can be modelled (see Eq. 2).

SADPCS(vx,vy,vz) = ∑
i, j,k∈PCS

∣∣Ik(x+ i,y+ j)− Ik−1(x+vx + i,y+vy + j)+vz+k
∣∣ (2)

As for PMVFAST, the search terminates when the centre point of the PCS is the point
with minimum distortion or when the maximum number of iterations is reached.

5 Evaluation of the implemented Motion Estimator

The proposed motion estimator was implemented using four layers of abstraction (cf. Fig.
3). First, the range images are filtered in order to remove noise (temporal filtering using
previous frames is optional). Second, subsequent filtered range images are searched for
correspondences, using PCS. The resulting motion vectors are then filtered to remove
outliers. Finally, the filtered motion vector field is used by PCS to predict the motion
vectors for the next motion estimation.

Motion Vector Field

Range Image #k

Range Image #k Range Image #k+1 Range Image #k+2

Motion Vector Field Motion Vector Field

Motion Vector Field Motion Vector Field

NR

ME

OR

Range Image #k+1

NR

Range Image #k+2

NR

ME ME

OR OR

MPMP MP

MP

NR Noise Removal

Motion Prediction

Motion Estimation

Outlier Removal

……

Figure 3: Block diagram of the implemented PCS motion estimator. Circles represent
processing / filtering operations that are performed by the motion estimator, while boxes
represent different abstraction layers from unfiltered range images to filtered MV fields.

5.1 Computational cost

The computational cost of the implemented motion estimator is evaluated using the sim-
ulated range image sequence extracted fromTorcs1. The sequence consists of 155 frames

1Torcs is an open source racing game (http://torcs.sourcforge.net) using OpenGL. See supplemen-
tary video:http://emfs1.eps.hw.ac.uk/∼ceeyrp/BMVC2007/motionTorcs.avi showing the range im-
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recorded at 15 frames per second and a resolution of 500×220 pixel. Range is encoded
with 8 bit, representing 256 range values, which is a coarse yet sufficient range resolution.

For each configuration, the average number of comparisons needed for each motion
vector and the average SAD for the chosen motion vectors were taken as indicators of the
computational cost and motion vector field quality respectively. To get a benchmark for
these two values, a Full Search (FS) has been used (cf. Tab. 1).

Evaluating the performance of the PCS search strategy, the maximum number of iter-
ations to shift the local minimum to the PCS’s centre is the most important parameter. For
evaluation, two PCS paths were chosen. The small PCS used has a maximum search dis-
tance of 2, the large PCS has a maximum search distance of 5. The threshold for (0,0,0)
MV was set to 16, a value which yielded good results in the evaluation.

FS PCS2 PCS3 PCS4 PCS5 PCS6 PCS7

Comparisons per MV 75.52 19.72 22.49 24.70 25.72 26.48 27.10
Average SAD per MV 33.16 45.46 40.21 37.04 35.69 34.60 33.86

Efficiency Measure (Product) 2504.4 897.5 904.3 915.0 918.0 916.1 917.6

Table 1: Comparisons per MV and average SAD for motion estimation in the Torcs se-
quence. A full search (FS) is used as benchmark for the PCSn with n maximum iterations.
The efficiency measure is the product of comparisons per MV and average SAD.

Tab. 1 shows the performance of the PCS strategy with respect to the maximum
number of iterations allowed. The lowest average SAD of 33.86 for 7 maximum iterations
comes very close to the benchmark valueSADf ull of 33.16, while needing only about a
third (36%) of the comparisons.

In order to assess the efficiency of the PMVFAST search strategy, the product of
comparisons needed for each MV and the average SAD is a possible metric. This product
grows with increasing computational cost and distortion, for low computational cost and
low distortion the product is small (cf. Tab. 1), the latter being true for PCS.

5.2 Quantitative Evaluation of Accuracy

A comparison of the estimated motion vector fields of a synthetic motion pattern against
a ground truth known from the rendering process of the pattern has been conducted.

5.2.1 Motion Ground Truth

The motion pattern consists of two spheres diametrically orbiting around the range im-
age’s centre (x,y,z) = (160,120,127) so that the sphere in front occludes the sphere behind
it intermittently. The underlying motion function for this pattern is

vk =

 ⌊
80.0·sin( k

30)+160.5
⌋⌊

60.0·cos( k
30)+120.5

⌋⌊
80.0·cos( k

30)+127.5
⌋

−

 xk−1

yk−1

zk−1

 , vmax=

 3
2
3

 (3)

The resulting range image sequence contains 200 frames with 320× 240 pixels2.

age, and the motion vector field estimated using PCS.
2See supplementary video:http://emfs1.eps.hw.ac.uk/∼ceeyrp/BMVC2007/motionOrbit.avi

showing the source range image, ground truth, motion estimation and motion vector field (from left to right).
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5.2.2 Noise and Preprocessing Model

Range data sequences acquired by a 3-D camera suffer from a substantial amount of noise.
This noise can be reduced by employing temporal filtering of a large number of frames.
For traffic scenes, temporal filtering over a number of frames increases rotational motion
of other traffic participants, which is not handled well by the algorithm.

In this trade-off between noise and rotational motion the algorithm has shown to be
more capable of handling noise in the range images, therefore a diminutive number of
frames for temporal filtering has been chosen.

The noise that occurs in 3-D camera range data sequences is best characterised as
clipped Gaussian noise, as no negative distances or distances above the maximum mea-
surable distance can appear, yet the distribution of noise suggests a Gaussian distribution
(cf. Fig. 4). Therefore, the synthetic range image sequence has added noise of Gaussian
distribution, where 0.0≥ z(x,y)+znoise≥ 255.0.
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Figure 4: Distribution of range measurements of a constant distance over 135 frames
(bars), which can be approximated by a Gaussian distribution withσ = 2.7 (red line).

Assuming a Gaussian noise model, spatial filtering using a Gaussian filter with 0.8≥
σRI ≥ 4.8 presents a suitable preprocessing (cf. Fig. 5).
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Figure 5: MSE of motion vector components for the orbiting movement pattern under
influence of Gaussian noiseσnoiseestimated by PCS3 (solid line) and FS (dotted line) as
compared to ground truth. The range image is processed using a Gaussian filter withσRI.

In Fig. 5, three major effects can be observed. First, if a noise-free range image is
processed with a Gaussian filter, the MSE deteriorates as could be expected. Second, if
a noisy range image is processed with a Gaussian filter, the MSE improves until a point
where the range image is quasi noise-free and then shows the same behaviour as a noise-
free image, that is MSE deterioration for higher standard deviations.

The third observable effect is, that PCS has a lower MSE for range images with a high
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remaining noise after preprocessing. The reason for that is differing termination condi-
tions. If a high level of noise is present during motion estimation, the correct MV does
not necessarily exhibit the lowest SAD value. Using a full search, every displacement has
the same probability to be selected as the estimated MV, whereas the iterative shifting in
PCS makes it more probable, that a displacement near the initial starting point is selected.

The synthetic scene contains a large fraction of (0,0,0) MVs, therefore an incorrect
MV close to an initial (0,0,0) MV starting point does not affect the MSE as much as a
large MV, that is more probable to occur using a full search. However, it can be seen in
Fig. 5 that this effect disappears when a suitable level of filtering is applied, so that the
correct MSE exhibits the minimum SAD.

5.2.3 Regularisation Model

An analysis of the resulting MV fields against the ground truth suggest, that the main
reason for high MSE values of the estimated motion vector fields is outliers caused by
noise in the range image, not generic false motion vector estimation. Suitable methods to
achieve outlier reduction include Gaussian or median filtering of the MV field.

In Fig. 6, MSE values for the same synthetic range image sequence as in Fig. 5 when
using a Gaussian (×) or median (∆, using a 5×5 field) filter are shown.
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Figure 6: MSE of motion vector components for the orbiting movement pattern under
influence of Gaussian noiseσnoiseestimated by PCS3 (solid line) and FS (dotted line) as
compared to ground truth. The source range image is filtered using a Gaussian filter with
σRI. The motion vector field is filtered using a Gaussian (×) or median (∆) filter.

In can be seen from Fig. 6, that the optimum MSE values gained by PCS at different
levels of noise in the range images (including no noise) are within a narrow field (that
is 0.1015 to 0.1616). Thich is an indicator that the algorithm is robust towards noise, if
both input range images and motion vector fields are suitably filtered. The results are also
comparable with the results gained by FS. At the same time, PCS computed the 320×
240 pixels range image sequence at 11.8 frames per second (fps) on a standard 2.0 GHz
PC, where FS performed at 1.85 fps, thus being more than six times (6.38) slower.

5.3 Performance on Data acquired with a 3-D Camera

In addition to synthetic range image sequences, the proposed algorithm has been evaluated
using real-life data acquired by a PMD device, a high-speed low-resolution 3-D camera.
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The 3-D camera is mounted inside the car close to the rear-mirror, observing an angle
range of 55◦× 18◦ in front of the car. It acquires 64× 16 pixel range images for distances
up to 30m with a frame-rate of≥100Hz [3]. In order to acquire a ground truth, a 2-D
laser-scanner mounted on the car’s radiator grille was used (see Fig. 7).
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Figure 7: The left image a) shows the scene at frame #310 as seen from a grayscale
intensity camera mounted close to the PMD device. The scatterplot b) on the right side
shows the readings of the 2-D laser-scanner at the same frame.

As the proposed algorithm is designed to estimate translational motion, a large rubber
ball is used due to its rotational invariance. Moreover, it is possible to reconstruct the
ball’s 3-D shape from the measured 2-D scan-line at any time, as the ball’s radius and the
scan-line’s height are both known. In the scene, the ball is pushed in front of the stationary
car and – due to a slightly inclined ground plane – performing a curve to the left, heading
back towards the car (cf. Fig. 8a).

In order to determine the trajectory of the ball’s centre, the readings of the laser-
scanner are discarded unless they fall into a rectangle (distance 0..15m, offset -5..5m),
which exclusively returns readings showing the ball. These readings fall onto a circle
with the ball’s radius. Thereby the ball’s centre is determined fulfilling the circle equation
Eq. 4 for the selected laser readings (xreading,yreading).

xcentre,ycentre= arg (xreading1,2,..,n −xcentre)2 +(yreading1,2,..,n −ycentre)2 (4)

It is obvious, that Eq. 4 is overdetermined forn> 2, which can be solved by averaging
all centre positions which are calculated using 2 laser readings at a time. The centre
positions are then processed by applying both median and Gaussian filters in order to get
a continuous motion (see Fig. 8a).

The range image sequence of the same scene is acquired with a PMD device3 (see Fig.
8b). In order to be used with PCS, the range data has to be filtered over a small number
of frames and outliers have to be rejected. Spatial filtering is not performed at this point,
as the motion estimation algorithm includes this operation.

Generating a motion ground truth from the laser readings requires a calibration func-
tion from (xlaser,ylaser) to (xpmd,ypmd,zpmd), which is approximated using a L2 regression.
(cf. [7]).

3See supplementary videohttp://emfs1.eps.hw.ac.uk/∼ceeyrp/BMVC2007/motionPMD.avi show-
ing the source range image, ground truth, motion estimation and motion vector field (from top to bottom).
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Figure 8: Scatterplot a) shows the ball’s trajectory as detected with a laser scanner (∆
represents frame #250,∇ frame #400). The range image sequence b) shows selected
frames of the scene as seen by the PMD device (ball is brightened manually as to enhance
visibility in the range image) as well as the corresponding estimated motion vector field.
In the latter, blue arrows indicate an increasing distance, red arrows a decreasing distance.

The motion ground truth can now be generated from the ball’s centre position. In
Fig. 9 the MSE values of the motion estimation for the acquired range image sequence as
compared to ground truth are shown.
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Figure 9: MSE of motion vectors components estimated by PCS3 (solid line) and FS
(dotted line) as compared to the ground truth under influence of Gaussian noiseσnoise for
the orbiting movement pattern. The source range image is processed using a Gaussian
filter with σRI.

Fig. 9 shows, that Gaussian or median filtering of the motion vector field results in a
considerable reduction of the MSE. Both PCS and FS show small MSE values. Due to
the large fraction of (0,0,0) MVs in the ground truth, the FS suffers from normal distrib-
ution of incorrect MVs in the presence of unfiltered noise, which is discussed in section
5.2.2 above. Again, PCS (46.9 fps) performed significantly faster than FS (19.5 fps) at a
comparable motion vector quality.
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6 Conclusion and Future Work

This paper presented a novel method to efficiently determine 3-D translational motion
vectors in a range image sequence. The motion estimation has been evaluated on noisy,
synthetic, and real-live range image data acquired by a PMD device and shown to be
robust if a suitable filtering is applied on both range image and motion vector field.

Yet, there remain limitations for the proposed algorithm, which are largely those of
PMVFAST. First, occlusion boundaries with little contrast between foreground object and
background can lead to a motion vector pointing from the previous scene’s background
towards the occluding object’s surface and vice versa. Second, rotational movements of
objects must not be fast in order to find correct correspondences, which is generally true
when using a high-speed 3-D camera on a road traffic scene. However, there still exists a
trade-off between rotational motion and noise in range image sequences.

It has been shown that the computational cost for the acquisition of the motion vectors
is low when compared to a full search. At a comparable motion vector field quality, PCS
is shown to require only 16% – 42% of the number of comparisons a full search performs.

Future work will include evaluating the algorithm allowing a dynamic road-traffic
range image scene as opposed to a static background and a fixed camera position. We
should also evaluate other alternatives to the full search algorithm such as range flow,
phase correlation or the use of a correlation-based matching criterion instead of a difference-
based SAD measure.
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Abstract

In this paper, we propose an approach to obtain super-resolved image and
super-resolved depth map using photometric cue. The images are captured
using different light source positions which are assumed to be known. The
surface of the object is assumed to be Lambertian. We model the high res-
olution structure (surface gradients) as a Markov Random Field (MRF) and
use graph cuts with discontinuity preservation to get a high resolution depth
map. We then reconstruct the high resolution intensity map for each light
source position using the high resolution surface gradients. Results of ex-
perimentation on synthetic and real data are presented. The advantage of the
proposed approach is that its time complexity is much less as compared to
the super-resolution approaches that use global optimization techniques such
as simulated annealing. Also, since we are using photometric cue, there is no
need of registration as is required in motion based approaches.

1 Introduction

Many existing vision applications require high spatial resolution images to take better
decisions. Since the resolution of an image is dependent on the device which is used
to acquire the image, it is difficult to use very high resolution sensors as they are often
expensive. Hence, there is a need to develop efficient methods to obtain better quality
high resolution images given the low resolution observations. Also, 3-D shape recovery
of a scene is used extensively for applications such as object tracking and recognition.
Super-resolution is the process of obtaining a high resolution image from several low
resolution images of the same scene. Most researchers use motion cue to increase the
resolution of an image. Although the 3-D structure of the scene being imaged is inherently
available from the disparity map, the motion cue being a 2-D feature matching technique
does not consider the 3-D structure. Hence, techniques to obtain high resolution images
which preserve the structure are required [2]. This motivates us to look into the use of
photometric cue in order to estimate the shape of the object and the high resolution image.

For practical vision applications, high resolution depth and intensity map estimation
methods which are computationally efficient are required. However, since the problem is
ill-posed, many researchers use regularization based approaches in order to obtain better
estimates. Now, if the cost used for obtaining the solution is non-convex (discontinuity
preserving cost), then optimization techniques such as simulated annealing are used to
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obtain the global minima, which makes these methods very time consuming. For instance,
if we consider an assembly line where an object has to be moved from one place to another
(industrial inspection), the requirement is to be able to calculate depth fast enough so that
the assembly line functions smoothly. Here the requirement is the speed and not very
high accuracy. In such situations near global optimization methods such as graph cuts are
useful.

In [8] the authors show the estimation of super-resolved image and depth map using
photometric cue. They model the surface gradients and albedo as the Markov Random
Field’s (MRF) and use line fields for discontinuity preservation. They also use additional
constraints for optimization. Since they use simulated annealing for minimization, the
approach is computationally very taxing.

In this paper, we solve the problem of simultaneous estimation of the super-resolved
depth map and intensity map using photometric cue. We use graph cuts for optimization
which is much faster as compared to simulated annealing minimization approach even
when a discontinuity preserving cost function is used. Our results show that the per-
formance (both perceptually and quantitatively) of graph cuts based approach for super-
resolution is better than general interpolation techniques. The results also show that our
super-resolution approach takes much less time as compared to the approach using simu-
lated annealing.

2 Previous Work

The idea of super-resolution was first proposed by Tsai and Huang [12]. In literature,
many researchers have proposed approaches for super-resolution that use motion as a
cue. In [4], Ur and Gross use the Papoulis-Brown generalized sampling theorem to ob-
tain a high resolution image from several low resolution spatially shifted images. A set
theoretic approach to the super-resolution restoration that is based on iterative back pro-
jection method adapted from computer-aided tomography was proposed in [6]. Here, the
output image is initialized and the temporary results are projected to the measurements
(by simulation). The temporary results are updated according to the simulation error. A
regularized constrained total least squares based approach to obtain high resolution image
was proposed in [7]. Cheeseman et al. [9] use a Bayesian method for reconstructing a
super-resolved surface model by combining the information from a set of given images.
They find the “emmitance” of the surface which is a combination of albedo, illumination
conditions and ground slope for landsat images. In [14], the authors consider graph cuts
optimization for super-resolution using motion cue. The high resolution image is modeled
as MRF and graph cuts is used for optimization to get the super-resolved image.

Researchers have also explored the possibility of super-resolving the intensity map of
the scene as well as the depth map. The authors in [5] formulate the problem of super-
resolution depth reconstruction as that of expectation maximization and use a probabilis-
tic approach using MRF modeling. In [3], Shekarforoush et al. use MRFs to model the
images to obtain high resolution depth and albedo from a sequence of displaced low reso-
lution observations. The effect of sampling a scene at a higher rate is acquired by having
sub-pixel displacements.

In [13], graph cuts minimization technique has been used for estimation of the surface
normals using photometric stereo. They use the ratio of two images, in order to cancel
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out the albedo in the image irradiance equation, and get the initial estimates of the surface
normal which are required to define the energy functions. Graph cuts is then used for
optimization. Tan et al. proposed a technique in [10] for enhancing the resolution for
photometric stereo. Their method first uses the generalized reflectance model to recover
the distribution of surface normals inside each pixel, from which they infer sub-pixel
surface geometry on a surface by spatially arranging the normals among pixels at a higher
resolution.

3 High Resolution using Photometric Stereo

If a Lambertian surface is assumed, the image irradiance equation relating the surface
gradients and image intensity can be written as,

El (x,y) = R(pl (x,y),ql (x,y)) = ρl (x,y)n̂l (x,y).ŝ (1)

where pl (x,y),ql (x,y) are the surface gradients in(x,y) directions respectively. Here
ρl (x,y) represents the albedo, which is nothing but the fraction of light reflected from the
surface at the point(x,y) and its value lies between 0 and 1. ˆnl (x,y) denotes the surface

normal given by (−pl (x,y),−ql (x,y),1)√
pl (x,y)2+ql (x,y)2+1

andR(pl (x,y),ql (x,y)) is the reflectance map,El (x,y)

is the image irradiance (or intensity) at point(x,y) in the image. ˆs= (−ps,−qs,1)√
p2

s+q2
s+1

is a unit

vector in the direction of the light source. Here, the subscriptl denotes low resolution.
It has been shown in [2] that generalized interpolation can be used with photometric

stereo to obtain high resolution. The high resolution image can be reconstructed using
the interpolated values of the surface gradients and albedo using Eq.(1). This technique
is called generalized interpolation. The advantage of using photometric cue for obtaining
high resolution observations is that since there is no relative motion between the scene
and the camera, the need for image registration with sub-pixel accuracy is eliminated.

In this paper we use graph cuts optimization which considers the spatial dependency
with discontinuity preservation. Our algorithm converges much faster than simulated an-
nealing and hence can be applied in a practical scenario. It may be noted here that we
do not optimize for albedo assuming that it is a smooth field and a simple interpolation
method can be used to interpolate albedo, while combining high resolution surface gradi-
ents and albedo to get high resolution intensity image.

4 Proposed Approach for Super-resolution using Graph
Cuts

Typically, in any reconstruction based super-resolution technique, the available informa-
tion from a number of low resolution observations is used together to get a single super-
resolved image. First, a forward model is defined to establish the low resolution image
formation process which is then used to establish a relation between the desired high res-
olution image and the given low resolution images. On the basis of this relationship the
high resolution image is then obtained using an inversion process. The inversion process
being ill-posed, requires the use of regularization and a suitable optimization approach
such as the one proposed here can be used to minimize the derived cost function to obtain
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better estimates. It is shown in [8] that it is indeed possible to obtain super-resolution
using low resolution observations captured at different source positions.

4.1 Image Formation Model

Let Elm be the vector containing the intensity values of themth low resolution image of
sizeM×N arranged in lexicographical order and of sizeMN×1, where,m= 1. . .K. K
is the number of available images. Similarly, let ˆn andρ be the vectors that represent
thehigh resolutionsurface normal andhigh resolutionalbedo arranged lexicographically.
Now, if D is the decimation matrix which represents the aliasing due to under sampling,
the low resolution image formation model can be expressed as,

Elm = DHρ(n̂.ŝm)+wm (2)

Here, ŝm represents the light source position for themth image. wm is the independent
and identically distributed (i.i.d) Gaussian distributed noise vector with varianceσ2

w. H
represents the blurring matrix. In our implementation, we assumeH as an identity matrix
and we do not consider blurred observations. We choose the decimation matrix as the
average of the corresponding pixels of the high resolution image as given in [11].

4.2 Cost Function Formation

Regularization is a popular method for solving computer vision problems which are ill-
posed. The approach consists of minimizing a cost function which is a sum of two terms
i.e. data fitting term and regularization term [1]. In order to form the regularization term,
we model the surface gradients (p andq) as MRFs. With the image formation model
expressed in Eq. (2), it is quite simple to write the cost function to be minimized for
estimating the high resolution entities as,

ε =
K

∑
m=1

||Elm−Dρ(n̂.ŝm)||2 +
MN−1

∑
a=0

[λpmin(|pa− pb|,Tp)+λqmin(|qa−qb|,Tq)] (3)

The first term in the cost function is called the data cost that measures the deviation from
the observed data, caused by assigning a particular label (here surface gradients in thex
andy directions) to a pixel. The other two terms are discontinuity preserving MRF priors
for two neighboring pixelsa andb. Here, pa andqa represent the labels assigned to a
pixel a. p andq are labels of the surface gradients in thex andy directions respectively.
Tp andTq are thresholds that are used for discontinuity preservation.

The data cost [first term of Eq. (3)] at pixela1 of the high resolution image is given
as follows,

Data(a1) =
K

∑
m=1

(Elm([
a1

r
])− 1

r2 (F(a1)+ . . .+F(ar2))2 (4)

where[.] represents the integer value. The functionF(a1) represents the termρ(a1)(n̂(a1).ŝm)
for a particular pixela1. F(a1),F(a2) . . . ,F(ar2) are the pixel intensities of ther2 pixels,
(a1,a2, . . . ,ar2) of the high resolution image related to one pixel of the low resolution im-
age according to the matrixD. For instance, if the up-sampling factor is 2, the pixel(0,0)
of the low resolution is related to the pixel locations(0,0), (0,1), (1,0) and(1,1) of the
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high resolution image. Hence, the data cost for the pixel(0,0) (and also for pixels(0,1),
(1,0) and(1,1)) of the high resolution entity to be estimated is,

Data(0,0) =
K

∑
m=1

(Elm(0,0)− 1
4
(F(0,0)+F(0,1)+F(1,0)+F(1,1)))2 (5)

In order to use the graph cuts formulation for optimization the cost function should
be regular. Applications of graph cuts generally use the data term that is a function of a
single pixel [15]. Thus, in order to apply the graph cuts formulation we use valid mathe-
matical approximations. It can be observed from the cost function that image intensities
of several pixels of the high resolution image are related to the image intensity of a sin-
gle pixel in the low resolution image in the data cost. So, we treat the remainingr2−1
terms (F(a2),F(a3), . . . ,F(ar2)) as constant for a particular optimization step. Then the
modified data term can be written as follows,

Data(a1) =
K

∑
m=1

(Elm([
a1

r
])− 1

r2 (F(a1)+C))2 (6)

whereC = F(a2)+ . . .+F(ar2).
So, the modified total cost function at a pixela can be expressed as,

ε =
MN−1

∑
a=0

[
K

∑
m=1

(Elm([
a
r
])− 1

r2 (F(a)+C))2+λp.min(|pa−pb|,Tp))+λq.min(|qa−qb|,Tq)]

(7)
whereb is a neighboring pixel ofa. The constantC represents the sum of the remaining
r2−1 terms, which are treated as constant for a particular optimization step.

We now optimize for the surface gradients,p andq using the graph cuts optimiza-
tion. While optimizing forp field we considerq field as constant and vice versa. Both
these fields are optimized one after another in each cycle until convergence is reached.
The initial values for the high resolutionp, q and ρ are obtained by interpolating the
low resolutionp, q andρ fields (obtained using photometric stereo) by using a simple
interpolation technique.

5 Choice of the Label Set

Graph cuts optimization requires a discrete label set. Most of the proposed methods that
use graph cuts for optimization use integer labels. In our case, we use discrete floating
point labels. Given the initial values of the surface gradientsp andq, the range in which
these fields lie is roughly known. Now based on the frequency distribution (histogram) of
these labels it is possible to non-uniformly quantize the entire range of continuous values
to get a discrete label set. The non-uniform quantization is done to assign maximum
number of labels (discrete and integer) to that sub-range which has a higher probability.
The number of labels, in this case, is directly related to the precision. As the chosen
number of labels is increased, more accurate results may be obtained with a slight increase
in computational complexity.
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(a) (b) (c)

Figure 1: (a) Synthetically generated low resolution Vase image with light source position
(0,0,1) (b) Up-sampled image reconstructed using bi-cubic interpolation ofp, q andρ

fields (c) Super-resolved Vase image using proposed approach

6 Experimental Results

In this section we present some of the results of our experiments. In order to test the
performance of our algorithm, we first show results on a synthetic image Vase and then
on a real image of a soft toy Jodu. We use the graph cuts library provided by Kolmogorov
[18], [16], [17] with expansion algorithm for implementation.

First we consider the synthetic image Vase. Ten images of Vase of size 64×64 were
generated using a computer program where each image is produced using a different light
source position. These images are the given low resolution images. Now, in order to use
graph cuts for optimization we need to use a fixed set of labels for each of the entities
p and q. We observed that the initial values ofp for the Vase image lie in the range
(−0.4,0.6) and that ofq lie in the range(−0.2,0.4). Hence, depending on the frequency
distributions of the respective entities, we use 338 labels forp and 307 labels forq. The
regularization parametersλp andλq for p andq respectively were manually adjusted to
0.01 and 0.01. The value ofT of the truncated linear prior [See Eq. (3)] was chosen to be
0.8 for bothp andq fields.

Fig. 1(a) shows the observed low resolution Vase image with light source position
(0,0,1) and of size 64× 64. The Fig. 1(b-c) shows the images of size 128× 128, re-
constructed using bi-cubic interpolation ofp, q andρ fields and super-resolved image
using the proposed method respectively. Although perceptually the images (b) and (c)
look similar, the mean square error (MSE) comparison (discussed later) shows that graph
cuts based approach is indeed better. Fig. 2(a) shows the high resolution ground truth for
depth of Vase image. The Fig. 2(b-c) shows the up-sampled depth reconstructed using bi-
cubic interpolation ofp andq fields and super-resolved depth using the proposed method
respectively. Perceptually the depth map obtained by using bi-cubic interpolation looks
better than that obtained using the proposed method. However, by fine tuning the regu-
larization parameterλx and the thresholdTx, wherex = p,q, it is possible to get better
results.

Next we consider a real object Jodu. Eight images of Jodu were captured with differ-
ent light source positions. We consider the actual observed Jodu images of size 234×234
as the desired high resolution images. These images are decimated to obtain low resolu-
tion images of size 117×117, which now become the given low resolution observations.
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(a) (b) (c)

Figure 2: Depth map for Vase Image (a) Ground Truth (b) Up-sampled depth recon-
structed using bi-cubic interpolation ofp, q and ρ fields (c) Super-resolved using the
proposed approach

(a) (b) (c)

Figure 3: (a) Observed image with light source position(0.8389,0.7193,1) (b) Up-
sampled image reconstructed using bi-cubic interpolation ofp, q andρ fields (c) Super-
resolved Jodu image using proposed approach

For the Jodu image, we observed that the initial values ofp lie in the range(−1,1) and
that ofq lie in the range(−0.6,0.6). Hence, depending on the frequency distributions of
the respective entities, we use 440 labels forp and 420 labels forq. The regularization pa-
rametersλp andλq for p andq respectively were manually adjusted to 0.008 and 0.0259.
The value ofT of the truncated linear prior [See Eq. (3)] was chosen to be 0.175 for both
p andq fields.

Fig. 3(a) shows one of the observed low resolution Jodu image of size 117× 117.
Fig. 3(b) shows the high resolution images of size 234×234 reconstructed from the bi-
cubic interpolation of thep, q and ρ fields for the same light source positions. The
super-resolved images using the proposed approach is shown in Fig. 3(c). Although visu-
ally there is not much difference in the super-resolved images reconstructed using graph
cuts and bi-cubic interpolation, our quantitative analysis (discussed later) shows that the
images reconstructed using graph cuts are indeed superior. The depth maps reconstructed
using bi-cubic interpolation ofp, q andρ and that obtained using the proposed approach
for the Jodu image are shown in Fig. 4(a-b). It may be noted here that we do not have
the true depth map for comparison since the laser scanner does not work well with ob-
jects with discontinuities. One can observe from the Fig. 4(b) that discontinuities in depth
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(a) (b)

Figure 4: Depth map for Jodu Image (a) Up-sampled depth reconstructed using bi-cubic
interpolationp, q andρ fields (b) Super-resolved using the proposed method

are much better revealed as compared to Fig. 4(a) that was reconstructed using bi-cubic
interpolation.

For quantitative comparison, we use mean square error (MSE) as a figure of merit.
Table 1 shows the MSE comparison for the super-resolved image and the depth map (for
both Vase and Jodu images) and the case when interpolated values of the surface gradients
and albedo are used for reconstruction of the up-sampled depth and intensity map. Al-
though, not much difference can be seen in the high resolution images reconstructed using
the two methods, the MSE values clearly show that the high resolution images obtained
using our graph cuts based approach are much better than those obtained using bi-cubic
interpolation. Due to the use of edge preserving smoothness term, the reconstructed im-
age using graph cuts minimization is closer to the actual high resolution images. The
high resolution depth obtained for the Vase image using our approach shows a superior
MSE performance as compared to bi-cubic interpolation. It may be mentioned here that
we do not have the actual depth map for Jodu, we use the depth map obtained using the
actual observed 234×234 images with photometric stereo as the reference depth map for
calculating MSE. Since the reference depth map is not the actual depth map (with edges
properly defined), the MSE performance when depth is obtained using the proposed ap-
proach is poorer when compared to depth obtained using bi-cubic interpolation.

We now discuss the time complexity of our algorithm. The graph cuts based super-
resolution approach takes around 5−7 minutes for convergence (on a 1.33 GHz processor
for 234×234 image size) while it takes hours for convergence when simulated annealing
with edge preservation is used [8]. In [8] the authors mention that the time for conver-
gence using simulated annealing is of the order of hours. Our approach, on the other
hand, takes few minutes. It may be mentioned that although we are not using the other
constraints used in [8] while optimization since the time required for simulated annealing
is much larger as the cost is computed by changing the label of a single pixel in each
move. On the other hand, in graph cuts the labels of a number of pixels get changed
together in each move. One can thus observe the kind of complexity reduction that has
been achieved through the graph cuts based formulation for super-resolution. Hence, our
approach performs much better when compared to computationally expensive optimiza-
tion methods. It may also be mentioned here that in [8] the discontinuity preservation
prior terms consisted of edge preserving line fields. However, we use a truncated absolute
distance for edge preservation. Hence, we do not compare our results with the simulated
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Table 1: MSE comparison for the high resolution Vase and Jodu images and depth map
obtained using bi-cubic interpolation and our super-resolution approach with an upsam-
pling factor of 2 with different source positions. The (DEPTH) row in the table gives the
MSE for the depth field.

Source position MSE
for Vase Image Bi-cubic Graph cuts

Interpolation
(0, 0, 1) 86.03 14.82

(DEPTH)* 6.71 1.68
For Jodu Image

(0.8389, 0.7193, 1) 240.13 43.55
(-0.1763, -0.5596, 1) 544.01 51.00

(DEPTH) 9.57 68.79

* Only the center portion of the Vase is used for MSE calculation.

annealing based super-resolution method proposed in [8].

7 Conclusion

In this paper, we used graph cuts optimization for obtaining a super-resolved depth map
and intensity map using photometric cue. The surface gradients were modeled as separate
MRFs. We used a smoothness prior with discontinuity preservation. The results show that
the super-resolved image and depth obtained using our approach reveal edges better than
the up-sampled depth and images obtained using general interpolation techniques. The
quantitative measure (MSE) also shows that the graph cuts based super-resolution scheme
is superior than these methods. Also, our approach takes a few minutes for convergence
which is very much less than the super-resolution scheme that uses simulated annealing
for optimization [8] (takes hours for convergence). It can be seen from the results that our
graph cuts based super-resolution approach provides a time-effective method for super-
resolution which is very much required in a practical scenario.
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Abstract

3D Rigid intra-operative image registration is an important technique to
provide guidance for pre-operative information from different image modal-
ities. Due to the artefacts that cause correspondence ambiguity, accurate reg-
istration of US with other image modalities such as computed tomography
(CT) is still a challenging problem. We propose a method which considers
the registration problem of US and CT images as a multi-scale regional infor-
mation saliency and local similarity selection process. We design our method
as a multi-stage approach in which global and local rigid registrations alter-
nate in each stage. During the local registration, the US image regions with
high feature saliency and similarity with CT image will be selected and joined
as region masks for the next global registration, other parts will not be consid-
ered in order to remove the correspondence ambiguity. The performances of
our method are compared with a typical intensity based registration method
on phantom and real patient images.

1 Introduction
3D Ultrasound (US) imaging is widely used in image guided surgery due to its non-
ionizing effect, low cost and real-time properties. However, US images are spoiled by
speckle noise and artefacts [3]. The artefacts regions do not correspond to meaningful
anatomical structure information. This information incompleteness phenomenon often
makes the comprehension of anatomical structure very difficult. Registration between
the US images with a complementary modality, such as computed tomography (CT) or
magnetic resonance imaging (MRI), appears as a promising solution to improve US image
understanding. By correctly aligning the CT images with the US images, all of the pre-
operative information extracted from the CT (e.g. segmentation of organs, major vessels
and pathologies detections) can be augmented on the US image [2, 7]. This technique
will bring great convenience and improve the efficiency and safety during the surgical
practice. Accurate registration between the CT and US images is the critical problem in
ultrasound augmented reality.

770



The multi-modal image registration can be categorized into model based, feature
based and voxel based registration methods. Among these methods, voxel based meth-
ods use directly the intensity information to match the source and target images, it is not
necessary to segment the images or extract models from images. They are very suitable
for computer implementation. There are several intensity based multi-modal image reg-
istration methods [9, 13, 11, 15] and they work well on registrations between CT and
MR images. Maes et al [9] proposed mutual information (MI) based registration method,
Studholme et al [13] proposed an improvement of overlap independent method by using
normalized mutual information (NMI). Roche et al [11] proposed a method on correla-
tion ratio (CR) and Woods et al [15] proposed a method on partition intensity ratio (PIU).
In these methods, image intensities are considered as random variables with identical in-
dependent distributions. The image similarity functions will measure the dependency or
correlation between the two random variables. It can be represented as function of the
joint probability density function (PDF) which is evaluated from corresponding intensity
pairs. The correspondence between artefacts regions of US image and CT image will add
the unreliable intensity pairs into the joint PDF and bias it. The influence of US artefacts
in registration has been reported in [5]: the result will not always correspond to the global
optimum or even to a local optimum.

A solution is to detect the useful information for registration. By extracting the re-
gions where the images have better correspondence information, the performance of the
intensity based methods can be greatly improved. Huang et al [5] used a threshold to
extract the useful voxels in the US. However, this simple operation does not work prop-
erly on US image with complex anatomical structures such as abdomen and brain. Roche
et al [11] proposed a robust estimation of bivariate function together with a correlation
ratio method to suppress the correspondence outliers between MRI and US. The results
are usually dependent on the parameters tuning and the Powell’s optimization process is
time consuming. Penney et al [10] extracted a vessel probability density map from the US
images and used it to register with the MRI images. This method needs a learning process
by using a large amount of US images together with a manually determined threshold for
MRI images. Leroy et al [8] and Wein et al [14] used noise models to detect the artefacts
regions. In real application, it is difficult to find a general model for artefacts to achieve
good performances. Local features can provide unique and reliable information for reg-
istering the images with less trustable information. Stewart et al [12] proposed a method
to register the retinal images by using local features. The registration starts from the most
accurate local feature matching and then propagates with more global feature matching.
Salient regions have been used as features for registration recently because of its higher
robustness. Huang et al [1] has used multiple salient regions for 2D image registrations.

We propose a multi-scale 3D adaptive mask MI based CT to US images registration
method. It is an iterative method with several stages. In each stage a global registration
and some local block matchings are carried out. Regions with low saliency or low sim-
ilarity with CT image will be excluded from registration, they usually coincide with the
artefact image regions. The global and local registration process will alternate until the
whole registration converges.

The rest of the paper is organized as follows. Our novel intensity based registration
method is explained in the Section 2. The experiments and datasets are introduced in
Section 3. Results and discussion are shown in Section 4. Finally, conclusions are given
in Section 5.
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2 Methods

2.1 Matching Ambiguity in Intensity Based Registration Methods
Due to the artefacts in the US images, the correspondence between the US and CT im-
ages may have ambiguity. MI based method prefers the transform which brings the joint
histogram to be more clustered.This problem will happen to all of the information theory
based registration method including NMI method. Fig.1 shows a negative MI metric of
a 3D phantom US and CT images with different masks of the US image. The images in
left column are axial slices of a CT image and the overlaid US and CT images which are
already registered. We can see in the right part of the US image, a region with shadow
artefacts exists. Images in middle column shows two different mask images of US volume
used for registration, the upper one is the fan shape mask and the lower one is the vessel
area mask. The figures in right column show negative MI metrics with different US image
masks as functions of translational parameters errors in x and y directions. We can see the
the similarity metric with fan mask does not correspond with a global optimum while that
with a vessel area mask shows a global minimum in the correct transform parameters.
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Figure 1: Left column: one axial slice of the CT image and the color overlaid US and CT
corresponding axial slice; Middle column: the fan shape mask and the vessel mask of US
image; Right column: the negative MI metrics plotted with fan shape mask and the vessel
mask against the registration parameters error around the ground truth parameters.

2.2 Combination of Global and Local Registrations
We design our method as a combined global and local rigid registration method. This
method combines the advantage of robustness for global registration and accuracy for lo-
cal registration. We use MI for global and local similarity metric in our implementation
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Figure 2: The combination of global and local rigid registrations.

but any multi-modal intensity based similarity metric can be embedded into our regis-
tration framework. We begin our registration using global MI registration method with
whole US fan mask. We then divide our image into uniform blocks and analyze the local
region saliency and their similarities with CT image. Blocks with high local saliency and
high similarity with CT will be selected for next global registration. The selected local
region will be joined and used as the mask for global registration. The whole registration
process will alternate between global and local registrations until the it converges. Fig.2
shows the collaboration of the global and local registration methods.

2.3 3D Region Saliency Calculation
The region with useful information and the artefacts can be extracted by using the con-
cept of region saliency [6]. Saliency is the measurement of an unpredictability of local
attributes over a scale. It is proposed for general images and it is also suitable for medical
images. The local attributes can be intensity values or colors. The scale can be consid-
ered as a sphere with a certain radius. Larger saliency measurement means bigger unpre-
dictability and probability density function magnitude change over scale, so intuitively it
means a bigger dissimilarity over scale. Higher saliency regions will be less possible to be
the area of artefacts since in these areas when changing the scale, the intensity is usually
a reordering and the difference of PDF magnitude is very small.

The region saliency detection consists of three steps as described in [6]. The local
saliency will be the product of local entropy HD(s,x) and local probability density differ-
ence WD(s,x) at the optimum scale:

SD(sp,x0) = HD(sp,x0)WD(sp,x0). (1)

In continuous case, the entropy will be described by:

HD(s,x0)=−
∫

p(i,s,x0)logp(i,s,x0)di, (2)

with i the intensity index, p(i,s,x0) the Parzen window estimation of the probability den-
sity function around x0 with a scale s. We denote the Parzen window local PDF estimation
as in [4]:

p(i,σs,x0) =
1
|Ω|

∫

x∈Ω
gσ (i− I(x))gσs(x−x0)dx, (3)
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with gσ a Gaussian kernel function and gσs(x− x0) a Gaussian function weighting each
of the intensity Gaussian value according to the distance of the points to the region center
x0, Ω is the local image area and |Ω| is the volume size of these region. Change of σs
will changes the scale of the local joint entropy, so we directly use σs as the scale, that is
σs = s.

The optimal local scale sp is determined by:

sp = {s :
∂HD(s,x0)

∂ s
= 0,

∂ 2HD(s,x0)
∂ s2 < 0}, (4)

and the continuous partial derivative of HD(s,x0) with respect to scale will be:

∂HD

∂ s
=−

∫ ∫
(logp(i,s,x0)+1)gσ (i− I(x))gs(x−x0)(

x−x0

s
)2didx. (5)

Then the optimal local scale can be obtained by solving nonlinear equation (4) by substi-
tuting ∂HD

∂ s by (5). The inter-scale saliency measure, WD(s,x0) is defined by:

WD(s,x0) = s
∫
| ∂
∂ s

p(i,s,x0)|di (6)

When the optimal scale of a point is obtained, we can substitute sp into equation (6) and
(1) to obtain the saliency measurement around point x0.

Instead of evaluate the saliency at each of the voxel, we divide the 3D US image
into uniform blocks, then we evaluate the saliency at the block center. We assume the
saliency measurement is continuous and smooth, the saliency evaluated at the block center
represents the block saliency. This will decrease the computing time distinctly. At each of
block center, we obtain the optimum scale for local entropy and the region saliency. We
reorder the blocks by their center points saliency from high to low. We choose a portion
(we use 70%) of the blocks with high saliency value for local block matching.

2.4 Polar Coordinate Image Processing
Because the beam ray characteristic of US imaging, the image is actually sampled along
the ultrasonic beams. The artefacts are also distributed along the beam rays. When we
evaluate the entropy of the US image or joint entropy of US and CT images, it is more
reasonable to sample the US image along the beam rays. The beam rays form a coordinate
space of Polar coordinate space. So instead of measuring the entropy and MI by sampling
uniformly in Cartesian coordinate space, we sample the US images in Polar coordinate
space. A typical 3D Cartesian and Polar coordinate space for US is shown in fig.3 in
the top row. The coordinate transform information can be easily obtained from the geo-
metrical information of the 3D US volume. An example of the same number of sampled
points for MI evaluations in the Cartesian and Polar coordinates are shown in the bottom
row of fig.3 from left to right. The US image is used as source image and the sample
points are randomly chosen in it. We can see the uniform distributions in Cartesian and
Polar coordinate space respectively in these two methods. We can see obviously that the
sample points are uniformly distributed along the ultrasonic beam rays instead of in the
3D rectangular space.
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Figure 3: 3D Cartesian coordinate and Polar coordinate spaces. The upper row shows the
two coordinates. The bottom row shows the Cartesian coordinate sampling scheme and
Polar coordinate scheme in MI calculating. Each sample point is represented by a green
dot.

2.5 Registration by Dominant Block Matching
After the blocks with high saliency value are detected, we will use these blocks to locally
recover the rigid transform between the US and the CT images. For each of the blocks,
an MI based registration is used to acquire the local rigid transform. The region is defined
as a box in 3D Polar coordinate. The side length of the region is equal to the size of the
optimum scale at the block center. The region with the optimal saliency scale as the radius
is used for the registration. The US sub-region is sampled in 3D Polar coordinate and the
MI similarity metric is optimized. When all of the local block matchings are finished,
we rearrange these blocks by the final MI value. We again take the portion (70%) of the
blocks with higher local similarity measurement as useful blocks for next stage. The local
rigid transform parameters obtained from these selected blocks will be averaged and it
will be used for the initialization of the next global registration.

3 Data and Experiments

3.1 Data Acquisition
We used both in vitro and in vivo datasets to evaluate our method together with MI method.
The former came from a multi-modal abdominal phantom (model 057, CIRS Inc. R©), and
the latter were the abdominal images of a patient. All 3D US images were taken from a
GE Voluson R© 730 machine with a 3D transducer of model RAB2-5L. The CT images
were taken from a Helical CT machine of GE system R©. The images were taken while the
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patients held their breath. The CT and US image characteristics for in vitro and in-vivo
experiments including image dimension, voxel size and number of datasets are shown in
Table 1.

Image Information
Experiments Data Dimension Voxel size(mm) Numbers

US phantom 256×256×256 0.915×0.708×0.580 3
in vitro CT phantom 256×256×119 1.25×1.25×1.25 1

US patient 256×256×256 0.840×0.591×0.640 3
in vivo CT patient 512×512×177 0.625×0.625×1.25 1

Table 1: The in vitro and in vivo US and CT dataset characteristics.

3.2 Experiments
The registration results are evaluated from both visual inspection and quantitative experi-
ments. We evaluate the registration method by starting the registration with random initial
parameters for multiple times. For each pair of the images to be registered, a ground truth
rigid transform is obtained by using a feature point initialized and intensity based registra-
tion software. Several pairs of corresponding points are manually picked by a radiologist
and an intensity based method with a manually labeled ROI will refine the initial result.
We represent the 3D rigid transform by using six parameters, three for rotations and three
for translations. For each datasets, we evaluated these parameters by running 100 regis-
trations, each of which was initialized with an arbitrary transform. Each of the parameters
was generated by adding an arbitrary displacement error of parameters to the ground truth
parameters. In generating the arbitrary displacement error for parameters, each compo-
nent of the parameters displacement was chosen within an error range. In our tests, the
ranges for the translational and rotational error components were±30mm, and±0.349rad
respectively.

4 Results and Discussion

4.1 Accuracy
We list the accuracy test results in Table.2. For phantom and patient registration results,
the parameters errors from multiple datasets are averaged. In both the phantom and the
patient experiments, the parameter components errors with the ground truth parameters
are quite high after MI based registration, while after our proposed method, the compo-
nent errors with ground truth are much decreased.

4.2 Qualitative Evaluation
Registration of a US and CT phantom image is shown in shown in fig. 4. The first two
images in upper row are the CT and US image respectively. The first two images in
bottom row are the registration results by using MI registration method and our proposed
method. The registration results are shown by one axial slice of color overlaid images.
We can see there is small misalignment after the MI registration while after registration by
using our method, the resampled US image overlays with the CT image much better. We
use three stages in this experiment and figure in upper right shows the adaptively selected
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Parameters Errors
Experiments Methods Rotation(rad) Translation(mm)

∆Rx ∆Ry ∆Rz ||∆R|| ∆Tx ∆Ty ∆Tz ||∆T ||
US to CT MI 0.035 0.05 0.033 0.07 1.60 6.52 1.77 6.94
phantom AMMI 0.033 0.029 0.027 0.06 0.78 0.83 0.92 1.46
US to CT MI 0.05 0.04 0.06 0.08 0.65 5.17 1.33 6.64

patient AMMI 0.03 0.04 0.03 0.05 0.49 0.96 1.24 1.65

Table 2: The results of MI and our proposed registration method for the random ini-
tial parameters tests. MI: mutual information registration method; AMMI: our proposed
adaptive mask mutual information registration method.

mask. We can see the most of shadow region in the right part of the image is excluded.
The bottom right figure shows the negative MI metric with adaptive mask plotted against
the translational parameters errors around the alignment. The metric function shows an
unique and accurate optimum at the matching parameters and the metric function is quite
smooth. Registration of a real patient is shown in fig.5. The top row shows the CT and US
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Figure 4: Phantom US to CT registration results by using MI and our method.

images of a patient liver. In the bottom row, from left to right are the registration results
by using MI and our method shown by color overlaid . We can see the improvement of
alignment near the inferior vena cava.

5 Conclusion
In this paper, we have presented a new rigid 3D US to CT image registration method.
We have adaptively selected the regions with high saliency and similarity with CT image
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Figure 5: Registration results of US to CT patient liver by using MI and our proposed
method.

as useful information for registration. We compared our method with a typical intensity
based multi-modal registration method — MI based method, the results of phantom and
real patient datasets show the improvement of the accuracy of the registration parame-
ters. This method can be applied to the applications where only partial image exists for
registration.
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Abstract

Coplanarity is a relationship of a set of points that exist on a single plane.
Coplanarities can be easily observed in a scene with planer surfaces, and
these types of coplanarities have been widely used for 3D reconstructions
based on geometrical constraints. Other types of coplanarities that can be
observed from images are those observed as cross sections of planes and
scenes; for example, points lit by a line laser, or boundary points of a shadow
of a straight edge. Although these types of coplanarities have been implicitly
used in variations of light sectioning methods, they have not been used in
an unified manner with the former types. In this paper, we describe a new
3D reconstruction method based on coplanarities and other geometrical con-
straints. In particular, we make use of the above two types of coplanarities
in an unified manner. This enables us to reconstruct 3D scenes scanned us-
ing line lasers or shadows of straight edges observed by a partially-calibrated
single camera utilizing geometrical relationships between the planes in the
scenes and the planes of line lasers or the planes of shadow boundaries.

1 Introduction

If a set of points exist on a plane, they are said to be coplanar. For example, if a scene
includes a planer surface, points on the surface are coplanar. A scene composed of plane
structures has many coplanarities.

On the other hand, there are other types of coplanarities. In a 3D space, there exist an
infinite number of coplanarities that are not explicitly observed in ordinary situations, but
could be observed under specific conditions. For example, points lit by a line laser are
coplanar points. Another example is a set of points on a boundary of a cast-shadow of a
straight edge. These types of coplanarities are not visible until the lasers or the shadows
are cast on the scene. Let us call the former types of coplanarities asexplicit coplanarities
since they can be observed as visible surfaces of the scene, and let us call the latter types
asimplicit coplanarities.

Explicit coplanarities can be observed in scenes composed of planer surfaces, and
have been widely used as geometrical constraints for 3D reconstructions [11, 9, 1, 10, 7,
6].
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In vision researches, implicit coplanarities have been used in variations of light sec-
tioning methods. In most of these researches, the light planes are first calibrated using
some kind of calibration objects [3, 4, 5] and then the points on the laser planes are recon-
structed using triangulation. In these researches, implicit coplanarities were not treated as
geometrical constraints that can be solved by themselves to reconstruct 3D structures.

In this paper, we describe a new 3D reconstruction method based on coplanarities and
other geometrical constraints. In our method, we use both two types of coplanarities in
an unified way to reconstruct projective 3D information. This enables us to reconstruct
projective 3D scenes with curved surfaces by using implicit coplanarities obtained by
scanning the scenes with line lasers, or shadows of straight edges, observed by a partially-
calibrated single camera.

Although coplanarities play an important role for shape reconstruction, it is known
that the the geometrical constraints other than coplanarities (such as orthogonalities or
parallelisms) are needed to achieve Euclidean reconstructions of the scenes[11]. Because
of the unified treatment of both the implicit and explicit coplanarities, we can use geo-
metrical constraints between both types of planes without discriminating them to achieve
Euclidean reconstructions. This widens the applicabilities of our method. For example, a
scene with curved surfaces can be densely reconstructed either by scanning the scene with
a projector composed of two line lasers and utilizing geometrical constraints between the
line lasers, or by scanning the scene with a single line-laser projector and utilizing ge-
ometrical constraints found in the scene (such as orthogonalities of the surfaces of the
objects).

2 Related studies

Explicit coplanarities have been used in analysis of line drawings or 3D reconstructions
based on geometrical constraints [11, 9, 1, 10, 7, 6]. In those studies, only scenes with
planer surfaces are targeted, because they use only visible coplanarities and geometrical
constraints that exist for those planer surfaces.

In computer vision researches, implicit coplanarities have been used, although uncon-
sciously, in light sectioning methods. Recently, several researchers developed handheld
3D scanners based on light sectioning methods [3, 4, 5]. In these methods, the laser
planes are calibrated by using calibration objects such as fixed frames, markers, or known
planes, then the points on the laser (shadow) planes are reconstructed using triangula-
tions. Bouguetet al. proposed a method in which the scene is scanned by shadows of a
straight edge to reconstruct the scene [2]. Their technique requires calibration of camera
parameters, a light source position, and a reference plane. Implicit coplanarities in these
works are only planes for triangulations, and they should be calibrated first by using some
calibration objects(known frames, markers, or planes). In contrast to these methods, our
method does not require any special calibration objects.

3 Shape reconstruction from coplanarities

Reconstruction in the proposed method is realized by solving the simultaneous equa-
tions constructed from both the coplanarities and the metric constraints. As described
later, metric constraints are formulated with nonlinear equations, whereas coplanarity
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Figure 1:(a)An example configuration of the system. (b)Points of intersections.

constraints can be described by linear equations. Therefore, our method first solves linear
simultaneous equations achieving projective reconstruction, and upgrades the solution to
the Euclidean space.

3.1 Projective reconstruction

An example of our system consists of a camera and a line laser projector, as shown in
Figure1(a). The focal length of the camera may be unknown. The line laser beam from
the projector is reflected at the surfaces of the scene and detected by the camera. These
points are implicit-coplanar. A scanning process is performed by capturing a sequence
of images with the camera while moving the projector back and forth. Scanning can
also be performed by moving a cast shadow of a straight edge over the scene. Multiple
reflection curves are obtained from the image sequence since they move in the image with
the motion of the projector. The problem to be solved is the estimation of the positions
of the projected laser planes from the observed implicit coplanarities. By drawing all the
reflections in different frames in a image, those curves have intersections (Figure1(b)).
We can obtain geometrical constraints of coplanarities from these intersections since each
of those points exists on multiple planes.

Suppose a set ofN planes including both implicit and explicit planes. Letj-th plane
of the set beπ j . We express the planeπ j by the form

a jx+b jy+c jz+1 = 0 (1)

in the camera coordinates system.
Suppose a set of points such that each point of the set exists on intersections of multi-

ple planes. Let thei-th element of the set be represented asξi and exist on the intersection
of π j andπk. Let the coordinates(ui ,vi) be the location of the projection ofξi onto the
image plane. We represent the camera intrinsic parameter byα = p/ f , where f is the fo-
cal length andp is the size of the pixel. We definea∗j = αa j andb∗j = αb j . The direction
vector of the line of sight from the camera to the pointξi is (αui ,αvi ,−1). Thus,

a j(−αuizi)+b j(−αvizi)+c j(zi)+1 = 0, (2)

wherezi is thez-coordinate ofξi . By dividing the form byzi and using the substitutions
of ti = 1/zi , a∗j = αa j , andb∗j = αb j , we get

− (αui)a∗j − (αvi)b∗j +c j + ti = 0. (3)

Sinceξi is also onπk,
− (αui)a∗k− (αvi)b∗k +ck + ti = 0. (4)
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From the forms (3) and (4), the following simultaneous equations with variablesa∗j ,b
∗
j ,c j ,a∗k,b∗k

andck can be obtained:

−uia
∗
j +uia

∗
k−vib

∗
j +vib

∗
k +c j −ck = 0 (5)

We defineL as theM×3N coefficient matrix of the above simultaneous equations,
andx = (a∗0,b

∗
0,c0,a∗1,b

∗
1,c1, · · · ,a∗N−1,b

∗
N−1,cN−1)⊤ as the solution vector for all theM

intersections and theN planes. Then, the equations can be described by a matrix form as

Lx = 0. (6)

Simultaneous equations of forms (5) have trivial equations that satisfy

a∗j = a∗k,b
∗
j = b∗k,c j = ck,(i ̸= j). (7)

Let x1 be the solution ofa∗i = 1,b∗i = 0,ci = 0(i = 1,2, . . .), x2 be the solution ofa∗i =
0,b∗i = 1,ci = 0, andx3 be the solution ofa∗i = 0,b∗i = 0,ci = 1. Then, the above trivial
solutions form a linear space spanned by the bases ofx1,x2,x3, which we represent asT.

We describe a numerical solution of the simultaneous equations assuming the ob-
served coordinates(ui ,vi) on the image plane include errors. Since the equation (6) is
over-constrained, the equation generally cannot be fulfilled completely. First, we con-
sider then-dimensional linear spaceSn spanned by then eigenvectors ofL⊤L associated
with the n minimum eigenvalues. Then,Sn becomes the solution space ofx such that
maxx∈Sn |Lx |/|x| is the minimum with respect to all possiblen-dimensional linear spaces.

Even if coordinates ofui ,vi are perturbed by additive errors,x1,x2,x3 remain trivial so-
lutions that completely satisfies equations(5) within the precision of floating point calcu-
lations. Thus, normally, the 3D spaceS3 becomes equivalent with the space of trivial solu-
tionsT. For non-trivial solution, we can define a unit solutionxs = argminx∈T⊥(|Lx |/|x|)2,
whereT⊥ is the orthogonal complement space ofT. xs is the solution that minimizes
|Lx |/|x| and is orthogonal tox1,x2 andx3. SinceT andS3 are normally equal,xs can be
calculated as the eigenvector ofL⊤L associated with the 4-th minimum eigenvalue.

Thus, the general form of the non-trivial solutions are represented as

x = f1x1 + f2x2 + f3x3 + f4xs = Mf , (8)

where f1, f2, f3, f4 are free variables,f is a vector of( f1 f2 f3 f4)⊤, andM is a matrix
of (x1 x2 x3 xs). The four DOFs of the general solution basically correspond to the
DOFs of generalized projective bas-relief (GPBR) transformations described in the work
of Kriegmanet al. [8].

As far as we know, there are no previous studies that reconstruct 3D scenes by using
the linear equations from the 3-DOF implicit and explicit planes. Advantages of this
formulation are that the solution can be obtained stably, and the wide range of geometrical
constraints can be used as metric constraints.

3.2 Euclidean reconstruction using metric constraints

The solution obtained in the previous section has four DOFs fromf. In addition, if camera
parameters are unknown, additional DOFs should be resolved to achieve metric recon-
struction. To achieve this, constraints other than coplanarities should be used.

For many scenes, we can find geometrical constraints among explicit and implicit
planes. Examples of such information are explained here.
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Figure 2:Metric constraints of coplanarities in a scene:(a) Rectangular box with shadow
of straight bar.π0⊥π1 andπ0⊥π2 if λ⊥π0. π3⊥π4, π4⊥π5, π3⊥π5, andπ3 ∥ π0 if box B
is rectangular and onπ0. (b) A laser projector with two line lasers.

1. In figure2(a), the ground is planeπ0, and linear objectλ is standing vertically on
the ground. If the planes corresponding shadows ofλ areπ1 andπ2, π0⊥π1,π0⊥π2

can be derived fromλ⊥π0.

2. In the same figure, the sides of boxB areπ3,π4, andπ5. If boxB is rectangular,π3,π4,
andπ5 are orthogonal with each other. If boxB is on the ground,π3 is parallel to
π0.

3. Figure2(b) shows a line projector with two line lasers that are aligned by the right
angle. By scanning the scene with this type of projector, orthogonalities between
the implicit planes are automatically obtained.

Normally, metric constraints can be represented as nonlinear equations using the free
variable vectorf and the unknown intrinsic parameters. To solve these nonlinear equations
we use nonlinear optimization. The advantage of nonlinear optimization is that because
of the freedom in the definition of the objective function, we can easily deal with many
kinds of metric constraints.

To implement a stable nonlinear optimization, we propose a two step optimization.
The first step involves optimizing the objective function with respect to the free variable
vector f by using constant intrinsic parameters. The unknown intrinsic parameters are
fixed to appropriate initial values in this step. The second step involves optimizing the
objective function with respect to bothf and the unknown intrinsic parameters. In many
cases, the given information only allows us to reconstruct the scene up to scale. In this
case, we fix one of the elements off, and the optimization is conducted for the rest of the
variables.

The determination of the initial value off may be a problem. In the experiments
described in this study, the initial vectorfI is calculated from the initial plane parameter
xI by fI = M⊤xI . Sincex1,x2,x3 andxs (column vectors ofM ) are unit and orthogonal
with each other,Mf I = MM ⊤xI can be considered as the projection of thexI (the vector
of initial plane parameters) onto the solution space of the projective reconstruction (8)
such that the Euclidean distance betweenxI andMf I is minimum. Using this process,
we can obtain a set of plane parameters which fulfills the coplanarity conditions for an
arbitrary set of plane parameters.

For example, suppose that the orthogonality between the planesπs and πt is as-
sumed. We denote the unit normal vector of planeπs as a vector functionns(f,α) =
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(a) (b) (c)
Figure 3:Reconstruction of a CG-synthesized scene: (a) the input image, and (b)(c) the
reconstructed scene (the curves) with ground truth (the shaded surface).

N((as(f,α) bs(f,α) cs(f,α))⊤) whose parameters aref and the camera parameterα,
whereN() means an operation of normalization. Then, the orthogonality betweenπs

andπt can be expressed as

{(ns(f,α)}⊤{nt(f,α)}= 0. (9)

Another example of metric constraints is parallelism. Suppose that the planesπs and
πt are parallel. The parallelism can be expressed as

{(ns(f,α)}×{nt(f,α)}= 0. (10)

Other than the above objective functions, we can use any functions that are described
by the parameters of the points and planes and become minimum for the correct Euclidean
reconstruction.

3.3 Dense reconstruction from video

After Euclidean reconstruction of sparse points, a dense 3D shape can be reconstructed
by using all the captured frames. The actual process is as follows. First, we detect the
intersections between a reflected curve of an unknown implicit laser plane and the curves
of already reconstructed laser planes. Since the 3D positions of such intersections are
known, we can estimate the parameters of the unknown plane by fitting it to the intersec-
tion 3D points using principal components analysis (PCA). We iterate the process for all
frames and finally a dense 3D shape can be reconstructed.

4 Experiments

4.1 CG synthesized scene scanned by line lasers

We performed experiments on the reconstruction of 3D scenes with curved surfaces based
on the implicit coplanarities. In the experiments, the nonlinear equations obtained from
the metric constraints are solved using optimizations based on the Levenberg-Marquardt
method.

For the first experiment, we synthesized a test data by CG as shown in3(a), assuming
a laser projector composed of two line lasers, whose laser planes are configured to be
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(a) (b) (c)

(d) (e) (f) (g)
Figure 4: Reconstruction of the real scene from implicit and explicit coplanarities: (a)
the target scene, (b) images used to extract the reflections of the line lasers, (c) extracted
reflections(red curves) and explicit coplanarities(blue lines), (d)(e) reconstructed scene of
line-lasers, and (f)(g) result of dense reconstruction .

perpendicular as shown in figure2(b). By using the orthogonalities between the laser
planes, the scene can be reconstructed without any metric constraints from the scene
itself. For this scene, the cross sections of the laser planes and the model were calculated
for various positions of the laser projector. The borders of the black and white patterns on
the scene represent the cross sections. The images are taken 20 times, and 40 laser planes
exist in the scene. The metric constraints are 20 orthogonalities between the planes. The
Euclidean reconstruction was performed assumingαu = αv,uc = vc = 0. Since the scaling
factor cannot be solved, we represented the solution using the average distance from the
camera to the points of the model as the unit length. Using this scale, the bounding box
of the ground truth points was−0.29≤ x≤ 0.25,−0.23≤ y≤ 0.31,−1.34≤ z≤−0.93.
Figure3(b),(c) show the solution (the curves) and the shaded ground truth model.αu was
estimated to be 7.467×102, whereas its true value is 7.464×102. The RMS of the error
was 4.822×10−5; therefore, the reconstruction was very accurate.

4.2 Real scene scanned by line lasers

To conduct experiments for a real object, we use a system consisting of a line laser pro-
jector and a video camera. A scanning process is performed by capturing a sequence
of images with a fixed camera and moving the line laser back and forth manually. The
reflections on the scene are observed as curves, and multiple curves are obtained from
the image sequence. Then, we select a few images and detect the cross sections of the
reflection curves. By using the points, we can reconstruct projective 3D shapes.

In the first experiment, we used a single line laser. We selected 20 images from a
captured image sequence and reconstructed the 3D shape. From the scene, orthogonalities
of the faces of the boxes are used as the metric constraints. Figures4(a)–(e) show the
inputs and results. We can clearly observe that the orthogonalities of the rectangular box
and the parallelisms of the edges are successfully reconstructed. Then, we conducted a
dense 3D reconstruction by using all the captured frames. Figures4(f) and (g) show the
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(a) (b) (c)

(d) (e) (f) (g)
Figure 5:Reconstruction of the real scene from implicit coplanarities: (a) the target scene,
(b) images used to extract the reflections of the line lasers, (c) extracted reflections (red
curves) and cross sections where metric constraints are imposed(green points), (d)(e) re-
constructed line-lasers, and (f)(g) result of dense reconstruction .

recovered dense 3D points. We can confirm that a dense reconstruction with an arbitrary
shaped object was achieved.

Next, we built a special laser projecting device consisting of two line lasers that were
aligned precisely at 90◦ as shown in Figure2(b). In this case, no metric constraints were
required from the scene. We selected 23 images and reconstructed the 3D shape. We also
conducted a dense reconstruction. Figures5(a)–(g) show all the inputs and results. We
can see that an arbitrary shape is successfully reconstructed.

4.3 Real scene reconstruction from shadows of static objects

We conducted a shape reconstruction from images acquired by an outdoor fixed uncali-
brated camera. Images from the camera were captured periodically and a shape and the
focal length of the camera was reconstructed by the proposed technique from shadows in
the scene. Since the scene also contained many shadows generated by non-straight edges,
the automatic extraction of shadows based on background subtraction technique was dif-
ficult, and thus these noises were eliminated by human interactions. The figure6 (a)
shows the input frame, (b) shows the detected coplanar shadow curves, (c) shows all the
coplanar curves and their intersections, and (d) to (f) show the reconstruction result. The
proposed technique could correctly reconstruct the scene by using images from a fixed
camera.

4.4 Real scene reconstruction from active scan by cast shadows

Next, we conducted an indoor experiment on an actual scene by using a point light source.
A video camera was directed toward a target scene of an object of a ceramic jug shaped
like a cock and multiple boxes. The target scene was captured to obtain a series of images
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(a) (b) (c)

(d) (e) (f)
Figure 6: Reconstruction of outdoor scene: (a) input image, (b) a frame of the 3D seg-
mentation result, (c) implicit (green) and explicit (red) coplanar curves, (d) reconstructed
result of coplanar curves(red) and dense 3D points(shaded), and (e)(f) the textured recon-
structed scene.

while the light source and the bar for shadowing were being moved freely. From the
series of images, several images were selected and curves created by the shadow were
detected from the images. By using detected coplanar shadow curves, we performed the
3D reconstruction up to 4 DOFs. For the metric reconstruction, orthogonalities of faces
of the boxes were used.

Figures7 (a)-(f) show the capturing scenes and the reconstruction result. In this case,
since there were only small noises extracted because of indoor environment, shadow de-
tection based on background subtraction technique worked well and no human interac-
tion was required. The side orthogonalities of the rectangular box and the coplanarities of
points on each plane are well reproduced. Unlike 3D photography, the proposed technique
realizes reconstruction even if both the light source and the bar are moved freely.

5 Conclusion

In this paper, we propose a novel 3D reconstruction method that utilizes both the copla-
narities of points lit by line lasers or those on the boundaries of shadows of straight edges.
For obtaining a solution, we first obtain a projective reconstruction by solving the linear
equations that are derived from the coplanarity constraints. Then, to upgrade the projec-
tive solution to the Euclidean space, we solve the nonlinear equations formulated from
the metric constraints, using a nonlinear optimization method. We can use geometrical
constraints such as orthogonalities and parallelisms among both the real surfaces and the
laser (shadow) planes. By implementing the technique and conducting an experiment us-
ing simulated and real images, correct and dense shape reconstruction could be achieved.
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(a) (b) (c)

(d) (e) (f)
Figure 7:Reconstruction of an indoor real scene: (a)(b) the capturing scenes, (c)(d) the
reconstructed coplanar shadow curves (red) with dense reconstructed model(shaded), and
(e)(f) the textured reconstructed model.
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Abstract

This paper proposes an algorithm for online feature selection which im-
proves robustness to occlusions by referring to a localized generative appear-
ance model. Discriminative classifiers based on feature extraction have clas-
sically either prepared a fixed prior model by training offline, or continually
adapted their classification parameters to any apparent appearance changes.
By combining the attractive qualities of each approach, our framework can
cope with appearance changes of a target object and will maintain proximity
to a static appearance model. Our main contribution is the use of a genera-
tive model to guide the online feature selection to regions of an image which
maintain a valid appearance. The generative model exhibits the properties of
non-negativity, localization and orthogonality. We demonstrate the system in
a tracking framework to show improved tracking performance through oc-
clusions.

1 Introduction

A major challenge in visual tracking is handling the appearance variation of the target
object. This can be caused by a number of factors including pose variation, shape defor-
mation, lighting changes, as well as occlusions. In this paper we follow a discriminative
approach to tracking where a classifier is used to distinguish the object from the back-
ground. The classifier uses a set of discriminative local features which is updated at each
time step using on-line boosting [4]: using the previous object location as positive exam-
ple and surrounding regions as negative examples the classifier updates its feature pool
and corresponding weights. This flexibility is advantageous for tracking through large
appearance changes but leads to the knowntemplate update problem[14]. The key ques-
tion is how much adaptability to allow the tracker. In other words: How can one decide
whether an appearance change is simply due to pose or lighting variation or due to occlu-
sion of the object?

One strategy is to use a generative object model and determine whether the current tar-
get estimate is still valid given this model. One such model representation is an eigenspace
model, where the image is modelled by a linear combination of orthogonal basis func-
tions. The model can be used to statistically evaluate the presence of the object. However,
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as it is a global object representation it does not provide a straightforward way to estimate
local occlusions.

In this paper we introduce a method that uses alocal generative model to constrain the
selection of local features in the classifier in the case of outliers caused by local occlusion.
Our generative model is computed from the first few frames in the sequence by local non-
negative matrix factorization (LNMF) where the basis functions are orthogonal and sparse
and spatially constrained. The key idea in this paper is to identify occluded regions by
projecting the current image onto the basis functions. Such outliers are determined by
comparing with the distribution of individual coefficients. This information is integrated
with online feature selection as follows: If a region is labelled as occluded, the local
features in this region are discarded and new features in the non-occluded regions added.
Alternatively, the features in the occluded regions can be de-activated for the duration of
the occlusion. This way the adaptation to outlier regions is avoided while being able to
keep valid classifiers in memory that have large feature support in the target region.

The rest of the paper is laid out as follows: Section 2 discusses related prior work.
In section 3 we introduce a new algorithm for combining discriminative and local gen-
erative models for improved online feature selection. We report on experiments carried
out to verify the approach in section 4 while section 5 concludes with a discussion of the
contributions.

2 Prior Work

Adaptive object tracking is a core technique in many applications and has therefore been
widely explored. We provide a brief summary of the work most relevant in the context of
this paper.

Tracking using classifiers Avidan introduced the idea of using a binary classifier to
track an object [1]. A Support Vector Machine (SVM) classifier is trained off-line to
discriminate between object and background. Tracking is carried out by estimating trans-
formation parameters that maximise the SVM score. This idea was extended by Williams
et al. [19] who provided a probabilistic formulation allowing to propagate observation
distributions over time. A mapping from image space to transformation parameter space
is learned from seed images. These methods are quite robust, however they rely on the
appearance variation being fully encoded within the classifier, which is not updated once
the tracker is running. Collins et al. [3] proposed to update a classifier by selecting a set of
discriminative features in each frame. It is assumed that the object was correctly located
and that the surrounding area belongs to the background. The idea of updating a classifier
based on AdaBoost using discriminative feature selection was introduced by Grabner and
Bischof [4]. In [5] they show tracking over large appearance variation. However, neither
of these methods [3, 5] maintains an explicit object model to prevent drift or adaptation
to outliers.

Tracking using subspace models Subspace models have been used to model object
appearance. The idea is that the images of a particular object lie on a lower dimensional
manifold. The eigenspace tracking approach was introduced by Black et al. in [2]. Since
then the idea has been extended to handling appearance changes. Several methods have
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been proposed to learn an eigenspace representation and incrementally update it over
time [6, 13, 17]. Lee and Kriegman adapt a generic appearance model to a specific one
given a number of images [10]. Appearance is modelled by a union of linear manifolds
and the model is updated by incrementally updating their eigenbases. None of these
papers explicitly addresses outlier handling, although robust error norms may be able to
handle some cases of partial occlusion.

Outlier handling Jepson et al. [8] use an adaptive appearance model where each pixel
intensity is modelled by a three-component mixture. One of the components (‘lost’) is
used to handle outliers caused for example by occlusion. Williams et al. [18] compute
an outlier mask using a Markov Random Field with Ising prior in order to increase the
tolerance of a foreground/background classifier to occlusions. The estimates are quite
accurate, however this method of outlier handling adds significant computation overhead.
Outlier handling is also being investigated in contexts other than tracking. Leonardis and
Bischof [11] modified the eigenspace approach for recognition to handle partial occlu-
sions. Instead of computing the PCA coefficients by projecting the complete image, the
coefficients are found using only a subset of image points. Several subsets of points are
hypothesized and tested using the backprojection error. Oh et al. [15] subdivide a face im-
age into regions and construct separate eigenmodels for each. The occluded regions are
found by separately computing the distance to the nearest input training sample. Recog-
nition is performed on the occlusion free regions.

3 Discriminative Feature Selection Using A Local
Generative Model

In this section we first review the principles of online boosting and local non-negative
matrix factorization. We then show how to combine these two techniques to improve an
adaptive tracking algorithm in the case of local occlusion.

3.1 Online tracking with AdaBoost

Online boosting for tracking has recently been introduced by Grabner et al. [4, 5]. The
principle is to locate the object by maximizing the score of a boosted classifier at every
time step. Following the localization step the classifier itself is updated with online boost-
ing. The target estimate is used as a new positive example and surrounding regions as
negative examples. The classifier, called a strong classifier, is built by a linear combina-
tion of a number of weak classifiers, where each weak classifier corresponds to evaluating
a single feature. The features are chosen from a global feature pool by the online feature
selection process based on their classification performance so far. With each update the
algorithm uses the new training sample to compute features and classification weights
with which to compute the updated strong classifier. For a further details, see [4, 5].

3.2 Local non-negative matrix factorization

Non-negative matrix factorization (NMF) is a method for finding a lower dimensional
representation of data. Given a non-negative data matrixX, NMF finds an approximate

792



(a) (b) (c)

Figure 1:Local non-negative factorization on face images.This figure shows(a) basis
images found by LNMF. Note that the positive entries are sparse and localized. The basis
images are used to approximate an input image(b), the result is shown in(c).

factorizationX = BH into non-negative matricesB andH, i.e. their elements must be
equal to or greater than zero [16]. Lee and Seung compared NMF to principal compo-
nent analysis (PCA) and vector quantization (VQ), and showed that these can be written
as factorizations with different constraints [9]. NMF is able to learn a parts-based rep-
resentation while PCA and VQ both learn holistic representations which in the case of
PCA can also contain negative entries. Several extensions of the original NMF algorithm
have been proposed, in particular versions that impose a sparseness constraint on the ma-
trix H [7, 12]. In this section we follow the exposition of Li et al. [12], who suggested an
algorithm for local non-negative matrix factorization (LNMF) of images: Writing a set
of NT images into ann×NT matrix X, so that each column consists of then pixel val-
ues, LNMF factorizes this matrix into ann×m matrix B containing a set ofm< n basis
images, and anm×NT coefficient matrixH, such thatX ≈ BH. Additionally, LNMF
imposes the following three constraints: (i) Maximum sparsity inH, (ii) maximum ex-
pressiveness ofB, and (iii) maximum orthogonality ofB. A locally optimal solution is
found by iteratively updatingB andH. See [12] for details. Once the subspace images
are found, an image represented as ann-vectorx, is projected into the space byh = B+x,
whereB+ denotes the pseudo-inverse ofB. Figure 1 shows basis images found by LNMF
(the columns ofB) as well as an example image where these basis images are used for
approximating an input image.

3.3 Feature selection using a local generative model

The orthogonality of the basis images found with LNMF implies that the value of a pixel
xi in the decomposition of an imagex is determined solely by the positive value in one of
the basis images at the corresponding locationi, and the corresponding weight, that is

xi ≈∑
j

h jbi j ≈ hkbik , k∈ {0, ...,m}. (1)

From the training images we obtain distributionspfg(h j) for the weights of each di-
mensionj of the subspace. We model the weight distribution in each dimensionj with a
Gaussian mixture which is used to determine the foreground likelihood. Thus we have a
means of determining how well a new image locally matches the appearance model and
we can create a foreground likelihood map for a new input image. If the likelihood is
below a given threshold value, the corresponding regions are treated as outliers. In prac-
tice, LNMF factorization can result in more than one disconnected component in a basis
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Algorithm 1 Online feature selection using a local generative model

Input: New image asn-vectorx, projection matrixB+ (computed off-line), coefficient
inlier distributionspfg(h j) (computed off-line), threshold valuesθ fg,θ2.

1. Compute LNMF coefficientsh = B+x.
2. Initialise outlier map asn-vectorc = 0.
3. for each coefficienth j

if pfg(h j) < θ fg

setci = 1 for {i |bi j > 0}
4. Remove small connected components inc.
5. for each featurefk in classifier feature pool

if ∑i∈support( fk) ci > θ2

replacefk with new feature in non-occluded region
6. Update classifier using the online AdaBoost algorithm [5].

image, with some components being very small (see Fig. 1a). Under the assumption that
the true region of outliers in an image is approximated by the union of basis image com-
ponents, we threshold the binary image on component size to remove small components.
This information is used to guide the online feature selection: Local features whose sup-
port region overlaps more than a threshold value with outlier regions are excluded from
the classifier. Thus the algorithm only considers features in regions consistent with the
generative model, and the discriminative classifier avoids locking on to occluded or back-
ground regions. Additionally, we cache classifiers in cases that are not occluded and use
them to regain lock after the target has been occluded significantly. Algorithm 1 details
the adapted online learning algorithm.

4 Experimental results

This section presents experimental results to validate our algorithm. In all experiments
the appearance model was created by resampling the training images to 40x40 pixels,
and factorizing with a subspace dimension of81 in order to achieve sufficient localiza-
tion. The LNMF model is learned from training sequences containing approximately 700
frames. Once the subspace basis is computed tracking is executed in real-time (around 50
ms per update). The strong classifier uses 50 selectors and the feature pool contains 250
weak classifiers. These are the same settings as in [5], however we only use local rec-
tangle features (‘Haar-like features’) to demonstrate the improved feature selection. All
experiments were carried out on a standard 3.4 GHz PC with 2GB RAM.

4.1 Detecting occlusions

As a proof of concept we show the distribution of coefficientsh j for one particular basis
image over a sequence with significant occlusion. Figure 2 shows the results. One can
observe a shift in the distribution during the time of occlusion. This shows that occluded
regions can be detected by a change in the weight values of the basis images with positive
values in those regions.
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Figure 2:Shift of coefficient distribution under occlusion. The histogram (left) shows
the distribution of weights for one of the LNMF basis functions. There is a shift dur-
ing the occluded case. The images show from left to right: basis image (white=zero,
dark=positive), an unoccluded example, an example with occlusion intersecting the pos-
itive support region of the basis image.

Figure 3:Online feature selection under occlusion.The model helps to avoid erroneous
feature selection in the occluded regions. Row 1 shows sample frames. Row 2 shows
regions detected as occluded (red) and support regions of features used in the classifier
(highlighted).

We perform the adapted online feature selection algorithm (see Alg. 1) on a number
of test sequences. Figure 3 shows sample frames in the top row and the algorithm output
below. The occlusion map is shown in red and the support area of features currently
used in the classifier is highlighted in white. We can see there is agreement between
the occlusion map and the actual occlusion. Further, the feature selection is restricted to
those areas labelled as not occluded. Figure 4 shows an example sequence with a large
pose change. In such cases the target image can contain background regions. The outlier
detection prevents feature selection in these regions.

4.2 Synthetic occlusion

We take a single test image, and create a test sequence by adding fixed size, randomly
positioned black squares to simulate occlusion. Figure 5 shows the accuracy of the occlu-
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Figure 4:Feature selection under pose change.Large pose changes can lead to large
regions of background being inside the target window. By labelling these as outliers, we
avoid adaptation to the background. Row 1 shows input frames. Row 2 shows regions
detected as occluded (red) and support regions of features (highlighted).

sion detection with varying occlusion size from 5×5 to 155×155 pixels within a window
of size 160×160 pixels. We measure the true positive rate and false positive rate in terms
of pixel classification rate for each frame in a test sequence of random fixed-size occlu-
sions and take the average to plot a point on the curve. Additional points are generated
by running test sequences of differing occlusion size. The detection rate increases with
the size of the occluded region. However, larger occlusions lead to an increase in false
detections. This is due to the fact that there is no perfect alignment between occluded
regions and support regions of basis images.
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Figure 5: Accuracy for different sizes of occlusion. Occlusion detection accuracy
against occlusion size (increasing from 5×5 bottom left to 155×155 top right). Occlusion
detection increases with size of occluded region but with the consequence of an increased
false detection rate.
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Figure 6:Real-time tracking with occlusion. Row 1 shows tracking results with feature
selection using online boosting. The flexibility of the classifier leads to adaptation to the
occluding object. Row 2 shows corresponding results with the new algorithm.

Figure 7:Real-time tracking during occlusion. Tracking continues during partial oc-
clusion. During occlusion new features are allocated in the visible regions allowing track-
ing to continue. When the occluding object is removed the whole region is again used for
feature selection.

4.3 Tracking results

We run the tracker on test sequences containing heavy occlusion, both without and with
the adapted online feature selection. The original tracker adapts to the appearance of the
occluding object, and starts to track this. With our adapted feature selection the tracker
is able to note the occlusion and stop feature selection in the occluded areas, regaining
lock when the target re-appears. Figure 6 shows sample frames from the tracking se-
quence: row 1 shows the original tracker, row 2 shows the tracker using the results from
our adapted online feature selection. Figure 7 shows continued tracking during partial
occlusion. During occlusion new features are allocated in the visible regions. When the
occluding object is removed the whole region is again used for feature selection.

Figure 8 shows tracking results on a publicly available sequence [8]. Row 1 shows
the tracker using online boosting. The sequence was tracked successfully in [5] using a
larger variety of features. Note that when using rectangle features only we observe a small
shift in the target region estimate. Row 2 shows the result of our proposed algorithm. The
occlusion of the face by the hand is detected correctly and tracking continues successfully.
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Figure 8: Real-time tracking with occlusion. Tracking results for the public ‘Dudek’
sequence [8]. Row 1 shows sample tracking results without using our adapted online
feature selection. Row 2 shows corresponding results with the new algorithm. Regions
detected as occluded are coloured white. Note that in contrast to [5] we use rectangle
features only.

5 Summary and conclusions

In this paper we have shown how a localized generative appearance model can be used by
an online learning algorithm to focus feature selection on regions in an image which main-
tain a good proximity to the target object’s appearance. We have demonstrated how this
approach can improve the robustness of an adaptive tracker to occlusions while maintain-
ing real-time performance. To our knowledge this is the first time that local non-negative
matrix factorization has been employed within an object tracking context.

It can be noted that the outlier detection is dependent on the regions of positive value
in the basis images, which we have no explicit control over in LNMF. There is also a
trade-off between adaptiveness and outlier detection: A training sequence which shows
little variation will result in good outlier region detection due to the smaller variance of
the weight values. However, adaptiveness will be limited due to the tighter bounds on
the appearance model. Conversely, a training sequence with large appearance variation
will allow a lot more adaptiveness, but be less capable of detecting outlier regions. Future
work will focus on a more thorough evaluation of the tracker, and increasing the flexibility
of the appearance model.
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Abstract

This paper presents an empirical comparison of several shape representations
in order to search a database of training examples (silhouettes) for the task
of human pose estimation. In particular, we compare the Discrete Cosine
Transform (DCT), Lipschitz embeddings and the Histogram of Shape Con-
texts that has previously demonstrated some success in this task. Our results
suggest that a simple linear transformation of the image (such as the DCT) is
as effective as the more complex, non-linear methods.

1 Introduction

Due to the rapid increase in affordable secondary storage over the last few years, it is
becoming increasingly important to develop systems that retrieve data based oncontent
rather than annotating the data by hand. This has led to the growth of interest in shape
matching and retrieval algorithms with applications including searching the Web (e.g.
Google Images) and more specific fields such as trademark enforcement. Since it is typ-
ically infeasible to use the raw, high-dimensional image to describe the data,D features
are computed that retain the most informative data in the image. This dimensionality
reduction provides three major benefits:

• Lower storage requirements:each image is reduced to a compact feature vector.

• Increased efficiency:the training data can be processed more rapidly.

• Reduced sensitivity to noise:features capture the most informative shape charac-
teristics whilst ignoring irrelevant details.

In this work, we compare three shape representations that reduce the dimensionality of
training images for the purpose of image retrieval in human pose estimation. In particular,
we compare the recently proposed Histogram of Shape Contexts [1] with two simpler
descriptors, namely the Discrete Cosine Transform (DCT) and Lipschitz embeddings.
Although the success of the Histogram of Shape Contexts for recovering human pose was
demonstrated within a sparse regression framework [1], resulting in its adoption in other
studies (e.g. [10]), to date no empirical evidence has been presented to support claims that
this is due to the efficacy of the descriptor rather than the regressor. This work presents
the first quantitative comparison to investigate this claim by comparing representations
under controlled conditions where meaningful comparisons can be made.
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1.1 Related Work

The range of shape descriptors available for applications such as human pose estimation
from binary silhouettes is very large. However, we can argue that many representations
are inappropriate for this task. Descriptors based on the topology of the occluding con-
tour [7] change dramatically with small changes in underlying pose (e.g. as the subject
places their hands on their hips such that ‘holes’ are created that modify the topology).
Representations based on curvature [15] typically require a continuous (or sufficiently
high resolution) contour that is rarely available in this application. Similar arguments rule
out Fourier decompositions [16] and shock graphs/median axis representations [9].

Of the remaining candidates,global representations use every pixel to compute every
feature such that a localized corruption of the input image (e.g. due to occlusion or
shadow) induces an error in every feature. Such representations include embeddings [5],
moments [8, 12, 14] and Principal Component Analysis (PCA). In contrast,local repre-
sentations use only a subset of the image to compute each feature such that only certain
features are affected by a localized error in the input image. Such representations include
the recently proposed Histogram of Shape Contexts (HoSC) that has successfully been
employed in human pose estimation [1]. It is this property of locality that is claimed to
make such representations superior.

1.2 Paper structure

We begin in Section 2 by describing the selected shape descriptors, including a discussion
of how appropriate parameters were selected for each. Section 3 describes the experimen-
tal data and how the descriptors were compared. Results are presented in Section 4.

2 Shape representation

2.1 Discrete Cosine Transform (DCT)

We begin with a form of the Discrete Cosine Transform of theP×Q image, I(x,y),
whereby each feature (DCT coefficient),Mmn, is defined by:

Mmn = ∑
x

∑
y

fm(x)I(x,y) fn(y) (1)

and we define

fm(x) =

√
1+min(m,1)

P
cos

{mπ

P
·
(

x+
1
2

)}
(2)

wherem= 0. . .P−1 andx = 0. . .P−1. This transform can be an interpreted as a rota-
tion of the vectorized image such that the Euclidean distance between feature vectors in
PQ-dimensional space is equal to the sum of squared error between the original images.
Using only a subset ofD coefficients therefore approximates the SSE between images.
Furthermore, this form of the DCT belongs to the family oforthogonal momentssince:

∫
fi(x) f j(x)dx=

{
1 if i = j

0 if i 6= j
(3)
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Figure 1: Filter bank equivalents (up to order 5) of DCT moment generating functions,
fmn(x,y) = fm(x) fn(y).

such that correlation is low between coefficients and fewer are required (compared to
non-orthogonal moments) to describe the image within a given error bound.

Other transformations were also considered such as Tchebichef [8], Krawtchouk [14],
geometric and Hu [6] moments in addition to PCA. Although PCA provides an optimal
(in terms of capturing maximum variance) basis set over the set of images, the basis set is
data-dependent and impractical to compute for the image sizes involved. Tchebichef mo-
ments were found to be qualitatively similar to the DCT, effectively providing a frequency
decomposition of the image, although with slightly worse performance in the evaluation
task. Krawtchouk moments (another orthogonal moment) also performed slightly worse
than the DCT, possibly as a result of limited spatial support of lower order moments.

Geometric moments are seldom employed due to the concentration of ‘mass’ at the
edges of the image (where the least informative data resides) and the lack of an intuitive
distance metric between feature vectors (in contrast to orthogonal moments). Similarly,
although Hu moments are popular due to their rotational invariance they are based on
geometric moments and hence suffer the same shortcomings. Furthermore, only seven Hu
moments are typically defined which do not capture sufficient variation in many datasets.

In order to make the comparison fair, we first undertook a number of experiments to
assess the impact of various parameters [13]. These experiments suggested that:

• Although performance improved as more DCT coefficients were retained (since the
distance between feature vectors more closely approximates the true SSE between
images), most useful information was captured byD ≥ 64 features.

• When ranking the database in order of similarity to the query in feature space,
Euclidean distance (the most intuitive metric since it is directly related to the SSE)
gave very similar performance to the Mahalanobis and Manhattan (L1) distances.

• Feature selection heuristics such as maximum order (max{m,n}), order (m+n) and
RMS value all gave similar results whilst variance was a poor indicator of feature
information. More complex feature selection is beyond the scope of this work.
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(a) (b) (c)

Figure 2: Overview of HoSC descriptor: (a) Each contour point is assigned a high-
dimensional ‘Shape Context’ based on the local distribution of other contour points; (b)
Shape Contexts from all database examples are clustered to generateD cluster centres
(codebook vectors); (c) A normalized histogram is generated for each example based on
the distribution of cluster centres voted into by the Shape Contexts of its contour points.

2.2 Lipschitz embeddings

The second global representation we consider is the Lipschitz embedding [5], whereby
an image is represented by the vector of distances from the query image toD ‘pivot’
exemplars and has recently demonstrated success in hand tracking applications [3]. More
specifically, we embed each image by extracting its contour points and computing its
(asymmetric) chamfer distance from theith pivot examplar to give theith element of the
feature vector. Intuitively, images that are close together in image space have similar
distances to the pivot examples and therefore have similar feature vectors. However,
selecting pivots from the same region of space results in highly correlated (i.e. redundant)
features that may degrade performance.

Experiments to investigate the effect of various parameters [13] suggested that:

• Most information for this dataset was captured usingD ≥ 100 features (pivot ex-
amplars).

• Due to the non-linear nature of the Lipschitz embedding, it is difficult to identify
an intuitive distance metric between two feature vectors. However, using the Ma-
halanobis distance resulted in a noticeable improvement over the Euclidean and
Manhattan metrics.

• No significant difference in performance was observed over 100 randomly selected
sets of exemplars although a more intelligent approach to feature selection was
recently investigated using Boosting [2].

2.3 Histogram of Shape Contexts (HoSC)

Our final selected shape descriptor is the Histogram of Shape Contexts, suggested by
Agarwal and Triggs [1], and demonstrated using silhouettes of the human body. In this
representation (see Figure 2), every point along the contour of the silhouette is assigned a
histogram (known as its Shape Context [4]) representing the distribution of other contour
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Figure 3: In this example, both the angel and the demon are composed of identical contour
segments such that their histograms become indistinguishable as the spatial extent (i.e.
the radius) of the shape context vector approaches zero. Note thatexacttesselation is not
required for very different silhouettes to result in very similar feature vectors.

points in a local neighbourhood (defined by the Shape Context ‘radius’). Having com-
puted the Shape Context for all contour points on all silhouettes in the database,D Shape
Contexts are then selected at random and used as initial centres in ak-means clustering
scheme. Following clustering, the updated cluster centres are used as a vector quantiza-
tion ‘codebook’ in order to assign each contour point on a given silhouette to a cluster.
A histogram over cluster assignments then forms the feature vector for a given silhou-
ette. This histogram should be normalized with respect to the number of contour points to
make the descriptor scale-invariant. Furthermore, in order to reduce quantization effects,
‘soft’ voting allows each contour point to vote into more than one bin.

It is suggested that this descriptor may be superior due to its locality – corrupting
a small region of the silhouette should modify only a few features, in contrast to the
DCT and Lipschitz embeddings where the whole silhouette contributes to every feature.
However, we note that: (i) in most cases the corruption of the silhouette (e.g. due to
shadows or occlusion) results in an increase or decrease in the number of contour points
such that normalizing the histogram then affectseverybin; (ii) typical distance metrics
(e.g. Euclidean distance, Bhattacharyya coefficient) do not exploit this locality in any
beneficial way; (iii) no explicit distinction is made between the interior and exterior of the
silhouette, thus discarding potentially valuable information (see Figure 3).

These concerns provided the motivation behind comparing the Histogram of Shape
Contexts to other descriptors in order to quantify any benefit gained from the substantial
increase in computational complexity. As with the other descriptors, a basic analysis of
the parameters [13] suggested that:

• Again, most information was captured byD ≥ 64 features (codebook vectors).

• The use of intuitive distance metrics for histograms (e.g. Bhattacharyya distance)
did not significantly improve performance over other (less correct) metrics such as
the Manhattan and Euclidean distance (this has previously been attributed to ‘soft’
voting [1]).

• Since codebook vectors are typically well distributed after clustering, performance
was largely insensitive to their initial random selection as evaluated over 100 trials.
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Figure 4: Example silhouettes from the synthetic dataset.

• Performance was stable for any sensible Shape Context ‘radius’ of at least the mean
distance between all pairs of contour points.

• Although we used 12 angular bins (a common value), performance is stable for any
value above 8. Performance was largely invariant to the number of radial bins.

• The use of ‘soft’ voting (as advised in [1]) to avoid quantization effects provided a
small benefit when each contour point voted into> 4 bins.

3 Method

In order to evaluate the selected shape descriptors, we used motion capture data (avail-
able at the time of printing fromhttp://mocap.cs.cmu.edu) to generateN=10000
128×128 binary silhouettes of a human body model (Figure 4). This training set included
synthetic silhouettes from several different ‘exercise’ motions generated from 4 camera
locations equally spaced from 0◦ to 90◦ in azimuth.

In addition to the training data, an additional 250 silhouettes were generated from
synthetic data to test the retrieval performance of the shape descriptors. Furthermore,
40 real test images were obtained by background subtraction of several sequences of a
subject undertaking exercise motions similar to those in the training data.

For the purposes of this evaluation, all images were normalized by translating and
scaling the silhouette such that it lay within the central 90% of the image. We also as-
sumed that the subject was upright in the image to avoid any need for rotation invariance;
any exceptions to this rule (e.g. handstands, cartwheels) were explicitly modelled in the
dataset. All silhouettes were then reduced to a feature vector ofD = 100 dimensions
using each of the proposed descriptors.

Silhouettes generated from synthetic data were automatically labelled with the image
projections of the joint centres since these values were directly available. For silhou-
ettes obtained from real sequences, the image projections of joint centres were labelled
manually using the mouse in order to evaluate performance.

Like many other studies, we employ silhouettes since they are readily obtained from
image data by background subtraction and are relatively invariant to clothing and light-
ing. However, they are generally restricted to scenes with a static camera and known
background, and useful image data (e.g. internal edges) are discarded.
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Figure 5: Example graph ofk/N againstf (k)/ f (N). For comparison, the dashed line at
unity indicates the average curve produced by random ordering whilst the dash-dot curve
indicates the best possible ranking where distance in image space correlates perfectly with
distance in pose space.

3.1 Evaluation method

Image retrieval tasks typically requireclassificationof the query input such that stored
examples of the same class are returned. Recovered exemplars are therefore classed as
positive or negative and evaluation tools such as the Receiver Operating Characteristic
(ROC) curve and Precision-Recall curve may be used to compare retrieval accuracy be-
tween different shape descriptors.

In the context of human pose estimation, however, exemplars cannot be classified
into ‘positives’ and ‘negatives’ since the underlying pose space is continuous. Therefore,
we use the sum of squared errors between corresponding joint centre projections1 in the
image to compute the distance,d(xi ,xq), in pose space between each training example,xi ,
and a query,xq. Given a query silhouette, we rank the training data in order of similarity
to the query as quantified by the chosen shape descriptor, denoting the index of the closest
training example byr(1) and the furthest byr(N). We then generate a curve,f (k):

f (k) =
∑k

j=1d(xr( j),xq)
k

, (4)

indicating the mean distance to the query of thek highest ranking training examples for
k = 1. . .N. For a qualitative performance evaluation, we compare the normalized curve
of k/N againstf (k)/ f (N) in addition to the corresponding curves for the expected per-
formance of a random ranking of the training data (i.e. unity) and for the best possible
ranking, as shown in Figure 5. Each curve can be interpreted as a measure of correlation
between distance in state space and distance in feature space – high correlation (desirable)
produces a ‘low’ curve whereas low correlation produces a ‘high’ curve.

1Using projected joint centres rather than their full 3D position avoids many (though not all) problems
associated with ‘kinematic flip’ ambiguities [11] where very different poses give rise to very similar projected
joint centres.
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(a)

(b)

(c)

(d)

Figure 6: Four test datasets: (a) clean silhouettes; (b) with added noise; (c) with lower
quarter removed; (d) real silhouettes manifesting some segmentation error.

4 Results

We compared the three selected shape descriptors using four test datasets (Figure 6) con-
taining silhouettes that were: (i) perfect; (ii) noisy; (iii) partially occluded; (iv) real.

We begin by comparing the three methods for clean data (Figure 6a) taken directly
from the synthetic dataset. Figure 7a shows that, although Lipschitz embeddings perform
slightly worse than the other descriptors, accuracy is similar for all three representations.

To create a noisy data-set, we corrupted the clean test silhouettes with Gaussian noise
along the contour (Figure 6b). Such corruption typically results from segmentation errors
at the boundaries and compression artefacts. From Figure 7b, we see that performance
is largely unchanged by the added noise, with the exception that DCT coefficients mar-
ginally outperform the Histogram of Shape Contexts. This may be explained by the fact
that lower order DCT coefficients (as used in this case) encode the lower frequencies
within the image and therefore suppress noise. Again, Lipschitz embeddings do not per-
form as well as the other two methods.

In order to simulate occluded data, we removed the bottom quarter of each test silhou-
ette and renormalized, as if the subject had been obscured from approximately knee-level
down (Figure 6c). Although this is a relatively crude approach, it presents each method
with data that is somewhat different from the training data yet is typical in real life appli-
cations. Figure 7c shows that the Histogram of Shape Contexts performs well for small
k (approximately the top 1% of the data) but is out-performed for higherk by the DCT.
Lipschitz embeddings are again typically out-performed by the other two methods.

For the final experiment, we use real silhouettes from a ‘starjumps’ sequence (Fig-
ure 6d), obtained via background subtraction and with projected joint centres labelled by
hand. Due to the limited number of test images, the curves in Figure 7d are slightly noisier
but suggest that DCT coefficients significantly outperform both Histogram of Shape Con-
texts and Lipschitz embeddings. More specifically, the Histogram of Shape Contexts and
Lipschitz embeddings have perform similar to a random ranking for this data-set. This is
a surprising and interesting result, particularly since this is arguably the most important
test set of the four. It may be questioned whether the normalization procedure employed
in this experiment might favour one method over another. However, the test silhouettes
show little corruption that would have a significant effect on this process.
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Figure 7: Results for (a) clean data; (b) noisy data; (c) occluded data; (d) real data.
Curves correspond to DCT coefficients (ortho), Histogram of Shape Contexts (hists) and
Lipschitz embeddings (lipschitz)

5 Conclusion

We have presented a comparison of three shape descriptors for the application of human
pose estimation from binary silhouettes. In particular, we compare two straightforward
and established methods (the DCT and Lipschitz embeddings) against the recently pro-
posed Histogram of Shape Contexts (HoSC), a ‘local’ descriptor that is claimed to be
superior to ‘global’ methods. However, despite its computational complexity, our results
suggest that the HoSC offers little (if any) benefit over the alternative, simpler methods.

Although it has not escaped our attention that some of our results appear to contradict
those that have appeared in previous works, we note that these studies often employed a
limited number of training images [1] or more a complex matching process [2]. To the
best of our knowledge, this study is the first to evaluate such descriptors under controlled
conditions where meaningful comparisons can be made.
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Abstract

The ”layered image model” [13] represents an image sequence as a composi-

tion of 2D layers where each layer corresponds to a different object. A layer

is described by its appearance and its transparency mask. The transparency

masks are used to combine the layers. In this paper we present a probabilistic

layered model that uses the ”logistic principal component analysis (PCA)” to

describe the masks. The Gaussian based factor analysis was used previously

but it does not consider the constraints imposed on the transparency values.

The ”logistic PCA” models the transparency values that are between 0 and

1 more naturally using Bernoulli distributions. The presented model can be

used to automatically extract low dimensional representation of the trans-

parency maps of the moving objects from a video sequences more efficiently.

1 Introduction

In the layered representation [13] a video sequence of a 3D scene is decomposed into a

set of 2D layers where each layer corresponds to a different moving object. This is a po-

tentially very effective representation for automatically analyzing video sequences since

the representation greatly simplifies the geometry but still accounts for the occlusions

between the layers [8].

A generative probabilistic layered image model is presented by Jojic and Frey [8] and

further extended by a number of authors. Each layer in the layered model is described by

its appearance and its transparency mask. The sprite appearances are combined using the

transparency masks. Various appearance models were proposed: Gaussian per pixel [8],

factor analysis [6], index maps [7], Gaussian with local image deformations [9] etc. Var-

ious models were also proposed for the transparency maps: Gaussian [8], factor analysis

[6], binary mask with local image deformations [9] etc.

Principal component analysis (PCA) and factor analysis (FA) are often used for mod-

elling image data [12, 1]. Both techniques try to find a low dimensional representation

of the data by linear projection. Layered model presented by Frey et. al. [6] is using

factor analysis for layer appearance and the transparency map. The model can be used to

automatically extract low dimensional representation of the moving objects from a video

sequence. For example, images of a person walking can be mapped to a 1-dimensional

manifold that measures the phase of the persons gait. The FA can be applied to find the

low dimensional representation of both the layer transparency masks and the layer ap-

pearance. However, the Gaussian based factor analysis does not consider the constraints
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imposed on the transparency values. Furthermore, a number of authors noted that more

efficient and robust inference can be achieved by using Bernoulli distribution instead of

Gaussian for the transparency masks [14, 9].

The relation between the low dimensional representations of the mask and the ap-

pearance is complex in general. For example a single-colored object might change its

transparency mask, 2D shape, while the appearance remains the same. Therefore in this

paper we leave the choice of the appearance model free and focus on the low dimen-

sional representation of the transparency masks. Natural model for the masks is to use

the Bernoulli distribution [14, 9]. The ”logistic PCA” using Bernoulli distributions was

proposed in the machine learning community [11, 10]. The recent study [16] shows that

the ”binary PCA” is much more accurate than the standard PCA in representing binary

image data and probability maps. In this paper we will present a layered model where the

”logistic PCA” is used for the transparency masks. The presented model can be used to

automatically extract low dimensional representation of the moving objects transparency

mask (shape) from a video sequence more efficiently and robustly.

This paper is organized as follows. In Section 2 we describe the layered image model.

In Section 3 the model is extended by including the ”logistic PCA” transparency masks.

In Sections 4 we explain a generalized expectation maximization (EM) inference scheme

for the model. In Section 5 we present experimental results, and in Section 6 we list our

conclusions and some topics for further research.

2 Layered image model

In the layered model an image x is decomposed into a set of L layers corresponding to

objects that occlude each other. Each layer is described by its appearance parameters Λl

and the transparency mask ml .

The transparency mask describes which part of the image is covered by the object.

The mask value for the l-th layer and d-th pixel will be denoted by mdl ∈ {0,1}. A

natural way to model the mask data is using Bernoulli distributions:

p(mdl|αl) = αdl
mdl ᾱ

m̄dl

dl (1)

where αdl is the probability that mdl = 1, m̄dl = 1−mdl and ᾱdl = 1−αdl.

The appearance model describes the pixel values. The probability of the d-th image

pixel value xd for the l-th layer is given by p(xd ;Λl). The pixel value xd is for example the

3 dimensional RGB value. In this paper we will use a simple appearance model, similar

to [8], consisting of a Gaussian per pixel

p(xd;Λl) = N (xd ; µdl ,ΨdlI) (2)

where the covariance matrix is isotropic ΨdlI and I is a 3×3 identity matrix.

Assuming the pixel values to be independent an image is described by:

∏
d

p(xd ,md1, ...,mdL|Ω) (3)

where Ω = {Λ1, ...,ΛL,α1, ...,αL} are the parameters of the model. The unobserved mask

variables md1, ..mdL determine which pixels belong to which objects/layers as described

further.
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To alow the objects to switch between layers an additional discrete labelling variable

c needs to be included which assigns objects to different layers, see [8]. For simplicity

here we will assume that each object stays always in the same layer.

The layered model per pixel p(xd,md1, ...,mdL|Ω) can be written using recursive

equation:

p(xd,mdl , ...,mdL,odl) = p(xd;Λl)
mdlodl p(xd ,mdl+1, ...,mdL,odl+1)p(mdl |αl)

odl (4)

where odl = ∏l−1
1 m̄dl is the occlusion of the d-th pixel by the previous layers closer to the

camera. The equation describes stacking the layers on top of each other with background

layer l = L at the bottom. In other words a pixel value xd can be explained by the l-

th layer appearance model p(xd;Λl) if it is not occluded and already modelled by the

previous layers 1, ..., l−1, i.e. odl = 0, and if the current layer mask mdl = 1. If the pixel

value is not described by the current and the previous layers, i.e. odl = 0 and mdl = 0, than

it is described by the layers that lie below p(xd,mdl+1, ...,mdL,odl). For simplicity the

background layer l = L will be without the mask p(xd,mdL,odl) = p(xd ;ΛL)odL . For the

top layer there are no occlusions p(xd ,mdl , ...,mdL|Ω) = p(xd ,md1, ...,mdL,odl−1 ≡ 0).
A common extension is to include unknown layer transformation function Ttl , for

example translation, rotation, scaling etc. The transformation Ttl transforms the layer l

before it is combined with other images. We will denote the transformed appearance pa-

rameters by TtlΛl and the transformed mask parameters as Ttlαl . The recursive equation

per pixel and per layer becomes:

p(xd ,mdl, ...,mdL,odl) =

p(xd;TtlΛl)
mdlodl p(xd ,mdl+1, ...,mdL,odl+1)p(mdl |Ttlαl)

odl p(Ttl) (5)

where Tt1, ...,TtL are additional unobserved variables. As in [8] we consider a discrete set

of transformations Ttl ∈ {T1, ...,TT} and the prior distribution over the transformations

is denoted as p(Ttl) = ptl .

3 Logistic PCA masks

We would like to design a layered image model to automatically extract low dimensional

representation of the moving objects transparency masks. For example, images of a per-

son walking can be mapped to a 1-dimensional manifold that measures the phase of the

persons gait, see Figure 1. Principal component analysis (PCA) commonly used to find

a low dimensional representation of the data by linear projection. We describe here a

similar model but for Bernoulli distributions, the so called ”logistic PCA”, to describe

the transparency masks of the layered model from the previous section. As in [10] in-

stead of the αdl in (1) for the Bernoulli mask model we will use the log-odds parameter

Θdl = log(αdl/(1−αdl)) and the logistic function σ(Θdl) = (1 + e−Θdl)−1. The mask

model can be written equivalently as:

p(mdl|Θdl) = σ(Θdl)
mdl σ(−Θdl)

m̄dl (6)

Logistic PCA assumes that the log-odds mask parameter Θl is given by the so called

”mean” log-odds mask parameter ∆l plus a linear combination of S ≪ D basis vectors
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Figure 1: The parameters of the layered model learned automatically from the image

sequence of two people walking in opposite directions and occluding each other.

(images) contained in the rows of the S×D matrix Wl . The linear combination is obtained

through the coefficients contained in Ul:

Θdl = ∆dl +∑
s

UslWsdl . (7)

The ∆l ,Wl and Ul are the parameters of the logistic PCA.

4 Learning model parameters

The layered image model with the binary PCA for a set of N independent images can be

written as:

∏
nd

p(xnd ,mnd1, ...,mndL,Tnt1, ...,TntL|Ω) (8)

where the masks mnd1, ..mndL and the transformations Tnt1, ...,TntL are the unobserved

variables and Ω = {Λ1, ...,ΛL,∆l, ...,∆L,W1, ...,WL,U1, ...,UL, ptl} are the parameters of

the model. The index n indicates that there is each layer can have a different appearance

mask mndl and a different transformation Tntl for each image. The log-likelihood of a

given set of N images is given by:

L (Ω) = ∑
nd

ln p(xnd|Ω) (9)

where the unknown masks and transformations are integrated out:

p(xnd|Ω) = ∑
all masks and transf.

p(xnd,mnd1, ...,mndL,Tnt1, ...,TntL|Ω) (10)

The goal is to find the parameters Ω that maximize the log-likelihood (9).
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4.1 Approximate inference

The log-likelihood is a complex function. The EM algorithm [3] presents an iterative

solution but computing it would be intractable for such a model [8]. Therefore as in

[8] we use a variational approximate method. We will denote the hidden variables by h,

layer masks and hidden transformations in our case. Variational techniques replace the

intractable computation of the posterior distribution p(h|x) with a search for a simplified

distribution q(h), that is made close to p(h|x) by minimizing the ”free energy” function:

F =

∫

h
q(h)

p(h)

ln p(x,h|Ω)
≥−L (Ω) (11)

Minimizing F w.r.t. q(h) minimizes the relative entropy between q(h) and p(h|x). Min-

imizing F w.r.t. q(h) and the model parameters Ω minimizes an upper bound on the

negative log-likelihood of the data L (Ω) [5].

Similar to [8] we will use the following simplified factorized distribution:

q(h) = ∏
ndl

rndl
mndl r̄

m̄ndl

ndl qntl (12)

The parameter estimation is then performed iteratively using a generalized EM algorithm

steps:

E step: Minimizing F w.r.t. the variational (13)

parameters rndl and qntl . (14)

M step: Minimizing F w.r.t. Ω. (15)

These two steps are repeated iteratively until convergence. See [5] for a tutorial.

4.2 Updating mask parameters

The update equations for the E and M steps above are already given in the various exten-

sions [6, 9] of the initial work by Jojic and Frey [8]. An extensive tutorial can be found

also in [5]. Therefore, and because of the limited space, we will not repeat all the update

equations. Instead we will focus on the extension proposed in this paper: the logistic PCA

model applied to the transparency masks and the update equations for the logistic PCA

parameters ∆, W and U .

The variational parameters are updated in the E-step. The layer appearance parameters

are updated in the M-step. In the M step we need also to minimize the free energy function

F w.r.t. the logistic PCA parameters ∆, W and U . It can be shown, see (5) and (12), that

the only part of the function F that depends on the layer l mask parameters is given by:

∑
n,t,d

qntl(wdlrndl log(Tntlαdl)+

wdl r̄ndl log(Tntl ᾱdl)) (16)

where wdl = ∏l−1
1 r̄ndl . So in order to minimize the free energy function F w.r.t. the

logistic PCA parameters ∆, W and U for each layer we need to consider only these terms.
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For simplicity as previously in the similar models [4] we assume the transformation

Tntl to be a permutation matrix that rearranges the pixels. For example, to account for

all translations in a J × J image, Tntl can take on J2 values the permutation matrices

that account for all discrete translations. The discrete 2D image translation is a common

transformation to align images. Furthermore, an efficient solution for the E step is avail-

able [4]. Furthermore, note that by transforming an image to log-polar coordinates, shifts

correspond to rotations and scalings [15]. Let T
−1

ntl denote the inverse transformation.

The terms above (16) can be rewritten in the following form:

∑
n,t,d

qntl(T
−1

ntl wdlrndl log(αdl)+

T
−1

ntl wdl r̄ndl log(ᾱdl)) (17)

After integrating over all possible transformations we get:

∑
n,d

ŵrndl log(αdl)+ ŵr̄dl log(ᾱdl) (18)

where:

ŵrndl = ∑
t

qntlT
−1

ntl wdlrndl (19)

ŵr̄dl = ∑
t

qntlT
−1

ntl wdl r̄ndl. (20)

Finally this can be written using the log-odds parameters Θdl = log(αdl/(1−αdl)) as:

ωndl(M̂ndlΘndl + logσ(−Θndl)) (21)

where

ωndl = (ŵrndl + ŵr̄dl) and (22)

M̂ndl = ŵrndl/ωndl. (23)

Note that M̂ndl ∈ [0,1]. If we consider M̂ndl as data then (21) presents log-likelihood

under Bernoulli model with the log-odds parameters Θndl . Additionally each data point is

weighted by its weight ωndl . The goal in the M-step is to find the logistic PCA parameters

∆l , Wl and Ul that maximize the weighted log-likelihood (21). The maximum can not

be found in closed form. There exist an efficient iterative procedure for the logistic PCA

[10]. The procedure can be extended for the weighted case (21). For completeness of the

text the iterative update equations for the weighted logistic PCA are given in Appendix

A.

4.3 Practical algorithm

For the sake of clarity we summarize the practical algorithm:

Initialization: In case of a static background the background layer appearance para-

meters can be initialized by the mean value and the variance of each pixel for the whole

sequence. The other layer appearances can be initialized by arbitrary mean and some
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large variance. For the masks we initialize the logistic parameter ∆l by some small ran-

dom values around zero. Within first few iterations it is useful to update the parameters

for each layer separately starting from the background layer and going upwards. This is

similar to the greedy layer estimation presented in [14]. Furthermore, for the first few

iterations we keep the basis vectors of the logistic PCA W and the coefficients U to zero

and then initialize them by some small random values, for example sampled from a zero

mean Gaussian distribution with the standard deviation 0.001.

1: For each image calculate the approximation of the posterior distribution by maxi-

mizing F w.r.t. the variational parameters rndl and qntl , see [5].

2: For each image calculate ωndl and M̂ndl .

3: Update the appearance parameters Λl and if required pt .

4: Update the logistic PCA mask parameter estimates ∆l , Wl and Ul using the update

equations from Appendix A. The updated ∆l , Wl and Ul will not maximize the free energy

function F but they will increase its value. This can be seen as a ”generalized M step”

[5].

5: Stop if increase of the free energy function F is below some threshold, otherwise

go to 1.

There is often not enough data to estimate pt reliably and we will use in this paper a

uniform prior distribution over the transformations: pt = 1/D [8].

5 Experiments

5.1 Extracting low dimensional representations

To demonstrate how the layered model can automatically extract low dimensional rep-

resentation of the transparency maps of the moving objects from a video sequences we

recorded a 55 frame sequence of two people walking into opposite directions and oc-

cluding each other during the sequence. In Figure 1 we present the model parameters

automatically learned from the sequence. Note that U nicely captures the cyclical walk-

ing motion while W models the corresponding deformations.

5.2 Reconstructing transparency maps

In order to compare the quality of the Gaussian and Bernoulli based models we conducted

the following experiments. We used a sequence captured by a surveillance camera. The

camera was observing people walking in front of a static background. The sequence con-

tains 400 frames. There were 5 people present in the sequence. Only single person was

present per frame. Therefore we constructed a model consisting of 2 layers. The ap-

pearance of the front layer was modelled by a Gaussian mixture with 5 components to

accommodate for the 5 different people. The transparency mask is modelled by 5 com-

ponent logistic PCA. The parameters learned from the sequence are presented in Figure

2. The learned Gaussian mixture components nicely correspond to the 5 different people

present in the video. The components of the logistic PCA presented at the bottom row

in Figure 2 seem to capture the walking deformations and also the different walking di-

rections. The first 2 people were observed walking in both directions and this is clearly

visible in their appearance parameters.
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background person 1               person 2                 person 3      person 4                 person 5 

Figure 2: The parameters of the model learned from a 400 frames sequence containing

5 walking people. Only single person was present per frame. The appearances of the 5

people and the static background are presented at the top rows. The first 2 people were

observed walking in both directions. At the bottom we present the parameters of the

logistic PCA (S = 5 components) that is used to model the transparency maps segmenting

the people from the background. The mean and the 5 basis images are shown.

Once the model is constructed we used additional 50 images to test the quality of

the model. The ground truth segmentation of the 50 additional images is obtained by

manually segmenting the persons from the background. Using the model, we compress

the images to the PCA scores for the transparency masks. We use then the model to

project the PCA scores back to mask images. Finally, we use most likely transformation

argmax(qntl) to shift the reconstructed mask to the proper position. The mask recon-

structed by the layered model will be denoted X̂n. See some examples in Table 5.2. We

then measure the difference between the manually segmented image and the segmenta-

tion using the layered model. We measured the error in three ways. (i) Quadratic loss:

the sum of the squared differences per pixel value, e2 = (1/D)∑d(Xnd− X̂nd)
2. (ii)logistic

loss: the sum of the log-likelihood of the ground truth masks given the reconstructions,

elog = 1/D∑d Xnd ln X̂nd +(1−Xnd) ln(1− X̂nd). As the reconstruction from the Gaussian

model can be outside (0,1), we first map values outside this interval to ε = 10−6 and

1− epsilon respectively.(iii) Zero-one loss: first we threshold the segmentation by the

model at X̂nd > 1/2 to get a binary reconstruction X̂01
n , then we measure the number of

pixels that differ from the ground truth, e01 = (1/D)∑d |Xnd − X̂01
nd |.

The results for S = 5 components are reported in Table 5.2. We also constructed a

layered model similar to [6] where we used the Gaussian probabilistic PCA to model the

transparency masks. Clearly, the layered model using logistic PCA leads to big improve-

ments. This is also visible in Figure 5.2.

Since the camera was static, in Table 5.2 we also show the results obtained using stan-

dard background subtraction scheme [2] which builds a model only for the background

layer. The layered model which considers all layers leads to much better results, see Table

5.2. Another common technique to improve segmentation results after background sub-

traction is to apply some morphological operators on the segmentation results. We used

image closing operator with a 3×3 element. The results improve slightly but the layered

model is still superior. When a larger template is used for image closing of when image

opening is performed, the results get only worse.
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original

manual

background subtraction [2]

background subtraction + image closing

layered model + normal PCA

layered model + logistic PCA

Table 1: Segmentation examples for various approaches.

e2 e01 elog

layered model + logistic PCA

(S = 5 components)

0.023 (0.006) 0.03 (0.01) 0.086 (0.023)

layered model + norm. PCA

(S = 5 components)

0.029 (0.006) 0.04 (0.01) 0.098 (0.023)

background subtraction + image

closing

0.052 (0.017) 0.052 (0.017) 0.64 (0.23)

background subtraction 0.059 (0.024) 0.059 (0.024) 0.66 (0.28)

Table 2: Segmentation error w.r.t. manually segmented images of the walking people

sequence. The mean error per pixel over 50 hand-segmented images is reported. The

standard deviation over images is reported within the brackets.

6 Conclusions

The generative probabilistic layered image model presented by Jojic and Frey [8] was

further extended by a number of authors. We focus here on modelling the transparency

masks. The natural way to model the masks is to use Bernoulli distributions. We presented

probabilistic layered image model that models the masks using Bernoulli distributions and

extracts the low dimensional representation of the transparency masks using the ”logistic

PCA” [10]. Gaussian component and factor analysis as in [6] does not take into account

that the transparency mask has values limited between [0,1]. The logistic PCA describes

the mask more naturally and leads to crisper masks and better segmentation results as we

demonstrated.

A disadvantage of the logistic PCA is that it requires solving two S×S linear systems

for each data point (see Appendix) which might be prohibitive if the number of compo-

nents S is large. Furthermore, projecting data to the low-dimensional PCA space requires

iterations in the case of logistic PCA, while for normal PCA the projection is linear.

Finally, the logistic PCA used here is not a full generative model as there is no prior dis-

tribution on the low-dimensional coefficient matrix U . A computationally slightly more

expensive model which incorporates Gaussian priors on U is described in [11].
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Appendix I: Weighted Binary PCA update equations

U-update: First intermediate quantities are computed:

Hnd = ωndΘ−1
nd tanh(Θnd/2) , Anss′ = ΣdHndWsdWs′d and (24)

Bns = Σd(2ωndM̂nd −1−Hndµd)Wsd (25)

Row n of U is computed by solving linear system: Σs′Anss′Uns′ = Bns.

W-update: First intermediate quantities are computed:

Adss′ = ΣnHndUnsUns′ and Bds = Σn(2ωndM̂nd −1−Hndµd)Uns (26)

Column d of W is computed by solving the linear system Σs′Adss′Ws′d = Bdl .

∆−update :∆nd = (ΣnHnd)
−1Σn(2ωndM̂nd −1−Hnd(UV )nd) (27)
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Abstract

Photographic images of moving objects are often characterized by motion
blur; analyzing motion blurred images is problematic since the moving ob-
ject boundaries appear fuzzy and seamlessly blend with the background. In
extreme cases, when the object motion is fast in relation to the exposure time,
the blurred object image becomes an elongated, semitransparent smear.

We consider a motion-blurred color image of an object moving over a
still background: we introduce meaningful entities, the “alpha map” and the
“color map”, which bear information about the object motion during the ex-
posure, and its color and texture; we draw connections to the well-known
alpha matting problem, providing an original interpretation in this context;
we present an analytic technique for extracting the two maps under assump-
tions on the background and object colors, and explore the relaxation of these
assumptions. We provide experimental results on both synthetic and real im-
ages, which confirm the correctness of our approach, and describe diverse ap-
plication examples in fields spanning from 3D reconstruction to image/video
enhancement.

1 Introduction
When a moving object is photographed by a still camera, its image is motion blurred
because its position changes during the exposure time. If the exposure time is not short
enough in relation to the object apparent speed, the object results in a visible “smear” or
“streak” in the image, and its contours blend with the background confusing traditional
computer vision techniques.

In this paper, the blurred image is analyzed by producing two pieces of information
for each image pixel:

• how long the moving object projected there during the exposure time (α(p));

• the color the pixel would have if the background was black (o(p)).

Over the whole image, they comprise an “alpha map” and a “color map” (see figure 1).
We show that this representation is strictly related to the deeply-studied alpha matting
problem.
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We describe an analytical procedure for computing such maps, in a single blurred
color image of a monochromatic object moving over a known background. A monochro-
matic object is an object whose surface is pigmented with a single color and, possibly,
its darker shades – including black; we also extend the technique in order to handle
bichromatic objects, pigmented with two different colors, their combinations and darker
shades; many common objects, including most types of sport balls can be considered
either monochromatic or bichromatic. We show that any further relaxation of the assump-
tions makes the problem underconstrained: we are considering the most general scenario
in which the problem has an analytical solution.

We maintain that, once known, the alpha and color maps can be a valuable aid in
the understanding of the blurred object image. Other than applications for image en-
hancement – for example to highlight images of fast-moving objects (see section 4 and
additional material), or to recover the color of a very blurred monochromatic object, the
alpha map can be exploited for reconstructing the fast motion of objects which appear
blurred, or as a necessary preprocessing step for precisely deblurring a moving object on
a sharp background; actually, many works exploiting motion blur of objects as a source
of information would benefit of our provided separation of background, object exposure
time and object color/texture. In section 5, we briefly explain some of our current work
in the field.

The paper is structured as follows: after referencing related works, we formally define
the problem of reconstructing the motion blur of a moving object over a known back-
ground and highlight analogies to the alpha matting problem (section 2); we provide a
theoretically founded, analytical solution to the problem under the assumption that the
object is monochromatic, then we explore extensions and limits of the technique (sec-
tion 3); we then show several practical applications and experimental results (section 4)
and finally draw conclusions and outline future developments (section 5).

Figure 1: The image with the (barely visible) motion blurred object (C, at the center) can
be interpreted as the temporal average over the exposure time of infinite still images It
(left). Ordinary background subtraction (image D, after equalization) does not help in
characterizing the blur. Our technique provides a map α (analogous to an alpha matte)
summarizing the object motion and an object color map o.

1.1 Related Works
Motion blur analysis has been exploited for a number of applications: for example, in
[14, 15] quantitative measurements of blur are used in order to estimate the speed of vehi-
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cles and spherical objects: the blur parameters are estimated with gradient-based methods,
without the support of an exact appearance model of the motion-blurred object over the
background. In [6], the curved trajectory of a moving ball is reconstructed from a single,
long-exposure image: in this case, an accurate analysis of the blurred ball streak is nec-
essary to find its contours with sufficient precision for the subsequent 3D reconstruction
step; this analysis is performed under some very restrictive assumptions, such as con-
stant intensity of the ball image (i.e., no shading), which are not needed when using our
proposed technique; very similar considerations hold for [5], which analyzes a slightly-
blurred ball and reconstructs its position and velocity. Recently, interesting related ap-
plications have also been proposed in [12], where rotational blur estimation is the basis
for a visual gyroscope, and in [16], which exploit motion blur to obtain depth informa-
tion from a single blurred image. Also, in [8] motion blur is used for joint reconstruction
of geometry and photometry of scenes with multiple moving objects. In general, these
applications take advantage of the additional information that a single motion blurred im-
age incorporates about the scene structure, which can not be extracted from a single still
image.

Many techniques ([4, 2], and recently [9]) have been proposed for estimating motion
blur parameters, mainly at aimed at image “deblurring” (the first attempts date back to
1967 in [20]); spatially-variant motion blur has also been considered in many works, such
as [11]. Our work is complementary to these techniques since we do not directly aim
at interpreting the motion blur direction or extent; for example, our technique inherently
handles complex, nonlinear trajectories or even object deformations; we operate at a lower
level, separating the blurred object image from the background, and providing an “alpha
map” which isolates the object motion, and a “color map” which is a blurred image of the
object, separated from the background. We believe that in some settings, deblurring could
actually take advantage of our resulting representation (see section 5).

We show in section 2.1 that part of our problem can be reduced to alpha matting
(or layer extraction): a classic problem in computer vision which has been shown to
be unconstrained in the general case; the subject has been extensively studied due to its
immediate, obvious applications in many fields, and various solutions have been pro-
posed: some ([21, 17]) require a specific background (blue screen matting), whereas oth-
ers ([3, 7, 19, 22, 13, 1]), with minimal user assistance, handle unknown backgrounds
(natural image matting) by means of sophisticated heuristics. None of these algorithms
was designed for motion-blurred images – for example, all require that a part of the image
has α = 1, and many assume that mixed pixels are rare; nonetheless, some actually work
acceptably in specific instances of this unforeseen scenario (see additional material), but
quantitative use of the resulting alpha map is rarely an option.

2 Definitions and model
A motion blurred image is obtained when the scene projection on the image plane changes
during the camera exposure period e = [t0, t0 + ∆t]. The final image C is obtained as the
integration of infinite sharp images, each exposed for an infinitesimal portion of e. An
equivalent interpretation, which is more meaningful in this setting, is considering the
motion blurred image as the temporal average of infinite sharp images It , each taken with
the same exposure time ∆t but representing the scene frozen at a different instant t ∈ e
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(see figure 1). This technique is also implemented in many 3D rendering packages for
accurate synthesis of motion blurred images.

If the camera is static and a single object is moving in the scene, the static background
in the final image is sharp since its pixels are of constant intensity in each It ; conversely,
the image pixels which are affected by the moving object, possibly only in some of the It
images, belong to the motion-blurred image of the object.

2.1 Motion blur and alpha compositing
For a pixel p, define i(p) ⊆ e the time interval in e during which p belongs to the object
image. We define α(p) as the fraction of e during which the object projects to p:

α(p) = ||i(p)||/∆t. (1)

Let B(p) be the intensity of the background at p. Since C is the temporal average of all
the It images, C(p) = α(p)o(p)+ (1−α(p))B(p), where o(p) is the temporal average
over i(p) of the intensity of image pixel C(p):

o(p) =
1

||i(p)||

∫
t∈i(p)

It(p)dt. (2)

To sum up, the intensity of a pixel p in the motion blurred image C can be interpreted
as the convex linear combination of two factors: the ”object” intensity o(p), weighted
α(p), and the background intensity. The resulting equation is the usual over Porter-Duff
alpha compositing equation [18] for a pixel with transparency α(p) and intensity o(p)
over the background pixel B(p).

o(p) can be interpreted as the intensity that p would have in the motion blurred image
over a black background, rescaled by a 1

||i(p)|| factor. o(p) is meaningless if p is not
affected by the object image during e (i.e., if α(p) = 0).

The considerations expressed so far can be directly applied to a color image, consid-
ering all channels separately, but noting that α(p) is constant along all the channels:

Cr(p) = α(p)or(p)+(1−α(p))Br(p)
Cg(p) = α(p)og(p)+(1−α(p))Bg(p)
Cb(p) = α(p)ob(p)+(1−α(p))Bb(p).

(3)

2.2 Assumptions on the object color
In order to provide an analytic reconstruction technique, we require that the object surface
is monochromatic, meaning that, in the HSV color space, its hue and saturation are fixed
– whereas different brightness values (shades) of the color are allowed. In the RGB color
space, this translates to requiring that the object surface colors all lie on a single line
passing through (R,G,B) = (0,0,0). In practice, this includes many real-world objects;
note that black surface parts of the object are always allowed.

Under this assumption and ignoring possible mixed lighting, specularity or trans-
parency of the object surface, the colors of the object image satisfy the same condition
even if shading is taken into account: they all still lie on a single line passing through
(R,G,B) = (0,0,0) – whereas their actual hue and saturation depend on the white bal-
ance and light color. We call this line in RGB space l.
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In the motion-blurred image, orgb(p) is constrained to lie on l as well, because it is a
linear combination of colors belonging to l; if l is defined in polar coordinates:

or(p) = k · sinφ cosθ

og(p) = k · cosφ sinθ

ob(p) = k · cosφ .
(4)

3 Analysis technique

3.1 Recovering the object color

Figure 2: l (red line) passes through the origin and its orientation can be retrieved from
the colors of C and B in two points. o(p) is found as the intersection between l and the
line passing through C(p) and B(p).

In a motion-blurred image, the object hue and saturation can be easily recovered if at
least one pixel p exists such that α(p) = 1; in other words, if p belongs to the image of the
object during the whole exposure period, and is therefore not affected by the background
color. In this case, the hue and saturation of C(p) univocally define l in the RGB space.

Else, no pixel in the blurred image has a color which can be directly related to l.
Therefore, we consider how the color of pixels belonging to the motion blurred images
change between the background image B and the motion-blurred image C. Given two
pixels p1 and p2 belonging to the object streak, we can write a system in 12 equations and
12 unknowns (k1, k2, φ , θ , α(p1), α(p2), the 6 orgb(p1) and orgb(p2) values), which has a
single solution (see Appendix in supplementary material). A much simpler interpretation
is given below.

Geometric interpretation in RGB space For each pixel p, from (4) we know that o(p)
lies on the line in RGB space connecting C(p) to B(p). However, due to the object non-
uniform color and shading, o(p) depends on the actual pixel. Therefore lines in RGB
space defined by C(p1),B(p1) and C(p2),B(p2) will, in general, not intersect.

We know from (2) that o(p1) and o(p2) both lie on the same line in RGB space, which
also passes through black ((R,G,B) = (0,0,0)). Therefore, we compute l as the only line
passing through black and intersecting lines defined by C(p1)B(p1) and C(p2)B(p2); in
other words, l can be found as the intersection of two planes, defined by RGB points
C(p1),B(p1),(0,0,0) and C(p2),B(p2),(0,0,0). This requires that B(p1) and B(p2) are
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linearly independent vectors in RGB space (i.e., they do not represent the same color with
different shading).

3.2 Recovering object exposure time and average color for each
pixel

For a pixel in the blurred image, we can compute α(p) and o(p) if l is known:

or(p) = k · sinφ cosθ

og(p) = k · cosφ sinθ

ob(p) = k · cosφ

Cr(p) = α(p)or(p)+(1−α(p))Br(p)
Cg(p) = α(p)og(p)+(1−α(p))Bg(p)
Cb(p) = α(p)ob(p)+(1−α(p))Bb(p).

(5)

It’s 6 equations for 5 unknowns (α(p), k and the 3 orgb(p) values), so the system is
overdetermined.

Geometric interpretation in RGB space From equation (3), C(p) is a linear combi-
nation of B(p) and o(p): therefore, the line in RGB space connecting B(p) and C(p) inter-
sects l in o(p). This identifies o(p). Once o(p) is known, α(p) is found as B(p)C(p)/B(p)o(p).

Pixels belonging to the background are unchanged between B(p) and C(p), therefore
α = 0 unless B(p) belongs to l, which is a degenerate case. Contrarily, if a pixel p belongs
to the object image during the entire exposure time, C(p) belongs to l, so α = 1.

3.3 Extensions and limits
Computing o(p) and α(p) using (5) is an overconstrained problem. This suggests that
the same theoretical framework could be adapted to handle more general problems and/or
relax the assumptions.

• The object monochromaticity assumption can be relaxed: the problem can be still
solved if the object surface is bichromatic – meaning that it is composed of two
different colors, their shades towards black, and their (convex) linear combinations.
Therefore, the surface colors of the object lie on a plane in RGB space. Since that
plane passes through black, also the possible colors of the shaded object in a sharp
image belong to a plane π (albeit possibly different, if light is not white). In the
blurred image, o(p) colors, obtained as linear combination of colors belonging to
π , still lie on π .

• The nonspecular shading assumption can be relaxed: specular highlights appearing
on a monochromatic object surface would cause the space of possible o(p) values
to extend on a plane, similarly to the previous case.

• The uniform lighting assumption can be relaxed: if only two different colors of
light sources are present in the scene, all o(p) colors still lie on a plane.
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In practice, any of these three ways to exploit the additional degree of freedom make
the reconstruction procedure for α an exactly determined problem, instead of overdeter-
mined. Algebraically, one of the equations constraining the o(p) position is removed;
in the geometric interpretation, o(p) is found as the intersection between a line (passing
through C(p) and B(p)) and a plane (π) – instead of the intersection between two lines.
The degenerate case is when B(p) belongs to π .

However, unless some additional assumptions or approximations are introduced, there
is no procedure for automatically determining π analogous to the one introduced in sec-
tion 3.1 for finding l. In practical applications, π can be computed in a different, sharp im-
age of the object, by directly picking two colors linearly independent in RGB; they could
be also picked directly in the blurred image, if some pixels exist for which α(p) = 1. Us-
ing more than two pixels would also allow a more robust estimation of π by least-squares
or RANSAC.

Unfortunately, the additional degree of freedom can not be exploited to handle varia-
tions in background lighting, such as shadows. In fact, this can be interpreted geometri-
cally as constraining that B(p) lies on a line in RGB passing through (0,0,0). This line
lies on the same plane defined by l and C(p); this explains why the resulting system of
equations is not determined. However, if the background color B(p) is allowed to change
along a line which does not pass through (0,0,0), o(p) and α can still be computed. This
has a practical application for pixels near a sharp discontinuity between two different
background colors: these are often problematic because of several factors, including im-
age compression and minimal camera rotations after the background has been sampled.
By only constraining B(p) to lie on a line passing through both background colors, this
problem can be avoided.

So far, we assumed that the object in each of the It images is perfectly sharp, and we
ignored the presence of “mixed pixels”, originating from imperfect focus, and anyway al-
ways present along the object contours – a well known problem in matting research. How-
ever, our procedure inherently handles these cases, and works with defocused, ”fuzzy” or
even semitransparent objects1.

4 Experimental results and application examples

Figure 3: Synthetic example. From left to right: still bichromatic object, motion blurred
image, reconstructed alpha map, reconstructed color map. Object composited over a dif-
ferent background using computed alpha and color map.

The technique has been evaluated both with synthetic images and with real images.
In figure 3, a bichromatic motion blurred cube is analyzed. Pixels in the central part

of the streak belong to the object image during the whole exposure time, and are used

1Object transparency is handled under rather restrictive assumptions such as absence of refractive effects
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to determine the plane of the possible object colors. The absence of any error in the
reconstructed alpha and color maps confirms the theoretical validity of our approach.
Once the alpha and color maps are known, the blurred object can be composited over
a different background as shown; other interesting applications include artificial opacity
or color manipulation – e.g. for visualizing long trajectories of balls in long-exposure
photos.

Figure 4: First four lines. From left to right: original image, alpha map, color map. Last
object is bichromatic teddy bear, others are monochromatic small sheets of colored paper.
Note that the color map is meaningless outside the object blurred image. Last line: part
of the trajectory of a moving table tennis ball; from left to right: original image, alpha
map, color map, enhanced image obtained by compositing a linearly-transformed color
map over the background, using a multiplied alpha map for enhancing visibility (note
preserved shading). See additional material for other examples and applications.

Figure 4 shows examples with real images. The reconstruction of a monochromatic
object’s color works reliably and robustly: in tests with table tennis balls and small colored
paper sheets we were able to retrieve the color of the object image from a long streak over
a multicolored background within an Euclidean distance of 3 units in the RGB color cube
(each channel having 0÷255 range) in all tests. Reconstructed alpha and color maps are
heavily affected by image noise, which is expected since we work one pixel at a time
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and do not yet perform any filtering. Also, discrepancies between the sampled and actual
background introduce severe artifacts, which can be reduced, at least in part, with the
technique described in section 3.3.

The theoretical background we presented builds upon the linearity of color channels,
which is not normally preserved in images directly coming from digital cameras, since
nonlinear gamma curves are applied automatically by the camera firmware unless the
image is shot in RAW format. More generally, doing quantitative processing on the image
colors requires that the camera response function is known. The estimation of the camera
response function is the subject of several studies such as [10], which provide various
convenient solutions which allow to linearize the intensity values of the color channels.

Often the reconstructed object color o(p) exceeds the dynamic range of the image.
This is fine, and means that, if the ball image projected to that pixel for the whole exposure
time, it would have been overexposed; in this regard, note that accurate rendering of
motion blur is an important application of High Dynamic Range image synthesis.

5 Conclusions and Future Developments
We formally defined the problem of reconstructing the motion blur of a moving object
over a known background, describing how it relates to alpha matting, a deeply explored
topic in computer vision.

If the object is monochromatic, we can retrieve its color even if it only appears as
a semitransparent smear. If the object is monochromatic or bichromatic and its color
is known, we can compute the fraction of the exposure time during which the object
projection overlapped each pixel; also, we can determine how the image would appear if
the background was black.

This allows, for example, to composite the blurred object over any background, arti-
ficially change its opacity or color or study patterns left by differently pigmented parts.
Other applications which could take advantage from these techniques are related to the re-
construction of the object’s motion from a single blurred image, and point spread function
estimation problems for image restoration and deblurring.

We are currently applying these techniques in practice, while developing algorithms to
robustly exploit them in presence of noise and other nonidealities. We are also using these
techniques for motion estimation and 3D reconstruction from a single motion blurred
image, by exploiting the alpha map’s interpretation as the fraction of exposure time during
which the object image overlapped that pixel. This allows, among others, applications in
temporal superresolution of apparent contours motion. We are also applying known blind
deblurring techniques on the alpha and color maps separately, in order to precisely deblur
objects on a fixed, sharp background.
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Abstract

Active Appearance Models (AAMs) represent the shape and appearance of
an object via two low-dimensional subspaces, one for shape and one for ap-
pearance. AAMs for facial images are currently receiving considerable atten-
tion from the computer vision community. However, most existing work fo-
cuses on fitting AAMs to a single image. For many applications, effectively
fitting an AAM to video sequences is of critical importance and challeng-
ing, especially considering the varying quality of real-world video content.
This paper proposes a hybrid model to address this problem. Both a generic
AAM and a subject-specific model are employed simultaneously in the pro-
posed fitting scheme. Experimental results from outdoor surveillance video
sequences demonstrate the improved image registration across video frames
and faster fitting convergence.

1 Introduction
Model-based image registration/alignment is a fundamental topic in computer vision. Ac-
tive Appearance Models (AAMs) have been one of the most popular models for image reg-
istration [4]. Face alignment using an AAM is receiving considerable attention from the
computer vision community because it enables various capabilities such as facial feature
detection, pose rectification, and gaze estimation. However, most existing work focuses
on fitting the AAM to a single facial image. With the abundance of surveillance cameras
and greater need for face recognition from video, methods to effectively fit an AAM to
facial images in videos are of increasing importance. This paper addresses this problem
and proposes a novel algorithm for it.

There are two basic components in face alignment using an AAM: face modeling and
model fitting. Given a set of facial images, face modeling is the procedure of training
the AAM, which is essentially two distinct linear subspaces modeling facial shape and

†This project was supported by awards #2005-IJ-CX-K060 and #2006-IJ-CX-K045 awarded by the National
Institute of Justice, Office of Justice Programs, US Department of Justice. The opinions, findings, and conclu-
sions or recommendations expressed in this publication are those of the authors and do not necessarily reflect
the views of the Department of Justice.
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appearance respectively. Model fitting refers to estimating the parameters of the resulting
AAM on faces in an image or video frames by minimizing the distance measured between
the image and the AAM.

In the context of fitting an AAM to video sequences, conventional methods directly
fit the AAM to each frame by using the fitting results, i.e., the shape and appearance
parameters, of the previous frame as the initialization of the current frame. However, as
shown in the previous work [6], fitting to faces of an unseen subject can be hard due to the
mismatch between the appearance of the facial images used for training the AAM and that
of the video sequences, especially when the video sequences are captured in the outdoor
environment. Also, the conventional method only registers each frame with respect to the
AAM, without enforcing the frame-to-frame registration across video sequences, which
is necessary for many practical applications, such as multi-frame super-resolution [13].

To address this problem, we propose a novel approach to continuously fit the AAM
to video sequences. The proposed algorithm is an extension of the state-of-the-art image
alignment algorithm – the Simultaneous Inverse Compositional (SIC) method [1], which
minimizes the distance of the warped image observation and the generic AAM model
during the fitting. We call our proposed approach as “SIC fOr Video (SICOV)” algorithm,
which not only minimizes the above distance measure, but also the distance between the
warped image and a model obtained from the warped images of previous video frames.
Experimental results show that the SICOV algorithm improves both the fitting accuracy
across frames and the fitting speed.

Many approaches have been proposed for modeling faces with AAMs [4, 1]. Baker
and Matthews [1] proposed the Inverse Compositional (IC) method and SIC method that
greatly improves the fitting speed and performance. However, little work has been done
in fitting AAMs to facial video sequences in particular. Koterba et al. [7] proposed to
use a 3D face model as a constraint in fitting multiple video frames. Matthews et al. [11]
also updated the generic AAM using the warped image observation, such that a subject-
specific model can be obtained during the fitting process. Comparing to their approach,
we will show that treating the previous frame information as an additional constraint
can improve the fitting speed, not to mention saving the extra time needed to update
the bulky eigenspace of the appearance model in an AAM. Bosch et al. [2] proposed an
Active Appearance Motion Model that captures the motion pattern in video sequences by
taking the concatenation of the landmarks from multiple frames as training samples. This
approach takes advantage of the periodic motion pattern in medical image sequences. In
contrast, our approach does not make assumption on the object’s motion.

This paper is organized as follows. Section 2 introduces the conventional methods for
training the AAM and model fitting. Sections 3 and 4 present the proposed SICOV algo-
rithm and its detailed derivation. Section 5 provides experimental results, and conclusions
are given in Section 6.

2 Active Appearance Models and Model Fitting
The shape model and appearance model part of an AAM are trained with a representative
set of facial images. The distribution of facial landmarks are modeled as a Gaussian
distribution, which is regarded as the shape model. The procedure for training a shape
model is as follows. Given a face database, each facial image is manually labeled with

831



Figure 1: The mean and first 7 basis vectors of the shape model (top) and the appearance
model (bottom) trained from the ND1 database. The shape basis vectors are shown as
arrows at the corresponding mean shape landmark locations.

a set of 2D landmarks, [xi,yi] i = 1,2, ...,v. The collection of landmarks of one image
is treated as one observation from the random process defined by the shape model, s =
[x1,y1,x2,y2, ...,xv,yv]T . Eigen-analysis is applied to the observation set and the resulting
linear shape model represents a shape as,

s(P) = s0 +
n

∑
i=1

pisi, (1)

where s0 is the mean shape, si is the ith shape basis, and p = [p1, p2, ..., pn] are the shape
parameters. By design, the first four shape basis vectors represent global rotation and
translation. Together with other basis vectors, a mapping function from the model coor-
dinate system to the coordinates in the image observation is defined as W(x;p), where x
is a pixel coordinate defined by the mean shape s0.

After the shape model is trained, each facial image is warped into the mean shape
using a piecewise affine transformation. These shape-normalized appearances from all
training images are fed into an eigen-analysis and the resulting model represents an ap-
pearance as,

A(x;λ ) = T (x)+
m

∑
i=1

λiAi(x), (2)

where T is the mean appearance, Ai is the ith appearance basis, and λ = [λ1,λ2, ...,λm]
are the appearance parameters. Figure 1 shows an AAM trained using 534 images of 200
subjects from the ND1 3D face database [3].

An AAM can synthesize facial images with arbitrary shape and appearance within the
range expressed by the training population. Thus, the AAM can be used to explain a facial
image by finding the optimal shape and appearance parameters such that the synthesized
image is as similar to the image observation as possible. This leads to the cost function
used for model fitting [5],

J(p,λ ) = ∑
x∈s0

[I(W(x;p))−A(x;λ )]2, (3)

which is the mean-square-error (MSE) between the image warped from the observation
I(W(x;p)) and the synthesized appearance model instance A(x;λ ).

Traditionally this minimization problem is solved by iterative gradient-descent meth-
ods which estimate ∆p, ∆λ and add them to p, λ . Baker and Matthews [1] proposed the
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compositional method to generate the new shape parameter based on ∆p in their IC and
SIC method. The key idea of IC and SIC is that the role of the appearance template and
the input image is switched when computing ∆p. This enables the time-consuming steps
of parameter estimation to be pre-computed and performed outside of the iteration loop.
We will borrow this key idea in deriving the solution of our SICOV algorithm.

3 The SICOV algorithm
Given a generic AAM and a video frame It at time t, SICOV uses the following cost
function to perform the face model fitting:

Jt(p,λ ) = ∑
x∈s0

[T (x)+
m

∑
i=1

λiAi(x)− It(W(x;p))]2 + k ∑
x∈s0

[Mt(x)− It(W(x;p))]2, (4)

which is composed of two terms weighted by a constant k. The first one is the same as
Eq. (3), i.e., the MSE between the warped image and the synthesized appearance model
instance. The second one is the MSE between the current warped image It(W(x;p)) and
the appearance information of the current subject from previous frames, Mt(x).

There are different options in defining Mt(x). Firstly, it can be the warped image of
the video frame at time t−1:

Mt(x) = It−1(W(x;pt−1)). (5)

Secondly, the warped images of L previous video frames averaged by a decaying
factor can also represent Mt(x):

Mt(x) =
1− r

r(1− rL)

L

∑
l=1

rlIt−l(W(x;pt−l)), (6)

where r is a decaying factor between 0 and 1. In practice, when fitting the video frame at
time t, both definitions of Mt(x) are known and can be computed efficiently from the pre-
vious fitting results. Of course, other definitions of Mt(x) are also possible, for example,
the average of L previous warped images without decaying, and a dynamic eigenspace
model of the previous warped images [9]. In the latter case, an efficient eigenspace updat-
ing method can be used to sequentially add the most recent warped image into the model
[8], and additional appearance parameters of this eigenspace model should be incorpo-
rated into the the second term of Eq. (4).

These two terms in Eq. (4) can be treated as the distance between the current image
observation and the generic face model and the subject-specific model respectively, which
is obtained in an on-line fashion from image observation at the previous time instances.
Thus in the fitting of each frame, both distance measures are served as constraints to guide
the fitting process.

There are clear benefits from using these two models during the face model fitting.
First of all, in practical applications there is always mismatch between the imaging envi-
ronment of the images used for training face models and the images to be fit, as well as the
presence of the specific appearance information of the subject being fit that is not mod-
eled by the generic face models. Thus the distance-to-subject-specific-model is employed
to bridge such a gap. Secondly, if we only use the subject-specific model, the alignment
error would propagate over time. The generic model is well suited for preventing the error
propagation and correcting the drifting.
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4 Derivation of SICOV algorithm
Using an approach similar to the IC and SIC algorithms [1], the proposed SICOV algo-
rithm iteratively minimizes:

∑
x

[
T (W(x;4p))+

m

∑
i=1

(λi +4λi)Ai(W(x;4p))− It(W(x;p))

]2

+k∑
x

[Mt(W(x;4p))− It(W(x;p))]2
(7)

with respect to4p and4λ = (4λ1, ...,4λm)T simultaneously, and then updates the warp
W(x;p)←W(x;p)◦W(x;4p)−1 and the appearance parameter λ ← λ +4λ .

In order to solve for 4p and 4λ , the non-linear expression in Eq. (7) is linearized
by performing a first order Taylor series expansion on T (W(x;4p)), Ai(W(x;4p)), and
Mt(W(x;4p)), and assuming that W(x;0) is the identity warp. This gives:

∑
x

[
T (x)+∇T

∂W
∂p

4p+
m

∑
i=1

(λi +4λi)(Ai(x)+∇Ai
∂W
∂p

4p)− It(W(x;p))

]2

+k∑
x

[
Mt(x)+∇Mt

∂W
∂p

4p− It(W(x;p))
]2

.

(8)

The first term in the above equation can be simplified as follows by neglecting the
second order terms:

∑
x

[
T (x)+

m

∑
i=1

λiAi(x)− It(W(x;p))+(∇T +
m

∑
i=1

λi∇Ai)
∂W
∂p

4p+
m

∑
i=1

Ai(x)4λi

]2

. (9)

To simplify the notation, firstly we denote q =(pTλ T)T and similarly4q =(4pT4λ T)T.
Thus q is a n + m dimensional vector including both the shape parameters p and the ap-
pearance parameters λ . Secondly, we denote n+m dimensional steepest-decent images:

SD(x)=

[
(∇T +

m

∑
i=1

λi∇Ai + k∇Mt)
∂W
∂ p1

, ...,(∇T +
m

∑
i=1

λi∇Ai + k∇Mt)
∂W
∂ pn

,A1(x), ...,Am(x)

]
.

(10)
Thirdly, we denote the error image:

E(x) = T (x)+
m

∑
i=1

λiAi(x)− It(W(x;p))+ k(Mt(x)− It(W(x;p))). (11)

Equation (8) is simplified to:

∑
x

[E(x)+SD(x)4q]2. (12)

The partial derivative of Eq. (12) with respect to 4q is:

2∑
x

SDT(x)[E(x)+SD(x)4q]. (13)
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Pre-compute:
(3) Evaluate the gradients ∇T , ∇Mt , and ∇Ai for i = 1,2, ...,m
(4) Evaluate the Jacobian ∂W

∂p at (x;0)
Iterate:

(1) Warp I with W(x;p) to compute I(W(x;p))
(2) Compute the error image E(x) using Eq. (11)
(5) Compute the steepest decent image SD(x) using Eq. (10)
(6) Compute the Hessian matrix H using Eq. (15) and invert the matrix
(7) Compute ∑x SDT(x)E(x)
(8) Compute 4q using Eq. (14)
(9) Update W(x;p)←W(x;p)◦W(x;4p)−1 and λ ← λ +4λ

until ||4p|| ≤ ε

Figure 2: Summary of the SICOV algorithm.

The closed form solution of Eq. (7) is obtained by setting Eq. (13) to equal zero:

4q =−H−1 ∑
x

SDT(x)E(x), (14)

where H−1 is the inverse of the Hessian matrix:

H = ∑
x

SDT(x)SD(x). (15)

The algorithm is summarized in Figure 2. The computation cost of the SICOV al-
gorithm is summarized in Table 1. It can be seen that although the additional constraint
results in slight more computation in Step (2) and Step (5), the computation cost per
iteration of SICOV is almost the same as that of the SIC algorithm [1].

Pre-computation Step 3 O(mN)
Step 4 O(nN) O((n+m)N)

Per Iteration Step 1 O(nN)
Step 2 O(mN)
Step 5 O((n+m)N)
Step 6 O((n+m)2N +(n+m)3)
Step 7 O((n+m)N)
Step 8 O((n+m)2)
Step 9 O(n2 +m) O((n+m)2N +(n+m)3)

Table 1: The computation cost of the SICOV algorithm. The right column indicates the
total cost for the pre-computation and each iteration.

5 Experiments
To evaluate our algorithm, we collect a set of 400 images from two public available
databases, the ND1 database [3], which contains 953 facial images with mostly frontal
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Figure 3: Examples of the face dataset: ND1 database (left) and FERET database (right).

views from 273 subjects, and the FERET database [12], which contains a large number of
subjects with various poses and expressions. Figure 3 shows sample images from these
two databases. In our experiment, we use a 200-image subset from the ND1 database and
a 200-image subset from the FERET database. Each one of the 400 images comes from
different subjects. This 400-image set is used to train a generic AAM. Iterative model
enhancement [10] is used in the training stage and results in a more compact model than
the conventional approach. The resulting AAM has 10 shape bases, 52 appearance bases,
and the width of the mean shape is 62 pixels.

A number of outdoor test surveillance video sequences, whose subjects are not in-
cluded in the training dataset, are captured at 30 frames per second (FPS). For compari-
son purpose, we have implemented both the SIC and SICOV algorithms in MatlabTM. By
manually placing the mean shape on the first video frame, SICOV and SIC algorithms are
used to fit the above generic AAM to these test videos respectively. The only parameter
for the SICOV algorithm, k, is set to k = 1 throughout the experiments. Ideally k should
be set according on the correctness of the individual model Mt(x). We use Eq. (5) as the
definition of Mt(x). The first video sequence contains 980 frames. The proposed SICOV
algorithm successfully fits the face over the whole video sequence while the SIC algo-
rithm loses the fitting starting from frame 780 due to large pose change. In the case where
there is no manual label for each frame of the test video sequences, visual inspection of
the fitting results is one way of evaluating the performance. Figure 4 shows the compar-
ison between two methods on 6 frames in this video. A visually more accurately fitted
mesh is observed when using the SICOV algorithm.

Other than visual inspection, an alternative way to evaluate the fitting performance is
to quantitatively compute the registration consistency across frames, which is represented
by the MSE of the warped image observations between consecutive frames. As shown
in Figure 5, SICOV provides on average lower MSE for the entire sequence, especially
when SIC has high MSE at certain frames due to the changing facial appearance. Hence
this shows superior frame-to-frame registration using the SICOV algorithm. On one hand,
this is a favorable property for many applications that requires accurate registration across
time, such as super resolution from video sequences. On the other hand, this is also
an expected result since the frame-to-frame registration measure is part of the SICOV’s
objective function.

Our proposed method can improve not only the fitting robustness and accuracy, but
also the fitting speed. Figure 6 shows the number of iterations for fitting each frame
using the SIC and SICOV algorithm. The lower curve of SICOV indicates that SICOV
can converge much faster than SIC. This improvement is expected because the additional
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Figure 4: Comparison of the fitted mesh using the SICOV algorithm (dashed line) and the
conventional SIC algorithm (solid line) on 6 frames (frame 1, 40, 87, 287, 734 and 767).
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Figure 5: The MSE of neighboring warped frames of a video sequence. Constant lower
MSE indicates the improved frame-to-frame registration using the SICOV algorithm.

constraint in SICOV helps the minimization procedure. Given the fact that the computa-
tion cost per iteration in the fitting is almost the same as SIC, the average time for fitting
one frame using SICOV is much lower because less iterations are needed for fitting to
converge. Based on a MatlabTM implementation running on a conventional 2.13 GHz
PentiumTM4 computer, on average SICOV takes 0.1254 sec. to fit one frame compared to
0.2526 sec. by SIC. We have also implemented the SICOV using C++ and resulting facial
fitting system can run 25+ FPS on a conventional PC for unseen subjects.

Figure 7 shows the fitting results on another 970-frame-long video sequence, where a
Pan-Tilt-Zoom (PTZ) camera is pointing at three subjects and continuously zooming out.
This is to mimic the scenario where in surveillance applications the subjects can have var-
ious distance to a camera and the face image can be of low resolution. How to effectively
fit a face model onto this type of challenging real-world video sequence receives relatively
little attention in the vision community. The proposed SICOV algorithm successfully fits
the entire video sequence, even when zooming happens and large scale change appears
in consecutive frames. Note that the smallest face size in this video sequence only has
the face width of 15 pixels. However, when applying the conventional SIC algorithm, the
fitting diverges starting at frame 34 when the first zooming happens.
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Figure 6: The number of iterations in fitting each frame of a video sequence. Constant
lower number of iterations is observed from the proposed SICOV algorithm.

Figure 7: Fitting results with zoom in facial area using SICOV. Reliable fitting is observed
in dealing with zooming and low resolution, even for the facial area of 15 pixels wide
(lower right).

6 Conclusions
This paper studies methods to effectively fit an AAM to facial video sequences by using
a hybrid model. Both a generic AAM and a subject-specific model are employed simulta-
neously in the proposed fitting scheme. Borrowing the idea of the SIC algorithm, we also
introduce the efficient implementation of the proposed algorithm. Experimental results
from outdoor surveillance video sequences demonstrate the improved fitting robustness,
accuracy and speed. Future directions of this work can be experimenting with other def-
initions of the subject-specific model, such as Eq. (6), and as well as investigating the
option of dynamically determining the weighting factor k based on the observed video
frame.
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Abstract

We propose an algorithm to produce a 3-D CAD model from a set of range data, based on
non-uniform rational B-splines (NURBS) surface fitting technique. Our goal is to construct
continuous geometric models, assuming that the topology of surface is unknown. In our ap-
proach, the triangulated surface is partitioned in quadrilateral patches, using Morse theory.
The quadrilateral obtained mesh is regularized by means of the use of geodesic curves and
B-splines to obtain a new adequate grid on which to draw NURBS surfaces. Such NURBS
surfaces are optimized by means of evolutionary strategies. Further, the patches are smoothly
joined guaranteeing continuity C1.

1 Introduction
Computer-aided geometric design and computer-aided manufacturing systems are used in numerous indus-
tries to design and create physical objects from digital models. Typically, the process consist of constructing
complex objects by a combination of simple geometrical primitives. Many of these primitives are combined
by boolean operations or by specifying a boundary representation where the topology and the geometry of
the object are well known. However the reverse problem, which is of inferring a geometric model from an
existing physical object digitized by a 3-D sensor, is a much harder problem as it is ill-posed. This paper
addresses the problem of recovering 3D shape by using NURBS surfaces defined topologically as a net-
work of quadrilaterals curves over the surface. The specification of the problem to be solved can be stated
as follows:

“Given a set of sample points X assumed to lie on or near an unknown surface U, create a surface model
S approximating U” [7].

In the general surface reconstruction problem, we consider that the points X are noisy. No structure
or other information is assumed. The surface U -assumed to be a manifold- may have arbitrary topology,
including boundaries, they contain sharp features such as creases and corners. Since the points X are noisy
samples, we do not attempt to interpolate them, but instead find an approximating surface. Of course, a
surface reconstruction procedure cannot guarantee recovering U exactly, since it is only given information
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about U through a finite set of noisy sample points. The reconstructed surface S should have the same
topological type as U and be close to U.

This paper is organized as following: Section 2, describes the Morse theory for triangular meshes.
Section 3, a review of the pertinent literature in 3-D reconstruction. Section 4 describes the method for
the adjustment of surfaces by means of optimized NURBS patches. Section 5 describes the experimental
results of the proposed algorithm, and finally, in Section 6 a conclusion is presented.

2 Morse Theory for Triangular Meshes
The application of the Morse theory for triangular meshes implies to discretize Morse analysis. The Lapla-
cian equation is used to find a Morse function which describes the topology represented on the triangular
mesh. In this sense, additional points of the feature of the surface might exist, which produce a basis domain
which adequately represents the geometry of the topology itself and the original mesh. The mesh can also
be grouped into improved patches. In this work, Morse theory is applied by representing the saddle points
and its borders by a Morse function which can then be used to determine a number of critical points.

This approximation function is based on a discrete version of the Laplacian, to find the harmonic func-
tions. In many ways, Morse theory relates the topology of a surface S with its differential structure specified
by the critical points of a Morse function h : S→ R [17] and is related to the mesh spectral analysis.

The spectral analysis of the mesh is performed by initially calculating the Laplacian. The discrete
Laplacian operator on piecewise linear functions over triangulated manifolds is given by:

∆ fi = ∑
j∈Ni

Wi j( f j− fi) (1)

where Ni is the set of vertices adjacent to vertex i and Wi j is a scalar weight assigned to the directed
edge (i, j). For graphs free of any geometry embedding, it is customary to use the combinatorial weights
Wi j = 1/deg(i) in defining the operator. However, for 2-manifold mapped in ℜ3, the appropriate choice is
a discrete sets of harmonic weights, suggested by Dong [14] and is the one used in this paper (see Equation
2):

Wi j =
1
2

(cotαi j + cotβi j). (2)

Here αi j and βi j are the opposite angles to the edge (i, j).
Representing the function f , by the column vector of its values at all vertices f = [ f1, f2, . . . , fn]T , one

can reformulate the Laplacian as a matrix ∆ f = −L f where the Laplacian matrix L each elements are
defined by:

Li j =





∑k Wik if i = j,
−Wi j if (i, j) is an edge of S,
0 in other case.

(3)

where k is the number of neighbors of the vertex i. The Eigenvalues λ1 = 0 ≤ λ2 ≤ . . . ≤ λn of the matrix
L forms the spectrum of mesh S. Besides describing the square of the frequency and the corresponding
eigenvectors e1,e2, . . . ,en of L, one can define piecewise linear functions over S using progressively higher
frequencies [6].

3 Literature Review
A wide gamut of algorithms for surface reconstruction have been proposed in the literature in recent years
[3] [7] [1].

Loop [5] generates B-spline surfaces on irregular meshes. These meshes do not require a known object
topology, and therefore, they can be configured arbitrarily without carrying a sequence of the 3D coordi-
nates of the points set. The advantage of this method is that it uses different spline types for the surface
approximation. The algorithm was tested using synthetic data with low curvature.
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Eck and Hoppe [11] present the first solution to the fitting problem of B-spline surfaces on arbitrary
topology surfaces from disperse and unordered points. The method builds an initial parametrization, which
in turn is re-parametrized to build a triangular base, which is then used to create a quadrilateral domain. In
the quadrilateral domain, the B-spline patches adjust with a continuity degree of C1. This method, although
effective, is quite complex due to the quantity of steps and process required to build the net of B-spline
patches on the adjustment surface.

Krishnamurthy and Levoy [15] presented a novel approach to adjust NURBS surface patches on cloud
of points. The method consists of building a polygonal mesh on the points set first. Then on this mesh, a re-
sampling is performed to generate a regular mesh, on which NURBS surfaces patches can be adjusted. The
method has poor performance when dealing with complex surfaces. Other limitations are the impossibility
to apply the method to surfaces having holes, and the underlying difficulty to keep continuity on the NURBS
surface patches.

Park [8] proposed a two-phase algorithm. In the first phase, a grouping of the points is performed by
means of the k-means algorithm to create a polyhedral mesh approximation of the points, which is later
reduced to a triangular mesh, on which a quadrilateral mesh is built. In the second phase, the initial model
is used to build a net of NURBS patches with continuity C1. Park’s proposal assumes that the cloud-of-
points is closed in such a way that the NURBS patches network is fully connected. This implies that the
proposed method is not applicable to open surfaces. The use of NURBS patches implies an additional
process keeping continuity at the boundary, making the method computationally expensive even when the
irregularity of the surface does not require it.

Boulanger et al. [12] describe linear approximation of continuous pieces by means of trimmed NURBS
surfaces. This method generates triangular meshes which are adaptive to local surface curvature. First,
the surface is approximated with hierarchical quadrilaterals without considering the jagged curves. Later,
jagged curves are inserted and hierarchical quadrilaterals are triangulated. The result is a triangulation
which satisfies a given tolerance. The insertion of jagged curves is improved by organizing the quadrilater-
als’ hierarchy into a quad-tree structure. The quality of triangles is also improved by means of a Delaunay
triangulation. Although this method produces good results, it is restricted to surfaces which are continuous
and it does not accurately model fine details, limiting its application for objects with an arbitrary topology.

Gregorski [4] proposes an algorithm which decomposes a given point-set into a data structure strip
tree. The strip tree is used to adjust a set of minimal squares quadratic surfaces to the points cloud. An
elevation to bi-cubic surfaces is performed on the quadratic surfaces, and they are merged to form a set
of B-spline surfaces which approximates the given point-set. This proposal can not be applied to closed
surfaces or surfaces which curve themselves. The proposal is highly complex because it has to perform a
degree elevation and a union of patches on B-spline patches at the same time that a continuity degree C1 is
performed among adjacent patches.

Bertram [10] proposes a method to approximate in an adaptive way to disperse points by using triangular
hierarchical B-splines. A non-uniform distribution of sampling on the surface is assumed, in such a way
that zones with a high curvature present a denser sampling that zones with a low curvature. This proposal
uses patches for data adjustment which add quality to the solution.

A different approach is presented by Yvart et al. [2], which uses triangular NURBS for dispersed points
adjustment. Triangular NURBS do not require that the point-set has a rectangular topology, although it
is more complex that NURBS. Similar to previous works, it requires intermediate steps where triangu-
lar meshes are reconstructed, re-parametrization processes are performed, and continuity patches G1 are
adjusted to obtain a surface model.

4 Approximation of Smooth Surfaces Using Morse Theory
The majority of the literature on re-meshing methods, focuses on the problem of producing well formed
triangular meshes. However, the ability to produce quadrilateral meshes is of great importance as it is a key
requirement to fit NURBS surface on a large 3–D mesh. Quadrilateral topology is the preferred primitives
for modelling many objects and in many application domains. Many formulations of surface subdivision
such as SPLINES and NURBS, require complex quadrilateral bases. Recently, methods to automatically
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quadrilateralize complex triangulated mesh have been developed such as the one proposed by Dong et al.
[14].

In this section, a method for the surface approximation by means of optimized NURBS patches from
complex quadrilateral bases on triangulated surfaces of arbitrary topology is proposed. This process of
quadrilateralization produces regions composed exclusively of smooth quadrilaterals. To decompose the
triangulated surface into quadrilateral patches, Morse theory and spectral mesh analysis are used. The
quadrilateral border joining the critical points are regularized by computing geodesic curves between each
corner and then B-splines approximate those geodesics. Following the geodesic curves approximation a
NURBS surface is then fitted by changing the NURBS’s weight to represent the data inside the quadrilateral
region. Such NURBS surfaces fitting is non-linear and an evolutionary strategy optimization method is used
to minimize the distance between the surface and the points inside the quadrilateral region. The optimization
also takes into account the smooth joint at the boundary to guarantee C1 continuity.

4.1 Quadrilateralization of Triangular Mesh
One of the first step of our algorithm consist of converting a triangular representation into a network of
quadrilateral that is a complete description of the object’s geometry. This is necessary as the representation
by means of NURBS patches requires building a regular base on which the NURBS surfaces sits. Because
of the complex and diverse forms of free-formed objects, obtaining a quadrilateral description of the whole
surface is not a trivial task.

4.1.1 Localizing Critical Points

Initially, the quadrilateral’s vertices are obtained as a critical point-set of a Morse function. Morse’s discrete
theory guarantees that, without caring about topological complexity of the surface represented by triangular
mesh, a complete quadrilateral description is obtained. That is to say, it is possible to completely divide
objects’ surfaces by means of rectangles. In this procedure, an equation system for the Laplacian matrix is
solved by calculating a set of eigen-values and eigen-vectors for each matrix (Equation 3) [16].

A Morse-Smale complex is obtained from the connection of a critical point-set which belongs to a
field of the Laplacian matrix. The definition of a field of the matrix is obtained by selecting the set of
vectors associated to a solution value of the equation. As Morse function represents a function in the mesh,
each eigen-value describes the frequency square of each function. Thus, selecting each eigen-value directly
indicates the quantity of critical points which the function has. For higher frequency values, a higher number
of critical points will be obtained. This permits representing each object with a variable number of surface
patches. The eigen value computations assigns function values to every vertex of the mesh, which permits
determining whether a vertex of the mesh is at critical points of the Morse function. In addition, according
to a value set obtained as the neighborhood of the first ring of every vertex, it is possible to classify the
critical points as maximum, minimum or “saddle points.” Identification and classification of every critical
point permits building the Morse-Smale complex.

4.1.2 Critical Points Interconnection

Once critical points are obtained and classified, then they should be connected to form the quadrilateral
base of the mesh. The connection of critical points is started by selecting a “saddle point” and by building
two inclined ascending lines and two declined descending lines. Inclined lines are formed as a vertex set
ending at a maximum critical point. In addition, a descending line is formed by a vertex path which ends at
a minimum critical point. One can then join two paths if both are ascending or descending.

After calculating every paths, the triangulation of K surface is divided into quadrilateral regions which
forms Morse-Smale complex cells [16]. Specifically, every quadrilateral of a triangle falls into a “saddle
point” without ever crossing a path. The complete procedure is described in Algorithm 1.
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Algorithm 1: Bulding method of MS cells.
Critical points interconnection();
begin

Let T={F,E,V}M triangulation;
Initialize Morse-Smale complex, M=0;
Initialize the set of cells and paths, P=C=0;
S=SaddlePointFinding(T);
S=MultipleSaddlePointsDivission(T);
SortByInclination(S);
for every s ∈ S in ascending order do

CalculeteAscedingPath(P);
end
while exists intact f ∈ F do

GrowingRegion( f , p0, p1, p2, p3);
CreateMorseCells(C, p0, p1, p2, p3);

end
M = MorseCellsConnection(C);

end

4.2 Regularization of the Quadrilateral Border Curves
Because the surface needs to be fitted using NURBS patches, it is necessary to regularize the quadrilateral
curves obtained from the mesh. The curves are regularized and fitted by b-splines using the following
Algorithm 2.

Algorithm 2: Quadrilateral mesh regularization method..
Regularization();
begin

1. Quadrilateral selection;
2. Selection of a border of the selected quadrilateral and its opposite;
3. Regularization using B-splines with lambda density;
4. Regularized points match by means of geodetics FMM;

4.1 Smoothing of geodetic with B-splines;
5. Points generating for every B-spline line with lambda density;

end

One of the quadrilateral border is selected from the mesh, and later a border is selected from each
quadrilateral border and its opposite. The initially selected border is random. The opposite order is searched
as one which does not contain the vertices of the first one. If the first selected border has vertices A and B,
it is required that the opposite border does not contain vertices A and B, but the remaining, B and C.

Later, B-splines are fitted on selected borders with a λ density, to guarantee the same points for both
borders are chosen, regardless of the distance between them. In general, a B-spline does not interpolate
every control point; therefore, they approximate curves which permit a local manipulation of the curve, and
they require fewer calculations for coefficient determination.

Having these points at selected borders, it is required to match them. This is done with FMM (Fast
Marching Method). This algorithm is used to define a distance function from an origin point to the re-
mainder or surface with a computational complexity of O(n× logn). This method integrates a differential
equation to obtain the geodetic shortest path by traversing the triangle vertices.

At the end of the regularization process, B-splines are fitted on geodetic curves and density λ points are
generated at every curve which unite the border points of quadrilateral borders, to finally obtain the grid
which is used to fit the NURBS surface.
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4.3 Fitting of Optimized NURBS Patches Using an Evolutionary Algorithm
This section presents a method based on an evolutionary strategy (ES), to determine the weights of control
points of a NURBS surface, without modifying the location of sampled points of the original surface. The
main goal is to reduce the error between the NURBS surfaces and the data points inside the quadrilateral
regions. In addition, the algorithm make sure that the C1 continuity condition is preserved for all optimized
NURBS patches. The proposed algorithm is described in Algorithm 3.

Algorithm 3: Optimization and continuity method of NURBS patches method.
Adjustment by optimized NURBS patches();
begin

1. Optimization of the NURBS patches;
1.1. Multiple ES usage with deterministic replacement by inclusion;
1.2. Application of ES to control weights of NURBS;

2. Union of NURBS patches with continuity C1;
2.1. Check continuity between axis;
2.2. Check continuity at vertices;

end

4.3.1 Optimization of NURBS Parameters

A NURBS surface is completely determined by its control points Pi, j. The main difficulty in fitting NURBS
surface locally is in finding an adequate parametrization for the NURBS and the ability to automatically
choose the number of control points and their positions. The NURBS’s weight function wi, j determine the
local influence degree of a point in surface topology. Generally, weights of control points for a NURBS
surface are assigned in an homogeneous way and are set equal to 1, reducing NURBS to simple B-spline
surface. The determination of NURBS control points and weights for arbitrarily curved surfaces adjustment
is a complex non-linear problem.

The optimization process is formally described as follows: Let P = {p1, p2, . . . , pn} be a set of 3-D
points sampled from a real object, which has rectangular topology, and S = {s1,s2, . . . ,sm} be a NURBS
surface that approximates P, our problem consist of minimizing the approximation error given by 4

E(S) = dP,S < δ (4)

where dP,S is the total distance between P and the NURBS approximation surface S. The parameter δ is a
given user error tolerance. It is attempted obtain the configuration of S so that 4 is true.

Since the influence of the NURBS surface control points is only local, the sampled points P will be
divided in clusters where will carry on a local optimization process, which reduces the computational cost
of the proposed method.

The optimization process starts with a clustering of the set of points P such clustering will be achieved
by a SOM. The objective of the SOM is to find homogeneous regions where run the optimization process
without distort the local shape of the surface. The points of P will be presented to the SOM as the training
patterns. It is hoped at last of the training the SOM have found the homogeneous regions where run the
optimization process.

Once clustered P an evolutionary strategy (µ +λ )−ES will optimize the local fitting of the NURBS in
each cluster. The evolutionary strategy configuration is as follow:

Individuals: the individuals of the strategy are conformed by the weights of the cluster points and the
mutation steps σ , like shows Figure 1.
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Figure 1: Individual of the strategy

where wi are the control point weights and σi are the mutation step sizes.
Mutation operator: uncorrelated mutation with n mutation step sizes σ ’s is applied to the individuals.
Recombination operator: the recombination operator is different for object variable wi than parameters

σi. A global intermediary recombination is applied to object variables, according to 5, whereas a local
intermediary recombination is applied to mutation step sizes σi, according to 6.

b′i =
1
ρ

ρ

∑
k=1

bk,i (5)

b′i = µibk1,i +(1−µi)bk2,i (6)

where i is the allele of the individual, bi is the value of the allele, ρ is the size of the recombination pool
and µ is a random number uniformly distributed in [0,1].

Selection operator: the best individuals according to the aptitude function given in 4. In order to perform
a fast compute of the distance between the points P and the NURBS surface S, the points of S are store in
a kd-tree structure, so that the searching process for finding the nearest points between P and S is log(n)
order. The Algorithm 4 summarizes the optimization process.

Algorithm 4: Perform a clustering of P by using SOM.

begin
for each cluster do

Set individual size = cluster size;
Set population size = µ;
Initialize randomly the population;
Evaluate the population in the aptitude function 4;
while the stop criterion δ do not reached do

for i = 1 to λ ·0.9 do
Indi = mut(Populationrand(1,µ));

end
for i = 1 to λ ·0.1 do

Indi = rec(Populationrand(1,µ));
end
Population = select from(µ + λ );

end
end

end

4.3.2 NURBS Patches Continuity

Continuity in regular cases (4 patches joined at one of the vertex) is a solved problem [11]. However,
in neighborhoods where the neighbors’ number is different from 4 (v > 3→ v 6= 4), continuity must be
adjusted to guarantee a soft transition of the implicit surface function between patches of the partition. In
this paper, C1 continuity between NURBS patches is guaranteed, using Peters continuity model [9] which
guarantees continuity of normals between bi-cubical spline functions. Peters proposes a regular and general
model of bi-cubical NURBS functions with regular nodes vectors and the same number of control points
at both of the parametric directions. In our algorithm, Peter’s model was adapted by choosing generalizing
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NURBS functions, with the same control points number at both of the parametric directions, bi-cubic basis
functions and regular expansions in their node vectors.

Continuity Along the Quadrilateral Boundaries: To guarantee C1 continuity between the boundaries
of neighboring patches, extreme control points which affect the continuity between patches must be found.
Due to data ordering within the proposed parametrization schema, two adjacent patches will have the same
number of control points at the common axis, regardless of their disposition. To adjust continuity between
axes, control points are calculated on the analyzed boundary, to make it co-lineal with neighboring control
points on adjacent patches.

Equation 7 illustrates the new position for a control point at given Pe je axis, where Pvec
A is the neighbor

point to Pe je at patch B. The new control point Pe je is the medium point between the two adjacent control
points Pvec

A y Pvec
B which guarantees that control points on the axis and their adjacent neighbors at each patch

is co-linear.
Pe je =

Pvec
A + Pvec

B
2

(7)

Continuity at Quadrilateral Vertices: Continuity at vertices of quadrilateral regions is guaranteed by
making sure that every adjacent control points at each vertices is co-planar.

Under the continuity criteria proposed by Peters, continuity at quadrilateral vertices are generalized,
that is to say, the adjustment process is the same regardless of the number of patches which can be found at
a given vertex. We have πT P = 0, where π is a given plane and P is a point on the plane. If the system of
equations is over-determined with more than four points, the equation which best adjusts a given point-set
can be found.

Equation 8 represent the over-determined system where P = [P1,P2, . . . , Pn] T with n ≥ 4 are control
points at the vertices. The equation is solved using Singular Values Decomposition SV D, with the last
column of matrix P the equation of the plane which is adjusted to point-set P in the quadratic mean square
error sense. [13]. 
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y P1
z 1

P2
x P2

y P2
z 1

... ... ... 1
Pn

x Pn
y Pn

z 1







πx
πy
πz
πz


 = 0 (8)

Continuity is adjusted by projecting control points P onto the plane given by Equation 8:

π = n1(x− xo)+ n2(y− yo)+ n3(z− zo) (9)

where N = [n1,n2,n3] is the plane’s normal and P0 = [x0,y0,z0] is a point on the plane. The projection
PI = [xI ,yI ,zI ] of a point P = [Px,Py,Pz] on the plane is given by:

xI = Px + n1tI yI = Py + n2tI zI = Pz + n3tI (10)

where t is the parametric value of the straight line which passes through point P in the direction of the
plane’s normal N.

Using Equation 10, it is possible to project control points on the given plane, which guarantee the
continuity of normals at vertices of the quadrilateral partition, ensuring that every adjacent control points
are co-planar.

5 Experimental Results
Tests were performed using a 3.0 GHz dual Opteron processor computer, with 1.0 GB RAM, running
Microsoft Windows XP operating system. The methods were implemented using C++ and MATLAB. The
data used were obtained with Kreon range scanners, available at the Advanced Man-Machine Laboratory –
Department of Computing Science, University of Alberta, Canada.
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(a) (b) (c) (d) (e)

Figure 2: Comparison Between Branch’s Method and Eck and Hoppe’s Method. a) Triangulated model, b)
27 patches model (Branch’s method without optimize), c) 27 patches model (Branch’s method optimized),
d) 29 patches model (Eck and Hoppe’s method without optimize), e) 156 patches model (Eck and Hoppe’s
method optimized)

5.1 Comparison Between Branch’s Method and Eck and Hoppe’s Method
The work by Eck and Hoppe [11] performs the same adjustment by means of a network of B-spline surface
patches adaptatively refined until they obtain a given error tolerance. The process of optimization performed
by Eck and Hoppe reduces the error by generating new patches, which considerably augments the number
of patches which represent the surface. The increment of the number of patches reduces the error because
the regions to be adjusted are smaller and more geometrically homogeneous. In the method proposed in
this paper, the optimization process is focused on improving the adjustment for every patch by modifying
only its parameterization (control points weight). Because of that, the number of patches does not augment
after optimization process. The final number of patches which represent every object is determined by the
number of critical points obtained in an eigenvector associated with the eigenvalue (λ ) selected from the
solution system of the Laplacian matrix, and it does not change at any stage of the process.

Figure 2 contains a couple of objects (foot and skidoo) reported by Eck and Hoppe. Every object is
shown triangulated starting with the points cloud. The triangulation is then adjusted with a patch cloud
without optimizing and the result obtained after optimization. The adjustment with the method proposed in
this paper, represents each object, with 27 and 25 patches, while Eck and Hoppe use 156 and 94 patches.
This represents a reduction of 82% and 73% fewer patches respectively, in our work.

With respect to the reduction of the obtained error in the optimization process in each case, with the
proposed method in this paper, the error reduces an average of 77%, a value obtained in an experimental
test with 30 range images. Among these appear the images included in Figure 2. The error reported in Eck
and Hoppe for the same images of Figure 2 allow a error reduction of 70%. In spite of this difference which
is given between our method with respect to Eck and Hoppe’s method, we should emphasize that error
metrics are not the same, Eck and Hoppe’s method is a measurement of RMS, ours method corresponds to
an average of distances of projections of points on the surface.

Another aspect to be considered in the method comparison is the number of patches required to represent
the object’s surfaces. In Eck’s work, the number of patches used to represent the object’s increase is an
average of 485% in relation to the initial quadrilaterization, while in the method proposed in this paper, the
number of patches to represent the surface without optimization, and the optimized one, is constant.

6 Conclusion
The methodology proposed in this paper for the automation of reverse engineering of free-form three-
dimensional objects has a wide application domain, allowing adjustment of surfaces regardless of topolog-
ical complexity of the original objects.

A novel method for fitting triangular mesh using optimized NURBS patches has been proposed. This
method is topologically robust and guarantees that the complex base be always quadrilateral creating a
network of surfaces which is compatible with most commercial CAD systems.
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In the proposed algorithm, the NURBS patches are optimized using multiple evolutionary strategies to
estimate the optimal NURBS parameters. The resulting NURBS are then joined, guaranteing C1 continuity.
The formulation of C1 continuity presented in this paper can be generalized, because it can be used to
approximate regular and irregular neighborhoods which present model processes regardless of partitioning
and parametrization.
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Abstract

We present a novel method for fully automated exterior calibration of a
2D scanning laser range sensor that attains accurate pose with respect to a
fixed 3D reference frame. This task is crucial for applications that attempt to
recover self-consistent 3D environment maps and produce accurately regis-
tered or fused sensor data.

A key contribution of our approach lies in the design of a class of cal-
ibration target objects whose pose can be reliably recognized from a single
observation (i.e. from one 2D range data stripe). Unlike other techniques, we
do not require simultaneous camera views or motion of the sensor, making
our approach simple, flexible and environment-independent.

In this paper we illustrate the target geometry and derive the relationship
between a single 2D range scan and the 3D sensor pose. We describe an algo-
rithm for closed-form solution of the 6 DOF pose that minimizes an algebraic
error metric, and an iterative refinement scheme that subsequently minimizes
geometric error. Finally, we report performance and stability of our technique
on synthetic and real data sets, and demonstrate accuracy within 1 degree of
orientation and 3 cm of position in a realistic configuration.

1 Introduction

In recent years, the ubiquity of laser range sensors (lidars) has increased, and their ap-
plication to many domains – including vision and robotics – has grown rapidly. Indeed,
heterogeneous sensor suites consisting of multiple lidars, cameras, and other devices have
become quite common for such applications as object recognition, tracking, navigation,
and environment reconstruction.

For multi-sensor systems to be useful, they must produce measurements in a com-
mon coordinate system so that observations from two or more sensors may be related to
one another in a meaningful way within a consistentrelative reference frame. Further,
for higher-level geometric reasoning it is often essentialfor sensors to be situated with
respect to a knownabsolute reference frame. In simultaneous localization and mapping,
for instance, sensors must be carefully calibrated with respect to the robot’s body frame
to enable the robot to accurately localize obstacles and landmarks (Figure 1).

Several different types of lidar devices currently exist, with varying scanning mecha-
nisms, number of lasers, and geometric configurations. In this work we focus on the most
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Figure 1: A typical application in which a lidar is rigidly attached to a mobile robot that
produces pushbroom-like scans of its environment. We wish to determine the transforma-
tion between the lidar’s coordinate system and that of a known reference such as the body
frame or the environment.

common, the planar or line-scanning lidar. The calibrationof absolute orientation is espe-
cially important and challenging for these sensors, as theyproduce only 2D slices of their
3D environment. As the lidar plane moves (e.g. spins at a fixedlocation to produce full
spherical scans, or translates on a mobile robot to sweep outthe environment ahead), sys-
tems require accurate hand-eye calibration to assemble theindividual slices into a metric
– and thus physically meaningful – 3D point cloud.

In this paper we present a novel and fully-automated procedure for calibrating the
exterior 6-degree-of-freedom pose, consisting of 3D location and orientation, for a planar
lidar sensor with respect to a fixed reference frame. We make no assumptions about the
surrounding environment and do not require the sensor to physically move. Our algorithm
merely requires a single range-only scan of a carefully-designedcalibration target, making
the technique flexible and independent of errors in other sensor measurements such as
odometers or servos.

1.1 Prior Work

There are many strategies for calibrating the pose of a lidarsensor. In the literature, these
tend to fall into two main categories: those that require theuse of additional sensors
such as cameras, and those that require known motion of the lidar itself. Multi-sensor
calibration typically determines the relative Euclidean transformation between the lidar
and a rigidly-attached camera. Zhang and Pless present a technique in which both sensors
image a planar checkerboard target at different (unknown) orientations; the camera’s pose
with respect to the target is determined using a standard extrinsic calibration method, and
combined with straight-line profiles extracted from the lidar to form constraints on the
lidar’s pose [10]. Mei and Rives developed a more general theory of lidar registration to
catadioptric cameras, considering additional cases in which the laser returns are visible
to the camera, thus forming explicit correspondences between image pixels and range
samples [6]. Several methods have also been proposed that utilize structured light, or
visible laser profiles in the images [4, 7].

Motion-based oractive calibration involves imaging objects from multiple locations
and orientations. Several methods move a robotic arm, to which the laser is attached, and
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capture range data of a fixed planar surface at different orientations; knowledge of precise
relative arm pose is assumed [8, 2]. McIvor places a cubic calibration target on a motion
table, and “scans” the object with the lidar to obtain both range and intensity data; the
laser pose that best rectifies the data to the known target geometry is then determined [5].
Finally, Zhang and Pless estimate egomotion of a moving robot via robust matching of
consecutive lidar scans over time, using the structure of the surrounding environment to
constrain the hand-eye lidar pose [9].

1.2 Contributions

In this work, we develop a flexible lidar calibration technique based on a novel target
object design. Our technique has several unique characteristics that provide advantages
over prior methods: it does not require additional sensors such as cameras; it does not
require motion of the sensor or the target; and it requires only range data, not intensity
data. These properties offer applicability to a wide variety of different 2D laser scanners
and imaging geometries. Further, because our target’s surface can be painted with visible
patterns, our method also enables precise lidar-camera registration. To our knowledge,
this is the first such published technique.

2 Fundamentals

We seek the rigid-body Euclidean transformation(R,T ) that aligns a particular sensor’s
local coordinate system with some fixed reference frame. Here, T is the sensor’s 3D
location in the reference frame, and the columns of the orthonormal rotation matrixR
represent the axes of the sensor expressed in reference coordinates. Thus, the transforma-
tion between a reference pointM and a sensor pointQ is given by

Q = RT (M−T), (1)

and the inverse transformation is given by

M = RQ+ T. (2)

The laser produces 2D range scans consisting of discrete angular samples in a plane.
For each ray sample along the direction denoted by angleθk, the sensor measures a corre-
sponding distancerk along that ray. We place the origin of the sensor coordinate system
at the origin of all laser rays; the ray atθ = 0 is coincident with the sensor’sx axis, and
the ray atθ = π/2 is coincident with they axis. Thus, the scan produces measurements
of the form

QT
k =

(

uk vk 0
)

= rk
(

cosθk sinθk 0
)

. (3)

Since the range measurements all lie in a plane, the transformation between lidar coordi-
nates and reference coordinates given in (2) can be reduced to a homography [3] as

M = Hq = RKq = R
(

ex ey RT T
)

q, (4)

whereex andey represent unit vectors in thex andy direction, respectively, andqT =
(

u v 1
)

.
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Internal mis-calibration and servo scan inconsistency maycause error inθ , which is
generally negligible. Range measurementsr also exhibit uncertainty induced by quantiza-
tion (i.e. fixed bit allocation in analog-to-digital conversion of the range return), typically
on the order of 1cm, and by measurement noise from material reflectivity and environ-
mental effects, typically also on the order of 1cm [1]. Finally, nonlinear range errors can
arise from depth discontinuities in imaged surfaces due to non-zero laser spot size.

3 Calibration Target Design

The most important factor in designing a target object suitable for single-scan range-based
calibration is the 3D pose recovery itself. While many simple objects allow determina-
tion of certain straightforward extrinsic parameters, thedesign problem becomes more
challenging as the number of required DOFs increases. A second factor is reliable and
stable detection of the target object, which must account for lidar measurement errors and
discrete rather than continuous angular sampling. Finally, there are practical matters to
consider such as the ease, repeatability, and accuracy of physical target construction.

The lidar produces as measurements a series of ranges at specified angles that consti-
tute the (sampled) intersection of a virtual plane with the visible 3D surfaces in the scene.
We next consider two classes of simple 3D objects that produce unique 2D cross sections
determined entirely by the orientation and position of the slicing plane.

3.1 Conic Sections

It is well known that conic sections are produced by intersections of a plane with a double
cone, with the particular type and shape of the curve defined entirely by the position and
orientation of the slicing plane. For simplicity, and without loss of generality we assume
a cone with apex at the origin and whose axis of symmetry is thez axis in reference
coordinates, defined by the implicit equation

X2+Y 2−Z2 = 0 = MT SM, (5)

where the reflection matrixS = diag(1,1,−1). Intuitively, the size of a cross section is
related to the translation of the sensor slice plane along the symmetry axis, and the shape
of the cross section is related to the slice plane’s orientation (Figure 2).

Substitution of (4) into (5) reveals

(Hq)T S(Hq) = 0 = qT KT RT SRKq. (6)

Thus, each observed lidar sample generates a single quadratic constraint equation in the 6
unknown parameters encoded byR andT , and it would seem that six such points in non-
degenerate configuration uniquely determine these parameters. However, due to inherent
geometric symmetries, not all DOFs may in fact be recovered.

A geometric illustration of this ambiguity is shown in Figure 2. Algebraically, we
can see that applying a rotation aboutz to reference pointM does not affect (6) since the
reflection and rotation axes are identical; we can nonetheless obtain an accurate estimate
for R andT in closed form, modulo this rotation aboutz (see Appendix A). Unfortunately,
this inherent ambiguity precludes use of the cone for full 6 DOF calibration. Further, a
conic target is difficult to construct with sufficient size and precision for pose recovery.
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3.2 Polypods

We define apolypod as a multi-legged structure consisting of a set of rays that emanate
from a single point in known directions. Without loss of generality we assume that the
ray origin is coincident with the origin of the reference coordinate system. As with the
cone, moving the slice plane along thez axis changes the size of the cross section, and
tilting the plane changes the cross section’s shape (Figure3). However, unlike the cone, a
polypod can be designed so that its cross section uniquely determines the sensor’s full 6
DOF pose, up to a duality of solutions.

We now derive a geometric relationship between the polypod legs and the lidar mea-
surements given a particular orientationR and positionT . Let mT

k =
(

xk yk 1
)

repre-
sent the direction of thekth ray, or polypod leg; reference pointsM on the 3D ray may
thus be parameterized asM = mks. To determine the lidar pointsQ, we then transform
the ray to lidar coordinates and find its intersection with the lidar slice planez = 0. The
new ray direction is given byRT mk, and the new ray origin is−RT T , according to the
transformation (1). Thus, the ray parameterization becomes

Q =−RT T + RT mks. (7)
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To find the intersection of the ray and the planez = 0, we determine the parameters
such that thez component ofQ is zero. Solving (7) forQT ez = 0 givess = RT

z T/RT
z mk,

whereRz is the third column of the rotation matrixR. Substituting back into (7) gives

Q = RT (mk
RT

z T

RT
z mk

−T ), (8)

which we can re-write component by component as




uk

vk

1



RT
z mk = qkRT

z mk =





RT
x mkRT

z T −RT
x TRT

z mk

RT
y mkRT

z T −RT
y TRT

z mk

RT
z mk



 . (9)

After manipulation of (9), we find that

qk ∼





tz 0 −tx
0 tz −ty
0 0 1



RT mk = K−1RT mk (10)

wheret = RT T . The 3×3 matrixK−1RT defines a plane projective homography between
measured pointsqk on the lidar slice plane and the corresponding polypod raysmk.

Note that (10) is the inverse of (4), the basic relationship between lidar points and
reference points; here, polypod legs equate to projective rays. Further, we observe that
the ambiguity from symmetry in the conic case is completely resolved, because cross
sections are not rotationally symmetric and because there is a unique homography that
relates points to points, rather than points to surfaces, provided that at least four non-
degenerate correspondences exist [3].

3.3 Pyramid Target

Having derived the abstract geometric relationship between polypod configuration and
lidar cross section, we now define a more practical and concrete calibration target design.
First, for precise and simple construction, and because a homography is uniquely defined
by four correspondences, we use the minimum number of four legs. We also avoid con-
struction of a literal polypod; noisy measurements of its thin legs would lead to significant
errors in recovered pose, and in fact the legs might be missedby the laser entirely.

Rather than detecting the polypod legs directly as single-point measurements, then,
we design our target so that we can indirectly, but more reliably, infer their locations in
the scan. To achieve this, we construct a pyramid-shaped target whose four planar faces
intersect to form “virtual” polypod legs (Figure 4). The cross section is a quadrilateral
whose edges may be estimated directly from sets of multiple scan points, and whose
verticesqk may then be recovered more precisely as the intersections ofthese edges.

4 Pose Recovery

To reduce the effects of quantization error and stochastic noise in range and angle mea-
surements, we keep the target stationary in the lidar’s fieldof view for a few seconds and
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Figure 4: Our target design consists of a pyramid (left) withholes cut into the front faces
so that the back faces are visible. Bold lines indicate “virtual” polypod legs formed by
intersection of the pyramid faces. A lidar scan of this object (right) forms a quadrilateral
cross section that uniquely determines the sensor pose.
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Figure 5: Target segmentation involves several steps that result in rejection of clutter
points and a robustly estimated quadrilateral cross section of the target object.

obtain a series of several hundred scans, which are then averaged to form a single, noise-
suppressed scan. Our algorithm processes this data to automatically segment the target
points from the background, find the vertices of the quadrilateral cross section, solve for
the approximate pose in closed form, and iteratively refine the pose for higher accuracy.

4.1 Segmentation

A particular lidar scan contains both the desired cross section of the calibration target
object and clutter from the environment. Our first task is therefore to segment the points of
interest from the clutter (Figure 5). We first remove all points beyond a threshold distance
from the sensor. We next search the scan for contiguous straight line segments using a
successively applied RANSAC algorithm [3]. Each RANSAC iteration selects two points
at random from the scan, fits a line to those points, and evaluates the remaining points
against the line. The line associated with the most inliers is kept, the inliers are removed
from the scan points, and the procedure repeats until no additional lines are found.

We next subdivide each line into contiguous segments, removing segments shorter
than a threshold length, where the threshold is related to the target’s expected cross sec-
tional dimensions. The final step is to find the “correct” fourline segments corresponding
to the true target cross section. We first search for candidate segment pairs that might form
the front two faces; we then search the remaining segment pairs for closed quadrilaterals.
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4.2 Position and Orientation Estimation

We form the four verticesqk via intersection of the extracted line segments, then apply
an ordering constraint to assign theqk to the correct (known) polypod leg directionsmk.
Having established four correspondences, we solve for the homographyH = RK using a
standard technique [3].

We next factorH using QR decomposition, which results in an orthonormal matrix R
and an upper-triangular̃K. Because of the unknown scale onH, the matrixK̃ will not be
of the proper form of (4). In the absence of noise, it will differ by a constant scale factor,
so we divideK̃ by either of its first two diagonal entries (which are equal) and determine
T by left-multiplying the third column of the result by−R. In general, however, theqk

will be noisy, andK̃ will not simply differ fromK by a constant scale factor. We therefore
approximate the trueK by dividing K̃ by the average of its first two diagonal entries
(which are no longer equal), and determiningT as before. Note that this differs from
the factorization of Zhang [11], which solves forK exactly and then approximatesR by
finding the “closest” rotation in Frobenius norm to the estimatedR̃.

In general, when noise is present in the data, the above algebraic approximation leads
to a pose solution that is reasonably accurate, but not optimal. This solution can, how-
ever, be used to initialize a direct optimization method onR andT , such as Levenberg-
Marquardt, that seeks to minimize the sum of Euclidean distances between the trans-
formed pointsHqk and their counterpartsmk.

5 Experiments

To demonstrate the efficacy of our target object design and calibration method, we con-
ducted several different experiments in simulation (to systematically control noise sources
and other DOFs) and on real data (to show performance with physical sensor, target, and
measurements). Results of these experiments are presentedbelow.

5.1 Synthetic Data

We generated simulated data for experiments as follows. First, we constructed a virtual
3D model of the target pyramid with realistic dimensions (approximately one meter on
a side). Next, we chose a set of lidar poses with translationsvarying between 2 and 30
meters and rotations varying between 0 and 45 degrees about each axis. For each pose
we generated virtual lidar scans by intersecting scan rays with the target surface at 0.25
degree spacing. Ray angles and intersection ranges were perturbed by additive Gaussian
noise with specified variance; ranges were also quantized to1cm levels, and range dis-
continuities were averaged to simulate real sensor phenomena mentioned in Section 2.
Results are shown in Figure 6; we report the mean position andorientation errors over
500 trials for each variant.

5.2 Real Data

We constructed a physical calibration target (Figure 4) andconfigured six different sensor
poses with the target sitting on the ground. We measured the lidar’s position and orienta-
tion by hand, so the “ground truth” pose was known only approximately. The sensor was
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Figure 6: Performance of our algorithm on simulated data, plotting position and orienta-
tion error with varying range uncertainty (A and B) and angular uncertainty (C and D).

Table 1: Position and Rotation Error using Real Data
Dist (cm) Roll (◦) Pitch (◦) Yaw (◦) Pos Err (cm) Rot Err (◦)

356± 5 0± 2 0± 2 30± 2 3.1 1.1
311± 5 0± 2 30± 2 15± 2 5.4 1.8
347± 5 10± 2 0± 2 45± 2 4.9 0.9
312± 5 10± 2 30± 2 45± 2 6.1 1.3
623± 5 10± 2 30± 2 45± 2 2.2 0.5
988± 5 10± 2 30± 2 45± 2 3.2 0.4

a SICK LMS291 set for 0.25◦ angular and 1cm range resolution. At each pose, we col-
lected and averaged several hundred scans of the object, then ran our algorithm to segment
the target and solve forR andT . Results are summarized in Table 1.

6 Conclusions and Future Work

We have presented a unique target object design and algorithm for automatic calibration
of a 2D laser range sensor. Unlike previous methods, ours requires neither additional
sensors such as cameras nor motion of the lidar, affording a great deal of flexibility and
generality. We have derived target geometries that supportestimation of extrinsic pose
from a single cross sectional range measurement, and suggested a specific pyramid de-
sign based on a quadropod. Our techniques were demonstratedto exhibit robustness and
accuracy, reliably locating the target amidst clutter and estimating pose to within less than
1◦ of rotation error and a few cm of position error for realisticsensor characteristics.

Our technique relies on precise construction of the calibration target, and requires
that the scan’s slice plane fall within a valid band that intersects all four faces of the
pyramid. Because of finite angular resolution, the target must be placed within a small
enough radius (empirically on the order of 20 meters) that itproduces a sufficient number
of samples on the target surface for reliable estimation. Inpractice, the target also must
be held still so that range errors may be diminished via averaging of multiple scans.

We are currently working to incorporate this technique intoa larger end-to-end system
for self-consistent calibration of heterogeneous multi-modal sensor suites. For true abso-
lute pose estimation – e.g. relative to an inertial frame rather than to the calibration target
– a precise and repeatable method must be developed to measure the target’s pose with
respect to the frame of interest. Our pyramid target could bemodified to simultaneously
calibrate cameras by placing visible fiducials or patterns on its surface. Finally, it would
be interesting to study the effect of relative target dimensions on pose estimation.
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A Pose from Conic Section

We briefly describe a technique for estimating pose from a conic cross section. LetA =
RK andB = AT SA; then (6) becomes

qT AT SAq = qT Bq = 0. (11)

Note that the constraints are linear in the entries of matrixB. SinceB is symmetric, and
since it is defined only up to scale due to the homogeneity of (11), it has 5 degrees of
freedom. A set of 5 linear constraints (i.e. 5 distinct points q) is therefore required for a
unique solution, with each constraint of the formcT b = 0, where

cT =
(

u2 2uv 2u v2 2v 1
)

(12)

andb is a vector defining the relevant entries of the matrixB as

bT =
(

B11 B12 B13 B22 B23 B33
)

. (13)

We form a constraint matrixC whose rows encode measured points(uk,vk) and take the
form cT b = 0, and solve the homogeneous systemCb = 0 by computing the eigenvector
corresponding to the smallest eigenvalue ofCTC. We then factor the symmetric matrix
B asB = VΛV T , where the columns ofV are the eigenvectors and whereΛ is a diagonal
matrix of the eigenvalues. Using (11), we have

B = VΛV T = AT SA, (14)

so it follows thatA =
√

SΛV T . The resulting matrixA may now be factored to obtainR
andT as in Section 4.2. To refine these initial closed-form parameters, we again optimize
using an iterative nonlinear algorithm; in particular, we estimate the pose parameters such
that the sum of squared distances betweenRKqk and the cone surface is minimized.
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Abstract

In this paper we will consider a combination of the RANSAC algorithm and
the Hough transform for fast model estimation under the presence of outliers.
The model will be computed by sampling a smaller than minimalsubset, fol-
lowed by a voting process of the remaining data. In order to use the com-
bined method for this purpose, an adequate parameterization of the model
in the Hough space is required. We will show that in case of hyperplane and
fundamental matrix estimation, there is a similar and very general parameter-
ization possible. It will allow these models to be estimatedin a very efficient
manner.

1 Introduction

The Hough transform determines for every data point the parameter subspace of models
it supports, and increases the votes in the Hough space for all these models. An extension
of this principle is to vote for sets of data points instead ofsingle points. The subspace
of supported models is then smaller, while the number of different point sets is larger.
For example, a hyperplane inRN is specified byN points, and a single point imposes a
N − 1 dimensional subspace of supported models in the Hough space. When a pair of
points is considered, the set of supported models is aN −2 dimensional subspace. The
voting process is then faster, but we have to consider

(n
2

)

different pairs instead of only
n points. The limiting case is when precisely sets ofN points are selected, which then
results in a single point in the Hough space. This is the principle of the randomized
Hough transform [11]. Instead of the total number of possible sets

(n
N

)

, only a small
number of random sets is selected which is sufficient to find the best model.

In contrast to the Hough transform, the RANSAC algorithm [3]samplesN points
and verifies the amount of support for the corresponding model. In view of the above,
it is also possible to sample less thanN points and verify the support for each supported
model in the parameter subspace. This use of RANSAC in combination with the Hough

860



transform has been proposed in [8, 9] to improve the efficiency and quality of model
estimation. It was argued that using sets ofN −1 points is probably the best choice in
terms of efficiency. This results in a one-dimensional subspace of models, which may
be parameterized by a single quantity. Then there is no need to accumulate the largeN
dimensional Hough space.

The number of iterationsJ needed in the RANSAC algorithm is determined from the
required probability of success, i.e. the probability thatat least one all-inlier sample is
found in J iterations [3]. Letε denote the outlier ratio in the data, andd the number of
points needed to hypothesize a model. Ifp is the probability of success, e.g. 0.99, then
we have the relation

p = 1− (1− (1− ε)d)J (1)

The necessary number of iterations of the combined RANSAC and Hough method is
clearly lower than for standard RANSAC, since only sets ofd = N−1 instead ofd = N
points are sampled for forming model hypotheses.

In general, an explicit parameterization of the fundamental matrix in the Hough space
is impractical. Its estimation requires a 7-dimensional voting array (due to the 7 degrees
of freedom [4]), which becomes unmanageable even for a moderate number of quantiza-
tion levels. To be able to use the method in [8], we propose a new parameterization for
hyperplanes which can also be applied to the fundamental matrix. The parameterization
is based on the nullspace of a sample, where the sample will contain one point less than
the minimally required number. For hyperplane estimation,we can include the threshold
for the support set directly into the voting process. As a result, the whole range of models
supported by the remaining data is taken into account. For fundamental matrix estima-
tion, the correspondences will vote for single models. The resulting estimation by 6-point
samples will be very efficient due to the reduced number of iterations. In [8] the quality
of the model was also improved by using an error propagation mechanism for the data.
Error propagation is not incorporated in our method, since no explicit parameterization of
the model is used. Note that the standard RANSAC algorithm also neglects noise effects
of points in the sample [2].

Several other modifications of RANSAC have been proposed to speed up the algo-
rithm; the most directed to homography or fundamental matrix estimation. For example,
in [10] the feature matching score is used in the selection probabilities of the correspon-
dences in order to sample inliers more often. In [2], hypothesized models are optimized to
compensate for noisy inliers and the resulting loss of support points. A faster support set
evaluation has been proposed in [1], where a small number of randomly selected points is
initially evaluated for support. Only when the hypothesized model has sufficient support
points among this number, the remaining data is tested for support.

All these methods apply different speed-up mechanisms thanour algorithm, and can
therefore be combined with our algorithm to achieve even faster fundamental matrix esti-
mation.

In Section 2 the proposed parameterization technique is discussed for hyperplane esti-
mation. Section 3 describes the application of the method tofundamental matrix estima-
tion. In Section 4, hyperplane and fundamental matrix estimation are evaluated on range
data and real image pairs, respectively. Section 5 will conclude the paper.

861



2 Hyperplane estimation

The data pointsxi for i = 1, . . . ,n in R
N will be denoted byx = (x1,x2, . . . ,xN)⊤. A hy-

perplane with normal vectorn = (a1,a2, . . . ,aN)⊤ and offsetb is given by
a1x1 +a2x2 + . . .+aNxN +b = 0. In short, the parameters of the hyperplane will be indi-
cated byh = (n⊤ b)⊤. The random samples that will be drawn consist ofN −1 points
{x̃1, x̃2, . . . , x̃N−1}, and solving for the hyperplane











x̃⊤1 1
x̃⊤2 1
...

...
x̃⊤N−1 1











h = 0 (2)

yields a two-dimensional space{h1,h2} for h. This nullspace can in practice be computed
by a singular value decomposition of the lefthand-side matrix. If the sample
{x̃1, x̃2, . . . , x̃N−1} contains only inliers, then the true hyperplane can be givenby a linear
combination of the nullspace vectors as

h = αh1 +(1−α)h2 (3)

The value ofα can be found by solving(x⊤ 1)h = 0 for another inlying pointx, and
should be the same for all other inliers. The outliers will produce different values forα.

To find the true value ofα we use a Hough-based voting mechanism for the remaining
n−N + 1 data points [8]. We could use the projections ofx ontoh1 andh2 directly for
computingα, but this may result inα values which are difficult to quantize. In particular,
the nullspace vector with the largest singular value, sayh1, is likely to constitute the
largest part ofh and thereforeα ≈ 1. The binning of many values close to 1 and possibly
some values far from 1 is impractical. It would be more convenient to have anα with
equiprobable values over a large range.

For this purpose, we will make use of an orthonormal basis{u1,u2} for the space
spanned byn1 and n2, which are the normals inh1 and h2 from (3). We will take a
point x̃1 from the sample, and project all vectorsxi − x̃1 for i = 1, . . . ,n (except those
from the sample) onto this basis. The pointx̃1 can be seen as the origin for the space
spanned by{u1,u2}, which is shown in Fig. 1 for a line in 2D. From (3) we have that
n = αn1 + (1−α)n2, and sincen1 andn2 are linear combinations of{u1,u2} we can
write

n = c1u1 + c2u2 (4)

for certain valuesc1 andc2. It then follows, that for the inliers the ratio of projections
ontou2 andu1 becomes

(x− x̃1)
⊤u2

(x− x̃1)⊤u1
=

(x− x̃1)
⊤(n− c1u1)

1
c2

(x− x̃1)⊤u1

=
(x− x̃1)

⊤u1
−c1
c2

(x− x̃1)⊤u1

=
−c1

c2
(5)

862



x1

x2

n1

u1

u2

n2

x

x̃1

Figure 1: The sampled pointx̃1 will serve as the origin for the space spanned by{n1,n2}.
Each pointx is projected onto this space by projecting the vectorx− x̃1 onto the orthonor-
mal basis{u1,u2}.

since(x− x̃1)
⊤n = −b− (−b) = 0. The outliers will produce different values for the

projection ratio since in that casex⊤n 6= −b. The projection ratio in (5) will cover a
relatively large range of values, and the angleγ of the projected vectorx− x̃1 with respect
to the basis{u1,u2}

γ = arctan

(

(x− x̃1)
⊤u2

(x− x̃1)⊤u1

)

(6)

offers a quantity which can conveniently be used in a voting space.
In principle, not only the hyperplane which crosses a pointx should receive a vote,

but all possible hyperplanes that are within allowable distance from the point. A data
point will support a hyperplane if its orthogonal distance to the hyperplane is smaller
than a thresholdT (which is usually chosen heuristically in the RANSAC algorithm), see
Fig. 2. Here the angleβ determines for which models the indicated point can possibly be

T

T

u2

β

x̃1 u1

x

δ

Figure 2: The projection of the pointx in the frame{u1,u2}. There is a range of hy-
perplanes which the point supports. The maximum angleβ for the range depends on
thresholdT and the lengthδ of the projection of the vectorx− x̃1.

a support point, and we have sin(β ) = T
δ whereδ =

√

((x− x̃1)⊤u1)2 +((x− x̃1)⊤u2)2.
A data point will vote for all angles in the range[γ −β ,γ +β ]. We note that the distance
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from pointx to the hyperplane is equal to the projected distance in the space spanned by
{u1,u2}, since the component ofx that lies outside this space is orthogonal to it.

The angleγ will be measured in degrees and we choose to use a voting spaceof 180
bins; one bin for each degree from -90 to 89. After calculating this angle for all points, it
should result in a large number of votes in the bin of the true angle. A drawback of using
all data points for voting, is that the voting operation may become quite complex for large
data sets. Following the concept of the probabilistic Houghtransform [6], we can also
examine a subset of randomly sampled data points and calculate the best angle for this
subset. This should give a sufficiently accurate estimate ofthe angleγ while making the
voting process much faster. In the experiments we have chosen for a total of 100 randomly
sampled data points, and only in casen ≤ 100 we use all data.

The bin containing most votes determines the angleγ∗ for which the final hyperplane
is calculated according to

h =

(

u1 + tan(γ∗+ 1
2π)u2

−x̃⊤1 (u1 + tan(γ∗+ 1
2π)u2)

)

(7)

where point̃x1 is taken from the sample.

3 Fundamental matrix estimation

The fundamental matrix can be estimated by following roughly the same technique as
for hyperplane estimation. However, there are two major differences with the preceding
scenario.

First, the 7-point algorithm uses the singularity constraint to determine the fundamen-
tal matrix. After seven correspondences are selected, solving for the fundamental matrix
yields a two-dimensional nullspace [4]. Then the singularity constraint of the fundamen-
tal matrix needs to be used to find the solution. If we sample six points, the resulting
nullspace is three-dimensional. We would like to use the singularity constraint for remov-
ing one dimension and use voting to find the final solution. Unfortunately, the singular-
ity constraint on the three-dimensional nullspace is a cubic polynomial in two variables,
which does not allow voting with respect to a fixed pair of nullspace vectors. As a result,
we have to solve the singularity constraint for each correspondence individually. The
complexity of the algorithm will therefore increase, but aswe have already indicated, a
subset of the data points will suffice in the voting process.

Second, since there is no fixed two-dimensional nullspace during voting, we can not
calculate the range of allowable models as in Fig. 2. The number of fundamental matrices
consistent with a seventh correspondence will be either oneor three, just like for the 7-
point algorithm. Therefore, there is no range of matrices for which e.g. the Sampson
distance can be evaluated, and votes are cast for either one or three separate angles.

To start the estimation process we sample 6 correspondences
{x̃1 ↔ x̃′1, . . . , x̃6 ↔ x̃′6}, and solve







x̃′1x̃1 x̃′1ỹ1 x̃′1 ỹ′1x̃1 ỹ′1ỹ1 ỹ′1 x̃1 ỹ1 1
...

...
...

...
...

...
...

...
...

x̃′6x̃6 x̃′6ỹ6 x̃′6 ỹ′6x̃6 ỹ′6ỹ6 ỹ′6 x̃6 ỹ6 1






f = 0 (8)

which results in a three-dimensional space of solutions
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f = αf1 +β f2 +(1−α −β )f3 (9)

If we take a single correspondencex↔ x′ and solve

(

x′x x′y x′ y′x y′y y′ x y 1
)

f = 0 (10)

for f from (9) we get a linear constraint inα andβ . When the correspondence is an inlier,
the true values forα andβ will satisfy this constraint. Let the resulting linear relation be
β = rα +g. Then we use the singularity constraint

det(αF1 +(rα +g)F2 +(1−α − (rα +g))F3) = 0 (11)

whereF1, F2, and F3 are the 3× 3 matrices containing the elements off1, f2 and f3,
respectively. This will result in either one or three real solutions forα and thus forf. Now,
writing the vectorsf1, f2 andf3 in (9) asf1 = (n⊤1 b1)

⊤, f2 = (n⊤2 b2)
⊤ andf3 = (n⊤3 b3)

⊤,
we construct an orthonormal basis{u1,u2,u3} from {n1,n2,n3}. This basis is used for
the projection of the solutions forf. In particular, we calculate the angles

γ1 = arctan

(

( f1 · · · f8)u2

( f1 · · · f8)u1

)

γ2 = arctan

(

( f1 · · · f8)u3

( f1 · · · f8)u2

)

(12)

and use them to cast a vote in a two-dimensional array. The angles will be rounded
towards full degrees in the range -90 to 89.

As in hyperplane estimation, we do not use all data points during voting. When the
data set contains more than 100 correspondences, only 100 randomly selected correspon-
dences are considered. Examples of vote distributions are given in [5].

After having located the values ofγ∗1 andγ∗2 for the bin containing most votes, we can
find the first eight elements of the correspondingf by







f1
...
f8






= u1 + tan(γ∗1)u2 + tan(γ∗1) tan(γ∗2)u3 (13)

and the last element by

f9 =−
(

x̃′1x̃1 x̃′1ỹ1 x̃′1 ỹ′1x̃1 ỹ′1ỹ1 ỹ′1 x̃1 ỹ1
)







f1
...
f8






(14)

The correspondencẽx1 ↔ x̃′1 is part of the 6-point sample, and therefore lies on the final
f.

The fundamental matrix that is found this way does not automatically satisfy the sin-
gularity constraint. Due to the rounding effect in the voting array, the matrix will slightly
deviate from a singular one. We can solve this by applying theSVD to this matrix, and
setting the smallest singular value to zero [4]. A prerequisite for this to work properly is
a normalization of the correspondences. This entails a translation which results in zero
means for the(x,y) coordinates, followed by a scaling which makes their average distance
to the origin equal to

√
2. The transformation is applied to both images’ correspondences
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independently. Before the support of the fundamental matrix is evaluated, the coordinates
are transformed back again to their original values.

The whole sequence of steps in the estimation process is listed in Fig. 3. Note that the
number of iterationsJ is determined adaptively as in [4]. When the largest support set so
far is found, i.e.|S j| > |Smax|, the outlier ratioε is updated accordingly. The number of
iterationsJ is then recomputed according to (1).

• j = 1, J = ∞, Smax = /0
• Normalize the image correspondences.
• while j < J do

• Randomly select 6 correspondences{x̃1↔ x̃′1, . . . , x̃6↔ x̃′6} and use them
to compute their nullspace{f1, f2, f3} by solving (8).

• Determine the orthonormal basis{u1,u2,u3} for the space spanned by
the normals in{f1, f2, f3}.

• if n > 100then
• form the setC by randomly selecting 100 correspondences from
{x1↔x′1, . . . ,xn↔x′n}\{x̃1 ↔ x̃′1, . . . , x̃6 ↔ x̃′6}

• else
• form C = {x1↔x′1, . . . ,xn↔x′n}\{x̃1 ↔ x̃′1, . . . , x̃6 ↔ x̃′6}

• for each x↔x′ in C do
• Find the possible solutions forx↔x′ by solving (10) and (11).
• Determineγ1 andγ2 according to (12) for each solution, and round

the angles to the nearest degree.
• Add one vote for each pair of angles(γ1,γ2) in the voting array.

• Determine the pair(γ∗1 ,γ∗2) with the maximum number of votes.
• Constructf from (13) and (14) forγ∗1 andγ∗2 .
• Find the closest approximationf̂ to f with det(F̂) = 0 using the SVD.
• Determine the set of support pointsS j for the denormalized̂f, by verifying

which points are within distanceT .
• if |S j|> |Smax| then

• J = log(1− p) · log−1
(

1−
( |S j |

n

)6
)

• Smax = S j

• j = j +1

• Re-estimate the fundamental matrix based on the largest support setSmax.

Figure 3: The RANSAC-Hough algorithm for fundamental matrix estimation using a
two-dimensional voting space.
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∑JR (·103) ∑JRH (·103) tR tRH ∑ |Smax|R (·104) ∑ |Smax|RH (·104) #hR #hRH

image 0 9.50±1.42 1.63±0.17 19.9±2.37 3.84±0.31 6.29±0.032 6.29±0.033 14.0±0.7 13.8±0.6
image 1 3.41±0.48 0.72±0.09 5.47±0.64 1.39±0.13 6.37±0.029 6.37±0.028 10.8±0.6 10.4±0.6
image 2 5.36±0.75 1.05±0.11 9.58±1.53 2.06±0.24 6.41±0.034 6.41±0.034 13.0±0.7 12.7±0.6
image 3 2.12±0.37 0.51±0.07 4.13±0.70 1.13±0.14 6.41±0.028 6.41±0.026 10.0±0.6 9.7±0.6
image 4 2.88±0.50 0.63±0.08 5.71±0.73 1.45±0.14 6.41±0.029 6.40±0.028 11.1±0.7 10.6±0.6
image 5 2.55±0.34 0.58±0.07 4.32±0.57 1.14±0.13 6.39±0.029 6.39±0.030 10.0±0.6 9.7±0.6
image 6 5.03±0.68 1.00±0.11 9.80±1.18 2.18±0.20 6.36±0.029 6.36±0.031 12.3±0.6 12.0±0.6
image 7 1.62±0.29 0.41±0.05 3.74±0.39 1.07±0.08 6.44±0.026 6.44±0.024 9.7±0.6 9.3±0.5
image 8 2.00±0.36 0.47±0.07 3.61±0.57 1.00±0.11 6.40±0.028 6.40±0.028 9.2±0.6 8.9±0.6
image 9 1.91±0.37 0.46±0.07 4.09±0.52 1.14±0.10 6.44±0.029 6.44±0.029 10.2±0.7 9.7±0.7

Table 1:The results for finding all planes using RANSAC (R) and RANSAC-Hough(RH) in the
ABW range images. Indicated are the averages and standard deviations(±) for the total number of
iterations∑J per image, the running timet in seconds, the total size of the maximum support sets
∑ |Smax| and the number of planes #h found.

4 Experimental results

We will compare the proposed RANSAC-Hough method with the standard RANSAC
algorithm for plane fitting and fundamental matrix estimation. For all experiments we
report the averages and standard deviations over a number ofruns of both the executed
number of iterationsJ and the size of the maximum support set|Smax|. Furthermore, the
average running time for a single run is listed. The final re-estimation step in RANSAC
will be omitted. The algorithms were implemented in C and ranon Intel Xeon 3.07 GHz
/ 3.2 GHz computers. For implementation details see [5].

4.1 Plane fitting

As application we consider the fitting of planes in range image data. We have used 10
images (“train” 0 to 9) from the ABW structured light scannerin the USF database1. The
images contain several different planar objects, and the intensity values correspond to the
measured depth by the scanner. An example of one of the imagesis shown in Fig. 4(a).
We have subsampled the images with a factor 2 to obtain 256×256 sized images. We
search with RANSAC for planes in the images, and subsequently delete the points from
the data set which belong to a plane. The repeated application of RANSAC is stopped
when a plane is returned with support smaller than 500 pixels. For the shown example
image, the number of planes extracted this way will be about 12. The experiment is
repeated 500 times for each image. The threshold for the orthogonal distance to the plane
is set toT = 2.5, which is large enough to capture noisy variations of the inliers. Table 1
shows the results of the experiments.

The RANSAC-Hough method outperforms RANSAC in all aspects;in some cases it is
up to a factor 5 faster. The total number of points on the extracted planes is comparable,
while the number of planes is a bit smaller. This means that the extracted planes are
actually better fits, since they contain a larger part of the data.

4.2 Fundamental matrix estimation

Some of the real images we have used for testing are shown in Fig. 4(b) and 4(c). There
are differences in viewpoint and/or zoom factor between theleft and right images. The

1Available at http://marathon.csee.usf.edu/range/seg-comp/images.html.
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SIFT keypoint detector2 [7] has been applied for establishing correspondences between
the image pairs. The left images in Fig. 4(b) to 4(c) show the final sets of inlying feature
points, and the right images the outlying feature points. Also indicated for every image
pair are the total number of correspondencesn and the outlier ratioε. The Sampson
distance is chosen as error measure, and we have set the square root of the threshold to
T = 1.5 pixels.

(a) A range image used for
plane fitting.

(b) Wadham college:n = 921 andε = 0.71.

(c) Pile of books:n = 548 andε = 0.82.

Figure 4: Some of the images used in the experiments.

The results of running RANSAC 500 times on the image pairs areshown in Table 2.
The difference in running times is best noticeable for higher outlier ratios. The number
of iterations is reduced here considerably and the additional complexity of the voting pro-
cess does not prohibit a speedup anymore. The support sets found are slightly smaller
than those for RANSAC. This is a result of the rank 2 enforcement which finds an ap-
proximation of the fundamental matrix computed from the data. Since the data is not
considered in finding this approximation, some inliers are lost in the process.

5 Discussion

The combination of RANSAC and the Hough transform, that has been advocated in the
past, is made applicable to hyperplanes and the fundamentalmatrix by a new parameter-
ization of the model. For hyperplanes, the result is an efficient one-dimensional voting
space and a reduction of the sample size by one point. For the fundamental matrix, a
two-dimensional voting space is applied because of the singularity constraint. Instead of
sampling 7 correspondences per model, we now only need to take 6-point samples. This

2The code is obtained from http://www.cs.ubc.ca/∼lowe/keypoints/.
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image pair ε # inliers JR JRH |Smax|R |Smax|RH tR tRH

books 0.74 189 7.2±0.64 ·104 1.92±0.17 ·104 187±2.5 185±2.9 25.1±3.6 11.7±1.9
pile of books 0.82 97 4.03±0.71 ·105 0.93±0.18 ·105 109±2.9 106±3.5 114±24.2 52.5±12.0

Wadham college 0.71 264 7.08±2.93 ·104 1.96±0.73 ·104 241±13.8 236±14.4 29.0±12.4 12.4±4.9
Univ. British Columbia 0.56 399 2.65±0.56 ·103 1.14±0.25 ·103 372±11.0 369±12.8 1.13±0.28 0.72±0.20

Corridor 0.43 150 466±160 261±95.5 139±5.8 138±6.8 0.08±0.031 0.13±0.055
Valbonne church 0.58 127 2.56±0.63 ·103 1.23±0.40 ·103 123±3.7 121±5.4 0.49±0.13 0.64±0.23

Table 2:Fundamental matrix estimation using RANSAC (R) and RANSAC-Hough (RH) on real
image pairs. Indicated are the averages and standard deviations (±) for the executed number of
iterationsJ, the maximum number of support points|Smax| and the running timet in seconds.

makes it much easier to find an all-inlier sample by random trials. In addition, we use for
both models randomly selected subsets of the data to speed upthe voting stage.

The consecutive extraction of planes in range images took considerably less time us-
ing the RANSAC-Hough method. The quality of the solutions iseither equal or better
than standard RANSAC. In case of the fundamental matrix, a much faster estimation is
achieved for high outlier ratios, with only a minor decreasein the size of the support.

A further improvement of the algorithm may be circumventingthe loss of support
points caused by enforcement of the singularity constraint.
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Abstract

Our aim is to develop a completely automated and reliable system to identify
morphological landmarks in digital images. The performance of the sys-
tem is aimed to replicate manual digitization with equivalent accuracy and
reliability, based upon a small number of training examples. The analysis
system is constructed from four stages; a feature based detection of fly wing
structure, correspondence matching based upon the pairwise geometric his-
togram (PGH) representation, global location of the wing using a Probabilis-
tic Hough Transform (PHT), and finally local correlation based refinement of
individual features. We evaluate this system and compare quantitative results
to manually digitized data.

1 Background

Morphological landmarks are points that can be located precisely and establish an un-
ambiguous one-to-one correspondence among all the specimens and are widely used in
shape analysis [1]. Points like the tip of the nose or the outer corner of the left eye are
possible landmark points of the human face. Analyses of shape investigate the arrange-
ment of landmark points relative to each other. A substantial body of statistical methods
is available for the analysis of configurations of landmark points [2].

This framework of shape analysis by landmarks is increasingly used in many biolog-
ical and medical applications and widely applied in many other fields. The configuration
of landmarks have helped identify the possible source of re-infesting specimens and en-
counter the epidemiologically challenging vectors of Chagas disease [3]. The potential
of using geometrical morphometric techniques as an invaluable tool for recognizing tax-
onomic data is being explored [4]. Other scientific applications include investigating the
study of size and shape to examine the effects of experimental treatments, genotype or
other factors directly in the anatomical aspect. The use of landmarks has been adapted to
specific biological contexts such as genetics [5, 6, 7]; geographic differentiation [8], and
the study of morphological integration [9, 10].

The process of identifying the landmarks is an important andlabour-intensive part of
any such analysis. Presently, this is usually done manually. Plugins for the ImageJ soft-
ware (for digitizing the standard sets of landmarks) on fly wings and mouse mandibles),
increases speed and reliability over a completely unaided process [11]. However, there is
still a requirement for an observer to manually identify each landmark point and therefore
this process can be time-consuming, and quite often, the research questions are dependant
on the duration of obtaining these data.
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Developing an automated system for locating landmarks in digital images ofDrosophila
wings is largely significant, as it is an excellent model for the study of genetics of develop-
ment and evolution of morphological form [12, 13]. They contain a wealth of interesting
biological information and its simple, flat, two dimensional structure enables convenient
handling. Therefore, automation has numerous advantages over a manual system, as
it will not only diminish the labour needed for shape analysis, but it also will elimi-
nate the source of error (mistakes made during digitizing and subtle differences between
observers). Furthermore, automatic extraction of features from images can potentially
change the way in which landmarks are chosen for morphometric studies. Whereas the
traditional approach requires landmarks to be chosen a priori, based on outside knowledge
of the study system, the approach using automated image analysis raises the possibility
to identify and extract features from the total informationcontained in the images that are
maximally informative in the context of a particular research project.

There have been previous attempts to automate the process oflandmark location on
theDrosophilawing [13]. This method is semi-automated where the operatorinitiates
the process by marking two landmark positions and the systemfits a series of spline
curves to the margin and the veins of the wing, and defines the landmarks as the intersec-
tions of the splines. The drawback of this system is that the landmarks are not always at
the exact location of the intersection of veins and the splines may not exactly match the
veins (because of the ”stiffness” of the spline interpolation) and the system has problems
identifying wings of species with highly melanized spots atthe intersections.

Another such system to locate the landmarks on digital images of bee wings is being
developed at the Paris National Museum of Natural History [14]. This system applies
the techniques of mathematical morphology and skeletonization to obtain the landmarks.
However, using these techniques are not guaranteed to be robust. The method also re-
quires human intervention in terms of loading the data and identifying the initial set of
points to start the process and the pre-processing step includes certain parameters that
have to be set by the operator.

Other similar automated systems include the Digital Automated Identification SYs-
tem (DAISY) which was developed whilst attempting a novel approach to identify insect
specimens from the images. Principal component auto-associative memories and train-
able classifiers are exploited to identify closely related parasitic wasps based on their
wing venation and pigmentation patterns [15]. This system has been designed to identify
several organismal groups in real time and it successfully classifies data into morphologi-
cally similar classes and proves to be a very useful and practical tool for taxonomic iden-
tification of various species. The internal algorithms are based upon the use of a pairwise
geometric histograms (PGH) representation,which is used to establish shape correspon-
dence.

2 Introduction

We present an automated system for the analysis of edge basedstructure for use in mor-
phometric studies. The current work takes a grey level imageof Drosophilawing as input
and extracts the coordinates of 15 landmarks (Figure 1). A typical shape analysis requires
several hundred images and identifying these landmarks is alaborious process. An au-
tomated method to extract these features can potentially improve the methodology with
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which the landmarks are identified via improved standardization and accuracy.

Figure 1: 15 Landmark locations onDrosophilawing (Image courtesy: [11]).

The proposed method extracts the ridges (linear features such as wing veins) using
the knowledge of their known grey level profile and the noise characteristics of the im-
age. This approach has been shown to be statistically valid [16]. The ridges obtained
are approximated by line segments and the geometric relationships between them are
encoded in PGH, an approximation to the probabilistic density function for the geomet-
ric co-occurrences in the data [17]. Shape correspondence is determined by compar-
ing and matching the pairwise histograms of the scene and model data. A probabilistic
Hough transform (robust Likelihood) is used to determine the hypothesized landmark lo-
cation (Figure 2). Sub-pixel estimation of the landmark location is performed by template
matching, i.e., correlating a small region around the Houghestimated landmark location.

We show that a single training image with its landmark coordinates is enough to inde-
pendently estimate the landmarks of any individual within aparticular dataset. However,
the reliability and accuracy of the method can be further enhanced by using multiple
training images. Multiple estimates also offer the possibility of accuracy assessment, an
important aspect of any scientific study. The precision, repeatability and robustness of the
algorithm have been evaluated here as a pilot study. Although some predictions regarding
reliability can be made with a small sample, a further study will be carried out on a larger
sample to test the reliability of the system on scientific studies.

3 Methods

3.1 Data Acquisition

Data acquisition is carried out by mounting the fly wings in rows on a microscopic slide
and flattening with a coverslip. The digital images are obtained using an appropriate dig-
ital camera mounted on the microscope and attached to a computer. A calibration image
is generally obtained along with each of the dataset to standardize the difference in mag-
nifications between different dataset. The anatomical landmarks can be easily collected
in two dimensions from digital images and this approach is quite useful in evolutionary

872



research as the landmarks can be collected from non-model organisms or even fossils.
The X & Y co-ordinates of these landmarks are usually obtained by manually digitizing
the location of these co-ordinates appropriately based on their anatomical context. Spe-
cialized algorithms and plugins can be used to semi-automate the process and to enhance
the speed of the digitization.

3.2 Analysis

The analysis system is constructed from four stages; a feature-based detection of fly wing
structure, correspondence matching based upon the PGH representation, global location
of the wing using a Probabilistic Hough transform, and finally correlation based refine-
ment of individual features. We evaluate this system and compare quantitative results to
manually digitized data below.

3.2.1 Ridge Detection- An extension to Canny framework

The wing veins are extracted as ridge features, using a method which is a modification
of more conventional edge detectors. We locate these features using a matched filter ap-
proach, approximating the vein profile as a Difference of Gaussians. Local maxima in
response are then passed into a more conventional hysteresis threshold and linking sys-
tem, based upon the popular Canny [18] system, in order to extract connected structures.
This extracted edge map can be used to determine the precise location of landmarks. The
uniformity of noise in the feature enhancement stage guarantees that this process is inher-
ently stable. The ridge detector has been optimized for the task of locating landmarks by
analyzing the specific characteristics of noise and scale stability. The whole process can
be interpreted as a statistical null-hypothesis test for the presence of the defined feature
[19].

3.2.2 Pairwise Geometric Histograms

The extracted edge-map is approximated by line segments andthe geometric relationships
between each pair of line segments are encoded in the pairwise geometric histograms.
This is an approximation to the probabilistic density function,

Hi(θ ,d) = P(θi −θ j ,di j |ei) (1)

for the geometric co-occurences of an edgelej givenei as a function of relative angle
θi − θ j and perpendicular separationdi j . This is a well established method of shape repre-
sentation based on recording the distribution of pairwise geometric relationships between
local shape features which can support recognition and there is considerable robustness to
the loss of data due to fragmentation noise and occlusion [17]. The method is also known
to be complete, in that the original structure of the object can be reconstructed from the
set of histograms describing a shape. This representation is invariant for portions of the
same linear feature so that it can be constructed by considering a linearization of the edge
map. The importance of a pair of line segments defining the representative shape can be
encoded by entering the product of their lengths at the valueof the entry. The entry is
blurred along each axis to encode the uncertainty regardingthe true position and orienta-
tion of each line segment. The scale of binning and extent of blurring defines the extent
of allowable differences when matching similar shapes.
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Shape recognition is done by identifying the correspondences between image and
object features. Shape representation comprises many geometric histograms, each repre-
senting a single model feature. The degree to which a linear edge feature in the test image
matches a particular model feature can be determined by comparing their histograms. The
degree of match between them is given by the Bhattacharrya measureBi j , which takes the
form of a dot product correlation of the histograms of linesHi andH j .

Bi j =
2π

∑
θ

dmax

∑
d

√

Hi(θ ,d)H j(θ ,d) (2)

This can be related, via theχ2 variable, to a maximum likelihood similarity metric and
can be derived as an approximation to Fisher’s Exact test as amethod for comparing two
distributions. The hypothesized matches can then be used asinput to pose an estimation
algorithm such as the generalized Hough transforms. Scale independent recognition can
be achieved by representing an object at a range of scales [20]. However, this property of
the PGH representation was not required in our study and therefore was not utilized.

3.2.3 Hough Transform

A probabilistic Hough Transform (robust maximum Likelihood), is used to make an esti-
mate of the global position and orientation of each wing. Entries in the 2D location his-
togram are made according to the localization covariance, propagated from the errors on
the constraint lines. This takes proper account of errors, resulting in improved robustness
and more accurate determination of model position, orientation and scale in comparison
to the more conventional form of this algorithm. The entriesin the Hough arrays are
constructed from pair of lines(n,m), i.e., a tuple transform. The equivalent probabilistic
form for the Hough transformH(x,y) used to find the position of a model in a scene is
given by the expression,

H(x,y) =
N

∑
n

N

∑
m

log(p(x,y|n)p(x,y|m)) =
N

∑
n

log(p(x,y|n))
N

∑
m

log(p(x,y|m)) (3)

so that the Hough entry can be considered as the square of the robust log Likelihood
L(x,y) for the localization of the object,

H(x,y) = L(x,y)2 = (
N

∑
n

log(p(x,y|n)))2 (4)

During array constructionHnm = log(p(x,y|n)p(x,y|m)) is estimated from a 2D
Gaussian distribution centered at the the position of the model hypothesized by them,nth
pair of scene line labels with variance propagated from the individual line location errors.
This tuple-based construction helps to remove background noise from the Hough array
and has some computational advantages. The variability of the line segmentation process
and the uniform error on the scale estimates are independentand are adjusted to give a
quantitative estimate of the hypothesized location of a pre-defined reference point from
pair of scene lines. Training from example data involves recording the perpendicular
distance,’d’ , from each model line to the reference point. Consequently,for each pair
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of scene lines, extended lines at the appropriate perpendicular distance will intersect at
the hypothesized position of the reference. Error at the point of intersection can again be
estimated by standard error propagation.

Models can be located based on the positions, orientations and scales hypothesized
by scene line labels. However, the orientations and scales of the models are not de-
termined explicitly. This can be determined separately using 1-parameter Hough trans-
forms. For each model position determined, a 1-parameter orientation Hough transform
and 1-parameter scale Hough transform can be constructed from entries selected on the
basis of consistency between the scene lines and model position. The orientation is deter-
mined from the difference in orientation between the scene line and model line to which
it matched. Comparing the perpendicular distance from the scene line to the model posi-
tion to this same distance in the model itself would yield thescale. Peaks in these Hough
transforms would give the orientation and scale of the modelat that position in the scene.

(a) Flywing image with model over-
laid.

(b) Peak in the Hough transform.

Figure 2: Hough transform located 15th landmark.

3.2.4 Template Matching

The above Hough scheme computes an estimate of landmark position based upon global
wing shape. As we need to determine variations in shape for the morphometric study this
estimate needs to be refined based upon local image evidence.To obtain this estimate,
template matching is performed on the Difference of Gaussian image of the sceneD(I)
and model (example mark-up)D(M) data, over a small region around the Hough estimate
for the feature in the scene data. To save processing time during alignment, the scene
data is rotated to match the model data using the Hough estimate, which is assumed to
be sufficiently accurate for final location of the landmark. The use of the Difference of
Gaussian images eliminates any image illumination offset and the matching is performed
as a dot-product correlation in order to eliminate the effects of illumination scaling,

Lhxhy =
R

∑
x

R

∑
y

D(M(x,y))D(I(x+hx,y+hy))/

√

√

√

√

R

∑
x

R

∑
y

D(I(x+hx,y+hy))2 (5)

where,R is the region size. This is directly equivalent to performing a least squares
comparison of the image regions with one free grey level scale parameter. In this study,
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the denominator is presumed to be constant to save time on thecomputationally expensive
calculations. The best possible match is identified and thatlocation is transformed back
onto the scene image. The least-squares difference betweenthe two scale image regions is
stored so that the best matching examples can be selected forfinal estimation of landmark
position (see below). This quality control feature not onlyallows a check on the adequacy
of the example mark-ups but also eliminates residual problems in alignment estimation,
such as poor rotation estimates.

4 Results

4.1 Precision of manual digitization

The precision of manual digitization by an expert is determined by determining the de-
viation (difference between the value of each attempt and the mean) of 10 repeats of
digitization of a single image. The outcome shows that it is within a range of +/- 1 pixel
(Figure: 3).
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Figure 3: Reproducibility of landmark location over 10 repeats-manual digitization.

4.2 Accuracy of the template matching relative to manual
digitization

To test the utility of the template matching stage, the feature (landmark 12) that was
significantly variant in comparison to other landmarks was taken. Figure 4(a) shows
the positions of the landmarks located by the Hough transform relative to the landmark
locations digitized manually. The Hough transform locatesmost of the landmarks within
a range of +/-20 pixels. This provides an estimate of the range that the correlation search
must operate over, and is used to define a ‘window size’parameter. During initial testing,
by ensuring that the window size is large enough, we can be certain that the landmarks
can be located reliably. The refinement by the template matching strategy is shown in
Figure 4(b) indicating the improvement in accuracy to be within a range of +/-6 pixels on
the X-axis and +/-3 pixels on the Y-axis.
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(a) Hough estimation vs actual location of land-
mark 12.
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(b) Template matching refinement vs actual lo-
cation of landmark 12.

Figure 4: Hough transform & template matching performance.

4.3 Accuracy of the automated system

The accuracy of the system is assessed using multiple reference images (multiple models).
The results show that the landmarks can be located more precisely in cases where the
model features are a good match to the scene data. However, itis quite unlikely that
the model chosen would be suitable for all the features to be estimated. Therefore, it is
important to choose a set of appropriate model features in the training data that can best
match with the given test dataset. This can be achieved by computing the degree of least-
squares match between the model and the test feature and taking an average of the best
matches available. Since, the precise location of certain features (eg., landmark 12 due
to its structural complexity) can be quite challenging in contrast to most other features,
the degree of least-squares match can also be applied as a quality control approach to
determine the adequacy of the selected training examples.
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(a) Avg of best 3 least squares match(5 refer-
ence images)
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(b) Avg of best 5 least squares match (11 ref-
erence images)

Figure 5: Best Least Squares Match.

The Figures 5(a) & 5(b) shows the system performance with an average of the best 3
of 5 reference images and best 5 of 11 reference images using the least squares match. It
can be seen that the accuracy of the system has improved with an increase in the number
of reference images. Most of the landmarks in the sample dataset have been located within
+/-3 pixels accuracy. It should be noted that the outliers are mainly contributed by one of
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the test image which clearly indicates that the reference images used were not necessarily
a good match for feature location in that particular image. In such cases, increasing the
number of reference images would considerably improve the accuracy.

4.4 Robustness of the system

The robustness of the system was tested by locating landmarks in an image with addi-
tive noise of1̃0 times that of the original image. The system is robust in locating the
landmarks within +/-4 pixels accuracy and we can therefore be confident that the system
is quite stable to noise, well beyond the level normally present in this dataset. This is
presumably because of the large degree of smoothing appliedduring the feature detection
and correlation matching stages.

5 Discussion

This paper describes a system which can be trained from a few example images to auto-
matically estimate the location of key features in ‘veined’structures, such as insect wings.
The performance of the automated system can be compared to human performance in
terms of accuracy of landmark location. Although, the rangeof the system accuracy is
nearly twice that of the manual digitization, the accuracy of the system can be consider-
ably improved by using relevant models. The performance of the system is sufficiently
accurate to allow it to replace the time consuming process ofmanual digitization, which
is common to all morphometric studies.

The current system is capable of providing a set of 15 landmark locations on an image
of size 1280 x 1022 pixels in about 3 minutes on a SUN Sparc Ultra 5 workstation.
The time taken by a human to mark up one image using the standard mark-up tools is
about 40 seconds though maintaining this speed across a large dataset might be regarded
as unrealistic. We expect that the speed of the system can be optimized, however, the
question of trade off between the speed and precision may arise (as more reference images
may be needed to achieve the manual accuracy).

The pilot study can be scaled up with minor modifications and this automated method
would be used in a scientific study with a large dataset comprising of 1600 images of
different species ofDrosophila. This analysis should enable us to test other performance
aspects of the system, such as its reliability, and to evaluate any difficulties regarding the
practical use of this dataset. The generic nature of object recognition and feature location
incorporated in this automated system enables easy modification to locate features in a
variety of other organisms. The method is intrinsically robust to changes in shape and
based firmly on the statistical interpretation of data analysis. The system will be tested
for its efficiency in locating the landmarks even in a scenario where the features to be
located are quite complicated and beyond manual capabilities (eg. debris/bristles lying
across one of the feature would be a major hurdle for manual digitization). Such an
automated method will benefit major research groups in the morphometrics community
and will easily be transferable to research groups in other relevant field of study. The
automation of shape analysis has major potential advantages regarding standardization as
the landmarks can be located without any manual intervention and will make large scale
studies easily feasible [5, 8, 9]. The algorithms will be made available as an open source
package via our websitewww.tina-vision.net & www.flywings.org.uk.
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Abstract

We present an efficient method of fitting a set of local feature models
to an image within the popular Active Shape Model (ASM) framework [3].
We compare two different types of non-linear boosted feature models trained
using GentleBoost [9]. The first type is a conventional feature detector classi-
fier, which learns a discrimination function between the appearance of a fea-
ture and the local neighbourhood. The second local model type is a boosted
regression predictor which learns the relationship between the local neigh-
bourhood appearance and the displacement from the true feature location.
At run-time the second regression model is much more efficient as only the
current feature patch needs to be processed. We show that within the local
iterative search of the ASM the local feature regression provides improved
localisation on two publicly available human face test sets as well as increas-
ing the search speed by a factor of eight.

1 Introduction
We describe a method of fitting a model of an object class to new images containing un-
seen examples. In this paper the class of objects is the human face, however the method
can be applied to any type of object with corresponding features between different exam-
ples, for instance most types of medical images and many man-made objects.

This model based approach to computer vision requires a labelled set of training ex-
amples, with corresponding features between images (see Figure 1 for examples from our
human face training set). There are many different types of models, most of which encode
the appearance variation around or within the labelled region and also encode the shape
variation of the feature locations across the training set [2, 3, 4, 5, 7].

This paper uses the Active Shape Model (ASM) framework due to Cootes et al. [3].
The ASM models shape variation across the training set with a statistical shape model
and an individual model for each local feature. At run-time each local model updates
its estimate of the best local match and the shape model is fitted to the full set of point
estimates to eliminate false positive matches.

The original ASM paper [3] used local eigen patches [15] to model each feature.
However in this paper we use non-linear boosted features trained using GentleBoost [9].
We investigate local feature detection using boosted features and also boosted regression,
which aims to predict local feature points without the need for a sliding window search in
the local neighbourhood. The boosted regression approach is shown to out perform local
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feature detection when applied to the publicly available BIOID [10] and XM2VTS [13]
data sets. The boosted regression approach is extremely fast, able to preform local search
at > 60 frames per second and also able to achieve results comparable to other published
methods [4].

2 Background
Active shape models are a method of modelling shape variation across a training set of
labelled examples (see Cootes et al. [3]). The shape model can be fitted to a set of feature
detections to remove outliers. There are various other shape constraint methods, such as
the tree structure used in the Pictorial Structure Matching method due to Felzenszwalb and
Huttenlocher [7] or the softer shape model constraint used by Cristinacce and Cootes [4]
which take into account the local feature responses when fitting the shape model. How-
ever the ASM is a simple method which we use here to compare the performance of local
regression versus detection models.

The choice of possible feature detection methods to use in the ASM is large. For
example normalised correlation patches have been shown to be successful when combined
with a generative model of appearance [4]. Other varieties of feature detectors are Local
Binary Patterns [1], mutual information [5], Boosted Haar Wavelets [17] and K-Nearest
Neighbour Classifiers [16]. The original ASM algorithm used local eigen models [15], but
here we use discriminative haar wavelets trained using GentleBoost [9], as this technique
has shown to work extremely well for whole face detection [12].

An alternative to feature detection methods for local search are regression techniques.
For example the well known Active Appearance Model AAM algorithm [2] fits a de-
formable generative model to a patch of the image and then performs linear regression
on the texture residual to update the internal model parameters and thus perform a local
search. The AAM models the whole object, whereas our proposed method uses local
features.

Another example of feature finding using a regression method is Zheng et al. [19],
who use Rankboost [8] to rank the possible image warpings from the mean shape to the
an unseen image and thus compute feature points. They present good results on manually
cropped Echo Cardiograms and Face Photographs. Everingham et al. compare Kernel
Ridge Regression with a Bayesian Classifier approach, but report better results with the
simple classifier method for the task of eye finding [6].

A recent approach to using local regression models is described by Wimmer et al. [18],
who train model trees to regress from local haar wavelet features to a objective function
designed to peak at the true feature location. At run-time this allows the best matching
location to be predicted for each feature. Langs et al. [11] use canonical correlation
analysis to perform an AAM style search with filter responses located at individual feature
points. Seise et al. [14] use the ASM framework in conjuction with a Relevance Vector
Machine (RVM) regressor to update each feature location.

Our approach is similar to the approach of Wimmer and Seise, but uses GentleBoost
as the regression function to predict the current displacement for each feature. We make a
comparison between local regression methods and feature classifiers trained on the same
data, both using the GentleBoost framework [9]. In Section 3 we describe our implemen-
tation in more detail and in Section 4 show that the regression method gives improved
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localisation performance, compared to the boosted classifier, but at much lower computa-
tional cost.

3 Methodology

(a) Training Im 1 (b) Training Im 2 (c) Training Im 3 (d) Training Im 4

Figure 1: Manually Labelled Training Images

3.1 Active Shape Model
The Active Shape Model (ASM) was introduced by Cootes et al. [3] as a method of
fitting a set of local feature detectors to an object and simultaneously taking into account
global shape considerations. The allowable shape deformations are learnt from a manually
labelled training set (see Figure 1) to produce a linear shape model with the following
form:-

x = x̄+Psbs (1)

Where x̄ is the mean shape, Ps is a set of orthogonal modes of variation and bs is a set
of shape parameters. Given a set of hypothesised feature points Y in the image plane the
shape model parameters bs can be determined by minimising

|Y−Tt (x̄+Psbs)| (2)

By placing constraints on the the allowable shape parameters bs the shape model
estimate of the current feature points Tt (x̄+Psbs) are constrained to form a plausible
shape.

The shape model is active in the sense that feature detectors are applied to search in
the local neighbourhood of each point and the best match of each detector is recorded.
Assuming the majority of the detections are correct, the shape model can be fitted to this
set of points and outlier detections discarded. This constraint on feature matching has
been shown to improve results compared to merely taking the best unconstrained fit of
each feature [3].

3.2 Boosted Feature Detection
Any set of feature detectors can be used in the ASM framework described above. The
original algorithm [3] used eigen model [15] profiles of the texture about each of the in-
dividual feature points. In this work we choose boosted feature detectors, which have
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a similar formulation to the well known Viola and Jones face detector [17]. The train-
ing method we use is GentleBoost [9], which has shown to give superior performance
compared to the original AdaBoost algorithm for the task of face detection [12].

Algorithm 1 Gentle Boost Training Algorithm - Classification [9]

1. Start with weights wi = 1/N, i = 1,2, ...,N, F(x) = 0 and yi = 1 for positive exam-
ples, yi =−1 for negative examples.

2. Repeat for m = 1,2, ...M:

(a) Fit all the regression functions fm(x) by weighted least squares of yi to xi with
weights wi.

(b) Select the fm(x) with least weighted error ∑N
i=1(wi(yi− fm(xi)))2

(c) Update F(x)← F(x)+ fm(x)

(d) Update wi ← wiexp(−yi fm(xi)) and re-normalise

3. Output the classifier sign [F(x)] = sign
[
∑M

m=1 fm(x)
]

The GentleBoost classifier training procedure is described in Algorithm 1. The aim of
the algorithm is to learn a discrimination function between a set of positive and negative
examples. Where positive examples are image patches centred on the correct feature
locations and negative examples are nearby examples displaced from the true locations,
see Figure 2.

Pos Egs Neg Egs

Figure 2: Positive and Negative Examples for right eye detector

Following the notation in Algorithm 1, each positive training patch xi has label yi =+1
and each negative patch has label yi = −1. To train using GentleBoost it is necessary to
select a family of functions f (x) which take an image patch xi and attempt to predict
the classification yi for a given set of training weights wi. In this paper f (x) is a binned
histogram of responses from a haar wavelet (we use the same set as [17]). Each f (x) is
trained by computing the weighted mean of target values yi in each histogram bin. The
error for each f (x) is the weighted sum of square differences between the target value
yi and the mean of the selected bin determined by the wavelet response to patch xi. The
GentleBoost training algorithm selects a set of weak classifier functions and outputs a
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strong classifier, as described in Algorithm 1. The training algorithm is computationally
expensive, as the weak classifier functions f (x) have to be retrained at every iteration with
new weights wi.

There are also several parameters that need to be set before training can take place,
namely the resolution of the image patch, which determines the number of potential haar
wavelet weak classifiers f (x), the number of training rounds M, the number of histogram
bins hb and the number of training example patches N. With 21x21 pixel image patches,
N = 179,545 ( 1205 positive patches, 178,340 negative patches), M = 200, hb = 25 the
training for each patch completes in ∼ 20hrs on a single node of a 64bit multi-processor
cluster running Linux. The feature models are trained independently therefore the whole
model can be built in ∼ 20hrs, if enough nodes are available. The parameters above
are unlikely to be optimal. For example, it may well be possible to improve the results,
by increasing the number of training rounds M or increasing the size of the training set,
which currently only consists of 1205 face images (see Figure 1).

3.3 Boosted Feature Regression
In the feature detection approach described in Section 3.2 the model is trained on positive
examples centred on a small neighbourhood around manually labelled feature locations.
Negative examples are feature patches displaced from the true locations (see Figure 2).

However an obvious problem with feature detector training is where to draw the
boundary between positive examples and nearby false examples. In Section 3.2 we take a
conservative approach and only treat image patches centre on the true feature as positive
examples. Patches between 1 pixel and 3 pixels away are treated as ambiguous, while
patches greater than 5 pixels away are classed as false positives (a similar approach is
adopted in [6]).

This works reasonably well, but is arbitrary and also throws away potentially useful
information, such as the distance of each patch from the true positive. An alternative
technique which makes use of this information is regression, which learns the relationship
between the displacement to the true feature location and the textural appearance of the
local neighbourhood around each feature point.

Algorithm 2 Gentle Boost Training Algorithm - Regression [9]
1. Start with input values xi and target values yi for i = 1,2, ...,N and F(x) = 0 and

small positive constant α .

2. Repeat for m = 1,2, ...M:

(a) Fit the regression function fm(x) by least squares of yi to xi.

(b) Select the fm(x) with least error ∑N
i=1(yi− fm(xi))2

(c) Update F(x)← αF(x)+ fm(x)

(d) Update the residual target value yi ← yi− fm(xi)

3. Output the regression function F(x) = ∑M
m=1 fm(x)

We use the GentleBoost logistic regression method described by Friedman et al. [9]
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(see Algorithm 2) which has very similar form to the GentleBoost classification training
method use in Section 3.2. The same image patches xi are used as in the classification
training, however instead of yi being class labels {−1,+1} they are local displacement
values in the training image frame (suitably scaled - see Figure 3). The regression training
therefore uses the whole training data available, whilst the classification training discards
some ambiguous patches (marked with an X in Figure 3).

Image
Regression -4 -3 -2 -1 0 +1 +2 +3 +4

Class -1 -1 X X +1 X X -1 -1

Figure 3: Examples of training patches for right eye from one of the training images (de-
picting translation in the x-coordinate). Regression training values are the displacement
from the centre of the patch to the true eye pupil location (shown by a white cross). Clas-
sification training values are -1 for negative examples, +1 for positive examples, images
marked with a X are ignored during classifier training

The GentleBoost regression algorithm then proceeds as described in Algorithm 2.
The Haar wavelet functions f (x) are fitted to the weighted training patches xi with dis-
placement yi. A function f (x) is selected at each stage, the residual displacements yi are
adjusted and after M rounds a strong regressor function F(x) is output.

Note that in Algorithm 1 the weights on each training example wi are updated between
training rounds. In Algorithm 2 the target values yi vary between boosting rounds and the
training examples have equal weight. Another important difference between the classifi-
cation algorithm and the regression method is that the regression requires two models per
feature point to predict the x and y displacements for each patch. The training time for
each regression model is also increased slightly due to the extra training samples close
to the true feature points being included in the training set (which are discarded during
classifier training).

An additional parameter of the regression training algorithm is α which represents
the learning rate. This can be any value in the approximate range [0.1,1.0] and needs to
be chosen apriori. The value can be shown to be equivalent to the shrinkage parameter
in Lasso Regression [9]. Small values of α result in slower training, but more diverse
feature selection. We set α = 0.25 in our experiments.

3.4 Summary of Method
At run-time the search proceeds as follows:-

1. Find initial feature points - for example using a global detection method

2. Iterate the following:-

(a) Search around the current feature location with a feature detector - Or alter-
natively predict the improved feature location using boosted regression

(b) Fit the shape model to the current set of feature locations to remove outliers

Until Converged.
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4 Experiments

4.1 Test Criteria
The models described in Section 3 are applied to two publicly available test sets, with
manually labelled ground truth, namely the BIOID [10] and XM2VTS [13] data sets.
The criteria for success is the distance of the points computed using automated methods
compared to manually labelled ground truth. The distance metric is shown in Equation 3.

me = 1
ns ∑i=n

i=1 di (3)

Here di are the Euclidean point to point errors for each individual feature location and
s is the ground truth inter-ocular distance between the left and right eye pupils. n = 17 as
only the internal feature locations around the eyes, nose and mouth are used to compute
the distance measure. The five feature points on the edge of the face (see Figure 1) are
ignored for evaluation purposes, due to their high variability between different human
annotators.

4.2 Full Search Results
The fully automatic search is investigated on the two faces test sets. Three separate pro-
cedures are investigated as follows:-

• AVG - Average points within the global Viola and Jones face detector (dashed line)

• Det-ASM - Detection Features and Active Shape Model, initialised with the average
points (dotted line)

• Reg-ASM - Regression Features and Active Shape Model, initialised with the av-
erage points (solid line)
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Figure 4: Cumulative distribution of point to point error measure on XM2VTS and BIOID
test sets when using face detection to initialise the local search

Figure 4 shows that the Reg-ASM and Det-ASM give similar results on both the
BIOID and XM2VTS data sets. Both local search methods combined with the ASM give
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a large improvement relative to the average points found within the global face detector
window. For example on the BIOID data set (see Figure 4(a) - dashed line) 75% of faces
have a point to point error me < 0.15 using the average points. However after the local
ASM search is applied 95% of faces are found at this accuracy limit (see solid line). The
Reg-ASM method performs slightly better than the Det-ASM on both data sets (compared
solid+dotted lines in Figure 4).

The results in Figure 4 are comparable with the authors previous results published
on the two data sets. For example using the same error measure on the BIOID data set
the Constrained Local Model (CLM) algorithm [4] gives a 90% success rate at me < 0.1
compared to 95% using the prorposed Reg-ASM algorthim. For lower values of me the
CLM is more accurate, however the Reg-ASM and Det-ASM methods described here are
initialised using the average points from the face detector. In [4] the Pictorial Structure
Matching(PSM) algorithm [7] is used as part of a three stage method. The Reg-ASM
local search is also much more efficient than the CLM algorithm (see Section 4.4).

4.3 Displacement Results
In order to determine the range of convergence of the Reg-ASM and Det-ASM the track-
ing methods are systematically displaced from the true feature locations in the eight pos-
sible compass directions, by a percentage of the inter-ocular distance and the shape reset
to the mean of the statistical shape model.

This gives a total of 8 starting search locations per image, to start the Reg-ASM and
Det-ASM algorithms, at each of five possible displacements of 10%, 20%, 30%, 40% and
50% of the inter-ocular distance. The rate of convergence for the Reg-ASM and Det-ASM
given a point to point error limit of me < 0.15, for this range of displacements is shown
in Figure 5.
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Figure 5: Range of convergence for regression an detection methods on XM2VTS and
BIOID test sets

Figure 5 shows that the Reg-ASM has a wider range of convergence compared to
the Det-ASM on both the BIOID and XM2VTS data sets. This is possibly due to the
regression prediction for each point (in the Reg-ASM) being able to jump over false min-
ima which may be found by the Det-ASM search. However both algorithms have some
in-built ability to avoid false minima due to the ASM shape fitting step which removes
outlying predictions for individual feature points.
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4.4 Timings
The local search time using the Reg-ASM and the Det-ASM methods is dependent on the
search image and the starting displacement. However both algorithms converge in fewer
than 5 iterations in most cases. Therefore the search speed is dependent on the time for
one iteration of the ASM.

In our implementation one iteration of the Reg-ASM takes∼3ms compared to∼ 25ms
with the Det-ASM1, using a C++ implementation on a P4 3GHz processor. Therefore the
Reg-ASM is approximately eight times quicker then the Det-ASM. If 1-5 iterations are
required when tracking a face with the Reg-ASM in a video sequence the frame rate will
be approximately 60-300 frames per second.

(a) Start Pts (b) After It 4 (c) After It 8 (d) Final Pts

Figure 6: Example of Iterative Reg-ASM Search on BIOID image

5 Conclusions
We have compared two local feature updates methods within the Active Shape Model
framework. The boosted regression approach is shown to have a wider range of conver-
gence compared to the boosted classifier method on two publicly available face data sets.
The boosted regression method is also more computationally efficient by a factor of eight,
which makes it suitable for use in real time systems.

Future work will involve building larger models with more data and different data
sets. We are particularly interested in applying the boosted regression approach to high
dimensional medical images, as in more than two dimensions the feature detection search
at run-time becomes prohibitively expensive. We may also apply the regression update
step in other formulations such as the AAM.

The boosted regression feature prediction method described is an extremely efficient
local search algorithm (> 60 frames per second), which improves on standard boosted
feature detection approaches. We anticipate that this form of boosted regression update
will be useful in other areas of computer vision.

1Note it may be possible to improve the efficiency of the Det-ASM by introducing a cascade structure for
each classifier as in [17]. However the fact that the classifier has to search the local neighbourhood will always
make it slower than the regression model, if both methods use the same number of weak learners.
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Abstract

The standard graph cut technique is a robust method for globally optimal
image segmentation. However, because of its global nature, it is prone to
capture outlying areas similar to the object of interest. This paper proposes
a novel method to constrain the standard graph cut technique for tracking
objects in a region of interest. By introducing an additional penalty on pixels
based upon their distance from a region of interest, segmentation is biased
to remain in this area. We employ a filter which predicts the location of the
object. The distance penalty is then centered at this location and adaptively
scaled based on prediction confidence. This method tracks at real-time rates
and easily generalizes to tracking multiple noninteracting objects.

1 Introduction

Tracking rigid objects has been the focus of much research, and the problems accompany-
ing this key task are well-known. For example, the object might have weak edges causing
the segmentation to leak out into the surrounding area, or the object may move suddenly
outside the algorithm’s region of detection, or the object may be near other objects of
similar intensity causing unintended objects to be tracked.

Various methods have been proposed to overcome these difficulties. To keep segmen-
tations from spilling over object boundaries, learned shape priors constrain segmentation
to a set of possible shapes [8, 9, 14]. To account for object movement, motion models
can predict the likely location of the object in subsequent frames [7, 11]. When adjacent
regions are similar to the object of interest, multiple hypothesis trackers can keep track
of each region while determining the most likely in each frame based on some criteria
[1, 12, 15, 18].

1.1 Graph cut techniques

Graph cut techniques have received considerable attention as robust methods for image
segmentation. Despite their widespread use for computer vision problems such as image
segmentation and stereo disparity, graph cuts have received little attention with respect to
tracking. This is largely due to the global segmentations they produce which tend to catch
unintended regions that are similar to the object of interest. For example, the standard
graph cut technique for image segmentation [4] finds regions with high likelihood given
intensity priors. Figure 1 shows an example where there are multiple regions of similar
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Figure 1: Standard graph cut segmentation(top)and normalized likelihood of object intensity used
in graph edge weights(bottom). Likely regions throughout the image are captured with the standard
method making it unsuitable for tracking.

intensity to the object. The standard graph cut algorithm captures such regions. Post-
processing must be performed to filter out those regions that are not part of the object.
However, this same feature, that of grabbing such regions anywhere in the image, natu-
rally solves the problem of large object movements. The graph cut will find the object
even if it moved far relative to its location in the previous frame. The problem is now
one of constraining the graph cut to capture only the object of interest, even if it made a
large movement yet ignoring other regions of similar intensity. Hence a spatial constraint
is needed.

Several techniques have used graph cuts for segmentation in visual tracking applica-
tions. In [22] the segmentation is constrained to a narrow band. For each frame, succes-
sive graph cut segmentations converge on a final segmentation, each pass constrained to
a narrow band around the cut boundary resulting from the previous pass. This method
is dependent upon initial contour placement and requires repeated cuts on this reduced
domain. In [10] the authors use one graph cut for each frame to both estimate the optical
flow and object position based on that flow despite changes in illumination. However,
since optical flow requires the multi-label graph cut technique [6] and the graph proposed
has such dense neighborhoods, the authors’ current approach requires about a minute per
frame. Also, due to the local nature of optical flow, the technique cannot handle large
movements.

Besides tracking, work has been done to constrain segmentations based on a user
selected region. The work of [19] begins with a rectangle bounding the object, while
the work of [2] uses a narrow band to constrain segmentation. Both perform successive
graph cut segmentations incorporating additional user interaction with each pass. Neither
method is targeted towards trackingper se, but instead seeks a perfect segmentation. In
these works, hard constraints confine the segmentation within a user-selected region and
multiple graph cuts are performed. In our work, the object may be found a distance from
the predicted centroid depending on the scale of the distance penalty, and segmentation is
performed only once per frame.
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1.2 Our contributions

The method presented here makes several important contributions to the field of visual
tracking. First, we incorporate a distance penalty into the graph cut algorithm to bias
segmentations to a region likely to contain the object. Second, we present a simple filter
to predict the object location based on the centroid of the previous segmentation and a
moving average of the object’s velocity. The distance penalty is then centered at the
predicted object centroid and extends outward forming a basin of attraction. Third, to
further integrate the filter with the distance penalty, the scale of this distance penalty, and
hence the slope of its surface, is adaptively set based on the prediction error. Finally,
since the segmentation is performed in one cut using the standard binary label graph cut
method, the unoptimized system tracks at up to 15 Hz on 240x320 images using a Pentium
IV 3.6 GHz workstation. The method generalizes to multiple noninteracting objects.

The rest of the paper is organized as follows. Section 2 outlines the standard graph cut
segmentation framework. Section 3 describes the distance penalty constraining segmen-
tation. Section 4 defines the filter used to predict the object centroid. Section 5 integrates
the filter prediction error with the distance penalty. Next, in Sections 6 and 7, we present
our algorithm and results on several video sequences tracking single and multiple objects.
Finally, in Section 8 we summarize our work and describe some possible future research
directions.

2 Graph cuts

In this section, we briefly outline the graph cut methodology; for more details see [2, 3, 4,
19] and the references therein. Taking advantage of efficient algorithms for global min-
cut solutions, we cast the energy-based image segmentation problem in a graph structure
of which the min-cut corresponds to a globally optimal segmentation.

Evaluated for a pixel object/background assignmentA, such energies are designed as
a data dependent term and a smoothness term. The data dependent term evaluates the
penalty for assigning a particular pixel to a given region. The smoothness term evaluates
the penalty for assigning two neighboring pixels to different regions, i.e. a boundary
discontinuity. These two terms may be thought of as a region-based term and a boundary
term, often weighted byλ≥ 0 for relative influence:

E(A) = ∑
p∈I

Rp(Ap)+ λ ∑
(p,q)∈N
Ap 6=Aq

B(p,q) (1)

whereI represents all image pixels,N all unordered neighborhood pixel pairs. The
choice of neighborhood size and structure has a large influence on the solution as smaller
neighborhoods tend to introduce metrication artifacts [5].

To construct the graph representing this energy, each pixel is considered as a graph
node in addition to two nodes representing object and background. The data dependent
term is implemented by connecting each pixel to both the object and background nodes
with non-negative edge weightsRp(O) andRp(B) representing the penalty for assigning
pixel p to the object or background region, respectively. Lastly, the smoothness term is
implemented by connecting each pairwise combination of neighboring pixels(p,q) with
a non-negative edge weightB(p,q) representing the penalty for separating pixelsp andq.
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Figure 2: Mean intensity tracking of a soccer player among others of similar intensity: no distance
penalty, distance penaltyφ with isocontours, applying distance penalty(left to right). Without the
distance penalty, multiple non-intended objects were captured.

Notice that, since the min-cut sums only along the boundary, the boundary condition of
Ap 6= Aq in (1) may be ignored and every pair of neighboring pixels may be connected
with edge weightB(p,q). The min-cut of the weighted graph represents the segmentation
that best separates the object from its background. See [4] for more details.

Typical applications of graph cuts to image segmentation differ only in the definitions
of Rp andB(p,q). For example, the authors of [4] use the negative log-likelihood of a
pixel’s intensity to compute the regional weights while intensity contrast is used in the
boundary term:

Rp(O) =− lnP(Ip|O), Rp(B) =− lnP(Ip|B), B(p,q) = exp(−‖Ip−Iq‖2
2σ2 ) 1

‖p−q‖ (2)

where‖p− q‖ is the standardL2 Euclidean norm yielding pixel distance in the image
andσ2 is often set to the average squared norm:σ2 = 1

|N | ∑(p,q)∈N ‖Ip− Iq‖2. In [4] the
user marks regions of object and background that are then used to generate the intensity
histograms for calculatingP(Ip|O) andP(Ip|B) (see Figure 6).

The authors of [24] demonstrate the use of the mean intensity of the two regions to
classify image pixels into two piecewise constant regions. They propose the following
definitions:

Rp(O) = (Ip−µO)2, Rp(B) = (Ip−µB)2, B(p,q) =
cN
‖p−q‖ (3)

whereµO andµB are the mean intensities of the regions marked by the user as object and
background andcN is a constant based on the chosen neighborhood size.

3 Distance penalty

The standard graph cut technique is capable of finding regions matching the object inten-
sity located anywhere in the image. By penalizing pixels based on their distance from the
expected location, a potential well is formed biasing segmentation to a region of interest.
Figure 2 shows segmentation with and without such a penalty in the presence of multiple
similar objects.

The distance penaltyφ is formed from the user segmented shape of the object in the
first frame. Centering that maskM at the predicted object location and assigning it zero
penalty, each pixelx outside the mask is assigned its distance from the nearest masked
pixel mx ∈M, i.e. φ(x) = ‖x−mx‖ or zero ifx∈M. Such a construction can be quickly
computed with the Fast Marching algorithm [20, 23]. More deformable shape priors may
be used for the base patch [10, 17, 21].
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Figure 3: Without location prediction, tracking can fail when the target makes sudden movements.
Here the tracker catches a defender as the target passes(left to right).

Figure 4: Effect of adaptiveα on full intensity tracking: non adaptive alpha (assume zero error)
(top, left to right), alpha with prediction error(bottom, left to right). Tracking fails without using
error feedback to scale distance penalty.

4 Location prediction

It is often the case that the object makes a large movement, large enough at times to place
it in an area of high distance penalty. To overcome this problem, we predict the location
of the object in each frame based on its previous location and center the distance penalty
at this predicted location.

To demonstrate the need for some form of prediction, we experimented with the as-
sumption that the object has not moved: the distance penalty is centered at the last known
object position. Figure 3 shows the failure to track after the object has made a sudden
move, despite the use of adaptiveα scaling described in Section 5. The movement placed
the object too far outside of the basin of attraction.

Introducing actual prediction, we assume the object is traveling with continuous ve-
locity, hence we predict the next object location ˜ct+1 based on projecting forward by the
average displacement in the past few frames. A simple filter that projects the centroidct

forward in time based on a moving average of the pastN displacements is defined as:

c̃t+1 = ct +
1
N

N

∑
j=0

(ct− j −ct− j−1). (4)

5 Error feedback

We now have the distance penalty constraining segmentation and the filter predicting
where to center this distance penalty, but what if the filter is wrong? Figure 4 shows such
a case. The object has made a sudden move outside the predicted basin of attraction.

What is needed is a way of adaptively scaling the distance penalty based on the pre-
diction error. In this work, we take the error in prediction to be the distance between the
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Figure 5: Distance penalty surface and isocontours are shown scaled byα for increasing prediction
error‖c̃−c‖. Notice the basin of attraction widening as the error increases(left to right).

Figure 6: User initialization of object(red) and background(blue) regions: original and initializa-
tion scribbles(left to right).

predicted ˜c and actualc centroids. The distance map is then scaled byα(‖c̃− c‖) taken
from an exponential distribution of the prediction error,α(x) = exp

(
−x2/ρ2

)
, whereρ

is user specified based on empirical motion. The effect is that when the filter is off in its
predictions of the object centroid, the distance penalty is lowered to hopefully still cap-
ture the object. After locking back onto the object, theα automatically raises the distance
penalty back up to tighten around the object as the error decreases. See Figure 5 for a
visual of this distance penalty as it is scaled byα for increasing prediction error. Fig-
ure 4 shows how, despite incorrectly predicted centroids, the system is able to recover by
adaptively widening the distance penalty.

6 Proposed algorithm

In an observer-type framework, at each frame the algorithm predicts the object location,
determines the distance penalty scaling based on prediction error, computes edge weights
for the graph, and performs a graph cut segmentation. For initialization, the user is re-
quired to roughly mark in the first frame the object and background as in Figure 6. This
initialization defines the intensity priors used in constructing the priors used in regional
edge weights (2) and (3).

In the prediction step, the centroid from the previous frame’s segmentation is used as
a measurementc. The filter predicts the object centroid location in this new frame ˜c from
a moving average of displacements as in (4).

The α(·) scaling function for the distance penalty is calculated from an exponential
distribution of error‖c̃− c‖. Since the proposed simple filter is unstable against large
displacements, we found the need to limit this distance in practice to a user-definedγ so
that the distance penalty is not driven completely to zero. Theα(·) used is then:

α(x) = exp
(
−min(x,γ)2

ρ2

)
. (5)

We propose a new regional edge weight to augment the standard weights in (2) and
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(3). Our goal is to determineP(O|I ) for each pixel, and Bayes rule tells us thatP(O|I ) ∝
P(I |O)P(O). If we were to assumeP(O) andP(B) are uniform, then their negative log-
likelihoods are zero, and so they fall out of the expression as in (2). Here, we assume
a non-uniform object priorP(O) and claim:− lnP(O) ∝ α(‖c̃− c‖)φ. We assume the
background to still be uniformly distributedP(B). Introducing a weightβ≥ 0 for relative
distance penalty influence, we have a new regional term:

Rp(O) =− lnP(Ip|O)−β lnP(Op) =− lnP(Ip|O)+ β α(‖c̃−c‖)φ(p) (6)

Rp(B) =− lnP(Ip|B)−β lnP(Bp) =− lnP(Ip|B) (7)

Similarly, this additional weight may be added to the regional mean intensity term (3):

Rp(O) = (Ip−µO)2 + β α(‖c̃−c‖)φ(p) (8)

Rp(B) = (Ip−µB)2. (9)

We use the standard intensity contrast smoothness term (2) for all experiments. Finally,
we take the min-cut of this graph to yield a binary segmentation.

To track multiple similar objects, the same distance penalty may be used if the objects
do not interact. If the objects do not touch, then their respective potential wells separate
the segmentation into blobs. The centroid of each object is predicted independently. Since
the segmentation is a binary mask of indistinguishable blobs, the identity of each blob is
assigned to the object of nearest centroid in the previous frame. See Figure 11 for an
example of simultaneously tracking two soccer players. If the objects were to touch,
the segmentation will likely merge blobs and the unique identity of such blobs would be
undefined for determining object centroids.

7 Results

Tracking was performed on three natural image sets and representative frames chosen to
exhibit clutter with objects of similar intensity. Full videos are included in the supplemen-
tary material. The system is a combination of Matlab and C/C++ operating on a Pentium
IV 3.6 GHz processor with 2GB RAM and tracks at roughly 5-15 Hz depending upon the
graph neighborhood used1. The image size in the fish sequence is 360x480 while both the
soccer and football sequences have frames of size 240x320.

Parameters are defined as follows. For all experiments, objects are assumed to not
move more than 5 pixels between frames soγ = 5 in (5) and in practiceρ = 1

2γ is quite
robust. For all full intensity experiments,λ = 6 in (1) andβ = 8 in (6). For all mean
intensity experiments bothλ = 10000 andβ = 10000.

The choice of neighborhood directly influenced the speed of computing the graph
cut since larger neighborhoods induced denser graphs. Using a neighborhood of size 4
enabled tracking at 15 Hz, size 8 at 9 Hz, and size 16 at 5 Hz. The choice of neighborhood
also affects the smoothness of the segmentation. Smaller neighborhoods tend to introduce
irregular segmentations [5]. It is important to note that, since the segmentations for sizes 4
and 8 were not as smooth, they introduced larger variations in the calculated centroid and
hence larger prediction errors. Increased smoothing (λ) was required to maintain track

1The min-cut is computed using the publicly available software of Vladimir Kolmogorov
(http://www.adastral.ucl.ac.uk/ vladkolm/)
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Figure 7: Several frames from the soccer sequence using full intensity capturing more of the multi-
modal object. Target object makes contact with another player yet the filter breaks them free. Full
image(left) and selected cropped frames(right). Yellow dot represents predicted centroid.

Figure 8: Several cropped frames from the soccer sequence using mean intensity. Blue dot repre-
sents predicted centroid.

with smaller neighborhoods. Tracking with size 4 or 8 was therefore not as robust as size
16. Unless otherwise noted, results are shown with a neighborhood of size 16.

The first video sequence involves several soccer players of similar intensity. Figure 7
shows full intensity tracking grabbing much of the object while Figure 8 shows mean
intensity tracking grabbing the bright jersey, the optimal piecewise constant segmentation.

The second video sequence involves two dark football players touching. Figure 9
shows that despite this, the filter is able to track the intended player.

The third video sequence involves a fish crossing the screen among many other fish
of identical intensity distributions. The high frame rate of the video sequence results in
the fish moving slowly resulting in extended contact with the other fish. Figure 10 shows
several such frames where the distance penalty correctly contains the segmentation.

In Figure 11 we demonstrate mean intensity tracking of multiple similar noninteract-
ing objects.

8 Conclusion

This paper demonstrates a distance penalty to constrain the standard graph cut segmenta-
tion to a region of interest. An observer is proposed to predict object location while the
prediction error is used to scale the distance penalty forming a basin of attraction that is
adaptively sized. The binary graph cut algorithm is then used to find the object in one
pass. The method operates at real-time rates and generalizes to multiple noninteracting
targets.

There are several future directions of research. The multi-label graph cut method [6]
may naturally allow segmentation of multiple dissimilar objects with interaction penalties.
Anisotropic distance penalties may be used to bias certain directions based on expected
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Figure 9: Several frames from the football sequence showing the target touching a teammate yet
maintaining track(yellow dot). Full image(left) and selected cropped frames(right).

Figure 10: Selected frames from the fish sequence where the segmentation is correctly contained
despite prolonged contact with other fish of similar intensity. The fish accelerates toward the end
of the sequence yet the filter manages to maintain track(blue dot). Full image(left) and selected
cropped frames(right).

object trajectory. Instead of rebuilding the graph from scratch for each frame as in the
current system, speed can be enhanced by updating the graph in place from frame to
frame [13]. Furthermore, segmentation may be made more robust for a larger class of
imagery by tracking in a feature space with more information than simple intensity [16].
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Abstract

We consider the problem of depth estimation from multiple images based
on the defocus cue. For a Gaussian defocus blur, the observations can be
shown to be the solution of a deterministic but inhomogeneous diffusion pro-
cess. However, the diffusion process does not sufficiently address the case
in which the Gaussian kernel is deformed. This deformation happens due to
several factors like self-occlusion, possible aberrations and imperfections in
the aperture. These issues can be solved by incorporating a stochastic pertur-
bation into the heat diffusion process. The resultant flow is that of an inho-
mogeneous heat diffusion perturbed by a stochastic curvature driven motion.
The depth in the scene is estimated from the coefficient of the stochastic heat
equation without actually knowing the departure from the Gaussian assump-
tion. Further, the proposed method also takes into account the non-convex
nature of the diffusion process. The method provides a strong theoretical
framework for handling the depth from defocus problem.

1 Introduction
The limited depth of field introduces a defocus blur in images captured with conventional
lenses based on the range of depth variation in a scene. This artifact has been used in
computer vision for estimating depth in the scene. As discussed in [7], this method of
shape recovery is particularly relevant for complex scenes which have a large amount
of geometric detail and complex self occlusion relationships which make it difficult to
estimate the shape using stereo based methods. In this paper we introduce a new technique
for recovering the structure based on the defocus blur. The principal idea that enables our
work is that the defocus effect can be modeled in terms of inhomogeneous diffusion (e.g.,
spatially varying coefficients) of heat using the heat equation. This is because the defocus
blur can be modeled as a Gaussian blur, which forms a temporally evolving kernel for the
isotropic heat equation. This approach was explored by Favaro et al.[4]. Their method had
two main shortcomings. First, it could not handle departure from Gaussian assumption
in case of self-occlusions. Second, it made an assumption that the diffusion coefficient
is a convex function and the solution was based on conjugate gradient based method.
In this paper we address both these shortcomings. Here, we propose a model wherein
the heat equation is perturbed stochastically. In this approach the departure from the
Gaussian blur model is implicitly accounted for in the stochastic perturbation of diffusion.
The mathematical existence for the stochastically perturbed heat equation, which is used
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here, is analysed by Yip[15] and he has used it to model the dendritic growth of crystal
structures. Here we adapt the model for solving the depth from defocus problem by
correlating the stochastic heat equation to the defocus blurring process.

The research in depth from defocus was initially introduced by Pentland [12] in which
the problem of DFD was posed as an estimation of linear space variant blur. Subsequently,
there has been substantial work done using deterministic [6] and statistical techniques [3]
in the spatial domain and also by solving in the frequency domain [14]. However, most
of the works done assume that the observations do not suffer from self-occlusion. The
handling of occlusion effects in depth computation has been addressed in [1],[2],[5]. The
extent of departure from the Gaussian shape depends on the nature of depth discontinuity
in the scene, which is unknown. Any imperfection in the lens aperture would also change
the shape of the blur kernel. Unlike earlier methods, the proposed method can handle
such an effect under a unified framework without having to estimate the departure from
the assumed model. An interesting recent work has been by Hasinoff and Kutulakos [7],
where the authors consider depth from focus as a pixel matching operation. However, this
method requires many high resolution images.

2 Defocus as a Stochastically Perturbed Diffusion
In this section we discuss the mathematical basis of stochastic perturbation of the heat
equation as a tool to analyse defocused images.

2.1 Defocus as a Diffusion Process
Consider the image formation process in a real aperture camera employing a thin lens [3].
When a point light source is in focus, all light rays that are radiated from the object point
and intercepted by the lens converge at a point on the image plane. When the point is
not in focus, it is imaged as a circular patch instead of a point. The point spread function
(PSF) of the camera describes the image intensity caused by a single point light source.
Geometric optics approximates the PSF to a circular disk. However, as discussed in the
literature [3],[12] due to diffraction it will be roughly a circular blob with the brightness
falling off gradually at the border rather than sharply. The resultant PSF has the general
shape of a 2-D Gaussian function [3],[12]. For an equifocal plane the resultant image
formed is then given by

I(x) =

∫

f (τ)h(x,τ)dτ , (1)

where we adopt x to denote the 2D space co-ordinates in an image, f (x) is the focused
image of the scene and h is the space-varying PSF. Here h(x) is given by a circularly
symmetric 2-D Gaussian function

h(x) =
1

2πσ 2 exp
(−x2

2σ 2

)

, (2)

where σ is a function of depth at a given point. It is quite well-known that, for a scene with
constant depth the imaging model in eqn(1) can be formulated in terms of the isotropic
heat equation [9] given by

∂u(x; t)
∂ t = c(4u(x; t)) , u(x,0) = f (x)
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where 4u is the Laplacian operator. Here the solution u(x, t) taken at a specific time t = τ
plays the role of an image I(x) = u(x,τ) and f (x) corresponds to the initial condition,
i.e. the pin-hole equivalent observation of the scene. Note that we have used u(x, t) to
represent the evolution of heat everywhere in the paper. The blurring parameter σ is
related to the diffusion coefficient by the following relation [4]

σ2 =
2tc
γ

(3)

where t is the time variable in the diffusion equation, c is the diffusion coefficient, and γ is
a proportionality constant relating the blur radius to the spread (σ ) of the blur kernel that
can be determined via initial calibration. In the depth from defocus problem, the depth in
the scene varies over the image and hence the constant c will actually be c(x), i.e., it will
vary over the image. This corresponds to a heat equation in an inhomogeneous medium.

2.2 Stochastic Perturbation
The stochastic form of the isotropic heat equation can be given by

du = α(x, t)dW (x, t). (4)

where W (x, t) is the brownian motion of a particle ω located at position x and time t.
α(x, t) is the diffusion coefficient. The stochastic form of the heat equation corresponds
to an Ito diffusion without drift [11].

The addition of stochastic perturbation to the deterministic diffusion equation can be
physically thought of as adding thermal fluctuations to the heat diffusion equation. The
issues like existence and regularity of the evolution arise by such an addition. These were
rigorously studied and proved by Yip[15]. They were studied in the context of crystal
growth. However, the same formulation is valid for the defocus problem. The form of the
stochastically perturbed diffusion or the stochastic heat equation is given by

du = (c(x)4u)dt +α(x, t)dW (t) (5)

where W (t) is a spatially correlated infinite dimensional Brownian motion, dW (t) is
the Ito’s differential and 4u corresponds to the Laplacian of u in space. The spatial cor-
relation of W is essential for proving the Gibbs-Thomson condition [15]. This implies
that the movement of each particle is not stochastic in space but in time. The Gibbs-
Thomson condition is related to the regularity and existence of the solution of eqn(5).
Gibbs-Thomson relation is a function which relates the temperature and curvature values
in equilibrium for the interface of evolution. Loosely speaking the Gibbs-Thomson condi-
tion essentially prescribes an equality between the variation of the energy of the interface
and the total divergence of the Gibbs-Thomson relation. These are discussed in detail by
Yip in his work[15] where he gives a proof of the Gibbs-Thomson condition for eqn(5).

2.3 Defocusing as a Stochastically Perturbed Diffusion
The defocusing phenomenon has a specific space varying characteristic at surface edges
and occluding edges. Consider the particular case as shown in fig. 1. Here we consider the
specific case of a surface edge discontinuity which results in self-occlusion. In depth from
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Figure 1: Illustration of the self-occlusion on account of surface discontinuity. For the
point P, the point spread function (PSF) is the circular region devoid of the darkened
region. For the point A in the scene, the PSF is circular as there is no self-occlusion.

defocus, self occlusion results when a continuum of rays is partially occluded and results
in the blur kernel being modified [13]. This is illustrated in fig.1. Here, the rays emanating
from the point P are partially blocked due to the surface discontinuity. The image plane is
at a distance from the focus point and so the observation of point P results in a blur with
radius Rb. However, due to the partial occlusion due to the near edge, the resultant blur
instead of being circular is deformed (being Re f f ). This artifact is present for all points
in the observation from the surface edge to the point A. From point A onwards, the blur
kernel is unaffected. A similar effect can be observed in the case of an occluding edge as
well [1].

There have been a few approaches [1], [2], [5] where the authors have tried to address
this problem by explicit modeling of this phenomenon or by adding a post-processing
step. However, in our model, due to the stochastically perturbed curvature driven motion
along the level sets, it is possible to incorporate this variation implicitly. This is particu-
larly important in correctly estimating the blur kernels along discontinuities like surface
edges and occluding edges. This is depicted in fig.1. As shown in the figure, along the
surface edge, the contributions from the near and far surface are inhomogeneously mixed
and this results in an anisotropic nature to the resultant blur kernel. So, when one does
a stochastic curvature driven motion along the level sets, the blur contribution along the
surface edge can be appropriately estimated. The non-uniformity of the kernel is implic-
itly handled in this model. There exists a similar effect when one has an occluding edge
as well[1] .

2.4 Evolution Equation
We now proceed to obtain an explicit evolution equation. In order to do this we first obtain
an expression for the stochastic perturbation part of eqn(5). Here we consider the recent
work done in stochastic level sets [8] and stochastic curvature driven motion [10]. As
discussed by Yip[15] , the stochastic perturbation of the eqn(5) can be seen to be given by

du(x, t) = n(x, t)dW (t). (6)
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where n(x, t) is the normal to the surface interface u(t) (i.e. the interface u(x, t)∀x). The
equivalent deterministic evolution using the level set framework for the geometric heat
equation is given by the following equation

du(x, t) = n(x, t)κ(x, t) (7)

where κ(x, t) is the mean curvature of the level set and n(x, t) is the normal to the level
set. Here κ is given by

κ(x) =
u2

x1ux2x2 −2ux1ux2ux1x2 +ux1x1u2
x2

(u2
x1 +u2

x2)
3/2 , (8)

where x = x1,x2 i.e. two-dimensional space and uxi refers to ∂ u
∂ xi

, i = 1,2. The normal n(x)
is given by

n(x) =
∇u(x)
‖∇u(x)‖ ,

where ∇u(x) = ux1 +ux2 . The geometric heat equation is similar to the linear heat equation
except that it diffuses orthogonal to its gradient and does not diffuse along the direction of
the gradient. As a result the stochastic perturbation mainly affects the level set curves and
does not affect the homogeneous regions. This is appropriate since any kernel variation
for instance due to self occlusion would mainly occur along edges and would be reflected
in the stochastic perturbation. The effect of the perturbation is further spread on the
homogeneous regions through the deterministic diffusion component.

Now, the stochastic formulation of the above deterministic formulation according to
eqn(6) could be written as

du(x, t) = ndW (t), (9)
The differential in eqn(9) is the Ito differential. This suffers from problems like it is
not invariant to the parameterization of the curve, i.e., the evolution depends on the im-
plicit representation of the initial curve and ill posedness, i.e., under certain conditions
it approaches the inverse heat equation which is unstable[8],[10]. These difficulties are
overcome by introducing the Stratonovich differential[11] given by

du(x, t) = n◦dW(t). (10)

The Stratonovich form is in an implicit form and converting it to the explicit Ito form
results in an added second order term. This is because of the difference in estimating Ito
and Stratonovich differentials. In Ito diffusion the integration happens at the left end point
whereas in the Stratonovich case the integration happens at the mid-point while evaluating
the integration of the differential[11]. With a single Gaussian perturbation in space, the
eqn(10) is written as

du(x, t) = ndW (t)+
1
24u(x, t)

[

∇u(x, t)
|∇u(x, t)|

]

. (11)

The numerical implementation of the scheme for evolution is done by considering a step
δ t in time and δx in space and is given by[8]

u(x, t +δ t) = u(x, t)+n
√

δ t N(0,1)(t)+
1
24u(x, t)

[

∇u(x, t)
|∇u(x, t)|

]

. (12)
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where N is the noise term and it denotes a standard Gaussian random variable, and the
second order term is introduced because of the Stratonovich differential component. This
term is a kind of smoothing term and is nothing but the degenerate diffusion component
along the edges with the stochastic term corresponding to the diffusion component across
the edges. Hence the complete stochastic heat equation would then be

u(x, t +4t) = u(x, t)+n
√

4t N(0,1)(t)+
1
24u(x, t)

[

∇u(x, t)
|∇u(x, t)|

]

+ c(x)4u(x, t).

Since the stochastic perturbation appropriately handles the deformation of the kernel, the
diffusion coefficient c is taken to be only a single inhomogeneous coefficient value and
not a diffusion tensor.

3 Depth Estimation
We consider the case when we are given two images I1(x), I2(x) with different defocus
blurs. Then the resultant formulation is

u(x, t) = I1(x)
u(x, t +mδ t) = I2(x), (13)

and where the term u(x, t + mδ t) is obtained from u(x, t) by the evolution in eqn(13)
and m is the number of iterations in going from image I1 to I2. The evolution equation
in eqn(13) blurs the image I1 with a space-variant blur till it approximates the image
I2 closely enough which is tracked by a discrepancy measure φ . The blur parameter
σ is related to the diffusion coefficient by the eqn(3) and the blur parameter is directly
proportional to the depth in the scene[3] . In order to estimate the depth in the scene
one therefore has to estimate the diffusion coefficient for the evolution equation. In a
deterministic case one would obtain the following minimization problem:

ĉ(x) = arg minc(x)≥0

∫ ∫

φ(u(x, t +dt), I2(x))dxdt. (14)

where φ(.) is a discrepancy measure and ĉ(x) is the diffusion coefficient for the deter-
ministic diffusion equation. However in the stochastically perturbed case, the resultant
diffusion coefficient is a combination of deterministic and stochastic diffusion. The de-
terministic diffusion coefficient is obtained from the contribution from the following part
of the evolution equation:

dudet = (cdet(x)4u)dt (15)
which is the deterministic part of eqn(5). The stochastic diffusion coefficient contri-

bution is obtained by normalizing the stochastic perturbation component in the evolution
equation. We recall that the stochastic perturbation component is given by

dust = n
√

δ t N(0,1)(t)+
1
24u(x, t)

[

∇u(x, t)
|∇u(x, t)|

]

= n◦dW (t) (16)

The stochastic diffusion coefficient is then given by normalizing the stochastic contri-
bution by the corresponding deterministic evolution:
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cst(x) =
n◦dW(t)

κn (17)

where κ is the curvature and n is the normal.
Thus the combined diffusion coefficient is given by

d(x) = cdet(x)+ηcst(x) (18)

where η is the weight factor which determines the relative weight of the stochastic pertur-
bation. The depth in the scene is obtained by solving for d(x) in a minimization problem
of the form

d̂(x) = arg mind(x)≥0

∫ ∫

φ(u(x, t +dt), I2(x))dxdt. (19)

We adopt a Euclidean distance measure for φ . Here the image I2(x) is assumed to be
the more defocused image. However, that may not always be the case, and one can have
sections in an image which are more in focus and other sections which are more defocused
compared to the corresponding sections in the second image. In that case as an initial
step the images are preprocessed and the regions which are more in focus are identified.
The diffusion always happens in a forward direction to avoid instabilities that may arise
due to backward diffusion. The method used to ensure this is similar the one suggested
in [4]. The minimization in eqn.(19) cannot be done using conjugate gradient descent
algorithm due to the stochastic perturbation. We adopt a simple simulated annealing
scheme to perform the stochastic optimization. The various steps for the algorithm for
depth estimation are as follows:

STEP 1: Given the initial images I1(x), and I2(x) divide them into sections such that the
diffusion is always in the forward direction using the preprocessing step discussed
earlier.

STEP 2: Compute un+1 from un using the formula for du given in eqn(13).

STEP 3: Compute the discrepancy measure φn

STEP 4: Accept un+1

• if φn+1 < φn

• otherwise, accept un+1 with probability exp
(

−(φn+1−φn)
T (n)

)

.

STEP 5: Loop back to STEP 2 till the stopping criterion is satisfied.

Here T (n) is a time-dependent function that plays the same role as a decreasing tem-
perature. Its choice is crucial. If the temperature decreases too fast the process may get
stuck in a local minimum, else if it decreases slowly the convergence is delayed. Here we
adopt T (n) = T0/

√
n as suggested by Juan et al.[8]. The stopping criterion is based on

the Euclidean distance measure approaching zero.
The depth estimate is then obtained by considering the deterministic and the stochastic

parts separately. For the deterministic part, we assume a constant diffusion coefficient and
relate the blur to the time of evolution. The blur cannot be related directly in the stochastic
part due to the non-uniform nature of evolution. Hence, in each iteration we normalize
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(a) (b) (c) (d)

Figure 2: Here (a,b) are two real data sets showing the dolls placed at different depths
(Images courtesy Favaro [4]). (c) shows the resultant depth map for the deterministic
method[4]. (d) shows the corresponding result from the proposed method.

the stochastic perturbation with the corresponding orthogonal diffusion component. We
then integrate the corresponding contributions over time to obtain the contribution of the
stochastic perturbation to the blurring process. The final depth estimate is obtained as the
joint contribution of the deterministic and stochastic components.

The depth obtained in this method has a space-varying characteristic, i.e., the problem
solved is equivalent to space varying point spread function (PSF) estimation. Further due
to the stochastic nature, the self occlusion effects and other imperfections are implicitly
handled by the method when it does a stochastic perturbation of the blur model.

4 Experiments
The algorithm has been tested with real images and the results are compared with state of
the art techniques. The method works quite well on all these test data sets.

The experimental setup shown in fig.2 is the “dolls” data set[4]. The images were
taken with varying lens to image plane distances to obtain different amount of defocus in
different observations. The Fig.2(c) shows the depth map estimated by the deterministic
method[4] and Fig.2(d) shows the depth map obtained by the proposed method. Once
again we can clearly identify the depth boundaries from the recovered depth map, justify-
ing the usefulness of the proposed algorithm. The different dolls are clearly visible to be
at different depths.

A challenging data set is the “hair” data set used in [7]. The data set is of a wig with
a messy hairstyle surrounded by several artificial plants. This data poses challenging self
occlusion and complex structure issues. Fig. 3(a,b) shows the 2 input images used. Fig.
3(c) shows the depth map obtained for the deterministic method [4]. As can be seen,
the method does not handle the self occlusion and non-convex diffusion coefficient issues
efficiently. Fig. 3(d) shows the depth map obtained from the confocal stereo method [7].
However, they have images from 13 aperture settings each with 61 focal settings. Fig. 3(e)
shows the depth map obtained from the proposed method using two input images which is
comparable to the depth map in [7] from many images. The results are illustrated clearly
and additional results are provided at http://vinaypn.googlepages.com/stochdfd.
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(a) (b) (c)

(d) (e)

Figure 3: Here (a,b) are two real data sets showing a wig and flowers (Images courtesy
[7]). (c) shows the resultant depth map for the deterministic method[4]. (d) shows the
corresponding result from [7] (which uses images from 13 aperture, each with 61 focus
settings) and (e) depicts the result from the proposed method (using only 2 images).

5 Conclusion
In this paper we have proposed a method based on stochastic perturbation of diffusion
for solving the depth from defocus problem. The main contribution here has been in
incorporating a stochastic formulation of the blur model which can effectively handle
variations in the blur from the standard Gaussian blur model. The variations arise in
the real world due to aberrations in the lenses and aperture and are experimentally too
elaborate to measure. Further the problem of deformation of the Gaussian kernel due to
self occlusion is also implicitly handled. We demonstrate that improved results can be
obtained using the proposed technique. The proposed method also takes into account the
non-convex nature of diffusion propagation.

It may be noted that most researchers in the area of structure recovery have pointed out
the need for regularization of the recovered surface. The proposed method does not im-
pose any such constraint while recoverying the depth. Currently we are investigating the
possibility of incorporating a spatial smoothness constraint during diffusion propagation
to improve accuracy.
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Abstract

Binocular stereo has been extensively studied for extracting the shape of a
scene. The challenge is in matching features between two images of a scene;
this is the correspondence problem. Shape from shading (SfS) is another
method of extracting shape. This models the interaction of light with the
scene surface(s) for a single image. These two methods are very different;
stereo uses surface features to deliver a depth-map, SfS uses shading, albedo
and lighting information to infer the differential of the depth-map.

In this paper we develop a framework for the integration of both depth and
orientation information. Dedicated algorithms are used for initial estimates.
A Gaussian-Markov random field then represents the depth-map, Gaussian
belief propagation is used to approximate the MAP estimate of the depth-
map. Integrating information from both stereo correspondences and surface
normals allows fine surface details to be estimated.

1 Introduction
Binocular stereo is a long-standing problem in computer vision[17]. It enables the con-
struction of 3D models from two 2D images, by solving the correspondence problem,
where matching features are found between two images such that the matched features
are at the same location on the object. If camera calibration is then available depth can
be reconstructed from such matches. A standard preprocessing step involves rectifying
the images, so that they represent the images taken from an idealised horizontal parallel
camera pair. Given a rectified image pair features can only match features on the same
scan-line. In the dense stereo problem where every pixel is a feature a disparity map is
created, where the disparity assigned to each pixel is the offset along the x-axis to its
matching pixel in the other image.

Dense stereo algorithms may be divided into two steps. First is the calculation of a
matching cost for each disparity at each location, represented by the 3D Disparity Space
Image (DSI). In areas with strong cues a DSI gives a clear indication of actual disparity,
but in relatively uniform areas it will not distinguish the correct disparity from incorrect
disparities. Suggested approaches include normalised cross-correlation[17] and sliding
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windows[3]. A common choice is to use individual pixel dissimilarities and rely on mod-
elling assumptions in the second step to recover a reasonable solution.

The second step is the selection of disparities to find a consistent solution. Simply
selecting the best matching cost does not work well because of noise and ambiguities,
so there is a need for modelling assumptions. Modern approaches use techniques such
as dynamic programming[1], graph cuts[4] and belief propagation[21]. The most com-
mon modelling assumption is a smoothness term, which is often equivalent to assuming
piecewise planar surfaces or fronto-parallel piecewise planar surfaces. Whilst these ap-
proaches do well in regions with strong stereo cues uniform areas are generally plane
fitted or interpolated, regardless of actual shape.

Shape from Shading (SfS) relies on the shading information available from a single
image. It is premised on the intensity of light reflected by a surface being related to the
angle between the surface and light source(s). It therefore provides information about sur-
face gradient. The approach was pioneered by Horn[11] and then Ikeuchi and Horn[12].
Whilst complete orientation is desired surface intensity only provides tilt information.
Again, as with stereo, modelling assumptions are used to resolve the ambiguities. A
smooth surface assumption is again common, though this is smoothing surface orientation
rather than disparity. SfS algorithms generally assume Lambertian surface reflectance and
constant albedo over the surface in question, and therefore need constant albedo objects.

Stereo algorithms do not perform effectively in areas of uniform texture. Such regions
will generally either be interpolated or plane fitted, which is not necessarily a true reflec-
tion of the surface shape. In contrast SfS can operate only in areas where albedo can be
inferred, so a uniform albedo assumption needs to be used. This makes SfS ideal for fill-
ing in areas where stereo has insufficient information[14]. Furthermore, stereo provides
information about albedo, which is necessary for SfS. In combining these ideas we have
an improved set of modelling assumptions allowing for a surface estimate with greater
detail. Leclerc and Bobick[14] have used stereo to provide initialisation and boundary
constraints for SfS. Cryer, Tsai and Shah[7] combine SfS and stereo in the frequency do-
main, using a high pass filter for the SFS and a low pass filter for the stereo. Other work
has taken an object centred approach[10, 16]. Here a model is initialised with a stereo
algorithm and then optimised to fit both stereo and shading information. The method
needs a good initialisation however, and is not effective with only a single stereo pair for
initialisation. Jin, Yezzi and Soatto[13] assume the image is divided into areas of texture
and constant albedo and apply separate cost functions to each area and solve with level
sets. Shao et al[18] use an additional cost for the difference between SfS irradiance in
the left image and image irradiance at the corresponding point in the right image. This
combines depth and shading into a single cost function.

The paper is organised as follows; section 2 gives the problem formulations for stereo
and SfS. Section 3 gives the core details of our algorithm. Section 4 describes albedo es-
timation whilst sections 5 and 6 detail the SfS and stereo algorithms respectively. Section
7 presents results and, finally, section 8 concludes.

2 Problem Formulation
The goal is to use the methods of stereo and shape from shading in a complementary way.
Here we briefly describe the problem formulations of both.
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2.1 Stereo
The images captured by the camera pair are initially rectified using the camera calibration
before processing. The input to the stereo problem is therefore a rectified image pair,
the images notionally referred to as the left, IL(x,y) and right, IR(x,y). The output is a
disparity map, D(x,y), representing the dense correspondences between images. Rectifi-
cation has ensured that epipolar line are horizontal, therefore disparities are offsets on the
x-axis, i.e. IL(x,y) corresponds to IR(x+D(x,y),y). The process may be divided into two
steps, first a DSI(x,y,d) is defined expressing the cost of matching IL(x,y) and IR(x+d,y).
Modelling assumptions are then used to select an optimal set of matches which produces
the solution, D(x,y). Given camera calibration disparity may be converted into a depth
map.

2.2 Shape from Shading
SfS uses the image intensity of a single image1, L(x,y). The goal of SfS is to recover
surface orientation for each pixel, n(x,y). Under a single light source and Lambertian
reflectance model the surface normals are related to the image intensity via

L(x,y) = A(x,y)(n(x,y) · s) (1)

where s is the light-source direction and A(x,y) is the apparent albedo at (x,y) in the
image. The goal of SfS is to recover the surface normals given the luminance map, albedo
map and the light source direction. As equation 1 only constrains the angle between the
light source and surface normal modelling assumptions such as surface smoothness must
be introduced to solve the problem. In principle depth can be recovered from the normal
map by integrating over the surface. This is neither straightforward nor accurate however.

3 Integrating Depth and Orientation Information
Once we have a field of surface normals to hand we can use it to provide information
about scene shape by integration. Traditionally this is done using a global integration
method, such as that of Frankot and Chellapa[9]. Depth information is also available
however, provided directly by the stereo algorithm. Our goal is then to combine these two
sources of information to produce an improved estimate of the surface. We do this within
the framework of Gaussian belief propagation. This enables us to define the required
surface as the MAP estimate of a Markov random field, and to combine the two sources
of information in a probabilistic way.

3.1 Belief Propagation
Belief propagation is a powerful method for finding the posterior distribution of a Markov
random field. It has previously been used with discrete distributions to find stereo disparities[8].
In our case we have to recover disparity to sub-pixel accuracy otherwise surface normals
will not provide much information, i.e. the change in orientation produced by a unit
change in disparity is often an order of magnitude more than the SfS derived orientation
information can provide. Using discrete distributions would result in an infeasibly large

1We use the luminance channel of the Luv colour space for the intensity. Experimentation has shown this
to be in reasonable agreement with Lamberts law for non-specular objects with the cameras used. There is an
implicit white light assumption being made here.
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number of disparity labels. This makes it essential to use continuous density functions
representing continuous disparity measurements. One tractable solution is to use Gaus-
sian distributions. The beliefs are then defined by the mean and variance of the Gaussian
distribution, allowing orientation information to be effectively used. We adopt this ap-
proach in this paper.

Loopy belief propagation works by iteratively passing messages between nodes of the
MRF. The message that a node t passes to its neighbour s is[19]

m(n)
ts (xs) = α

∫
xt

ψst(xs,xt)ψt(xt ,yt) ∏
u∈N/s

m(n−1)
ut (xt)dt (2)

Here xt is the disparity at node t; ψst(xs,xt) is the compatibility distribution between the
disparities at t and s; ψt(xt ,yt) is the distribution of disparities inferred from the observed
evidence yt ; m(n−1)

ut (xt) is a message from the previous iteration; and the set N/s is the
neighbourhood of t excluding s. We can then compute the belief at node t using

b(n)
t = αψt(xt ,yt) ∏

u∈N
mut(xt) (3)

We adopt a variant of the Gaussian algebra of Cowell[6]. The Normal distribution is
defined as a function of the precision P and the precision times the mean Pµ , which we
will refer to as the p-mean. The precision is equal to the inverse covariance matrix, i.e.
P = Σ−1. We have

φ [Pµ,P] = α exp
[
−1

2
(x−µ)T P(x−µ)

]
(4)

The reason for defining φ in this way is that it produces a simple set of rules for manipu-
lating the distributions, which are given in Appendix A.

Under our Gaussian model the stereo algorithm is used to give an initial estimate of the
disparities. At a point t in the image the stereo algorithm gives a set of measurements, yt ,
which are used to infer a distribution for the disparities, xt . This is modelled by a Normal
distribution, ψt(xt ,yt) = φ [Pt µt ,Pt ]. The mean µ and precision P for this distribution are
computed from the stereo algorithm as detailed in section 6.

The compatibility distribution between two neighbouring points in the image s and t
is also modelled by a normal distribution. If the disparity at t is xt then we would expect
the disparity at s to be xt + zts where zts is the disparity change predicted by integrating
the surface normals along the path from t to s. The compatibility distribution ψst(xs,xt)
is therefore defined as a Normal distribution with mean xt + zts and a fixed precision Pn
which reflects the accuracy of the surface normals. We therefore obtain

ψst(xs,xt) = φ

[
Pn

(
−zts
zts

)
,Pn

(
1 −1
−1 1

)]
(5)

Since the points are neighbours in the image we can assume that the surface normal direc-
tion is constant along the path between them, and use an interpolated surface orientation
at the half way point. This is in fact necessary to avoid bias in the result. The two separate
processes therefore influence the MRF in different ways; the local measurement process
models the depth information and the compatibility between sites is used to incorporate
the orientation information.
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Since the distributions are Normal, the messages are also Normal distributions. We
begin by defining the following quantities:

P0 = Pt + ∑
u∈N/s

Put P0µ0 = Pt µt + ∑
u∈N/s

Put µut

These are the local precision and p-mean respectively, excluding the message we are
currently computing. The new message m(n)

ts (xs) is a Normal distribution which we will
define as

m(n)
ts (xs) = φ [Ptsµts,Pts]

Applying Eqn. 2, we obtain the update rules:

Pts ← Pn−Pn(Pn +P0)−1Pn

Ptsµts ← Pnzts +Pn(Pn +P0)−1(P0µ0−Pnzts)
(6)

We iteratively apply these rules to find an estimate of the MAP disparity map. The beliefs
are given by

b(n)
t = αψt(xt ,yt) ∏

u∈N
mut(xt) = φ

[
Pt µt + ∑

u∈N
Put µut ,Pt + ∑

u∈N
Put

]
so the mean, and hence the estimated disparity, is

µ(t) = (Pt µt + ∑
u∈N

Put µut)(Pt + ∑
u∈N

Put)−1 (7)

4 Albedo Estimation
Under the Lambertian reflectance assumption SfS requires an albedo map as input. The
surface texture consists of albedo and colour; colour is taken to be the (u,v) channels of
Luv colour space. For an arbitrary texture it is impossible to distinguish texture variation
from shading; this is the basis of ‘3D’ effects in user interfaces. It has already been noted
that in variable texture regions stereo matching is effective, so additional SFS information
is only necessary in relatively uniform regions. Uniform regions allow us to ignore texture
variation.

We begin by segmenting the image into uniform regions with mean shift[5] to obtain
a set of regions, R. Within each of these regions the colour is uniform and the albedo is
assumed to be uniform. The luminance L will however vary across the region because of
shading effects. In order to correctly compute the albedo of a region we need to account
for shading effects using Equation 1. Given a field of surface normals n(x,y) we can
estimate the albedo at each pixel via the relation A(x,y) = L/(n(x,y) · s). For individual
pixels this is not reliable due to inaccurate normal estimation. As albedo is constant an
accurate estimate can be obtained by averaging over each region

Ar =
1
|r| ∑

(x,y)∈r

L(x,y)
(n(x,y) · s)

(8)

where r ∈ R. This requires a field of surface normals; as it is reasonably robust to noise
this may be obtained directly from the stereo algorithm.
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Boot Strap Smoothed Boot Strap Our Algorithm
Frame 1.62(13.5%) 1.22(2.2%) 1.08(1.0%)
Head 1.84(13.7%) 1.55(0.2%) 1.90(1.9%)

Head (centre) 1.73(10.0%) 1.47(0.1%) 1.40(0%)
Table 1: Statistics, see text for details.

5 Shape from Shading Algorithm
Equation 1 only constrains the angle between the surface normal and light source, i.e.
surface normals must lie on a cone whose angle is defined by the ratio L/A. To remove
this ambiguity we introduce two constraints, which are a) that surface normals should
vary smoothly across the surface, and b) at occluding boundaries, the surface normals lie
in the image plane and point away from the boundary. We adopt the Worthington and
Hancock[20] algorithm to solve for the field of surface normals by alternately smoothing
and re-projecting onto the cone. Applying this method gives us a fields of surface normals
for either image, the framework only uses the left images orientation information however.

6 Stereo Algorithm
The DSI of a single pixel can not be accurately represented with a single Gaussian. A dis-
parity value and its confidence can be however, hence the need for a stereo algorithm to
select a reasonable disparity for each pixel. A modified version of the algorithm of Meer-
bergen et al.[15] is used. The modification is such that, in addition to the best disparity,
it also outputs all other disparities within a given tolerance of the best, as an indication of
confidence. It uses the Birchfield and Tomasi’s[2] sampling invariant dissimilarity mea-
sure, the resulting disparities can therefore be considered as ranges, ±0.5 the given value,
rather than as infinitesimal points. A Gaussian can therefore be fitted to each pixels set
of disparities for use by the Gaussian belief propagation step. Occluded pixels with no
disparities are assigned an evidence of ψt(xt ,yt) = φ [0,0].

Both the SfS initialisation and albedo estimation steps require surface normals to be
extracted from the initial disparity map, this may be done with camera calibration in-
formation. Directly estimating surface normals by differentiating a discrete depth-map
does not work however. Therefore the belief propagation process is run to obtain an ini-
tial smooth surface; for this first run orientation is provided by plane fitting the uniform
colour segments. To further reduce noise least squares planes are fitted to a 11×11 win-
dow around each normal and the plane perpendiculars used; this is necessary to obtain a
robust albedo estimate.

7 Experimental Results
We have evaluated our method using a number of stereo pairs with ground truth data.
Standard stereo tests[17] are not fit for our purposes, in part because they do not match
the single known light source requirement but also because they give ground truth in
terms of either discrete disparities or fitted planes. As we obtain surfaces to a much finer
resolution we need ground truth data with disparity maps at sub-pixel resolution.

Using a Cyberware 3030 head scanner and two Canon S70s in the standard stereo
position a data set with ground truth data has been captured. It was calibrated both before
and after the capture session with a 3D calibration target. The stereo pair backgrounds are
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Figure 1: Results for a photo frame, see text for details.

masked out; the ground truth disparity map for the human head is masked out in problem
areas, such as eyes and hair.

We illustrate the algorithm with the picture frame given in figure 1 and the head given
in figure 2. The figures are arranged as left image, ground truth disparity then right image
on the first row, output orientation map, disparity map and albedo map on the second row.
The final row contains renders of the 3D models, first the ground truth, then the smoothed
boot strap and finally the output. The frame is smoothed considerably by the algorithm.
Whilst some overall structure has been lost details not visible in the initialisation are
apparent, primarily the decoration on the frame. It additionally shows the effectiveness
of the albedo estimation. The algorithm produces a reasonable visual result for the head,
unlike the bootstrap algoirthm. Again, it captures details not visible in the bootstrap.

Table 1 compares the algorithm statistically, with the boot strap algorithm[15] in the
first column then the smoothed version used for albedo estimation followed by the final
result. We provide two values in each case. The first is the average disparity difference
from ground truth for pixels classified as inliers, the second is in brackets and is the
percentage of outliers. We define inliers as disparity values within 8 pixels of the ground
truth disparity. For the frame the results are clear cut, but for the head the numbers indicate
that our algorithm has made it worse, though the renders indicate otherwise. For the
smoothed version the error is equally distributed, but for the output from our algorithm
the error is primarily in the ears and edges of the face. This is because the lambertian
shading model is insufficient in these regions. The head (centre) row shows the statistics
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Figure 2: Results for a head, see text for details.

when the ears and edges of the head are masked out.

8 Conclusions
We have presented a method of integrating shape from shading information with stereo
information using Gaussian belief propagation. This method efficiently delivers a contin-
uous estimate of disparity and is relatively easy to implement. Our results show an im-
provement in the fine surface details when shading information is used, leading to more
accurate and visually pleasing models.

Much possible future work exists in this area. The greatest weakness of this approach
is SfS requiring a single known light source. Two future directions may be found in using
another source of orientation information or removing this constraint from SfS, with light
source estimation and support for multiple light sources.
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A Gaussian Belief Propagation
Multiplying, we get

φ [P1µ1,P1]φ [P2µ2,P2] = φ [P1µ1 +P2µ2,P1 +P2] (9)

If we add an additional independent variable, we get

Ext(φ [Pµ,P] = φ

[(
Pµ

0

)
,

(
P 0
0 0

)]
(10)

Finally, if we marginalise over the first variable, we get

Marg1(φ [Pµ,P]) = φ [h2−P12P−1
11 h1,P22−P12P−1

11 PT
12] (11)

where P =
(

P11 P12
PT

12 P22

)
and Pµ =

(
h1
h2

)
Combining the local distribution with previous messages:

ψt(xt ,yt) ∏
u∈N/s

m(n−1)
ut (xt) = φ [Ptt µtt ,Ptt ] ∏

u∈N/s
φ [Put µut ,Put ]

= φ [Ptt µtt +∑
u

Put µut ,Ptt +∑
u

Put ]

= φ [P0µ0,P0] (12)

Extending the distribution to incorporate xs, we get

Ext(φ [P0µ0,P0]) = φ

[(
P0µ0

0

)
,

(
P0 0
0 0

)]
Then combining with ψst(xs,xt):

ψst(xs,xt)Ext(φ [P0µ0,P0]) = φ

[(
P0µ0−Pnzts

Pnzts

)
,

(
Pn +P0 −Pn
−Pn Pn

)]
Finally, we marginalise to find the new message

m(n)
ts (xs) = αMarg1(φ

[(
P0µ0−Pnzts

Pnzts

)
,

(
Pn +P0 −Pn
−Pn Pn

)]
)

= φ [Pnzts +Pn(Pn +P0)−1(P0µ0−Pnzts),Pn−Pn(Pn +P0)−1Pn]

so the message update rules are

Pts ← Pn−Pn(Pn +P0)−1Pn

Ptsµts ← Pnzts +Pn(Pn +P0)−1(P0µ0−Pnzts)
(13)
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Abstract

We describe algorithms for active segmentation (AS) of the first frame,
and subsequent, adaptive object tracking through succeeding frames, in a
video sequence. Object boundaries that include different known colours are
segmented against complex backgrounds; it is not necessaryfor the object to
be homogeneous. As the object moves, we develop a tracking algorithm that
adaptively changes the colour space model (CSM) according to measures of
similarity between object and background. We employ a kernel weighted by
the normalized Chamfer distance transform, that changes shape according to
a level set definition, to correspond to changes in the perceived 2D contour
as the object rotates or deforms. This improves target representation and
localisation. Experiments conducted on various syntheticand real colour
images illustrate the segmentation and tracking capability and versatility of
the algorithm in comparison with results using previously published methods.

1 Introduction

In this paper, we address the problem of segmentation and tracking of human subjects
through video sequences, in which the subject is defined by anenclosing contour and a
colour distribution within that contour, and the background may be static (fixed camera)
or moving (panning camera) and defined by another colour distribution. In general, the
colours within the foreground and background may change dueto a different viewpoint or
change of illumination. The work is founded on earlier work on mean-shift [5], level-set
[2][7] and combined [3]methods to segment images and track deformable shapes in video
sequences. In summary, there are three improvements over previous work.

The first process is segmentation on the first frame of the sequence to define the shape
to be tracked. This uses an active segmentation (AS) algorithm based on level set meth-
ods and a multi-phase colour model. However, we have defined ageneral variational
formulation which combines the Minkowski distanceL2 andL3 of each channel and their
homogenous regions in the index, as a change to the previous CVV model [1]. This
method finds whole object boundaries that include differentknown colours, even in very
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complex background situations, and shows improvement in synthetic data, in which the
additive noise is non-Gaussian and asymmetric, and on real image data.

Second, we have developed an adaptive object tracking algorithm that combines AS
and a mean shift tracking. The tracking algorithm has two phases. Assuming a current
shape in a frame of index,i, then the mean shift algorithm can be used to find the most
likely position of that same shape in framei + 1. Then, the AS algorithm deforms the
contour to find a contour that better fits the data in the same(i +1)th frame. The approach
is adaptive, in that it allows both deformation of the contour, and a change of the colour
space model (CSM), the latter building on the work by Collins et al. [4] throughout the
processing of a video. However, we sort the differentCSMs using the Bhattacharyya co-
efficient which is an approximate measurement of the amount of overlap between the two
distributions of foreground and background, instead of using the variance ratio measure
of the distribution of likelihood values.

The third modification, when we obtain the boundary of a tracked object, is to use
a kernel weighted by the normalized chamfer distance transform to improve the accu-
racy of target representation and localization. This replaces the more usual Epanech-
nikov kernel[6]. Comparative experiments show that our approach is more successful in
tracking the object through video sequences, as both foreground and background colour
distributions are better matched to the separated regions within the data.

2 Segmentation by Level Sets

2.1 Description of the Model

The basic idea in active contour segmentation is to evolve a curve, subject to con-
straints, in order to detect objects in the image. “Let Ω be a bounded open subset of
R2, with ∂Ω the boundary. LetI be a given image
such thatI : Ω −→ R. Let C(s) : [0, 1]−→ R2 be
a piecewise parameterized C1 curve” [1]. We make
the following assumptions: 1)I is composed by a
maximum ofM regionsΩi ; 2) the interface between
the regions∂Ω is regular. Our method also includes
the minimization of an energy based function to per-
form segmentation. Describing image segmenta-
tion by a variational model increases the flexibility
of the representation, allowing the future employ-
ment of additional features, such as shape knowl-
edge, texture, motion vectors, etc. As implemented
here, we assume a-priori knowledge of the colours

Figure 1: An image with N channels and a
set of M different colours.

of the object to be isolated. Given aN-channel imageI(I1, · · · , IN), and a set of differ-
ent colours/intensitiesc = (c1,c2, · · · ,cM). Then,ci ,(i = 1, · · · ,M) are vectors of length
N. The components of the foreground and background colours ofthe kth channel are
ck

f g = (cf
k1, · · · ,c

f
kRf

) andck
bg = (cb

k1, · · · ,cb
kRb

) , Rf +Rb = M . Figure 1 gives an illustra-

tion. We choose an energy formulation with the following form:

E(C) = µ · length(C)+λfg ·
∫ ∫

Ωfg

Ff g(I(x,y),cfg)dxdy+λbg ·
∫ ∫

Ωbg

Fbg(I(x,y),cbg)dxdy (1)
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whereC is the boundary curve ofΩ f g (shaded in Fig.1).Ω f g = cf
k1∪ ·· · ∪ cf

kRf
is the

foreground (object) which is insideC, and the complement ofΩbg = cb
k1∪·· ·∪cb

kRb
is the

background which is outsideC. Then, according to the bin-by-bin dissimilarity measure-
ment - Minkowski distance [9], we use the mean ofL2 (the standard deviation) andL3

(the third root of the skewness) in each channel to get the expressions:

Ff g(I(x,y),cf g) =
3

∑
r=2

(
Rf

∏
q=1

(
1
N

N

∑
p=1

(wf
q|Ip(x,y)−cf

pq|r))1/r)1/R (2)

Fbg(I(x,y),cbg) =
3

∑
r=2

(
Rb

∏
q=1

(
1
N

N

∑
p=1

(wb
q|Ip(x,y)−cb

pq|r))1/r)1/R (3)

whereci = average(Ip(x,y)) inside theith region. µ , λ f g , λbg andwf ,b
i (i = 1, · · · ,N)

are nonnegative weights for the regularizing term and the fitting term, respectively. This
model is robust to symmetric and asymmetric noise (e.g. Gaussian and Gamma distributed
noise). The optimal partition is obtained by minimizing theenergyE(C). “The key idea
is to evolve the boundary C to the boundary of the object from some initialization in
direction of the negative energy gradient under the constraints from the image.”[7]

2.2 Level Set Formulation of the Model

For the level set formulation of the variational active contour model, we replace the un-
known variableC by the unknown variableφ , and follow [10], using the Heaviside func-
tion H, and the one-dimensional Dirac measureδ0 defined respectively by

H(z) =

{

1 , i f z≥ 0
0 , i f z < 0

δ0 =
d
dz

H(z) (4)

We express the terms in the energyE in the following way:

E(C) =
∫ ∫

Ω
(µ ·δ0(φ(x,y)) |∇φ(x,y)|+λ f g ·Ff gH(φ(x,y))+λbg ·Fbg(1−H(φ(x,y))))dxdy (5)

In order to compute the associated Euler-Lagrange equationfor the unknown function
φ , our numerical simulations involve slightly regularized version ofH andδ0 , denoted
here byHε and δε , as ε −→ 0. In this paper, we approximate the regularization of
Heaviside by the complementary error function (erfc).

Hε (z) =
1
2

er f c

(

−
√

πz
ε

)

δε (z) = H ′
ε =

e
−

(√
πz
ε

)2

ε
(6)

This is very similar to the procedure used by [1][2] and [10],but it has a bigger
support interval,(−∞,+∞). Minimizing E(C) with respect toφ yields the following
Euler-Lagrange equation forφ , parameterizing the descent direction by time,t > 0. The
equation inφ(t,x,y) (with φ(0,x,y) = φ0(x,y) defining the initial contour) is:

∂φ
∂ t

= δε (φ)

[

µ ·∇•
(

∇φ
|∇φ |

)

−λ f gFf g +λbgFbg

]

(7)

in Ω , and with the boundary conditionδε (φ)
|∇φ |

∂φ
∂~n = 0 onΩ , where~n denotes the normal at

the boundary ofΩ . Actually, ∇φ
|∇φ | is the unit (outward) normal, and the divergence of the

normal∇•
(

∇φ
|∇φ |

)

is the mean curvature of theφ .
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2.3 Numerical Implementation

To solve this evolution problem, we use the level set method proposed by Osher [8]. We
define an implicit function forφ using a signed distance. This function is positive on the
exterior, negative on the interior, and zero on the boundary. Meanwhile, an extra condition
of |φ | = 1 should be satisfied.φ does not have to be a signed distance function; for
example a Euclidean distance transform or Chamfer distancetransform could be chosen
as a level set functionφ . However, a signed distance function will increase the stability
and quality of the evolution (especially if a vector field-based force and a force in normal
direction are combined). This is because the signed distance is the path of steepest descent
for the function. In order to improve numerical efficiency, we use a discrete form of the
Hamilton-Jacobi (HJ) equation with high order ENO (Essentially Nonoscillatory) and
WENO (Weighted ENO) accuracy and a Local Lax-Friedrichs (LLF) scheme. We also
calculate the upwind derivative by using second order ENO scheme.

When working with level sets and Dirac delta functions,φ will no longer be a distance
function (i.e.|φ |= 1). φ can become irregular after some period of time. A standard pro-
cedure is to reinitialize the signed distance function to its zero-level curve. This prevents
the level set function from becoming too flat, and can be seen as a rescaling and regular-
ization. The reinitialization procedure is made by the following evolution equation:

{

ψt = sign(φ(t))(1−|∇ψ|)
ψ(0,•) = φ(t,•) (8)

whereφ(t,•) is the solutionφ at timet. Then the newφ(t,•) will be ψ , such thatψ is
obtained at the steady state of (8). The solution of (8) will have the same zero-level set as
φ(t,•) and away from this set,|∇ψ| will converge to 1 [2].
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Figure 2: (a). Original synthetic image. (b). Gamma distributed noise. (c) and (d) show
the results of iteration 40 and the final results by AS and CVV methods respectively; the
noisy image is on the left, the associated piecewise-constant approximation on the right.
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In all our numerical experiments, we generally choose the parameters:λ f g = λbg = 1,

wf
q = wb

q = 1. We use the approximationsHε andδε of the Heaviside and Dirac delta
functions (ε = ∆x = ∆y), in order to automatically detect interior contours, and to insure
the computation of a global minimizer. Only the length parameterµ , which has a scaling
role, is not the same in all experiments. If we have to detect all or as many objects as pos-
sible and of any size, thenµ should be smaller. Otherwise,µ should be larger. To test the
effect of theL3 Minkowski distance in the energy function, we first add asymmetric noise
(i.e. a Gamma distribution) to a synthetic image. Fig.2(a) shows the original synthetic
image, (b) shows the noise distribution, (c) shows the results of the AS method, and (d)
the CVV method. This shows the improvement of the AS over the CVV method if the
noise is additive and asymmetric. In Fig.3, each method is applied to a real image with a
coloured, striped texture. This shows that the AS can obtainthe complete contour, but the
CVV has breaks in the expected segmentation. AS only needs 87iterations to converge
to the optimal solution, but the CVV method takes 202 iterations.

Figure 3: The comparison of the AS and CVV methods using a realimage. The top
figures are the results of iterations 60 and 87 by the AS method. The bottom figures are
the results of iterations 60 and 202 by the CVV method. The original image is on the left
and the associated piecewise-constant approximation is onthe right.

We can also compare the accuracy of the AS method with that of the CVV method by
calculating the energy of every evolution. Though energy formulation of the AS is dif-
ferent to that of CVV, and the initial value
is different, we can compare the energy
after normalization, because they should
converge to the same global minimization,
that is, in f (E(C)). For a perfect image
and contours,in f (Ff g) = in f (Fbg) = 0, so
in f (E(C)) = µ · length(C). The compari-
son is shown in Figure 4. AS/CVV (Three
colours) means we consider the three over-
lapping circles in Figure 2(a) as a sin-
gle object and use the AS/CVV method.
AS/CVV (one or two colours) has similar

Figure 4: Comparisons of the energy evolution.

meaning. The experimental results show that the AS method only needs a small num-
ber of iterations to reach the minimum energy value. For example, for the object with
three colours, the initial energy of the AS is bigger than that of CVV. After 25 iterations,
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AS obtains a minimum, but the CVV method requires 150 iterations to obtain its final
minimum.

3 Adaptive Object Tracking

3.1 Outline of the Adaptive Tracking Algorithm

The adaptive tracking algorithm is expressed as pseudocode,

• Define the internal and external rectangles covering the object centroid at y0 in the first image.

• Sort CSMs by similarity distance criterion (Eq.10).

• Choose preferredCSM.

• Get active contour andφ of the tracked object by AS method.

• Repeat
Input the image i (initial value i = 1).
Obtain the set of foreground and background pixels byφ .
Sort and choose preferredCSM.
Get the sets of constant colours by clustering using mean-shift segmentation.
Compute NCDT kernel using Chamfer distance transform.
Form model histogram,q, in the preferred colour space.
Fetch the next framei +1.

Compute candidate histogramp(y0) in the preferred CSMs using NCDT-kernel
Find the optimum location y1 of candidate using mean shift tracking algorithm.
Get the motion vector.

Translate the contours.
Update φ by AS method.
i = i +1.

• Until end of input sequence

3.2 Selection of the Best Colour Space Model

In tracking an object through a colour image sequence, we shall assume that we can
represent it by use of a discrete distribution of samples from a region in colour space,
initially localised by a kernel whose centre defines the current position. Hence, we want
to find the maximum in the distribution of a function,ρ , that measures the similarity
between the weighted colour distributions as a function of position (shift) in thecandidate
image with respect to a previous model image. If we have two sets of parameters for
the respective densitiesp(x) andq(x), the Bhattacharyya coefficient is an approximate
measurement of the amount of overlap, defined by [6]:

ρ(y) = ρ[p(y),q] =
m

∑
u=1

√

pu(y)qu (9)

The distance between two distributions can be defined as

d(y) =
√

1−ρ(y) (10)

Clearly the distanced(y) lies between zero and unity, and obeys the triangle inequality.
In a discrete space,xi , i = 1,2, · · · ,n are the pixel locations of the model, centred at a
spatial location0, which is defined as the position of the window in the preceding frame
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that we want to track. A functionb : R2 → 1,2, · · · ,n associates to the pixel at location
xi the indexb(xi) of the histogram bin corresponding to the value of that pixel. Hence a
normalized histogram of the region of interest can be formed(usingqu as an example)

qu =
1
n

n

∑
i=1

δ [b(xi)−u], u = 1,2, · · · ,m (11)

whereδ is the Kronecker delta function. Tracking success or failure depends primarily on
how distinguishable an object is from its surroundings. If the object is very distinctive, it
is easy to track. Otherwise it is hard to track. Normally, thefeatures that best distinguish
between foreground and background are the best features fortracking. The choice of
feature space will need to be continuously re-evaluated over time to adapt to changing
appearances of the tracked object and its background. To select the best colour space
model (CSM), we sort the differentCSMs using the Bhattacharyya coefficient which is
an approximate measurement of the amount of overlap betweenthe two distributions of
foreground and background. For the first frame, we use a “centre-surround” approach
to sample pixels from object and background. A rectangular set of pixels covering the
object is chosen to represent the object pixels, while a larger surrounding ring of pixels
of the rectangle is chosen to represent the background. For an internal rectangle of size
h×w pixels, the outer margin of width(

√
2− 1)

√
hw/2 pixels forms the background

sample. The foreground and background have the same number of pixels if h = w. In all
subsequent frames, it is the contour defined by the level set function,φ , that defines the
foreground for the adaptive model, so that no background is included. We use the distance
criterion (10) to measure the similarity between the two histograms of the internal and
external regions. The best colour space is selected by finding theCSM with maximum
distance value. Each potential feature set typically has dozens of tunable parameters and
therefore the full number of potential features that could be used for tracking is enormous.
We construct 16 single frameCSMs from 5 different colour spaces (R.G.B, L.a.b, H.S.V,
Y.I.Q/Y.Cb.Cr, C.M.Y.K). All the values of pixels are normalized to 0 to 255, yielding
feature histograms with 16 or 256 bins.

Fig.5(a) shows a sample image with concentric boxes delineating the object and back-
ground. The similarity distances between foreground and background of eachCSMare
shown in Fig.5(b) and the set of all 16 candidate images afterrank-ordering the feature ac-
cording to the criterion (10) are shown in Fig. 5(c). The image with the most discrimina-
tive feature (best for tracking) is at the upper left. The image with the least discriminative
feature (worst for tracking) is at the lower right.

3.3 Using a Kernel Based on the Normalized Chamfer Distance
Transform

A radially symmetric kernelK can be described by a 1D profile rather than a 2D (or
higher order) image. The most popular choice forK is the optimal Epanechnikov kernel
that has a uniform derivative ofG = 1 which is also computationally simple. However,
in tracking an object through a video sequence and applying the mean shift algorithm to
move the position of the target window, the bounds of the domain R2 are altered on each
successive application of the algorithm. There is no reasonto suppose that the target has
radial symmetry, and even if an elliptical kernel is used, i.e. there is variable bandwidth,
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Figure 5: (a). A sample image with concentric boxes delineating the object and back-
ground. (b). The similarity distance of eachCSM. (c). Rank-ordered 16 images. (d). AS
segmentation result. (e). 3D NCDT kernel

the background area that is being sampled for the colour distribution will change. If the
background is uniform this will not affect the colourpdf, and hence the gradient ascent
will be exact. However, if it is not uniform, but varies markedly and in a worst case
has similar properties to the target, as we shall see in the next section, then multiple
modes will be formed in thepdf and the mean shift is no longer exact. Therefore, we
use the normalised Chamfer distance transform (NCDT) rather than the true Euclidean
distance, as it is an efficient approximation. The NCDT kernel better represents the colour
distribution of the tracked target, yet retains the more reliable centre weighting of the
radially symmetric kernels. This transform is applied to the target area, separated from
the background by AS methods described in Section 2.3. Figures 5(d) and (e) show
the AS segmentation and the NCDT kernel of Figure 5(a). We aimto show that this
weighting increases the accuracy and robustness of representation of thepdf’s as the
target moves, since it excludes peripheral pixels that occur within a radially symmetric
window applied to successive frames. We are investigating the performance of the NCDT
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transform to define the regions of interest and weight the colour densities in the video
images. We assess whether the anticipated gain in excludingbackground pixels from the
density estimates and weighting more substantially those more reliable pixels towards the
centre of the tracked object will outweigh the possibility of forming false modes because
of the shape of the NCDT. However, radially symmetric kernels may also produce false
modes due to badly defined densities.

Figure 6 illustrates that the tracking algorithm can cope with dynamic deformation
of the shapes and the changing positions of the targets in thevarious sequences, even
when the camera pans so that both the foreground and background move in the camera
coordinate system (Fig. 6(a)). All of these illustrations are from much longer sequences,
included as supplementary material, typically more than a hundred frames. Fig.6(b) and
(c) show that the tracking algorithm is very robust to clutter, and crossing objects. The car
is occluded by a square object which has the same colour as thecar in the third sample
picture in (b), two people cross in the third sample picture in (c), yet the algorithm adapts
the contour to track the non-occluded portion of the woman, then re-grows the contour as
she re-emerges from behind the man. In each of the sequences,the rectangle in the first
image defines the initial region, in which the object to be tracked is segmented. In Figure
6(c), we have also compared the use of the NCDT and Epanechnikov kernel, but in the
latter case the tracker latches on the crossing individual.

Figure 6: Tracking video objects and dynamics of deformation. The video sequences are
supplied as supplementary material.

4 Conclusions

We have developed segmentation and tracking algorithms using a generalized active con-
tour model. The object of interest can have a mixture of colours, but these are known
before segmentation. For segmentation, the position of theinitial curve can be anywhere
in the image, and need not necessarily surround the object tobe detected. However, if the
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initial estimate is far from the true contour, it takes a longtime to converge to the optimal
solution. The segmentation is similar to the earlier CVV algorithm, but uses a slightly
different cost function that deals better with noise that isasymmetric, and converges more
quickly on sample image data. The adaptive object-trackingis a hybrid algorithm, com-
bining level set methods with the mean shift tracking algorithm. Mean shift defines the
translation in the next frame to accelerate the level set definition of the tracked contour.
The algorithm is also improved by a Chamfer distance transform (NCDT kernel) and
sorted CSMs to better detect and track objects. Several experiments have demonstrated
the ability of the model to detect and track an object in moviesequences.
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Abstract

In this paper we propose a non-Gibbsian Markov random field tomodel the
spatial and topological relationships between objects in structured scenes. The
field is formulated in terms of conditional probabilities learned from a set of
training images. A locally consistent labelling of new scenes is achieved by
relaxing the Markov random field directly using these conditional probabili-
ties. We evaluate our model on a varied collection of severalhundred hand-
segmented images of buildings.

1 Introduction

Recent years have seen notable improvements in the performance of object classifiers.
Greater robustness against occlusion and intraclass variability has been achieved by de-
scribing objects by a large number of local and largely view-invariant features (e.g. [15, 5,
18, 14]). For single classes efficient classification methods such as boosting allow recog-
nition to be in real-time (e.g. [17]). Some of these models have the additional benefit of
biological plausibility. The hierarchical feed-forward architecture of [13] aims to mimic the
ventral stream of visual information processing and is ableto predict with great accuracy
whether or not an object is present in a scene.

It seems, however, that in order to be able to scale to the several thousands of cat-
egories humans discriminate without effort, appearance based object classification needs
to be complemented by techniques that utilise contextual information. Context may be
described as any dependency between the object to be recognised and everything else in
the scene, be these other objects or the scene as a whole. Experimental evidence suggests
that humans do exploit both types of dependency during object recognition. It is well es-
tablished, for example, that the nature of a scene can be recognised based on low spatial
frequency information [11]. Recent neuro-imaging studiessupport the view that low spatial
frequencies are processed in the cortex at a very early stageduring visual recognition [2],
suggesting that perception involves top-down facilitation. Much like the gist of a scene, the
spatial relationships between objects can be determined without high frequency informa-
tion. Bar and Aminoff in [1] establish early activation of cortical “context networks” that
appear to store spatial relationships, pointing to a key role of spatial context as an early
facilitator during object recognition.
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Our goal is to learn these spatial and topological relationships from the data and to
utilise this information in a Markov random field (MRF) modelto achieve a consistent
labelling of new scenes. The MRF is defined not over a pixel array but the set of regions that
correspond to objects. From training data we learn the probability distribution over labels
for a region, given the objects in its local neighbourhood. These supply the conditional
probabilities that define the MRF and are used during an iterative relaxation scheme to find
a probable realisation given the structural relationshipsobserved in a new scene.

Unlike the MRFs hitherto used in computer vision, the MRFs weuse here are non-
Gibbsian, i.e. they cannot be expressed in terms of cliques and a global cost function. This
is because the interactions between units are directional and non-symmetric (A influences
B differently from how B influences A). Such MRFs are characteristic of natural complex
systems and they may be used to model, for example, the interaction between neurons in
the human brain, population dynamics or company interactions. Complex systems subject
to such unit interactions tend to oscillate between different states rather than converge to a
single state [9]. In the case of human perception, the human brain is then somehow able
to select from the possible interpretations the most appropriate one. In this paper we use a
relaxation method appropriate for producing the states of such an MRF and a criterion that
allows us to select the right state.

We validate our approach on a set of about 250 photographs of buildings that were
manually segmented and labelled. This domain is particularly interesting as it exhibits
sufficiently tight structural constraints to benefit from our approach, and a fair amount of
structural variability to challenge it.

This paper is structured as follows. Section 2 presents related work. Section 3 intro-
duces the non-Gibbsian model. Section 4 details how it is used to label new scenes. Section
5 describes a series of experiments to validate our approach. Section 6 concludes the paper.

2 Related work

We here consider related works that are concerned with modelling peer-to-peer, rather than
hierarchical, dependencies. A natural choice for probabilistic modelling of local depen-
dencies are Markov random fields [8], defined either on a segmentation of the image as in
[10, 4] or on a rectangular grid as in [7, 6, 14]. The authors in[6] and [14] define a condi-
tional random field over individual pixels. In [14], contextual information is incorporated
by using the joint boosting algorithm [16] for learning potential functions and by employ-
ing a novel feature that captures local dependencies in appearance. Neither work explicitly
considers spatial relationships, although in [6] the absolute position of a site is included in
the potential function.

In [4], it is assumed that training images are associated with a bag of words with no
explicit mapping between regions and terms. This renders the learning task more difficult
but makes it easier to get hold of large amounts of training data. The MRF is specified
through single and pair-wise clique potential functions learned from the data. To make
the estimation problem tractable, potential functions aresymmetric with respect to their
arguments (labels of adjacent image regions). The model does not capture asymmetric
dependencies, nor does it take into account spatial relationships.

In [10], an MRF is defined over image regions by specifying theclique functions for
all types of single and pair-wise cliques. The potential functions are taken to be a weighted
sum ofm basis functions whose parameters are set manually.
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Our objectives are similar to those in [4] and [10]. Unlike those two, however, we allow
neighbouring blobs to influence each other differently depending on their relative spatial
position. The asymmetry thereby introduced forbids the definition of cliques and thus the
formulation of the MRF in terms of a Gibbs distribution. Our model consists of conditional
probabilities that are learned directly from the data usingstructural information as can be
obtained from the low spatial frequency content of an image.

3 The model

3.1 Non-Gibbsian MRF

Let S= {1, . . . ,N} index a set of regions in an image. We assume that each region is
associated with a random variablefi which takes its value from a discrete set of class labels.
The fieldF = { fi : i ∈ S} is assumed to be Markovian in the sense that the probabilistic
dependencies amongfi are restricted to spatial neighbourhoodsNi , that is,

P( fi | fS−i ,R) = P( fi | fNi ,Ri), (1)

whereR denotes the matrix of pair-wise spatial relationships between regions, andRi the
row pertaining to regioni. We assume, therefore, that the conditional dependencies depend
not only on the identity of the neighbouring regions but alsoon their relative spatial rela-
tionships with theith region. This is an important component of our model as it allows us to
capture the non-isotropic nature of many scenes. For convenience, we refer to a particular
observation pair( fNi ,Ri) as theneighbourhood configurationor simplyconfiguration, and
to theith region associated with it as thefocal region.

window chimney roof door wall dormer sky other
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0.2

0.3
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0.5

0.6

0.7

0.8

Figure 1: A particular configuration associated with a chimney (left), a schematic repre-
sentation of the configuration( fNi ,Ri) (middle) and the conditional probability distribution
over all labels associated with that configuration,P( fi | fNi ,Ri), as obtained from training
images (right). The distribution tells us that a region below sky and above a roof is a
chimney (71%) but may also be a dormer (14%) or another roof (10%).

3.2 Neighbourhoods

Since we need to learn the conditional distributions from a relatively small training set, we
limit the neighbourhood to at most six regions: the neighbour above, below, to the left and
to the right of regioni, as well as the region containing and being contained by region i. The
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neighbourhood relation is reciprocal and two regions are neighbours if they are separated
by no more than a certain distance threshold. The distance between two regionsA,B⊂ R

2

is computed as
d(A,B) = ∑

i∈{x,y}
min

a∈A,b∈B
|ai −bi |, (2)

whereax represents thex coordinate of pointa. Other choices of a distance function are of
course conceivable. This particular one has the effect thattwo regions need not be the same
to have a zero distance but may be (i) overlapping, (ii) exactly adjacent or (iii) contained in
one another. For example, a wall that surrounds a number of windows has a zero distance
from each of them. If regions are non-overlapping, the distance along each direction is
given by the smallest Euclidean distance between any two points of the two regions. This
has the advantage that the distance between two regions is not affected by their respective
sizes (as would be the case under many metrics such as the Hausdorff metric). For a dis-
tance cutoff of 0, the neighbourhood consists of all regionswhose bounding boxes overlap
with or touch the focal region. Were the regions regularly arranged like pixels, the resulting
neighbourhood would be the familiar 8-pixel neighbourhood. The optimal distance cutoff
is learned through cross-validation. Figure 2 depicts the distribution over configuration
sizes for the optimal zero cutoff. The right figure illustrates how the configurations become
larger as the distance cutoff increases.

Given a distance threshold, the conditional probability distributions (eq. 1) are learned
by noting for each regioni observed in a set of training images its corresponding configu-
ration( fNi ,Ri). The results can conveniently be stored in the form of a hashtable with the
key being a particular configuration and the value being the conditional probabilities over
labels for the focal region. Given a region with known neighbourhood configuration, we
can thus rapidly obtain a probability distribution over labels at the focal region. To ensure
that the joint distribution of the MRF is nowhere zero, we adda small positive value to each
zero-valued conditional probability and subsequently normalise.
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Figure 2: Frequency distribution of different configuration sizes for a distance cutoff of
zero (left). As we increase the distance threshold, the configurations become larger (right).

4 Labelling of new scenes

This section details how to obtain probable realisations ofthe MRF given a new scene.
We make the assumption that scenes have been segmented into regions where each region
corresponds to an object to be recognised. How these regionsare obtained in the first place
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is a problem in its own right and outside the focus of this work. We shall simply take it for
granted that an appropriate segmentation has been achieved.

4.1 Global Gibbsian versus local non-Gibbsian relaxation

A standard technique to find a probable realisation of an MRF is simulated annealing which
allows a stochastic label update at a site to be retained witha certain probabilityPr even
if the new realisation of the field is less probable. By letting Pr converge to zero, the
field eventually settles at a maximum of the joint probability distribution. In other words,
simulated annealing strives to find solutions that are globally maximally consistent.

Because of the impossibility to define cliques, our non-Gibbsian field is formulated
purely in terms of local, conditional probability distributions (Equation 1). We aim to
find labellings that are locally consistent by repeatedly sampling from these conditional
distributions.

4.2 Graph colouring

In order to iteratively update regions based on the current labelling of their neighbourhood,
we partition the set of regions into a set of codings. The ideaof a coding was first introduced
by Besag [3] in the context of the iterated conditional mode algorithm for MRF parameter
estimation. A coding is equivalent to the concept of a vertexcolouring of a graph, that
is, it constitutes a partitioning of the set of vertices (= regions) so that no two adjacent
vertices (= neighbouring regions) belong to the same partition. Because of the assumption
of Markovianity, the likelihood over vertices of the same colour reduces to a simple product
of the respective conditional probabilities. We employ a greedy strategy to achieve a vertex
colouring, in which vertices are visited in order of decreasing vertex degree (i.e. number
of neighbours). Each vertex is assigned the first possible colour from a list of colours. One
example of a colouring is given in Figure 3. The wall has the largest number of neighbours
and is correspondingly assigned the first colour (‘1’).

Figure 3: Original image (left). Hand-segmented and hand-labelled training image (mid-
dle). Vertex colouring of the neighbourhood graph (right):vertices with the same number
have non-overlapping neighbourhoods.

4.3 Choosing a solution

Regions are updated within each coding by retrieving and sampling from the probability
distribution corresponding to that region’s current neighbourhood configuration. If the con-
figuration has not been seen before, because it was not observed in the training set, the new
label is drawn from a uniform distribution. This scheme on its own is not guaranteed to
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converge and indeed it seems to have no tendency to do so. Following each update, we
compute for each codingC j

P( fC j |R) = ∏
i∈C j

P( fi | fNi ,R)

Our estimate of the overall probability of the data is obtained by averaging overP( fC j |R).
Because the codings are generally of different size, the arithmetic average sometimes used
for regular MRF is unsuitable. Instead, we estimate the joint probability as

P( f1, . . . , fN)≈ 1
N ∑

j
|C j |

[

∏
i∈C j

P( fi | fNi ,R)

]
1
|C j |

. (3)

Let p be the ratio between the estimated joint probability after and before the update. We
accept the change with probability 1 ifp > 1 and with probabilityp

1
T otherwise.T is the

temperature parameter whose value decreases exponentially with time. Figure 4 shows an
example of how the value given by eq. 3 increases over successive iterations. One iteration
here involves the update of the labels of all regions.
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Figure 4: Dynamics of stochastic updating process with and without maximisation of the
pseudolikelihood. The dotted line marks the pseudolikelihood associated with the true
labelling. The continuous line shows the proportion of misclassified regions. In both di-
agrams, regions are updated based on the conditional probabilities. For the left diagram,
a new labelling is always accepted, for the right diagram, a labelling is accepted when it
improves the current optimum or when it is worse by no more than a value that decreases
with time.

5 Experiments

For our experiments, we collected 253 images of buildings from the World Wide Web.
Each image was manually segmented into regions that correspond to parts of the building
or parts of the environment such as sky or vegetation. Each region was labelled by hand
using an annotation tool similar to LabelMe. The complete dataset contains nearly 6,000
regions covering a dozen of classes.1

1The images along with the annotation and segmentation information is available at
http://www.commsp.ee.ic.ac.uk/∼dheesch/ngmrf/data/
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We allow for the following seven labels (with respective frequencies): ‘window’ (0.507),
‘chimney’ (0.054),‘roof’ (0.053), ‘door’ (0.087), ‘wall’(0.089) , ‘dormer’ (0.015), ‘sky’
(0.055), ‘other’ (0.14). The ‘other’ label aggregates all remaining structures that were an-
notated (e.g. ’pipes’ and ’balcony’). We report performance of different algorithms in
terms of classification accuracy, i.e. the proportion of regions that have been labelled cor-
rectly. To estimate how the algorithm will be able to predictdata that it was not trained on,
we use the leave-one-out method of cross-validation, i.e. we remove one image from the
set at a time to be our test image and train on the remaining 252images.

5.1 Comparison with other methods

We compare our non-Gibbsian MRF model with two other classification models, a non-
contextual Bayes classifier and an alternative contextual model that uses probabilistic re-
laxation to find a locally consistent labelling.

5.1.1 Non-contextual Bayes classifier

As a non-contextual benchmark we implemented a Parzen classifier that classifies regions
based on the posterior probabilities given measurements ofa number of low-level features
from the region. We use a set of three features that can easilybe obtained from the low-
frequency content of a scene: the mean intensity, the normalised area of the region and its
vertical position. For each feature, the posterior probabilities over classes is given by Bayes
rule with the class-conditional densities being approximated using a Parzen window with a
Gaussian kernel function centred on a set of class exemplarsEc

p(x|c) ∝ ∑
xi :i∈Ec

1√
2πσ

exp

(

−|x−xi |
2σ2

)

, (4)

whereσ is learned through cross-validation. We assume each feature to be conditionally
independent given the class, and thus compute the overall class probability density as a
product of feature-specific posteriors.

5.1.2 Probabilistic relaxation

The second comparison is with an alternative contextual labelling technique known as prob-
abilistic relaxation [12]. The contextual information consists of the conditional probabil-
ities of a label, given that another label is found in a particular relative position to the
first. In each iteration of the relaxation process, the labelprobabilities are updated based
on the probabilities at the previous time step, modulated bythe support a particular labelfi
receives from neighbouring labels,

P(n+1)( fi = c) =
P(n)( fi = c)Qi(c)

∑µ∈L P(n)( fi = µ)Qi(µ)
(5)

with support function

Qi(c) = ∑
j: f j∈Ni

∑
ν∈L

P( fi = c| f j = ν , r i j )P( f j = ν). (6)
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HereL denotes the label set. The compatibilities are learned fromthe data in a similar way
as are the conditional distributions for neighbourhood configurations in the MRF model.
Note that unlike the MRF model, which allows configurations to comprise up to six regions,
this particular formulation of probabilistic relaxation is limited to binary dependencies.
This makes statistical learning of dependencies easier butcomes at the expense of limited
modelling power.

5.1.3 Results

Table 1 shows the results for probabilistic relaxation and our NG-MRF when using the
output of the Parzen classifier to initialise the labelling.In order to assess the variability in
performance, we have opted for a leave-one-out strategy. The results are the average over
253 images with more than 5,000 regions.

The best results are obtained by the non-Gibbsian MRF, followed closely by the non-
contextual classifier. It is noteworthy that this particular version of probabilistic relaxation,
instead of improving the results of the non-contextual Parzen method, makes them worse.

Regions Unique cfgs Prior Parzen PR NG-MRF
5,682 0.904 0.521 (0.0006) 0.690 (0.125) 0.568 (0.134) 0.729 (0.124)

Table 1: Performance comparison for different classification methods. Prior: each region
is given the same, most frequently occuring label; Parzen: non-contextual classification;
PR: probabilistic relaxation; NG-MRF: non-Gibbsian Markov random field. Performance
is measured in terms of the proportion of regions classified correctly (standard deviation in
brackets). The second column gives the proportion of uniqueconfigurations in the test set
for which a conditional distribution has been learned from the training images.

Table 1 does not show how performance varies between different classes. As the confu-
sion matrix in Table 2 indicates, by far the greatest accuracy is achieved for windows. That
many other classes are misclassified as windows may be attributed to the strong prior on
the ‘window’ class that influences the result through the non-contextual Parzen initialisa-
tion. Note that doors in particular are frequently mistakenfor windows as these two classes
exhibit very similar spatial relationships with other building parts whilst having markedly
different priors.

wi ch ro do wa do sk ot
window 2848 50 5 81 0 0 25 131
chimney 20 151 50 5 0 5 10 15

roof 25 20 101 0 30 10 25 76
door 348 5 0 20 5 0 0 96
wall 40 0 25 5 292 10 10 91

dormer 30 15 20 5 5 15 5 0
sky 15 10 10 0 5 5 192 30

other 217 15 15 40 30 5 25 343

Table 2: Confusion matrix for NG-MRF labelling. The top row entries are indexed by the
first two letters of the respective label. The matrix elementai j gives the number of regions
of the ith class that have been classified as belonging to thejth class.
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5.2 Robustness to initialisation

We investigate two different initialisation schemes to assess the robustness of the contextual
inference to initial conditions. The first scheme assigns each region the most frequently
occuring label (in this case ‘window’), the second draws labels randomly from the prior
distribution, i.e. it will result in a similar initial distribution of classes within the image but
with random assignment of classes to regions. The results are shown in Table 3. While we
notice a performance degradation compared to non-contextual initialisation, the contextual
model continues to improve over the new baselines of 0.52 and0.32, respectively.

Initialisation scheme Initial NG-MRF
Non-contextual 0.690 0.729 (0.124)
Max Prior 0.521 0.654 (0.127)
Random 0.315 0.621 (0.135)

Table 3: Dependence of contextual classification on initialconditions. The second column
shows the accuracy after initialisation with the three different schemes discussed in the text.
The initial accuracy of the random assignment is 1−∑c pc(1− pc) wherepc is the prior of
thecth class.

6 Conclusions

We presented a Markov random field model for contextual labelling of objects in structured
scenes. In our model the context of a region consists not onlyof the identity of neighbour-
ing regions but also, crucially, on their relative spatial and topological relationships. By
incorporating what are typically asymmetric relationships, the Markov random field is ca-
pable of modelling the non-isotropic nature of typical scenes. The asymmetry makes the
field non-Gibbsian as it no longer admits to a factorisation into cliques, so that the model
is formulated in terms of conditional distributions that are learned from training data.

Given a new scene, the Markov random field is relaxed by iteratively sampling from
conditional probability distributions. We proposed an objective function to help us iden-
tify good labelling solutions. The objective function is based on the vertex colouring of
the region neighbourhood graph and is not the global cost function usually associated with
Gibbsian MRFs. A comparison with a non-contextual and an alternative contextual classi-
fier suggests the validity of the approach.

There are several ways how to take the work further. For this study we hand-segmented
and hand-labelled several hundred images. To demonstrate the robustness of the tech-
nique, a next step is to learn configurations from automatically segmented, but possibly
hand-labelled training exemplars. Also, we currently makeno attempt to generalise from
observed configurations to new ones. As some configurations are supersets of smaller con-
figurations, or are otherwise similar to each other, endowing the configuration space with
some distance metric would allow more accurate label distributions to be inferred for pre-
viously unseen configurations.
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K Marinkovic, D Schacter, B Rosen, and E Halgren. Top-down facilitation of vi-
sual recognition.Proceedings National Academy of Sciences, 103(2):449–454, 2006.

[3] J Besag. Spatial interaction and the statistical analysis of lattice systems (with discus-
sion). Journal Royal Statistical Society, B, 36:192–236, 1974.

[4] P Carbonetto, N de Freitas, and K Barnard. A statistical model for general contextual
object recognition. InProc European Conf Computer Vision, pages 350–362, 2004.

[5] G Csurka, C Bray, C Dance, and L Fan. Visual categorization with bags of keypoints.
In Proc European Conf Computer Vision, 2004.

[6] X He, R Zemel, and D Ray. Learning and incorporating top-down cues in image
segmentation. InProc European Conf Computer Vision, 2006.

[7] S Kumar and H Hebert. Discriminative random fields: a discriminative framework
for contextual interaction in classification. InProc Int’l Conf Computer Vision, 2003.

[8] S Li. Markov Random Field Modeling in Computer Vision. Springer, New York,
1995.

[9] Z Li and P Dayan. Computational differences between asymmetrical and symmetrical
networks.Network: Computation in Neural Systems, 10(1):59–77, 1999.

[10] J Modestino and J Zhang. A Markov Random Field model-based approach to image
interpretation. IEEE Trans Pattern Analysis and Machine Intelligence, 14(6):606–
615, 1992.

[11] A Oliva and A Torralba. Modelling the shape of the scene:a holistic representation
of the spatial envelope.Int’l Journal Computer Vision, 42(3):145–175, 2001.

[12] A Rosenfeld, A Hummel, and S Zucker. Scene labeling by relaxation operations.
IEEE Trans Systems, Man and Cybernetics, 6(6):420–433, 1976.

[13] T Serre, A Oliva, and T Poggio. A feedforward architecture accounts for rapid cate-
gorization.Proceedings National Academy of Science, 104(15):6424–6429, 2007.

[14] J Shotton, J Winn, C Rother, and A Criminisi. Textonboost: Joint appearance, shape
and context modeling for multi-class object recognition and segmentation. InProc
European Conf Computer Vision, 2006.

[15] J Sivic and A Zisserman. Video google: a text retrieval approach to object matching
in videos. InProc Int’l Conf Computer Vision, pages 1–8, 2003.

[16] A Torralba, K Murphy, and W Freeman. Sharing fatures: efficient boosting proce-
dures for multiclass object detection. InProc Int’l Conf Computer Vision and Pattern
Recognition, pages 762–769, 2004.

[17] P Viola and M Jones. Rapid object detection using a boosted cascade of simple
features. InProc Int’l Conf Computer Vision and Pattern Recognition, 2001.

[18] J Winn, A Criminisi, and T Minka. Object categorizationby learned universal visual
dictionary. InProc Int’l Conf Computer Vision, pages 1800–1807, 2005.

939



Denoising Manifold and Non-Manifold
Point Clouds

Ranjith Unnikrishnan Martial Hebert
Carnegie Mellon University, Pittsburgh, PA 15213

ranjith,hebert@cs.cmu.edu

Abstract

The faithful reconstruction of 3-D models from irregular and noisy point
samples is a task central to many applications of computer vision and graph-
ics. We present an approach to denoising that naturally handles intersections
of manifolds, thus preserving high-frequency details without oversmoothing.
This is accomplished through the use of a modified locally weighted regres-
sion algorithm that models a neighborhood of points as an implicit product
of linear subspaces. By posing the problem as one of energy minimization
subject to constraints on the coefficients of a higher order polynomial, we can
also incorporate anisotropic error models appropriate for data acquired with
a range sensor. We demonstrate the effectiveness of our approach through
some preliminary results in denoising synthetic data in 2-D and 3-D do-
mains.∗

1 Introduction
Surface reconstruction from unorganized point samples is a challenging problem relevant
to several applications, such as the digitization of architectural sites for creating virtual
environments, reverse-engineering of CAD models from probed positions, remote sensing
and geospatial analysis. Improvements in scanner technology have made it possible to
acquire dense sets of points, and have fueled the need for algorithms that are robust to
noise inherent in the sampling process.

In several domains, particularly those involving man-made objects, the underlying ge-
ometry consists of surfaces that are only piece-wise smooth. Such objects possess sharp
features such as corners and edges which are created when these smooth surfaces inter-
sect. The reconstruction of these sharp features is particularly challenging as noise and
sharp features are inherently ambiguous, and physical limitations in scanner resolution
prevent proper sampling of such high-frequency features.

This paper proposes a denoising technique to accurately reconstruct intersections of
manifolds from irregular point samples. The technique can correctly account for the
anisotropic nature of sensing errors in the sampled data under the assumption that a noise
model for the sensor used to acquire the points is available. The method does not assume
prior availability of connectivity information, and avoids computing surface normals or
meshes at intermediate steps.
∗ Prepared through collaborative participation in the Robotics Consortium sponsored by the U.S Army
Research Laboratory under the Collaborative Technology Alliance Program, Cooperative Agreement
DAAD19-01-209912.
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Figure 1: Example of denoising a toy dataset by global fitting of an implicit degenerate
polynomial (a) Input data consisting of points from two intersecting line segments cor-
rupted with uniform Gaussian noise of std. deviation σ = 0.5 (b) Denoised data using
an implicit quadratic fit with the HEIV estimator [6]. Note that the sharp feature formed
by the intersection is not preserved. (c) Denoised output after imposing degeneracy con-
straints on fit coefficients fixes this problem.

1.1 Related Work
There have been several proposed approaches to recover geometry from noisy point sam-
ples. They may be coarsely categorized as based on computational geometry, local re-
gression, or implicit function fitting.

In general, past approaches have often made simplifying assumptions about the data
due to the ill-posed nature of the problem. (1) Methods based on classical regression
typically assume that the geometry can be treated locally as a smooth surface, which is
clearly a problem at surface intersections. (2) Most approaches assume the noise in the
data to be isotropic and homogeneous, perhaps because they often lead to convenient
closed-form analytical expressions. However, noise is almost always highly directional
and dependent on the distance of the point to the sensor. This is, for example, the case
with laser range scanners. Ignoring the anisotropy in the noise model typically results
in a systematic bias in the surface reconstruction [6]. (3) Some methods assume the
reliable availability of additional information about the geometry, such as connectivity
information (meshes) and surfaces normals, and try to produce estimates of geometry that
agree with this information. However, the estimation of both these quantities is error-
prone. Estimation of differential quantities like surface normals and tangents is difficult
in the presence of noise even for relatively smooth surfaces [7, 10], and is of course not
even well-defined at intersections.

Several methods based on computational geometry have been developed and rigor-
ously analyzed in the literature [3]. Many algorithms in this category come with theoreti-
cal guarantees of accuracy in the reconstruction but their applicability is largely restricted
to dense low-noise datasets.

Surface estimation from noisy point samples may be posed naturally as an instance
of the local regression problem from classical statistics. A popular non-parametric tech-
nique in this category is locally weighted regression, also known in its more general form
as Savitzky-Golay filtering. As explained in [4], it adapts well to non-uniformly sampled
data and exhibits less bias at boundaries. The moving least squares (MLS) technique [5]
builds on this by first computing a locally approximating hyperplane and then applying a
locally weighted regression procedure to the data projected to the hyperplane. The tech-
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nique works well with noise but is unable to reproduce sharp features due to its implicit
assumption of a single locally smooth surface.

Fleishman et al. [8] fit quadratic polynomials locally to data and used standard tech-
niques from robust statistics in the fitting process. The technique relied on an initially
finding low-noise local regions to obtain a reliable estimate of the quadratic fit, which
may not always be feasible.

Wang et al. [13] proposed a more complicated procedure involving a sequence of
voxelization and gap-filling, topological thinning and mesh-generation. Based on local
connectivity, each voxel is classified as being at a junction, boundary and surface interior.
The procedure has several points of failure, particularly at regions that are not densely
sampled with respect to the voxel size.

The method presented in this paper combines the strengths of some of the previous
approaches. We modify a locally weighted smoother to implicitly represent potentially
multiple linear subspaces through a degenerate high-order polynomial. This allows us
to explicitly model edge intersections instead of trying to fit a highly non-smooth sur-
face. The use of a local smoother preserves the adaptability to varying sample density.
By posing the regression as a constrained energy minimization problem, we can easily
incorporate anisotropic error models in the data. We outline the algorithm in Section 2
and examine its behavior through several experiments in Section 3.

2 Constrained Local Regression
In this section, we describe a modified regression algorithm that will enable us to recover
noise-free surfaces from noisy point cloud data, while preserving high-frequency features
in the geometry. We will first consider the case of 2-D data to simplify the explanation of
the main idea.

2.1 Problem definition and approach
We assume that we are given a set of points {xi} ∈ Rd that are assumed to be noisy
observations of the positions of true points {x̂i} ∈ Rd that lie on a locally continuous,
but not necessarily smooth surface. The associated noise covariances Λi ∈ Sd

+ at each
point are assumed to be known, for instance, through a noise model of the sensor used to
acquire the points. The points are assumed to be irregular, in the sense that they do not
follow a known regular sampling distribution, and unstructured in the sense that the local
connectivity of the points, such as in the form of a mesh, is not available.

Our goal will be to compute the true position x̂i corresponding to each observed point
xi. The operating assumption will be that points in a local neighborhood, N (xi) of xi may
be modeled as belonging to one or more linear subspaces. This naturally suggests a max-
imum likelihood (or equivalently defined minimum energy) formulation of the problem,
subject to the constraint that the noise-free points lie on one or more subspaces. Since
the parameters of the models, number of models, as well as the association of the points
to each subspaces are unknown, a popular strategy is to attempt a procedure of iterative
model fitting and data association, such as Expectation-Maximization (EM). However,
such iterative procedures tend to be error prone when performed with few and noisy data
points, as may be expected for our problem.

Instead, we propose to model the problem as one of maximum likelihood subject to
two types of constraints. The first type of constraint ensures that each noise-free point in
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the neighborhood of interest lies on a high-order polynomial whose degree is an upper
bound on the number of subspaces in that neighborhood. The second type of constraint
is a function of the coefficients of the polynomial, which restricts the family of allowable
polynomials to degenerate forms that can represent combinations of linear subspaces. In
practice, we will sometimes relax the constraint of degeneracy to make the optimization
problem more tractable at the expense of admitting a single non-linear manifold but re-
strict them to locally developable surfaces.

2.2 Constraints in the 2-D case
In the case of 2-D data, each local neighborhood can be modeled as as consisting of a pair
of linear subspaces. Thus locally the shape may be described implicitly as a zero-level set
of the equation (γγγT

1x + d1)(γγγT
2x + d2) = 0, where γγγ i ∈ R2, di ∈ R are the parameters for

each of the two linear subspaces (lines in the case of 2-D data). Note that this subsumes
the case where the subspaces coincide. Expanding out the terms yields an inhomogeneous
2nd degree polynomial in 2 variables, which we will refer to as x and y corresponding to
each spatial dimension.

Let us denote the coefficients of each monomial in the polynomial as given by the
expression

θ1x2 +θ2y2 +θ3xy+θ4x+θ5y+θ6 = 0. (1)

This may be rewritten in matrix form as

[
x 1

]2θ1 θ3 θ4
θ3 2θ2 θ5
θ4 θ5 2θ6

[
x
1

]
=

[
x 1

]
A

[
x
1

]
= 0. (2)

It is a known result in algebraic geometry that a quadratic in two variables reduces to
a product of two linear factors only if A is singular [1]. In fact, the case where A has only
rank one corresponds to the case where the subspaces (lines) coincide.

The determinant in this case may be written explicitly to yield the equality

4θ2θ2θ6 +θ3θ4θ5− (θ2θ
2
4 +θ1θ

2
5 +θ6θ

2
3 ) = 0, (3)

which can be used to constrain the solution for the θi’s. We will denote such constraints
on the coefficients of the polynomial as φφφ(θθθ) = 0.

2.3 Constrained optimization
Together with the constraint on coefficients we can pose the task as a constrained opti-
mization problem defined at each point of interest x ∈ {xi} given by

min∑
i

wi(x)(xi− x̂i)T
Λ
−1
i (xi− x̂i), (4)

subject to two sets of constraints. The first set of constraints is θθθ
Tv(x̂i) = 0 ∀i where

θθθ ∈ Rm is the vector of monomial coefficients and v(x) : Rd → Rm is the mapping from
the d-dimensional point to the monomials formed by its coordinates. For the 2-D case
(d = 2), the number of monomial terms m = 6. The second constraint is that on the
monomial coefficients, which is (3) in the case of 2-D data.
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The weighting term wi(x) is used to give more importance to points closer to the
point of interest x. We can define wi(x) using a kernel loss function, such as a truncated
Gaussian function centered at x, so as to suitably delineate the neighborhood of interest
N (x). Our implementation uses the Epanechnikov kernel wi(x) = 1−‖x−xi‖2/σ2 for
‖x− xi‖ < σ and 0 elsewhere, chosen because of its finite support and asymptotically
optimal properties in related tasks such as kernel regression [12]. Here σ determines the
length scale, which may be chosen differently for each x. We comment on its selection
later in Section 2.5. In what follows, we will sometimes drop the dependence on x in the
notation for clarity, with the understanding that the optimization problem is being solved
for points in a local neighborhood of each x ∈ {xi}.

The standard approach to solving such a constrained optimization problem is by first
forming the Lagrangian

∑
i

1
2 wi(xi− x̂i)T

Λ
−1
i (xi− x̂i)+∑

i
λiθθθ

Tv(x̂i)+ααα
T
φφφ(θθθ), (5)

where {λi} and ααα are the Lagrange multipliers.
To proceed further, we linearize the equations around the current estimate of xi’s and

θθθ . Let ∆xi = x̂i−xi and ∆θθθ = θθθ 0−θθθ , where θθθ 0 is the current estimate of the true θθθ . To
reduce notational clutter, we denote ∇v(xi) by ∇vi and ∇φφφ(θθθ 0) by ∇φφφ 0. This yields the
equation

1
2 ∑

i
wi∆xT

i Λ
−1

∆xi +∑
i

λi (θθθ T
0v(xi)+v(xi)T

∆θθθ +θθθ
T
0∇vi∆xi) +ααα

T (φφφ(θθθ 0)+∇φφφ 0∆θθθ)= 0.

(6)
Taking derivatives with respect to ∆θθθ , ∆xi and the Lagrange multipliers yields the

system of equations:

wiΛi
−1

∆xi +λiθθθ
T
0∇vi = 0 ∑

i
λivT(xi)+ααα

T
∇φφφ 0 = 0 (7)

θθθ
T
0v(xi)+v(xi)T

∆θθθ +θθθ
T
0∇vi∆xi = 0 φφφ(θθθ 0)+∇φφφ 0∆θθθ = 0. (8)

The solution to the above set of equations can be written as

∆θθθ =−φφφ(θθθ 0)(∇φφφ
T
0∇φφφ 0)

−1
∇φφφ 0 (9)

λi = wi(θθθ T
0∇vT

i Λi∇viθθθ 0)
−1v(xi)T(θθθ 0 +∆θθθ) (10)

∆xi =− 1
wi

Λi∇viθθθ 0λi =−Λi∇viθθθ 0(θθθ T
0∇vT

i Λi∇viθθθ 0)
−1v(xi)T(θθθ 0 +∆θθθ). (11)

The above solutions to the linearized constrained optimization problem suggests an
iterative technique in which a candidate initial value of θθθ 0 is computed and the values of θθθ

and the x̂i’s are progressively modified until the constraints are satisfied. The initial value
of θθθ 0 may be chosen as the result of an unconstrained optimization using the Fundamental
Numerical Scheme (FNS) algorithm [2] or the related Heteroscedastic Errors in Variables
(HEIV) method [6] based on solving a generalized eigenvalue problem.

Related formulations: At this point, we wish to comment on some related work to
clarify some superficial similarities. The use of a high-order polynomial product to repre-
sent a combination of (low-order polynomial) subspaces is not new. Work by Taubin [9]
fit complex 3-D curves to data, and used a high-order polynomial to represent the intersec-
tion of surfaces that formed the curve. It used an approximation to the distance function
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(a) (b) −→ (c) −→ (d)

Figure 2: Illustration of sequence of optimization steps in an example of global fitting
of (a) noisy observations of points lying on two planes. Level-set surfaces are shown at
values 0 (green), 0.15 (red) and −0.15 (blue), and are drawn for parameters estimated
with (b) TLS, which are used to initialize solution to the (c) HEIV estimate, which when
subject to degeneracy constraints yields the best fit at the intersection of the planes as
shown in (d).

that reduced the fitting problem to an easily solvable generalized eigenvector problem,
but implicitly made the assumption of uniform noise covariance on the points. Vidal et
al. [11] proposed the Generalized Principal Components Analysis (GPCA) algorithm to
model combinations of linear subspaces. However, they did not consider noise in the
points, and have to resort to a separate estimation procedure to compute the parameters of
the individual subspaces.

In contrast, the formulation in this section explicitly incorporates a heteroscedastic
noise model on the points. We use a separate constraint to capture the desired degeneracy
of the polynomial as part of the optimization procedure, instead of resorting to post-
processing of the result. Lastly, our focus is on local rather than global fitting of the
data, since the data in our application cannot necessary be described globally by linear
subspaces.

2.4 Constraints in the 3-D case
In the case of 3-D data, we consider the choice of model corresponding to an upper bound
of 2 linear subspaces (planes) in each local neighborhood under consideration. This may
be described formally as a zero-level set of the equation (γγγT

1x+d1)(γγγT
2x+d2) = 0, where

x ∈ R3 and γγγ i ∈ R3, di ∈ R are the parameters for each of the two planes. Note that this
again subsumes the case where the subspaces coincide. Expanding out the terms yields
an inhomogeneous 2nd degree polynomial in 3 variables (denoted x, y and z).

Let us denote the coefficients of each monomial in the polynomial as given by the
expression

θ1x2 +θ2y2 +θ3z2 +θ4xy+θ5yz+θ6xz+θ7x+θ8y+θ9z+θ10 = 0. (13)

This may be rewritten in matrix form as

[
x 1

]2θ1 θ4 θ6 θ7
θ4 2θ2 θ5 θ8
θ6 θ5 2θ3 θ9
θ7 θ8 θ9 2θ10

[
x
1

]
=

[
x 1

]
A

[
x
1

]
= 0. (14)
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Algorithm 1: DenoiseByConstrainedFitting({xi}, {Λi})

Data: Points X = {xi} ∈ Rd with noise covariance {Λi}
begin1

for x ∈ X do2

Compute weights wi = k(x−xi) where k is a loss function such a Gaussian3

Find the total least squares solution θθθ TLS to the unconstrained fitting4

problem. The least square solution is simply equal to the minimal
eigenvector of the weighted covariance matrix formed by the v(xi)’s, i.e.
the minimal eigenvector of ∑i wiv(xi)v(xi)T

Use θθθ TLS to initialize the iterative solution to an unconstrained5

optimization procedure [6]. The solution to the unconstrained problem
θθθ HEIV can be obtained through an fixed-point iteration procedure given by:

S(θθθ(k))θθθ(k +1) = λkC(θθθ(k))θθθ(k +1) (12)

where λk is the smallest generalized eigenvalue, and S and C are given by:

S(θθθ) = ∑
i

Ai

θθθ
TBiθθθ

C(θθθ) = ∑
i

Bi
θθθ

TAiθθθ

(θθθ TBiθθθ)2

with Ai = wiv(xi)v(xi)T and Bi = ∇vT
i Λi∇vi

Iteratively enforce the degeneracy constraint (3) using equations (9)6

and (11) (or (14) and (15) in the case of 3-D) along with the unit norm
constraint ‖θθθ |= 1 and initializing with θθθ HEIV

end7

end8

Following the argument in Section 2.2, it is easy to see that matrix A must be of rank 2
for the associated quadric surface to represent a pair of planes. This is equivalent to the
constraints that the determinant of A as well as each of its 3×3 minors are zero. We have
observed it sufficient to relax the constraints on the minors and retain the constraints only
on the principal minor formed by the degree 2 coefficients, as

det(B) = det

2θ1 θ4 θ6
θ4 2θ2 θ5
θ6 θ5 2θ3

 = 0. (15)

Geometrically, the use of this particular subset of constraints restricts the family of sur-
faces represented by the polynomial coefficients to the family of parallel or intersecting
planes, and cylinders. Using the parameters estimated with this subset of constraints, we
may then construct the matrix A, find its rank-2 approximation using its SVD decompo-
sition, and recover the parameters of the degenerate polynomial from the rank-2 matrix.

Figure 2 illustrates the sequence of steps involved in estimating the polynomial coef-
ficients for a synthetic dataset consists of noisy points lying on two planes intersecting at
right angles. Level-set surfaces are displayed for the polynomial coefficients estimated at
each step of fitting all the points. It can be seen that the TLS solution misfits the geometry,
the HEIV solution tends to oversmooth the intersection (as in Figure 1 for 2-D data) and
enforcing the degeneracy constraints recovers the true geometry in this example.
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Figure 3: Example of denoising a toy dataset by local fitting of an implicit degener-
ate polynomial (a) Input data consisting of points from six line segments corrupted with
spherical Gaussian noise of std. deviation σ = 0.5 (b) (b) Denoised data using an implicit
quadratic fit with the HEIV estimator [6]. (c) Denoised output after imposing degeneracy
constraints on coefficients.

2.5 Algorithm and Implementation
From the solution of the constrained optimization problem in the previous section, we
may construct our denoising procedure as given in Algorithm 1. We draw attention to
some details that influence the performance of the proposed method.

Support radius: The choice of support radius used to compute the weights wi in
the kernel function has a significant influence on the algorithm in two ways. First, the
proposed method assumes an upper bound of 2 subspaces in the volume of interest, which
need not be the case for any choice of support size. The chosen support radius must be
one for which the modeling assumption is valid, conditional on there always existing such
a choice. Secondly, even when the assumption of number of subspaces is valid, there is
a tradeoff between choosing too small a radius, risking poor estimates due to the fewer
number of points, or too large a radius, risking the unfavorable influence of points that do
not belong to the local model.

We currently use a heuristic strategy of choosing the support radius that gives the best
fit, in a maximum likelihood sense, to the corresponding neighborhood of the interest
point, excluding the point itself to prevent the trivial solution of zero radius. In practice,
we have observed that when the number of manifolds is under- or over-estimated, this
strategy tends to reduce the support radius and show bias toward a one-manifold solution
when enforcing the degeneracy constraint. However, this is an area in need of further
study.

Robustness: The use of weights wi also suggests the use of robust statistics to iden-
tify outliers to the model [8]. One strategy to identify points that have a large influence on
the estimated model parameters, such as using eigenvector perturbation bounds [10] for
the generalized eigenvalue problem (12) or using influence functions. In our experiments,
we use a simple greedy strategy of evaluating leave-one-out fitting score and ignoring the
point as an outlier if it is not a good fit with its neighbors.

3 Experiments
We performed a series of controlled experiments of synthetic data in known configurations
to evaluate the behavior of the denoising algorithm. Figure 3 shows an example where
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Figure 4: Example of denoising samples from a triangular wave function (a) Input data
corrupted with spherical Gaussian noise of std. deviation σ = 0.5 (b) Denoised data using
radial basis function based smoother with Gaussian kernel. (c) Denoised output after local
degenerate polynomial fitting.
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Figure 5: Example of denoising samples from 3 faces of a regular cube (a) Input data
corrupted with uniform noise of std. deviation σ = 0.02. Denoised points are shown with
patches color coded by (b) distance error and (c) surface normal angle error.

an Epanechnikov loss function with bandwidth 0.3 was used to denoise a 2x2 square grid
pattern of points. The use of a constraint enforcing degeneracy in the polynomial can be
seen to preserve the intersections better than using an HEIV smoother.

Figure 4 compares the proposed fitting procedure with a standard interpolation algo-
rithm based on radial basis functions (RBF). The RBF algorithm has two parameters [14].
The first controls the width of the Gaussian kernel which influences the locality of the
smoothing. The other controls the tolerance to fitting error, i.e. a value of zero would
lead to interpolation between the points, while higher values allow greater fitting error.
The parameters were tuned so that the results best matched the ground-truth in the sense
of least-square error. It can be seen that the proposed algorithm does a better job of pre-
serving sharp changes in the function and is more stable at the boundary, while the RBF
function tends smooths over the high curvature regions.

In Figure 5, we test the proposed algorithm on 300 noisy 3-D samples (spherical
Gaussian with std. dev. 0.05) from 3 faces of a unit cube, and compared it against using
the HEIV estimator from [6]. The use of the proposed estimator reduced the minimum
error in normal angle over the dataset from 0.67◦ to 0.46◦ and the median distance of the
points to their corresponding planes from 0.012 to 0.009 units.
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4 Conclusions
In this document, we investigated the strategy of fitting local degenerate high-order poly-
nomials to data to more faithfully represent and estimate high-frequency variations in
point-sampled surfaces. The proposed strategy helps to address the inherent inability
to perform differential analysis at non-manifold regions, such as intersections of curves,
without actually having to estimate the parameters of component manifolds.

A current open problem is the judicious selection of the support region of the loss
function. Too small a value results in a fragmented reconstruction, while the use of too
large a value degrades the solution due to the influence of outliers to the implicit model.
Work on an analytical solution to the optimal support radius to replace our current heuris-
tic is in progress.
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Abstract

We introduce a generic and incremental Structure from Motion method.
By generic, we mean that the proposed method is independent of any
specific camera model. During the incremental 3D reconstruction, pa-
rameters of 3D points and camera poses are refined simultaneously by
a generic local bundle adjustment that minimizes an angular error be-
tween rays. This method has three main advantages: it is generic, fast
and accurate. The proposed method is evaluated by experiments on
real data with three kinds of calibrated cameras: stereo rig, perspective
and catadioptric cameras.

1 Introduction

The automatic estimation of scene 3D structure and camera motion from an image
sequence (“Structure from Motion” or SfM) has been largely studied. Different
camera models are used: pinhole, fish-eye, stereo, catadioptric, multi-cameras
systems, etc. A lot of specific algorithms (i.e. specific to a given camera model)
have been successfully developed and are now well known for perspective or stereo
rig models [11, 14]. The omni-directional central (catadioptric, fish-eye) or non-
central (multi-cameras) systems that offer a larger field of view have also been
widely explored [1, 9, 13]. It is a very interesting challenge to develop generic
tools for SfM that are exploitable for any camera model. This way has recently
been investigated with the introduction of generic camera models [7, 17]. In the
generic camera model, pixels define image rays in camera coordinate system that
can intersect or not in a unique point usually called “projection center”. In recent
work on generic SfM, camera motion can be estimated using generalization of the
classical essential matrix [15, 13] given by Pless Equation [13] and minimal relative
pose estimation algorithms [16].

A method is required for the refinement of 3D points and camera poses. The
best solution for accuracy is bundle adjustment (BA) [18] applied on all parameters
(global BA). However, it is clear that this method can not be real-time. In general,
fast SfM methods or Vision-based SLAM [12, 2] (Simultaneous Localization and
Mapping) are less accurate than off-line methods where an optimal solution is
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calculated using global BA [18]. In this paper we present a method that makes
the most of the accuracy of BA in a generic real-time application. This is possible
because we developed an incremental method where not all the 3D structure is
refined, but only the lastly estimated parameters at the end of the sequence. In the
generic case where different cameras (pinhole, stereo, fish-eye, catadioptric...) are
possible, BA is quite different from the classical one used for perspective cameras.
Our generic method does not use image projections of a specific camera model
but is based on back-projected rays and minimization of an angular error between
rays. The first advantage is of course a high ability to change one camera model
for another. The second advantage is that the method is effective if the image
projection function is not explicit (as in the non-central catadioptric case) and
also avoids clustering rays as in [15].

Comparison with previous works on SfM To resume, previous works are:
� generic but not real-time [15].
� real-time but not generic [2, 12], not using bundle adjustment.
� generic thanks to the use of Pless Equation [13, 15] (generalization of the epipolar
constraint), but no details are given to solve this equation in common situations.
� using local bundle adjustment but not generic [10, 3], and [3] is not demonstrated
in a real-time system with real world data as ours in this paper.

Contributions The first contribution of our work is a generic and real-time
SfM method based on an incremental 3D reconstruction and local generic bundle
adjustment where an angular error is used. The second contribution is a detailed
method to solve Pless Equation (in most cases, it is not a “simple” linear problem
as suggested in [13, 15]). We also compare our results with GPS ground truth and
with results obtained with the most accurate (but not generic and not real-time)
method available: specific global BA.

The remainder of the paper is organized as follows: Section 2 summarizes
our approach and the generic camera model. The initialization method and our
modified bundle adjustment are respectively explained in Section 3 and 4. Finally,
experiments are presented in Section 5.

2 Overview of the Approach

2.1 Camera Model

For any pixel p of a generic image, the (known) calibration function f of the
camera defines an optical ray r = f(p). This projection ray is an oriented line
r = (s,d) where s is the starting point or origin and d is the direction of the
ray in the camera frame (||d|| = 1). For a central camera, s is a unique point
(camera center) whatever pixel p. In the general case, s could be any point given
by calibration.

2.2 Summary

The method is based on the detection and matching of interest points (Figure 1).
In each frame, Harris corners [5] are detected and matched with points detected
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in a previous frame by computing a Zero Normalized Cross Correlation score in a
near region of interest (whatever the kind of camera). The pairs with the highest
scores are selected to provide a list of corresponding point pairs between the two
images. To ensure a stable estimation of the 3D, a set of frames called key frames
are selected. The selection criterion is based on the number of matched points
between two consecutive key frames, which must be greater than a constant.

The initialization of the geometry is provided by a method based on the res-
olution of Pless Equation (Section 3). Then, the algorithm is incremental. For
each new video frame, (1) interest points are detected and matched with those
of the last key frame (2) the camera pose of the new frame is robustly estimated
(Section 3.4) (3) we check if the new frame is selected as a key frame (4) if yes,
new 3D points are estimated and a local bundle adjustment (Section 4) is applied.

Figure 1: Feature tracks for one image of a generic camera in three cases: per-
spective (left), catadioptric (middle), and stereo rig (right) cameras.

3 Generic Initialization

3.1 The Pless Equation

Given a set of pixel correspondences between two images, the relative pose (R, t) of
two cameras are estimated in a generic framework. For each 2D points correspon-
dence (x0, y0) and (x1, y1) between images 0 and 1, we have a correspondence of
optical rays (s0,d0) and (s1,d1). A ray (s,d) is defined by its Plücker coordinates
(q,q′) such that q = d and q′ = d ∧ s, which are convenient for this calcula-
tion. Let camera 0 be the origin of the global coordinates system and (R, t) the
pose of camera 1 in this frame. The two rays must verify the generalized epipolar
constraint (or Pless Equation [13])

q′0
⊤
Rq1 − q⊤0 [t]×Rq1 + q⊤0 Rq

′
1 = 0 (1)

where [t]× is the skew symmetric cross-product matrix of the 3× 1 vector t.
We identify two cases where this equation has an infinite number of solutions.

Obviously, this number is infinite if the camera is central (the 3D is recovered up
to a scale). We note that Equation 1 is the usual epipolar constraint defined by
the essential matrix E = [t]×R if the camera center is at the origin of the camera
frame.

The second case is less obvious but it occurs in practice. In our experiments, we
assume that we have only “simple” matches: all projection rays (si,di) of a given
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3D point go through a same camera center (in the local coordinate of the generic
camera). In other words, we have q′0 = q0∧c0 and q′1 = q1∧c1 with c0 = c1. For
a multi-camera system composed by central cameras (as the stereo rig), it means
that 2D points correspondences are only made with points of the same sub-image.
This is often the case in practice for two reasons: small regions of interest for
reliable matching, or empty intersections between field of views of compositing
cameras. If the camera motion is a pure translation (R = I3), Equation 1 becomes

q⊤0 [t]×q1 = q′0
⊤
q1 + q⊤0 q′1 = 0 where the unknown is t. In this context, the scale

of t can not be estimated. We assume in this work that the camera motion is not
a pure translation at the initialization step.

3.2 Solving the Pless Equation

Equation 1 is rewritten as

q′0
⊤
R̃q1 − q⊤0 Ẽq1 + q⊤0 R̃q

′
1 = 0 (2)

where the two 3×3 matrices (R̃, Ẽ) are the new unknowns. We store the coefficients
of (R̃, Ẽ) in an 18×1 vector x and see that each value of the 4-tuple (q0,q

′
0,q1,q

′
1)

produces a linear equation a⊤x = 0. If we have 17 different values of this 4-tuple
for each correspondence k, we have 17 equations a⊤k x = 0. This is enough to
determine x up to a scale factor [15]. We have built the matrix A17 containing
the 17 correspondences such that ‖A17x‖ = 0 with A

⊤
17 = [a⊤1 |a

⊤
2 | · · ·a

⊤
17]. The

resolution depends on the dimension of the A17 kernel which directly depends on
the type of camera used. We determine Ker(A17) and its dimension by a Singular
Value Decomposition of A17. In this paper, we have distinguished three cases:
(1) central cameras with an unique optical center (2) axial cameras with collinear
centers and (3) non-axial cameras.

It is not surprising that the kernel dimension of the linear system to solve is
greater than one. Indeed, the linear Equation 2 has more unknowns (18 unknowns)
than the non-linear Equation 1 (6 unknowns). Possible dimensions are reported in
Table 1 and are justified below. Previous works [13, 15] ignored these dimensions,
although a (linear) method is heavily dependent on them.

Camera Central Axial Non-Axial
dim(Ker(A17)) 10 4 2

Table 1: dim(Ker(A17)) depends on the kind of camera.

Central Camera For central cameras (e.g. pinhole cameras), all optical rays
converge at the optical center c. Since q′i = qi∧c = [−c]×qi, Equation 2 becomes
q0

⊤([c]×R̃− Ẽ− R̃[c]×)q1 = 0. We note that (R̃, Ẽ) = (R̃, [c]×R̃− R̃[c]×) is a possible
solution of equation 2 for any 3×3 matrix R̃. Such solutions are “exact”: Equation 2
is exactly equal to 0 whatever (q0,q1). Our “real” solution is (R̃, Ẽ) = (0, [t]×R) if
c = 0, and it is not exact due to image noise. Thus the dimension of Ker(A17) is at
least 9+1. Experiments have confirmed that this dimension is 10 (up to noise). In
this case, we simply solve the usual epipolar constraint constraint q0

⊤[t]×Rq1 = 0
as described in [6].
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Axial Camera This case includes the common stereo rig of two perspective
cameras. Let ca and cb be two different centers of the camera axis. It is not
difficult to prove that “exact” solutions (R̃, Ẽ) are defined by

Ẽ = [ca]×R̃− R̃[ca]× and R̃ ∈ V ect{I3×3, [ca − cb]×, (ca − cb)(ca − cb)
⊤}

based on our assumption of “simple” matches (Section 3.1). Our real solution is
not exact due to image noise, and we note that the dimension of Ker(A17) is at
least 3+1. Experiments have confirmed that this dimension is 4.

We build a basis of 3 exact solutions x1,x2,x3 and a non-exact solution y with
the singular vectors corresponding to the four smallest singular values of A17. The
singular values of x1,x2,x3 are 0 (up to computer accuracy) and that of y is 0
(up to image noise). We calculate the real solution (R̃, Ẽ) by linear combination
of y, x1, x2 and x3 such that the resulting matrix R̃ verifies R̃⊤R̃ = λI3×3 or Ẽ is

an essential matrix. Let l be the vector such that l⊤ = [λ1 λ2 λ3]
⊤, and thus we

denote as R̃(l) and Ẽ(l) the matrix R̃ and Ẽ extracted from solution y− [x1|x2|x3]l.

Using these notations, we have R̃(l) = R0 −
∑3

i=1
λiRi and Ẽ(l) = E0 −

∑3

i=1
λiEi

with (Ri, Ei) extracted from xi.
Once the basis x1,x2,x3 is calculated, we compute the coordinates of the

solution by non-linear minimization of the function (λ, l)→ ‖λI3×3− R(l)⊤.R(l)‖2

to obtain l and thus Ẽ. An SVD decomposition is applied to Ẽ, and we obtain
4 solutions [6] for ([t]×, R). The solution with the minimal epipolar constraint
‖A17x‖ is then selected. Lastly, we refine the 3D scale k by minimizing k →∑

i(q
′
0i
⊤
Rq1i − q⊤0ik.[t]×Rq1i + q⊤0iRq

′
1i)

2 and perform t← kt.

Non-Axial Camera For a non-axial camera (e.g. a multicamera system with
perspective cameras such that centers are not collinear), the problem is also dif-
ferent. In this case, the “exact” solutions are (R̃, Ẽ) ∈ V ect{(I3×3, 03×3)} based on
our assumption of “simple” matches (Section 3.1). The real solution is not exact
due to image noise, and we see that the dimension of Ker(A17) is at least 1+1. Ex-
periments have confirmed that this dimension is 2. We have not yet experimented
this case on real data.

3.3 Initialization with Three Views (RANSAC process)

The first step of the incremental algorithm is the 3D reconstruction of a sub-
sequence containing the first key frames triplet {0, 1, 2}. A number of random
samples are taken, each containing 17 points. For each sample, the relative pose
between views 0 and 2 is computed using the abovedescribed method and matched
points are triangulated. The pose of camera 1 is estimated with 3D/2D correspon-
dences by iterative refinement minimizing the angular error defined in Section 4.2.
The same error is minimized to triangulate points. Finally, the solution produc-
ing the highest number of inliers in views 0, 1, and 2 is selected from among all
samples. The j-th 3D point is considered as an inlier in view i if the angular error
||ǫi

j || is less than ǫ (ǫ = 0.01 rad in our experiments).
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3.4 Pose Estimates (RANSAC)

The generic pose calculation is useful for both steps of our approach (initialization
and incremental process). We assume that the i-th pose P i = (Ri, ti) of the
camera is close to that of the i-1-th pose P i−1 = (Ri−1, ti−1). P i is estimated by
iterative non-linear optimization initialized at P i−1 with a reduced sample of five
3D/2D correspondences, in conjunction with RANSAC. For each sample, the pose
is estimated by minimizing an angular error (Section 4.2) and the overall number
of counted inliers (points) includes this pose. The pose with the maximum number
of inliers is then selected and another optimization is applied with all inliers.

4 Generic and Incremental Bundle Adjustment

4.1 Definitions

Bundle adjustment (BA) is the refinement of 3D points and camera poses by
minimizing a cost function. The number of unknown parameters is 3 for each
3D point and 6 for each camera pose (3 for translation + 3 for rotation). Let
Pj = [xj , yj, zj , tj]

⊤ be the homogeneous coordinates of the j-th point in the
world frame. Let Ri and ti be the orientation (rotation matrix) and the origin of
the i-th camera frame in the world frame.

If (si
j ,d

i
j) is the optical ray corresponding to the observation of Pj through the

i-th camera, the direction of the line defined by si
j and Pj is Di

j = R
i⊤[I3 | −ti]Pj−

tjs
i
j in the i-th camera frame. In the ideal case, directions di

j and Di
j are parallel

(which is equivalent to an image reprojection error of zero pixels).

4.2 Error choice

The classical approach [18, 3] consists in the minimization of a sum of square ||ǫi
j||

2

where ǫi
j is a specific error depending on the camera model (the reprojection error

in pixels). In our case, we should minimize a generic error. We define ǫi
j as the

angle between the directions di
j and Di

j defined above.

Some experiments show that convergence of BA is bad with ǫi
j = arccos(di

j .
Di

j

||Di
j
||
)

and satisfactory with ǫi
j defined as follows (a theoretical explanation of this is given

in [8]). We choose ǫi
j = π(RijD

i
j) with R

i
j a rotation matrix such that Rijd

i
j = [0 0 1]⊤

and π a function R
3 → R

2 such that π([x y z]⊤) = [x
z

y

z
]⊤. Note that ǫi

j is a 2D

vector whose Euclidean norm ||ǫi
j || is equal to the tangeant of the angle between

di
j and Di

j . The tangeant is a good approximation of the angle if it is small.

4.3 Local Generic Bundle Adjustment

In the incremental 3D reconstruction, when a new key frame Ii is selected, new
matched points are triangulated. Then, a stage of optimization is carried out. It
is a bundle adjustment or Levenberg-Marquardt minimization of the cost function
f i(Ci,P i) where Ci and P i are respectively the generic camera parameters (ex-
trinsic parameters of key frames) and 3D points chosen for this stage i. As it is
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Camera i(Ri, ti)

Point j(xj , yj , zj , tj)

Di
j

di
j

ǫi
j

sij

Figure 2: Angular bundle adjustment: the angle between observation ray (si
j ,d

i
j)

and 3D ray Di
j which goes from si

j to 3D point is minimized.

well known that BA is very time consuming, our idea is to reduce the number of
calculated parameters and avoid redundancies in computations. In our modified
BA, not all the extrinsic cameras parameters are optimized but only the n last
cameras parameters. Coordinates of all 3D points seen in the last n key frames are
refined including new points. To bring consistency to the incremental process and
ensure that new parameters are compatible with firstly estimated ones, we take
account of points reprojections in the N (with N ≥ n) last frames (typically n = 3
and N = 10 are good values [10]). Thus, Ci is the camera list {Ci−n+1 . . . Ci}
and P i contains all the 3D points projected on cameras Ci. Cost function f i is
the sum of squared angular errors for all available observations in last key frames
Ci−N+1 . . . Ci of all 3D points in P i:

f i(Ci,P i) =
∑

Ck∈{Ci−N+1 ... Ci}

∑

pj∈Pi

||ǫk
j ||

2.

Ci

Ci−1

Ci−2

Ci−3

Pi

Ci

N

n

Figure 3: Local angular bundle adjustment when camera Ci is added. Only sur-
rounded points P i and cameras Ci parameters are optimized. Nevertheless, the
minimized criterion takes account of 3D points projections in the N last images.
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5 Experiments

The incremental generic 3D reconstruction method has been tested on real data
with 3 different cameras: a perspective camera, a catadioptric camera and a stereo
rig. Examples of frames are available in Figure 1 and sequence characteristics in
Table 2. Computation performances are reported on Table 3. In the following
experiments, the trajectory obtained with our generic method is compared to
GPS ground truth or global specific BA result. A rigid transformation (rotation,
translation and scale factor) is applied to the trajectory as described in [4] to fit
with reference data. Then, a mean 3D error or 2D error in the horizontal plane
can be measured between the generic and the reference trajectory.

5.1 Comparison with Ground Truth (Differential GPS)

The following results are obtained with a pinhole camera embedded on an exper-
imental vehicle equipped with a differential GPS receiver (inch precision). The
vehicle trajectory is a “S” of 88 m long (Sequence 1). The calculated motion
obtained with our algorithm is compared to data given by the GPS sensor and
Figure 4 shows the two trajectories registration. As GPS positions are given in a
metric frame we can compare camera locations and measure positioning error in
meters: mean 3D error is 1.57 m and 2D error in the horizontal plane is 1.16 m.
Computation time is 2 min 32 s for the whole sequence and a mean frame-rate of
6.55 fps.

Figure 4: Left: Registration of generic vision trajectory with GPS ground truth.
Continuous line represents GPS and points represent vision estimated positions.
Right: 3D error (y-axis) along the trajectory (x-axis: key-frame index)
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5.2 Comparison with Specific and Global Bundle
Adjustment

In the two following examples, ground truth is not available. So, we compare our
results with those of the best method available: a global and specific BA (all 3D
parameters have been refined so as to obtain an optimal solution with a minimal
reprojection error). Sequences characteristics and results are reported on Table 2.

Sequence 2 is taken in an indoor environment with a hand-held pinhole camera.
A very accurate result is obtained: the mean 3D error is less than 6.5 cm for a
trajectory length of (about) 15 m. The relative error is 0.45%.

Sequence 3 is taken in an outdoor environment with a hand-held catadioptric
camera (the 0-360 mirror with the Sony HDR-HC1E camera visible on Figure 5,
DV format). The useful part of the rectified image is contained in a circle whose
diameter is 458 pixels. The accuracy is also good: the mean 3D error is less than
9.2 cm for a trajectory length of (about) 40 m. The relative error is 0.23%.

Sequence 4 is taken with a stereo rig (baseline: 40 cm) in a corridor (Figure 5).
The image is composed of two sub-images of 640× 480 pix. The trajectory (20 m
long) is compared to results obtained with left/right camera and global BA. The
mean 3D error is 2.7/8.4 cm compared to left/right camera and the relative error
is 0.13/0.42%.

Sequence Camera #Frames #Key frames #3D Pts #2D Pts Traj. length

Sequence 1 pinhole 996 66 4808 17038 88 m

Sequence 2 pinhole 511 48 3162 11966 15 m

Sequence 3 catadioptric 1493 132 4752 18198 40 m

Sequence 4 stereo rig 303 28 3642 14189 20 m

Table 2: Characteristics of video sequences.

Camera Image size Detection+Matching Frame Key frame Mean rate

Pinhole 512 × 384 0.10 0.14 0.37 6.3 fps

Catadioptric 464 × 464 0.12 0.15 0.37 5.9 fps

Stereo rig 1280 × 480 0.18 0.25 0.91 3.3 fps

Table 3: Computation times in seconds for our three cameras (detection and
matching are included in Frame or Key frame times)

Figure 5: Left: catadioptric camera and stereo rig. Middle and right: top views
of 3D reconstructions for Sequence 3 (middle) and Sequence 4 (right). Trajectory
in blue and 3D points in black.
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6 Conclusion

We have developped and experimented a generic method for the real-time Struc-
ture from Motion problem. We presented a complete process that starts with a
generic initialization followed by an incremental 3D reconstruction of the scene and
camera motion. The accuracy is brought by a local bundle adjustment minimizing
an angular error. Experiments proved that it is easy to change one camera model
for another, and promising results have been obtained on real data with three
different kinds of cameras. Now, we are interested in experimenting our approach
on more complex multi-camera systems.
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Abstract

We address the problem of updating road maps in dense urban areas by ex-
tracting the main road network from a very high resolution (VHR) satellite
image. Our model of the region occupied by the road network in the im-
age is innovative. It incorporates three different types of prior geometric
knowledge: generic boundary smoothness constraints, equivalent to a stan-
dard active contour prior; knowledge of the geometric properties of road net-
works (i.e. that they occupy regions composed of long, low-curvature seg-
ments joined at junctions), equivalent to a higher-order active contour prior;
and knowledge of the road network at an earlier date derived from GIS data,
similar to other ‘shape priors’ in the literature. In addition, we represent
the road network region as a ‘phase field’, which offers a number of impor-
tant advantages over other region modelling frameworks. All three types of
prior knowledge prove important for overcoming the complexity of geomet-
ric ‘noise’ in VHR images. Promising results and a comparison with several
other techniques demonstrate the effectiveness of our approach.

1 Introduction
Keeping the information contained in Geographical Information Systems (GIS) up to date
is crucial for many applications, for example urban planning, vehicle navigation, and en-
vironmental monitoring. The high rate of urban growth, especially in many developing
countries, means that this has become an increasingly important research topic in re-
mote sensing. Very high resolution (VHR) optical satellite images (e.g. QuickBird and
Ikonos, and Pléiades in the near future), with sub-metric resolutions, already facilitate the
updating process due to their relatively low cost, high acquisition frequency, and rich in-
formation content, but current methods, based on manual extraction, are time and labour
intensive, and often surprisingly inaccurate. The development of automatic GIS updating
systems is thus a necessity if the increasing demand is to be met.

In this paper, we address the updating problem for road networks, and in particular the
problem of automatically updating the GIS map of main roads in Beijing using a single
QuickBird panchromatic image with 0.6m resolution. Unfortunately, even restricting to
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the case of road networks, the automatic updating problem is not easily solved. To extract
the road network from VHR images—formally, to find the region R in the image domain
Ω that contains the roads—means to ignore the wealth of ‘noise’ that such images con-
tain, for instance shadows, occlusions, and entities that locally appear similar to roads.
This ‘noise’ means that the road network cannot be identified using only the information
contained in the data; a great deal of prior knowledge, in this case concerning R, must
also be injected. This is particularly true in an urban environment, where the degree of
‘clutter’ in the image is far greater than in the peri-urban or rural cases. This prior knowl-
edge is currently provided by the human operators who manually extract the information;
the question is how to incorporate a similar quantity of prior knowledge automatically.

The knowledge needed lies at different levels of generality. The most general concerns
the regularity properties of the boundary ∂R of R. These properties apply to almost any
entity, not only road networks. As a consequence, this prior knowledge is included in
almost all region models, e.g. the Ising model, and most active contour models [7]. It
suffices to include a term penalizing the length of ∂R. The most specific concerns the
particular road network under consideration. Seen in a more general context as ‘shape
modelling’, this has been the subject of a number of papers in recent years, e.g. [3, 4, 8,
9, 14]. This type of knowledge says that the region sought must be ‘close’ to an exemplar
region. When such an exemplar exists, e.g. a GIS map of the road network at an earlier
date, it can significantly increase the robustness of the method. For example, Bailloeul [2]
makes use of cartographic data by constraining an active contour to resemble the shape
template provided by vectorized GIS building maps. Fortier et al. [5] initialize the contour
using a GIS map and junctions detected in the image. The contour then corrects the
position of the existing road network. Agouris et al. [1] compute a positional uncertainty
for each contour point in a GIS map using fuzzy logic. An energy term measuring shape
uncertainty is then used to control an active contour.

Between these two extremes is prior geometric knowledge that applies to any road
network. In some ways, this is the most difficult type of prior knowledge to include in a
model, mainly because the regions corresponding to road networks can possess arbitrary
topology: there may be many connected components, and each connected component
may contain many loops. It is a non-trivial task to combine this topological freedom with
the available geometric information: road network regions are composed of long, low cur-
vature segments of roughly constant width that join at junctions. For example, Péteri and
Ranchin [11] address the problem of extracting the road network from an Ikonos satellite
image in a dense urban area. They introduce geometric knowledge via a parallelism con-
straint on the contours representing the borders of the roads, but they avoid the topology
problem by assuming that a graph of the network is given. Roads and junctions are then
extracted in two steps using two different types of active contours. Rochery et al. [13]
on the other hand, address the problem of road network extraction from low to medium
resolution images using a modelling framework known as ‘higher-order active contours’.
This framework allows the inclusion of prior geometric information without necessarily
constraining the topology because, rather than relying on an exemplar region, it uses long-
range interactions between contour points to control region geometry. Rochery et al. [12]
address road network extraction using a reformulation of HOACs as (nonlocal) phase field
models. The phase field approach to region modelling, which we also use in this paper,
has a number of advantages, even for the simplest models, but in particular for HOACs.
Peng et al. [10] apply the work of Rochery et al. [12] to VHR images using a multiscale
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data energy to deal with the complexity of such images.
In this paper, we make two main contributions with respect to this literature. In

problem-specific terms, we make progress towards an automatic road map updating sys-
tem for VHR images. In methodological terms, we construct a model that combines the
three types of prior knowledge described above, and express them all as a nonlocal phase
field prior energy. We then combine the prior model with a data energy similar in spirit
to that of Peng et al. [10] but at a single scale. We test the model on a VHR image of
Beijing, and compare our results to other methods in the literature.

The rest of this paper is organised as follows. In section 2, we recall the essentials of
phase field methods, and then describe our model. In section 3, we discuss the algorithms
used to solve the model. In section 4, we describe experimental results on VHR images.
We conclude in section 5.

2 The model: prior and data energies
As outlined in section 1, our aim is to find the region R in the image domain Ω that cor-
responds to the main roads in the road network contained in the image. We assume that
we are given a region R0 representing the road network at an (earlier) date than the image
data. Our knowledge of R is then described by a probability distribution P(R|I,R0,K),
where I is the image data, and K represents all other prior knowledge we may have. From
this probability distribution, we can make estimates; in particular, we can compute a MAP
estimate by finding the region with maximum probability, or alternatively with minimum
negative log probability, or ‘energy’. Rewriting P(R|I,R0,K) using Bayes’ theorem, and
making a reasonable independence assumption, we can express the energy to be mini-
mized, up to an additive constant, as

E(R; I,R0) = DEP(R,R0)+ED(I,R) , (1)

where EP is the prior energy (D simply weights this term), and ED is the data energy, and
K is understood.

To compute anything, one must choose a mathematical representation for R. In this
paper, we use a phase field representation, much used in physics and first introduced to
image processing in [12]. A phase field φ : Ω→R defines a region via a threshold z: R =
{x : φ(x) > z}. Furthermore, as we will see, the phase field prior energy is so constructed
that the energy-minimizing phase field φR for a fixed region satisfies φR(x)' 1 for x ∈ R
and φR(x) ' −1 for x ∈ R̄, where R̄ = Ω \R. As a result, the quantities φ± = (1±φ)/2
are approximately equal to the characteristic functions of R and R̄. The lack of any hard
constraints on φ , e.g. that it should be a distance function, is responsible for the advantages
of the phase field framework over other region modelling approaches [12].

With the representation decided, we can now describe the various terms in the energy
as functionals of the phase field. We will abuse notation by using the same symbol for the
energy as a function of φ and as a function of R.

2.1 Prior energy
The prior energy EP is itself the sum of three pieces. The first, EP,0, is the basic phase field
model, equivalent to a standard active contour with energy λCL(∂R)+αCA(R), where L is
boundary length, A is region area, and λC and αC are constants. This term ensures stability
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of the model, boundary smoothness, and the characteristic function property mentioned
earlier. The second, EP,NL, is a nonlocal term coupling the phase field values at long
distances. As shown in [12], it is equivalent to a quadratic higher-order active contour
energy [13]. It introduces prior knowledge about the shapes of the regions occupied by all
road networks; roughly speaking, that they are composed of long, low-curvature ‘arms’
of roughly constant width that join together at junctions. The third, EP,GIS, introduces the
prior knowledge specific to the road network of interest. It expresses the knowledge that
R should be ‘close’ to R0, which can also be described by its minimum energy phase field
function φR0 . We now describe these pieces in more detail.

2.1.1 EP,0 and EP,NL

The basic phase field energy EP,0 is given by the Ginzburg-Landau energy plus an odd
parity term:

EP,0(φ) =
∫

Ω

dx
{

1
2

∇φ(x) ·∇φ(x)+W (φ(x))
}

, (2)

where the potential

W (y) = λ (
1
4

y4− 1
2

y2)+α(y− 1
3

y3) ,

and λ and α are constants. For λ > α > 0, W has two minima, at y =−1 and y = 1, and
a maximum at y = α/λ . If we ignore the gradient term, then for a fixed region R, with
z = α/λ , the energy-minimizing function, φR, takes value 1 inside and −1 outside R. The
effect of the gradient term is to smooth this result, producing a narrow interface, centred
around ∂R, that interpolates between 1 and −1.

The higher-order active contour phase field energy EP,NL introduces a long-range in-
teraction between the values of φ at pairs of points separated by many pixels. It is given
by

EP,NL(φ) =−β

2

∫∫
Ω2

dx dx′ ∇φ(x) ·∇φ(x′)Ψ((x− x′)/d) , (3)

where d controls the range of the interaction. The interaction function, Ψ, is given by

Ψ(x) =

{
1
2

(
2−|x|+ 1

π
sin(π|x|)

)
if |x|< 2 ,

0 else .

In terms of ∂R, this interaction has two main effects: nearby boundary points tend to
have parallel normal vectors, while those boundary points with antiparallel normal vec-
tors increasingly repel one another as they approach closer than 2d. These effects are
responsible for the fact that the energy EP,0 + EP,NL favours regions composed of long,
low curvature ‘arms’ of roughly constant width that join at junctions, or in other words,
that it models network structures.

2.1.2 EP,GIS

The final prior energy term, EP,GIS, incorporates knowledge of the earlier road network,
R0. It takes the form

EP,GIS(φ ,φR0) =
∫

Ω

dx
[
ωφR0 +(x)+ ω̄φR0−(x)

][
φ(x)−φR0(x)

]2
. (4)
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Figure 1: Histograms of the pixel intensities I on-road (top left) and off-road (bottom
left), and of the variances V on-road (right, green/light grey) and off-road (right, blue/dark
grey), and of the models fitted to them (solid lines).

The two terms correspond to the two components of the symmetric area difference be-
tween R and R0: x ∈ R∩ R̄0 and x ∈ R̄∩R0. These are separated so that they can be
weighted differently by the parameters ω and ω̄ . Because this term takes into account the
exterior of R0, it counteracts the background ‘noise’ appearing in the data.

2.2 Data energy
The data energy is the negative logarithm of P(I|R,K). We assume that this factorizes as
P(IR|R,K)P(IR̄|R,K), where subscripts indicate ‘restricted to’. We use the same param-
eterized model for IR and IR̄, the choice of model being based on a study of the image
statistics. We model both the one point statistics of the image intensity, i.e. the histogram,
and the two-point statistics, which we characterize by the variance V (x) of the image in a
small window around each pixel. Because of the factorization, the data energy is the sum
of two pieces, one referring to R and one to R̄ (indicated by overbars):

ED(I,R) =−
∫

Ω

dx
{[

lnP(I(x))+θ lnQ(V (x))
]
φ+(x)

+
[
ln P̄(I(x))+θ ln Q̄(V (x))

]
φ−(x)

}
. (5)

Here P and P̄ are two-component Gaussian mixture models, modelling the image intensi-
ties, while Q and Q̄ are Gamma distributions, modelling the variances.

3 Implementation
3.1 Parameter estimation
The parameters of the Gaussian mixture and Gamma distributions are learned from the
image data, using the known region R0 to create samples of road and non-road. Note that
the samples may contain errors, since R0 does not correspond exactly to the road network
in the image (see figure 2). The Gaussian mixture parameters are estimated using the
EM algorithm, while the Gamma distribution parameters are estimated by least squares
error minimization over the variance histograms computed in non-overlapping windows.
Examples of histograms and the models fitted to them are shown in figure 1.
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Figure 2: Top row, left to right: the QuickBird image used; a zoom on the image; a
zoom on the reduced resolution image. Bottom row, left to right: ground truth, including
smaller roads for comparison with other methods; deliberately ‘damaged’ ground truth,
to simulate an earlier GIS map.

3.2 Energy minimization
The total energy functional, E = ED +D(EP,0 +EP,NL +EP,GIS), is minimized with respect
to φ using gradient descent. The functional derivative is

δE
δφ

= D
{
−∇

2
φ +λ (φ 3−φ)+α(1−φ

2)+β∇
2
Ψ∗φ +2(φ−φR0)

[
ωφR0 ++ω̄φR0−

]}
− 1

2

{[
lnP(I(x))+θ lnQ(V (x))

]
−

[
ln P̄(I(x))+θ ln Q̄(V (x))

]}
, (6)

where ∗ indicates convolution. The neutral initialization was used.

4 Experimental results
The input data I was a QuickBird panchromatic image at 0.6m resolution, as shown in
figure 2, which also shows a zoom on this image. An available GIS map from a few years
earlier of the road network in the zone shown in the image was used in two ways: first,
to create ground truth, for which it was slightly corrected via hand segmentation; and to
create an inaccurate road network region to serve as R0. Both these are also shown in
figure 2. Note that R0 has some roads added and some roads missing. Note also that
smaller roads have been kept in the ground truth; this is to allow comparison with other
methods, which attempt to find all roads, not just the main road network.

We tested and evaluated the model using the original QuickBird image (0.6m/pixel),
and using a lower resolution version corresponding to the scaling coefficients of a Haar
wavelet decomposition of the image at level 3, i.e. 4.8m resolution, where level 0 is full
resolution. A zoom on this image is shown in figure 2. One can see that the image at level
3 has been simplified, but is still rather complex.

The rest of this section presents the results obtained at these two resolutions, with and
without GIS information, i.e. with and without EP,GIS. The results are compared to those
obtained using three other methods: those of Bailloeul [2], an approach based on active
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Level D α λ β d ω ω̄ θ

3 200 0.0905 3 0.02 10 0 0 0.02
0 300 0.0905 3 0.02 80 0.00033 or 0 0.0006 or 0 0.02

Table 1: Parameter values used in the experiments. Note that apart from a change in the
overall weight of the prior term, and the scaling of d due to the change of resolution, they
are the same for the two resolutions.

Figure 3: Experiment at reduced resolution, level 3 (320×320, road width ' 12 pixels).
Three leftmost images: the thresholded phase field function at iterations 1 and 400, and
at convergence, using the model without GIS information, i.e. without EP,GIS. Rightmost
image: for comparison, the result obtained when the nonlocal term EP,NL is dropped as
well, leaving a model equivalent to a standard active contour. The importance of the prior
geometric information carried by EP,NL is clear.

contours; Wang and Zhang [15], which uses classification, tracking, and morphology; Yu
et al. [16], which creates a rough segmentation based on straight line density.

The parameter values for the prior energy were chosen by hand, but not freely. They
are subject to a constraint that guarantees the Turing stability of the model, and a further
constraint that ensures that a long bar of the desired road width is a stable configuration
of the energy. The values used are given in table 1. Apart from a change in the overall
weight of the prior term, and the scaling of d due to the change of resolution, they are the
same for the two resolutions.

4.1 Results at reduced resolution
The leftmost three images in figure 3 show the thresholded phase field function at iter-
ations 1 and 400 of gradient descent, and at convergence, using the model without GIS
information, i.e. without EP,GIS, but with the higher-order active contour prior knowledge,
EP,NL. The segmentation is very successful: the main road networks are retrieved nearly
completely. The rightmost image shows the result obtained if EP,NL is omitted as well,
leaving a model equivalent to a standard (i.e. not higher-order) active contour. The impor-
tance of the prior knowledge carried by the nonlocal term is clear.

By comparison, figure 4 shows the results obtained using the three methods mentioned
above. The ‘flexible active contour’ method of Bailloeul (initially dedicated to building
extraction) fails because it is not able to eliminate road sections that exist in the map but
not in the image. On the other hand, the methods of Yu and Wang are able to detect
the main road network and smaller roads, but, for both, the accuracy obtained in the
delineation of the road boundary is poor, and the results show a great deal of noise. Some
quantitative measures of the quality [6] of the results are shown in table 2.
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Figure 4: From left to right: the results obtained using the work of Bailloeul [2], Wang
and Zhang [15], and Yu et al. [16], at reduced resolution.

Measure Bailloeul Wang Yu Our approach
TP/(TP+FN) 0.5003 0.6542 0.8240 0.7424
TP/(TP+FP) 0.7112 0.3784 0.4825 0.7382

TP/(TP+FP+FN) 0.4158 0.3153 0.4374 0.5876

Table 2: Quality measures of the different methods tested at reduced resolution (T = true,
F = false, P = positive, N = negative).

4.2 Results at full resolution
The results obtained with our model, with and without GIS information, are illustrated in
the leftmost two images in figure 5. The complexity of the image means that even with
the prior knowledge carried by EP,NL, without EP,GIS the model simply fails to retrieve the
roads correctly. The addition of EP,GIS greatly improves the result. Its main effect is to
eliminate false positives in the background, while preserving the correct segmentation of
the roads themselves. To obtain this result, ω must be small, since the mistakes that may
exist in the old map, should not affect the process, while ω̄ is somewhat bigger, because
a strong constraint is needed to overcome the ‘noise’ in the background.

The right most image in figure 5 shows the result we obtain when we use as R0, not
the GIS map, but the result obtained at reduced resolution, level 3 (which did not use the
GIS map either). This shows that in principle we can free ourselves from the need to have
a GIS map available, and the full exploitation of this will be the subject of future work.

Figure 6 shows the results obtained with the methods of Bailloeul, Yu, and Wang at
full resolution, while table 3 shows the corresponding quality measures.

Figure 5: Experiments at full resolution, level 0 (2560× 2560, road width ' 96 pixels).
From left to right: the result obtained without GIS information, i.e. without EP,GIS; the
result obtained with GIS information, i.e. with EP,GIS; the result obtained using the result
obtained without EP,GIS at level 3 (figure 3) as a replacement for the GIS information.
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Figure 6: From left to right: the results obtained using the work of Bailloeul [2], Wang
and Zhang [15], and Yu et al. [16], at full resolution.

Measure Our approach Our approach
Bailloeul Wang Yu with GIS prior with level 3 prior

TP/(TP+FN) 0.4769 0.8785 0.6706 0.6665 0.7130
TP/(TP+FP) 0.7612 0.4531 0.7836 0.9278 0.8290

TP/(TP+FP+FN) 0.4148 0.4264 0.5658 0.6336 0.6216

Table 3: Quality measures of the different methods tested at full resolution (T = true, F =
false, P = positive, N = negative).

5 Conclusion
We have proposed a model for the updating of road maps in dense urban areas by ex-
tracting the main road network from a VHR satellite image. Methodologically, our model
is innovative in that it incorporates three different types of prior geometric knowledge:
generic knowledge about smoothness; knowledge of the geometry of road networks in
general; and knowledge of the specific road network at a different date, supplied as GIS
data. Our results indicate that to work at full resolution, all three types of prior knowledge
are essential, due to the great complexity of VHR images. However, one can free oneself
from the need for GIS data by using instead a result obtained at lower resolution, where
such knowledge appears not to be necessary provided the other two types are present. Our
model gives better results than three other methods in the literature, even when smaller
roads, which our model is not designed to detect, are included in the ground truth.
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Abstract 

 
Particle filtering provides a well-developed and widely adopted approach to 
visual tracking. For effective tracking in real-world environments the 
particle set must sample widely enough that it can represent alternative 
target states in areas of ambiguity. It must not, however, become diffuse, 
spreading across the image plane rather than clustering around the object(s) 
of interest. A key issue in the design of particle filter-based trackers is how 
to manage the spread of the particle set to balance these conflicting 
requirements. To be computationally efficient, balance must be achieved 
with as small a particle set as reasonably possible. A number of hybrid 
particle filter/mean-shift trackers have recently been proposed. We believe 
that their strength lies in their ability to alternately disperse and cluster 
particles together, providing both a degree of balance and a reduced particle 
set. We present a novel hybrid of the annealed particle filter and kernel 
mean-shift algorithms that emphasises this behaviour. The algorithm has 
been applied to a wide variety of artificial and real image sequences. The 
method has performance and efficiency advantages over both pure kernel 
mean-shift and particle filtering trackers and existing hybrid algorithms 

 

1  Introduction 
The defining characteristic of the particle filter approach to visual tracking is its use of a 
set of discrete particles to represent multi-modal probability distributions that capture 
and maintain multiple hypotheses about target properties.  Particle filtering is iterative. 
Particles are repeatedly selected, projected forwards using a motion model, dispersed by 
an additive random component, and evaluated against the image data. Many particle 
filter trackers have appeared since Blake and Isard [1] first introduced Condensation.  

The ability of a set of particles to represent a wide variety of distributions is both the 
main strength and primary weakness of the particle filter. For effective tracking in real-
world environments the particle set must sample widely enough to represent all 
reasonable alternatives in areas of ambiguity. It must not, however, become diffuse, 
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spreading across the image plane rather than clustering around the object of interest. 
When this happens particles tend to migrate towards local maxima in their evaluation 
function, becoming caught on clutter and losing track of the target. Similarly, particles 
should not become too focused. Though it is encouraging to see a particle set coalesce 
when a single, clearly distinguishable target moves across the image, the tracker should 
not become irreversibly locked onto a single mode.  

A key issue in the design of particle filter-based trackers is how to manage the 
spread of the particle set to balance these conflicting requirements. The variance of the 
posterior is simply and elegantly maintained by the Kalman filter, but particle filters 
cannot assume a Gaussian, or indeed any specific, distribution. Moreover, balance must 
be achieved with as few particles as reasonably possible. Increasing the particle set 
improves representational accuracy, but adds significantly to computational overhead.  

Several works have addressed aspects of this problem.  Some point out that, in 
practice, the advantages of the particle filter approach are often lost as particles cluster, 
sometimes very quickly, around one target hypothesis. They focus on maintaining a 
wider distribution. The Annealed Particle Filter [2] uses annealing to smooth out the 
evaluation function, making the global maximum clearer and allowing particles to be 
spread further, by increasing the process noise, without becoming caught on local 
clutter. Vermaak et al  [3] explicitly model the particle distribution as a Gaussian 
mixture model, forcing the resulting filter to sample an appropriate number of particles 
from each model component. This prevents a single, slightly more highly weighted, 
mode from dominating the particle distribution. 

Other workers consider standard algorithms to spread the particle set too thinly 
across the image and concentrate effort on forcing particles to coalesce, reducing the 
number needed and so computational expense. The Kernel Particle Filter [4] applies a 
mean shift operation to the particle set to pull the centre of the particle distribution 
towards the target centre. This is effective, but clusters weighted particles without 
further reference to the image data, taking no account of the actual shape of the 
evaluation function between the locations sampled by the particle set.  Recently, 
Maggio and Cavallaro [5] used a Kernel Mean Shift tracker [6] to move particles 
towards local maxima of the evaluation function on each iteration of Condensation.  

Kernel mean shift hill climbs towards the target, minimising the distance between 
target and model descriptions. A spatial kernel provides some robustness to noise and 
partial occlusion, and the algorithm provides fast and effective tracking as long as the 
target object does not move further than its own diameter between frames. A number of 
variations on the theme have been described; a variety of colour models and similarity 
measures have been used and arbitrary spatial weighting [7] has been incorporated to 
represent objects with arbitrary or changing shapes.  

Though the authors focus on the computational savings made, Maggio and 
Cavallaro’s [5] hybrid tracker can be viewed as attempting to manage particle spread by 
alternately diffusing the particle set using Condensation and clustering them with 
Kernel Mean Shift. The algorithm shows performance advantages over both 
Condensation and Kernel Mean Shift, but has some drawbacks. If Condensation tends 
towards an incorrect local maximum the mean shift step will accelerate the process. 

Recognising that the weakness of the hybrid Condensation/Mean Shift tracker lies in 
the particle set generated by the Condensation component, Naeem et. al. [8] propose an 
alternative hybrid in which Kernel Mean Shift is the dominant technology. A small 
number of particles are generated, in a structured fashion, to explore further when 
confidence in Kernel Mean Shift becomes low. Naeem et. al.’s tracker makes explicit 
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the iterative diffuse-cluster structure implicit in Maggio and Cavallaro’s hybrid, and 
shows performance advantages over Condensation, Kernel Mean Shift and the Maggio 
and Cavallaro hybrid. The algorithm is similar in principle to the hybrid tracker of [9], 
which runs Kernel Mean Shift and Condensation algorithms in parallel and uses the 
highest confidence estimate to initialise mean shift at each time step. Naeem et. al.’s  
SOK tracker carries a lighter computational overhead, but requires the user to specify 
the conditions under which extra particles are spawned and the size of the region to be 
searched. This is irksome and open to error. 

Here we take an alternative approach. Rather than shift control away from the 
particle filter component and towards the kernel mean-shift tracker we replace 
Condensation with a more powerful particle filter. We propose a hybrid particle 
filter/mean-shift tracking algorithm created by combination of the kernel Mean-Shift 
algorithm with Deutscher et. al.’s [2] Annealed Particle filter. We hypothesize that by 
smoothing out local maxima in the evaluation function the annealed particle filter will 
allow a greater spread in the particle set, while the Mean-Shift component will 
successfully pull particles back towards the true target.  

The proposed Kernel Annealed Mean Shift (KAMS) tracking algorithm is presented 
in Section 2 and experimentally compared with Condensation [1], Kernel Mean Shift 
[6], annealed particle filtering [2], Maggio and Caravello’s [5] condensation-based and 
Naeem et. al.’s [8] SOK hybrids in Section 3. Conclusions are drawn in Section 4. 

2  The Kernel Annealed Mean Shift Tracker 
Annealed particle filtering relies upon a series of particle weighting functions w0(Z,X) 
to wM(Z,X) where Z is a measurement vector extracted from the image and X is the 
current model state. A given weighting function wm is obtained by raising the original 
weighting function w(Z,X) to a power βm, so that 
 

wm(Z,X) = w(Z,X)βm          (1) 
 

where β0 = 1.0 and β0  > β1 > β2 > …> βM. As βm increases, extrema in the weighting 
function become more pronounced. So w0(Z,X) is the raw weighting function while 
wM(Z,X) captures only the broad structure of the search space. In [2] w(Z,X) is the sum 
of squared differences between the model and image data.  

In annealed particle filtering each particle is evaluated at each time step using each 
wm(Z,X), starting with wM(Z,X) and moving to w0(Z,X). At a given time step tk the 
process begins with a set of N unweighted particles  
 

Sk,M = {sk,M
(0), sk,M

(1),….sk,M
(N)}          (2) 

 
Each particle sk,M

(i) is then assigned a weight πk,m
(i) where 

 
πk,m

(i) ∝  wm(Zk, sk           (3) 
 

and, in the first step, wm(Zk, sk
(i)) = wM(Zk, sk

(i)), resulting in a set of weighted particles 
Sπ

k,M. N particles are now drawn randomly from Sπ
k,M with replacement and used to 

create a set of unweighted particles for evaluation using the next weighting function  
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sk,M-1
(i) = sk,M

(i) + Bm          (4) 
 
where Bm is a multi-variate Gaussian random variable with mean 0 and variance Pm. 
Sk,M-1 is then weighted using wm-1(Zk, sk

(i)). This is repeated until Sπ
k,0 is produced 

Annealing allows us to counteract the natural tendency of particle filters to cluster 
particles together by increasing the variance Pm, confident that the smoother weighting 
functions used in the early part of the annealing run will steer particles away from local 
extrema. Increasing the spread of the particle set, however, also increases the number of 
particles required to effectively sample the search area. To make explicit and accelerate 
the process of seeking the global maxima we apply  a Kernel Mean Shift tracking step 
to each particle at each stage in the annealing run.  

Kernel Mean Shift [6] maintains a single estimate of target position, hill climbing 
from the previous location estimate toward a local minimum in the Bhattacharya 
distance between normalized, kernel weighted color histograms representing the object 
model and local image data. Assuming a 3D colour histogram the Bhattacharya distance 
between model and candidate is: 

 
 

                (5) 
 
where p and d are the object and the candidate models respectively. The iterative Kernel 
Mean Shift operation is as follows [6]: 
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and x and y are the coordinates of the next estimate of the position of the centre of the 
object. In the current implementation the object and candidate are 10 x 10 x 10 bin 
histograms (L=10) recording RGB color values. The histogram is normalized to sum to 
1. Experience has shown this to provide an effective compromise between descriptive 
power and ability to generalise. Though any suitable kernel could be employed, for 
simplicity and generality we use a linear kernel having maximum weight at the centre of 
the circular target area and zero weight at boundaries and beyond. 

The original annealed particle filter used sum of squared difference as its base 
weighting function. The Kernel Mean Shift algorithm relied upon Bhattacharya 
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distance. To allow comparison we employ Bhattacharya distance throughout. Kernel 
Mean Shift is run until Bhattacharya distance either falls below a small threshold or 
becomes stable. Experience has shown that this usually occurs within five iterations, so 
a limit on the number of iterations applied can reasonably be used, if needed, to reduce 
computation. The final KAMS algorithm is given in Figure 1  

 
Kernel Based Annealed Mean Shift Tracker: 
1. Acquire frame at time tk, having a set Sk,M of N unweighted particles from the 

previous time step,  
2. Set weighting function index m = M 
3. While (m>0) 

a. Assign each particle a weight πk,m
(i) 

b. Select N particles with replacement and add Gaussian noise: 
sk,m-1

(i) = sk,m
(i) + Bm 

c. Apply Kernel Mean Shift to each particle until the Bhattacharya 
distance between the model and image measured by the weighting 
function wm-1(Zk, skm-1

(i)) becomes stable or minimum. 
d. m = m-1 

Go to 1. 
 

Figure 1: The Kernel Annealed Mean-Shift (KAMS) tracking algorithm 

3  Experimental Evaluation 

3.1 Algorithms 
The proposed KAMS tracker has been experimentally compared with Kernel Mean 
Shift [6], Condensation [1], annealed particle filtering [2] and the hybrid tracking 
algorithms proposed by Maggio and Caravello [5] and Naeem et. al. [8].  

In Maggio and Caravello’s hybrid tracker (henceforth simply “Hybrid”) 
Condensation provides a harness into which the Kernel Mean Shift tracker outlined in 
section 2 is slotted. In our implementation particles are evaluated at each time step by 
computing the Bhattacharya distance between the object and their candidate model. 
Particles are then selected with probability proportional to their measurement value and 
projected into the next image by a constant velocity motion model. A Kernel Mean Shift 
tracker is initialised at each particle location and run until its associated Bhattacharya 
distance becomes small or constant. A limit on the number of mean shift iterations may 
be imposed to reduce computation without significant degradation in performance.  

Naeem et. al.’s [8] Structured Octal Kernel algorithm (henceforth “SOK”) is a 
Kernel Mean Shift tracker augmented by a backup strategy triggered when confidence 
in the current location estimate is low. Confidence at time t is given by  
 

Ct = (1.0 – bhata(t))           (8) 
 
A user-defined threshold, T, is applied to C at each time step. If Ct is below threshold a 
set of eight independent Kernel Mean Shift trackers are spawned, each with the same 
object model as the original but at locations designed to cover a search area around the 
current position estimate (Figure 2). When these additional trackers have also each 
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converged, nine estimates of target location are available, each with an associated 
confidence level. The estimate with the highest confidence is selected and the process 
continues. In the original formulation the object model was a two-dimensional 
histogram of red/blue and green/blue. To allow comparison the implementation 
employed here uses a 10 x 10 x 10 RGB histogram. 

 
 
Figure 2: The SOK algorithm in operation. A hatched circle shows the primary Kernel Mean Shift 
tracker, light circles the secondary “particles”, a dark circle the target. 

3.2  Robustness 
Quantitative, comparative analysis of the robustness of the proposed KAMS algorithm 
is achieved using McNemar’s statistic [10]. McNemar’s statistic is a form of chi-square 
test for matched paired data. Let Nxy give the number of times algorithm A produced 
result x and algorithm B produced result y, and f and s denote failure and success 
respectively. McNemar’s statistic is then: 
 

x 2 =
(| Nsf − N fs | −1)2

N sf + N fs             (9) 
The Z score (standard score) is obtained as: 
  

z =
(| N sf − N fs | −1)

N sf + N fs          (10) 
 
If the two algorithms give similar results then Z will tend to zero. As their results 
diverge, Z increases. Confidence limits can be associated with the Z value [10].  

To apply McNemar’s, a definition of success and failure is required. Focusing on 
robustness, and recognizing that any tracker will fail at some point, we consider 
algorithm A to have succeeded and algorithm B to have failed if algorithm A maintains 
tracking for a greater proportion of a given image sequence, from the same starting 
parameters. In effect we define success to be tracking as long as the more successful of 
the two trackers. McNemar’s test was applied to a set of 36 assorted image sequences 
(available from http://www.cs.nott.ac.uk/~azn/kams_bmvc.htm) to provide quantitative 
comparison of the robustness of KAMS with Kernel Mean Shift, Condensation, 
Annealed particle filter, Hybrid and SOK. With Z scores shown in table 1, KAMS is 
significantly more robust than all the five algorithms with a confidence of 99.5%. 
 

 
 

Kams vs. 
Condensation 

Kams vs. 
Mean Shift 

Kams vs. 
Annealing 

Kams vs. 
Hybrid 

Kams vs. 
SOK 

Z Scores 2.910428 5.126524 3.801316 4.828079 3.590662 
 

Table 1: Z score comparisons of KAMS with the other five algorithms. 
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Figures 3-7 show selected frames from the results of applying the six algorithms to 

some of the sequences used in the McNemar’s test. Figure 3 shows a tiger sprinting 
through dense jungle. The animal’s motion is smooth, but quite fast, with frequent 
changes in head direction. Surrounding trees generate many partial occlusions and the 
dark stripes on the animal and the shadows caused by the leaves are similar, generating 
high levels of potentially confusing background clutter. All algorithms were manually 
initialised to the same point and (except SOK and Mean Shift) used 200 particles. 
 

 

Frame
# Condensation Mean Shift Hybrid SOK Annealing KAMS 

1 

15 

55 

70 

 

 
Figure 3: Six algorithms track a sprinting tiger. See supplementary material. 

 
Condensation fails at the 15th frame; the particles are diffused and latch on to clutter 

resembling the tiger’s head. Mean shift also fails around the 15th frame due to the high 
speed of movement, but latches back onto the head by chance around frame 41. Hybrid 
fails at frame 12 as the frequent changes in head velocity violate its motion model.  
SOK and the annealed particle filter fare better, and keep hold of the object until around 
the 50th frame, when changes in lighting conditions make clutter within their search 
areas appear more like the head model than the true head does. 

KAMS successfully tracks to the end of the sequence. KAMS does not employ a 
motion model, and its combined use of particles and mean-shift allow it to use a large 
enough search space to keep the tiger’s head within bounds, while at the same time 
focusing particles on the true target and so avoiding distractions. At nine times the area 
of the target the search area used by SOK is very large, its brute-force nature. KAMS 
uses more particles than SOK, but manages their spread very effectively. 

Figure 4 shows the six algorithms tracking a ball moved by hand against a cluttered 
background. The hand moves at different velocities, sometimes partially occluding the 
ball. Condensation and annealed particle filtering both fail around the 5th frame as their 
particle sets are too dispersed and so attracted to very heavy, and very similarly 
coloured, clutter. Hybrid suffers the same diffusion problem, around the 55th frame. Its 
tight focus on the target allows the kernel mean shift to track until the 58th frame, when 
high target velocity throws it off. It does, however, regain the target around the 118th 
frame as the hand moves, by chance, underneath the wandering tracker. SOK’s 
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dominant mean-shift tracker guides it safely through the clutter around frame 5, but it 
also loses track around the 60th frame. High velocity disables the mean shift component 
and the particle set is too widely spread to avoid clutter. Again SOK reacquires the 
target by chance around frame 114. KAMS tracks the ball successfully throughout the 
sequence. Moreover, while the other particle-based algorithms failed using 200 
particles, KAMS still succeeded when its particle set was reduced to only 50 particles. 

 
 

Frame
# Condensation Mean Shift Hybrid SOK Annealing KAMS 

12 

      

60 

      

114 

      

120 

      
  

Figure 4: Six algorithms track a hand-held ball. See supplementary material. 
 

To illustrate the key feature of the algorithm, figure 5 shows the particles generated 
during a single annealing run in KAMS. Each row shows the two particle sets created 
for a single value of M. The left image shows the particles after addition of Gaussian 
noise, the right after application of Kernel Mean Shift. Note the alternating expansion 
and contraction of the particle set. Note also that mean shift creates near-constant 
patterns of particles after only the second annealing step. Space restrictions prevent a 
detailed examination of the effect of varying M, but experience suggests that KAMS 
will require fewer annealing levels than pure annealed particle filtering. 

 

Stage1 

  

Stage2 

  

Stage3 

  

Stage4 

   
 

Figure 5. Dispersal and clustering of particles during an annealing run in KAMS. 
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Figure 6 shows a basketball player faking a pass and then passing the ball quickly 

from under his legs. Condensation, Mean Shift, Hybrid, SOK and pure annealing all fail 
around the 5th frame due to the player’s high-speed and deliberately evasive movement 
of the ball. KAMS tracks successfully until frame 23, when the ball is totally occluded 
by the player’s legs for 2-3 frames. Some particles briefly recquire the ball but, in the 
absence of a motion model, most are thrown off and the tracker loses its target. 

 

Frame
# Condensation Mean Shift Hybrid SOK Annealing KAMS 

2 

      

11 

      

16 

      

21 

      

26 

      

  
Figure 6: Six algorithms track a deliberately evasive basketball. See supplementary 
material. 

3.2  Accuracy  
Artificial sequences showing a multicolored circular target moving across a static 
background allow the trackers’ positional estimates to be compared to ground truth in 
the presence of controlled amounts of measurement noise and clutter. Noise is simulated 
by perturbing the target’s position in each frame with additive Gaussian noise. Clutter is 
added by randomly placing a user-defined number of similar circular objects on the 
otherwise white background (Figure 7). These distracting objects introduce local 
maxima into the evaluation function, while increased measurement noise raises the 
likelihood that a given tracker will come into contact with those maxima.  All the 
artificial sequences used here consist of 140 (320x240 pixel) frames. 

Only the three hybrid algorithms were included in this experiment. Hybrid 
completed the sequence of figure 8a with a mean error of 6.32 pixels, but failed around 
frame 20 when noise and clutter increased. SOK completed figures 8a. and b. with mean 
errors of 5.66 and 9.60 pixels, but failed thereafter. Only KAMS managed to track 
through all 4 sequences, with mean errors of 6.94, 18.17, 14.72 and 17.30 pixels. While 
the algorithms produced similar levels of accuracy (where comparable data is available), 
KAMS is noticeably more robust. Note also that Hybrid used 100 particles and KAMS 
only 40. KAMS manages its particles more efficiently and so needs significantly fewer. 
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   a.            b.    c.          d. 

 
Figure 7. Artificial test sequences, a. σ = 4 with 100 background objects, b. σ = 8 with 
300 objects, c. σ = 12 with 500 objects (See supplementary material), and d. σ = 14 
with 600 objects. Black lines show target path, with the target displayed at either end. 

4  Conclusion 
Hybrid particle filter/mean shift tracking algorithms have been shown to have 
performance and computational advantages over their component parts. We believe the 
key feature of hybrid trackers to be their exploitation of the natural tension between the 
particle dispersal caused by the process noise of the particle filter and the clustering 
performed by Kernel Mean Shift. We suggest that this tension provides opportunities to 
better manage the spread of particles across the search space, providing higher 
performance with fewer particles. To test our hypothesis we have proposed a novel 
hybrid tracker (KAMS) that combines kernel mean-shift [6] with the annealed particle 
filter [2], allowing us to emphasise the iterative particle dispersal/clustering structure. 
The accuracies achieved by the various hybrid algorithms are comparable. The proposed 
algorithm, however, is significantly more robust than both previous hybrids tested and 
requires noticeably fewer particles than Maggio and Caravello’s [5] algorithm.  
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Abstract

Recently, recovery of non-rigid structure by the factorization algorithms have
received attention in the literature. The factorization algorithm decomposes
the feature points over the given image sequence into motion of the camera
and 3D shape bases. The non-rigid structure can be represented by the lin-
ear combination of the 3D shape bases. Although the closed-form solution
of the non-rigid factorization algorithm is proven, the algorithm is sensitive
to noise. In this paper, we propose a batch algorithm to recover multiple
non-rigid structures from subsets of the data. Then, we introduce a set of
non-linear shape constraints to optimize the recovered non-rigid structures.
Synthetic data and real data were used in the experiments. The experimental
results showed that the new factorization algorithm gives significant improve-
ment than the original algorithm. With noisy data, the new algorithm is more
robust and more accurate in recovering non-rigid structure.

1 Introduction
Recovering 3D structure from a sequence of images is one of typical interest topics in
the computer vision community. In the past two decades, factorization algorithms have
been widely applied to structure from motion (SFM) problems. It was first introduced to
reconstruct rigid structure under arbitrary motion by Tomasi and Kanade [11]. Basically,
the factorization algorithm for SFM decomposes the image feature tracks (measurement
matrix) into motion of the camera and the 3D shape matrix via Singular Value Decompo-
sition (SVD) and rank theorem. However, it is an ill-conditioned problem. Their linear
transformations also yield valid motions and bases. Therefore, it is not possible to recover
structure from the image sequence without some prior knowledge. Additional constraints
such as orthogonality of rotation matrix are required to recover the structure.

Generally, orthographic camera model is chosen as the camera model for the factor-
ization algorithm because it is a good approximation to the perspective camera model
when the reconstructed target is far from the camera and the depth variation within the
target is relatively small. [10] and [8] also proposed extended factorization algorithms for
perspective and paraperspective models, respectively.

Recently, recovery of different kinds of structures such as multiple linearly moving
objects [7], articulated objects [14], model based non-rigid objects [3], [1], [12], [13] are
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reported. Model based non-rigid object recovery is attractive because many interesting
non-rigid objects in nature such as human face can be represented by models. Recon-
structing 3D human faces is very useful in face recognition. Compared to 2D face images,
3D face are invariant to pose changes. The pose changes significantly affect the perfor-
mance of face recognition algorithms. Therefore, we can use non-rigid factorization to
decompose the pose and deformation of the non-rigid structure from a image sequence.

To model the deformation of these non-rigid objects, the weighted combination of
basis shapes has been applied in non-rigid SFM [3]. Using this model, Jing Xiao et al.
[13] showed a closed-form solution for non-rigid SFM with rotation constraints and basis
constraints. The solution is exact only when the data is noise free. The method does not
work satisfactorily with noisy data [2].

In this paper, a batch algorithm and a non-linear shape constraint optimization are pro-
posed to improve the existing closed-form solution under noisy environments. The batch
algorithm partitions the matrix and recovers 3D structures from each partition separately.
Then we apply the optimization algorithm to refine the closed-form solution of each par-
tition based on shape constraints. Qualitative and quantitative evaluation showed that
the new algorithm gives more robust and more accurate results compared to the original
factorization method for both rigid and non-rigid structure.

2 Overview of Factorization Algorithm for Non-rigid
SFM

Here the camera model is assumed to be the weak perspective projection model. We also
assumed that the motion is non-degenerate. Let the 2D image coordinates of P feature
points over F frames denoted as W = {w f p = (u f p,v f p)| f = 1, . . . ,F, p = 1, . . . ,P}, the
2F×P measurement matrix:

W =



u11 . . . u1P
v11 . . . v1P
... u f p

...
... v f p

...
uF1 . . . uFP
vF1 . . . vFP


(1)

The camera projection matrix is written as:

R f =

[
r f 1 r f 2 r f 3
r f 4 r f 5 r f 6

]
f ∈ {1, . . . ,F} (2)

The non-rigid structure is represented by a linear combination of K 3D shape bases. Let
S f = {s f p = (xp,yp,zp)|p = 1, . . . ,P} denote the 3D non-rigid structure of the f th frame.
Let B = {bk = (xkp,ykp,zkp)|k = 1, . . . ,K, p = 1, . . . ,P} denote as the 3D shape bases.
Then, the 3D non-rigid structure in each frame can be represented as:

S f =
K

∑
k=1

c f kbk f ∈ {1, . . . ,F} (3)
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where c f k are the weights. Then, W = MB + T where M is a 2F × 3K motion matrix,
B is a 3K×P 3D structure matrix and T is a 2F × 1 translation vector. When K=1, the
structure is rigid. The motion matrix is the product of the weighting coefficients and the
corresponding camera projection matrices. We can write this as

M =


c11R1 . . . c1KR1

... c f kR f
...

cF1RF . . . cFKRF

 (4)

The translation vector can be obtained by computing the mean of the P feature points.
The registered measurement matrix, Ŵ is given by subtracting T from W. The world
origin now is placed at the centroid of the feature points, i.e.

1
P

P

∑
p=1

w f p ∀ f ∈ {1, . . . ,F} (5)

When the data is noiseless, the rank of Ŵ is 3K. Applying SVD, Ŵ can be decom-
posed into a motion matrix, M̂ and a 3D basis matrix, B̂. However, it is only up to an
arbitrary 3K×3K invertible transformation, G. The exact motion matrix, M and 3D basis
matrix, B can be written as:

M = M̂ ·G
B = G−1 · B̂ (6)

The corrective transformation matrix, G is compound of K 3K× 3 matrix, Gk. Then,
Qk = GkGT

k . Computing the Qk requires additional constraints. We have

M̂QkM̂T =


c1kR1

...
c1kRF

[
c1kR1 . . . c1kRF

]
(7)

Since rotation matrices are orthonormal, we have RiRT
i = I2×2. In [13], it was showed

that using only these rotation constraints is insufficient to uniquely determine Qk. Thus,
they also assume the first K images to be basis images. The corresponding weighting
coefficients are then

ci j =

{
1 when i = j
0 when i 6= j (8)

We can now obtain a closed-form solution for each Qk by optimizing the rotation and
basis constraints. For the details of proof, the reader is referred to [13].

3 Batch Algorithm Using Matrix Partitioning
In practice, a large number of frames from video sequence are available, and using all
the frames in SVD algorithm to minimize ‖W−MB‖F may bring no advantage, firstly,
because there is a large amount of redundancy in the video frames (this is just increasing
the computational cost). and secondly, minimizing ‖W−MB‖F does not guarantee that
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the recovered structure is optimal. The solutions of the motion matrix M and the bases B
also depend on the constraints we used on solving the corrective transformation matrix,
G.

Hence, we introduce a batch algorithm where a registered measurement matrix is
partitioned into N submatrices. Then, the closed-form solution method is applied to each
separately. This yields N estimates instead of a single estimate for the structures from a
large number of frames. We hence expect that the proposed algorithm will improve the
confidence in the result. We then propose to use these in a shape constrained non-linear
optimization technique to find the best shape estimate.

Let Ωi ⊂ {1, . . . ,F}, i = 1, . . . ,N be a subset of frame indexes. Then, let WΩi =
{(u f p,v f p)| f ∈ Ωi, p = 1, . . . ,P} denote a row subspace of the matrix, where |Ωi| ≥
max(K2+K

2 ,3K). The union of all subsets Ωi contains all the elements of {1, . . . ,F}.
All subsets are disjoint. Hence, the information in every frame is used for recovery of the
structure.

Here, we assume that K is known. The set of K basis images which give the smallest
condition number is the set of the most independent basis images. Thus, we can selected
them as the K basis images.

Since the rank of ŴΩi has to be at least 3K, the number of frames in each partition
can be determined in such a way that reasonable amount of the energy of ŴΩi remains
in the first 3K eigen-subspaces. Then each ŴΩi can be decomposed by the non-rigid
factorization algorithm discussed in Section 2 as:

WΩi = MΩiBi i = 1, . . . ,N (9)

The recovered structures are exact for noiseless data.
When K = 1 (rigid case), the motion matrix M and B are simplified as rotation matrix

R and the rigid structure matrix S. When K ≥ 2 (non-rigid case), we do not only need
to recover the bases B, but also the weighting coefficients in the motion matrix M for
recovering the 3D structure. M can be obtained as

Mi = WB+
i i = 1, . . . ,N (10)

where B+
i is the pseudo-inverse of Bi. Since the rotation matrix R f is orthonormal,

||R f || = 1. The corresponding coefficients for each frame can be easily extracted out
from motion matrix.

Let N sets of the estimated structures of the f th frame denote as {S̃ f }i. Given the
3D shape bases Bi and the corresponding coefficients, each recovered structure can be
computed by (3). Since each set of the recovered structures, {S̃ f }i is independently es-
timated from the corresponding WΩi , the reference coordinate systems of each two sets
of the recovered structures are different up to a 3× 3 orthonormal transformation. The
orthonormal transformation can be obtained by applying Procrustes method.

4 Non-linear Shape Constraint Optimization
Here, we introduce an objective function which is optimized to enforce non-linear shape
constraints and estimate the best recovered structure S f from the set of estimated struc-
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tures {S̃ f }i from each partition. It is given as:

min
N

∑
n=1

P

∑
i=1

P

∑
j=1
‖s f isT

f j− s̃ f ins̃T
f jn‖2 ∀ f ∈ {1, . . . ,F} (11)

where N is the number of partitions. This optimization minimizes the inner products of
every two feature points. In other words, we are optimizing the errors in the lengths and
the mutual angles of the feature points, so we named it metric optimization. The metric
optimization plays a role in structure refinement of the factorization method. A general-
purpose quasi-Newton method [4],[5],[6],[9] is used to find the optimum solution of (11).

The initialization is critical for non-linear optimization problems. To avoid the solu-
tion of the metric optimization from being trapped at an unsuitable local minimum, we
choose the least mean square of {S̃ f }i as the initial value for the metric optimization. In
the experiments discussed in the following section, we show that the metric optimization
gives more robust and better results than the original algorithm.

Our proposed algorithm is summarized as follows:

1. Partition the measurement matrix W into N submatrices.

2. Choose the K basis images from each subset based on their condition numbers. The
set of the K basis images with the smallest condition number is the set of the most
independent basis images.

3. Apply non-rigid factorization algorithm proposed by Jing Xiao et al. [13]

4. Extract the weight c f k from the motion matrix M.

5. Compute the structures by Eq. (3).

6. Optimize the estimated structures obtained in Step 5 by the objective function in
Eq. (11).

5 Experiments
We evaluated the proposed factorization algorithm with metric optimization quantitatively
and qualitatively on synthetic data and facial expression images, respectively. In the quan-
titative evaluation, our approach was applied on rigid and non-rigid synthetic data sets.
In the qualitative evaluation, a set of human face expressions was used to examine the
performance of our approach. The results are presented below.

5.1 Quantitative Evaluation on Synthetic Data
In this section, three approaches were evaluated on synthetic data. The first approach is
Jing Xiao et al’s [13] non-rigid factorization algorithm. The second approach applies the
batch algorithm to estimate the 3D structures from each partition. The optimum structure
is the mean of the estimated 3D structures which was the smallest mean square distance
to the 3D estimated structures. The third approach is the batch algorithm with metric
optimization. Two experiments were carried out to examine the performance of the algo-
rithms.
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In the first experiment, 15 rigid object datasets with Gaussian white noise were gen-
erated. The strength level of noise is defined as ‖noise‖

‖W‖ . Each dataset has 50 3D feature
points and 100 frames with random projection matrices. A 200×50 measurement matrix
W represented the image feature tracks. In the second experiment, 5 non-rigid object
datasets formed by 3 shapes bases were generated. Each dataset has 25 3D feature points
and 203 random projection matrices. A 406× 25 measurement matrix W represented
the image feature tracks. For the non-rigid dataset, Gaussian white noise was added at
strength levels of 5%, 10% and 20% to evaluate the performance of the algorithms.

To make the experiments comparable, all the synthetic datasets were partitioned into
10 subsets and batch algorithm of section 3 was applied. For rigid case, each subset
contains 50 3D feature points and 10 random projection matrices. For non-rigid case,
each subset contains 25 3D feature points and 13 random projection matrices (3 basis
images + 10 non-basis images). They formed 10 smaller measurement matrices Wi. Then
we applied non-rigid factorization algorithm on each Wi to recover 3D structures. Metric
optimization is applied on these 3D estimated structures by quasi-Newton optimization
algorithm.

For rigid case, the relative error measurement, 1
P ∑

P
p=1

‖bp−btruth
p ‖

‖btruth
p ‖ was evaluated for

examining the performance of our approach. For non-rigid case, the mean of the relative

errors between the optimal structure and the ground truth, 1
PF ∑

P
p=1 ∑

F
f =1

‖sp−struth
p ‖

‖struth
p ‖ , was

used instead. The results are shown in Figure 1. From the Figure 1, the relative error
of the proposed algorithm is significantly lower than [13] factorization algorithm. The
variance of the error is also small, showing that the method is more stable and robust than
the original factorization algorithm.

5.2 Qualitative Evaluation on Facial Expressions
Recognizing facial expressions is one of the current challenging problems. Thus, we are
motivated to evaluate our approach with facial expressions. In this experiment, a 3D face
model with four different expressions captured from 3D Facial Expression Database [15]
at the State University of New York was used to examine the qualitative performance of
our proposed approach. The four expressions are happy, neutral, sad and surprise. First,
we manually selected 68 feature points on the 3D models. Then, the 3D models were
rotated about x-axis from −10◦ to −10◦ in 2◦ steps, about y-axis from −20◦ to −20◦

in 1◦ steps and about z-axis from −10◦ to −10◦ in 2◦ steps. In each step, we generated
an image of the 3D model. Therefore, we have 4961 images for each expression. Some
images with different expressions are shown in Figure 2. The ground truth of the 3D
feature points of each expression is shown in Figure 3.

In this experiment, four different levels of Gaussian white noise were added to W,
with strength levels of 0%, 5% and 10%. Then, W is partitioned into 41 subsets for the
batch algorithm and each subset is applied factorization with metric optimization. The
results are showed in Figure 4, Figure 5 and Figure 6, respectively.

985



(a) (b)

(c) (d)

Figure 1: Relative errors of the three different appoaches of the factorization algorithms
on rigid synthetic data (a) and non-rigid data under different levels of Gaussian white
noise (b, c and d).

6 Discussion and Conclusion
Our approach is an extension of the non-rigid factorization algorithm proposed by Xiao
et al. [13]. In this paper, we proposed a batch algorithm which uses partitions of the
measurement matrix and a metric optimization that recovers the optimized 3D structures
based on nonlinear shape constraints. The batch algorithm allows the system to process
the data in parallel because the factorization algorithm can be applied on each submatrix
separately. Thus, it is suitable for real-time applications such as surveillance and bio-
metric authentication systems. The algorithm does not require to repeatedly compute the
factorization algorithm with the whole measurement matrix every time the new data are
added. The computation becomes more effective by using our proposed approach.

The metric optimization is another significant contribution in this paper. We intro-
duced the metric optimization to refine the recovered 3D structures by using the new
shape constraints. The experiments showed that our approach is more accurate and ro-
bust than the existing factorization algorithm for both rigid and non-rigid objects under
different strength levels of Gaussian white noise.
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(a) (b) (c) (d)

Figure 2: (a) Happy expression image with rotation about x = −10◦, y = 20◦ and z =
10◦ (b) Neutral expression image with rotation about x = 0◦, y = 0◦ and z = 0◦ (c) Sad
expression image with rotation about x = −10◦, y = −20◦ and z = −10◦ (d) Surprise
expression image with rotation about x =−10◦, y = 20◦ and z = 10◦.

(a) (b) (c) (d)

Figure 3: (a) Ground truth of 3D happy expression (b) Ground truth of 3D neutral expres-
sion (c) Ground truth of 3D sad expression (d) Ground truth of 3D surprise expression.

(a) (b) (c) (d)

Figure 4: (a) Reconstructed 3D happy expression (b) Reconstructed 3D neutral expression
(c) Reconstructed 3D sad expression (d) Reconstructed 3D surprise expression under 0%
Gaussian white noise.
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(a) (b) (c) (d)

Figure 5: (a) Reconstructed 3D happy expression (b) Reconstructed 3D neutral expression
(c) Reconstructed 3D sad expression (d) Reconstructed 3D surprise expression under 5%
Gaussian white noise.

(a) (b) (c) (d)

Figure 6: (a) Reconstructed 3D happy expression (b) Reconstructed 3D neutral expression
(c) Reconstructed 3D sad expression (d) Reconstructed 3D surprise expression under 10%
Gaussian white noise.
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Abstract

This paper applies statistical design principles to a simple biological model
of human vision so that we can more clearly interpret the apparent role of
eye saccades. In doing so we show that many structural features of the bio-
logical system (such as the optical geometry of the retina) are strategies for
minimising the resources required to construct a working image recognition
system. The ideas presented have implications for the construction of arti-
ficial (computer) vision systems. The computational model is very closely
related to (but not based upon) SIFT, but more strongly based on a consid-
eration of vision as a process of measurment while also linking the idea of
multi-scale analysis with biological structure.

Introduction
It is generally assumed that a primary function of eye movements (saccades) is to maxi-
mize information processing within the high resolution region of the fovea [19, 20]. The
measurement of saccades has been widely used in psychophysical studies in domains such
as visual search, reading, scene exploration and interpretation and 2-D pattern recognition
[7, 3, 14], and in machine vision studies, for example, of knowledge-based scene analysis
and human interactions with complex displays [4, 8] These studies have shown that eye
movements can be influenced by a variety of factors, including low- level image statistics,
prior knowledge and task requirements. Surprisingly, little is known about the relation-
ship between eye movements and three-dimensional object recognition. The problem is
of course complicated by the difficulty of understanding exactly what data is provided by
the visual process for the task.

In this paper we examine three fundamental questions. First, can fixation data reveal
preferences for specific types of image features? Second, are gaze preferences consistent
between stimulus encoding and recognition? Third, are extracted features invariant across
tasks and across changes in 3-D viewpoint? In order to interpret the results of this study
we must first define the data we beileve to be available from the retina. The first part
of this paper therefore makes an argument for a simplified interpretation of biological
function.

There are several structural properties of the retina which are well known. In particular
the retina is known to have spherical geometry with logarithmic sensitivity to intensity.
It is also considered reasonable to assume that the input data has radially varying spatial
resolution. The evidence for this comes primarily from observations of the structure of
the striate cortex and secondary visual cortex [13] (cortical magnification). This would
appear to be in conflict with the known structure of the retina, where although there is
such a distibution of sensors, they come in two specific types (the density of illumination
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sensors (rods) reduces to zero in the fovea, while the density of colour sensors (cones) are
at their greatest). What we need to remember however, is that it is in principle possible to
synthesise an intensity measurement from a combination of colour ones. We argue here
that the requirement to construct invariant quantites for recognition, combined with the
statistical nature of the data, in particular measurement stability and consideration of a
quantitative understanding of the information present in the data, allows us to arrive at an
hypothesis for a simplified equivalent form. Specifically a set of homogenous regional
samples from an exponentially distributed set of scales. As the retina can provide only
one set of image samples at any one time, building an internal representation of the world
around us requires this sensor to be moved around the scene. This process is supported
in the human vision system by the saccades. In this paper we provide evidence which
exclude some of the less likely generators of saccadic eye movement.

Computing Invariant Quantities
In order to understand why a detector such as the retina may have evolved it is necessary
to consider the fundamental problems associated with visual recognition. Much of the
process of visual recognition is understood to be template matching. This is a simple
idea which is difficult to make work effectively in practice. Such a process is potentially
very memory intensive unless the spatio-temporal relationships are constructed in a way
which eliminates unnecessary variation in the input image, such as illumination1, rota-
tion and scale. This is often referred to as construction of an invariant representation.
Many researchers in computer vision would also like to build systems with invariance to
perspective changes, induced by 3D sensor or object motion. Often this can be locally
approximated for small rotations by affine invariance (invariance to linear skew).

Yet combination of measured values into invariant quantities solves only part of the
problem. We must also consider the associated noise characteristics. Scale and illu-
mination invariance provide specific examples of this problem. For a CCD array the
simplest way to compute illumination invariant quantities q from measured intensities
hi ∝ I + N(σ) at location i, is to compute a ratio such as q = hi/h j. Distributions of
these quantities can then be treated as patterns for template matching. However, using
error propagation it is possible to show that the noise characteristics of q will then be
var(q) = σ 2(1/h2

j + h2
i /h4

j) . This introduces spatially varying errors on the computed
invariant quantities, which then have to be properly addressed during pattern matching,
by for example committing extra memory resources. The simplest way to deal with this
issue is to make the invariant quantities have homogenous error by modifying the mea-
surement process, ie: gi ∝ log(I) + N(σ), as approximated in the human vision system.
Then q = gi − g j and var(q) = 2σ 2. One way to view this is to say, if we cannot
deal with the variability introduced into invariant quantities by measurement noise then
the extra information potentially gained by having a uniform sensor (h) provides no ad-
ditional benefit to the alternative measurement system (g). Thus logarithmic sensitivity
to light would appear to be a sensible strategy for an illumination invariant recognition
system and one likely to be found in a system which has been optimised to minimise
computational resources.

As with the illumination example provided above, potentially a relationship con-
structed from features detected at one scale can have different statistical reliability (re-

1I use this term here to refer to a simple linear scaing of overall intensity, and not the more general illumina-
tion variation which can occur in real scenes.
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peatability error) to the same feature constructed from data at a higher scale. In the limit
we can scale an object by such a factor that an object projects entirely onto one sensor. Al-
though this is an extreme example, it is an illustration that data from a fixed sized sensor
has a finite limit of information. Though the mean of any invariant quantity might re-
main fixed, the variance around that mean will change as a function of image scale. This
will prevent reliable and efficient scale invariant recognition, which we might describe
as variable scale sensitivity. If we wish to perform recognition with a pattern matching
approach, simply constructing invariant geometric quantities is therefore not enough, as
we need also to take account of the scale varying error on computed relationships.

The physical structure of the eye might appear unnecessarily complicated in compar-
ison to a simple colour CCD array. To begin with the retina is a curved (approximately
hemi-spherical) surface whereas a CCD array is flat. The optical model for a conven-
tional electronic device is close to a pin-hole model. The geometric imaging process is
described as perspective projection. Under such a model objects viewed at the centre of
the field of view appear different to those at the edge. A spherical imaging surface on the
other hand is rotation invariant and will produce an equivalent focused image of an object
for any position in the field of view. This can be considered a simple form of perspec-
tive invariance. However, such a property pre-supposes a uniform sampling of the image,
which is manifestly not the case for the human vision system.

retina

1 α
3

αα 2

down sample down sample down sample

Decreasing spatial resolution

scale equivalent retina

(a)

Spatio−temporal
relationships

Feature Detection

Spatio−temporal
relationships

Feature Detection

Spatio−temporal
relationships

Feature Detection

Spatio−temporal
relationships

Feature Detection

Visual Memory

down sampling

(b)

Figure 1: Computing scale invariant samples in the retina (a) and Scale invariant recogni-
tion (b).

One way to avoid the problem of variable scale sensitivity is by designing our image
sensor so that it delivers a scale invariant measurement. We don’t need to believe that this
is exactly the biological solution at this stage, but if we cannot produce a scale invariant
measurement system then we certainly cannot expect to produce any other scale invariant
quantities2. As it is easier to consider the issue of scale invariance in cartesian geometry,
we start on a planar sensor in what we will call the fovea where we assume the data has
approximately homogenous spatial sampling 3. We wish to synthesise a new sensor now
at a lower resolution (1/α). This process is illustrated in Figure 1a. The inner values of
this new sensor can be computed from the fovea using a process of down-sampling. The
most likely computational form for this process is a Gaussian convolution (or its irregular

2We are not talking here about the approximate invariants generally used in computer vision, but fully in-
variant quantities obtained by constructing a sensor so that such things are computable.

3As discussed above, in the biological system this process is complicated by the presence of two distinct
types of light detector, rods and cones.
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sampled equivalent) as this is the only scale invariant sub-sampling process, due to the
central limit theorem. The outer values of the new region are unavailable in the fovea and
therefore require additional sensors around the edge of the previous active region.

The new ring of sensors need only to have a spatial resolution which is a factor α
larger than the ring of original samples on the edge of the fovea. To have better spatial
resolution is potentially wasteful with resources. Down sampling once more, in order
to construct the next equivalent sensor, we can again subsample the inner regions and
we will need a new layer of measurements from areas now α 2 larger than the original.
As this process continues we gradually construct a sensor surface, with ever decreasing
spatial resolution. The mathematical process we have just described for positioning each
ring of new sensor locations is

rn = r0(1 + k
n

∑
i

αn)

Outside of the fovea, the radial function which characterises this process is obtained if
the spacing of sensors is exponential outside of the fovea, (ie: a logarithmic sensor). This
model differs from previous interpretations [13] 4, in that it accomodates the uniform
sample density in the fovea as an intrinsic part of the calculation of scale invariant shape
represenatation.

Making the adjustment from a planar sensor to another geometry, such as locations as
angles φ on a spherical sensor, is mainly a case of applying the appropriate transform 5.

In conclusion, the equivalent homogenous sampling interpretation for feature detec-
tion on the retina now allows us to exploit the sampling properties of a spherical optical
geometry. In particular, the spatial distribution of uniform sensors in the fovea can be used
to compute the locations that sensors need to be placed when the same object is viewed
at a larger scale in order to recieve identical input data. Such a scheme provides a partial
invariance to projective deformation which is absent in a conventional electronic device.

An Overview of Statistically Based Feature Detection
We would like to take methods from computer vision as candidates for feature extraction
in the brain. The topic of computer vision represents a large body of literature and in most
cases the difference in behaviour and capabilities of the methods are heavily influenced by
intended use. There are consequently as many feature detectors as there are applications.
However, the general principles involved for much of this work can be characterised as
template matching and interest operators. Both of these are physiologically viable meth-
ods for scene analysis. Template matching is analogous to the concept of receptive field
patterns, while interest operators are more akin to the hypothesised mechanisms related
to the possible role of micro saccades. The following section makes an argument for in-
terpretation of these approaches as different aspects of the same underlying principle for
information extraction.

Scaled features can be computed at a range of spatial scales by processing regular
equivalent sensors with a fixed set of feature detectors, or (more likely) by combining

4Where an adjustment to the logratihmic form log(r)→ log(r + a) is made which breaks the pure scale
invariance property exactly where we might expect it is most needed, in the fovea.

5Actually, this argument to apply exactly we need the initial definition of the sample on the fovea to be
equivalent to an homogenous sampling on a spherical surface not a planar one. The difference here is negligible
for a fovea of small angular extent.
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sub-sampling with the process of feature detection. The equivalent sample images need
never be explicitly computed, but the resulting output of the system is equivalent to if
they had been. Scale invariance can then be achieved by applying a selection process to
choose the one scale most suitable for representation of the local image patch (Figure 1b).
The selected representation at a single scale is then compared to stored visual memory.
If the viewed object changes scale, by for example moving towards the viewer, then the
scale at which selected features are detected will change so that the same, scale invariant,
spatio-temporal relationships are selected for pattern matching. This process is effectively
what is advocated in the Scale Invariant Feature Transform (SIFT) [10].

The best known of the template based approaches include the Canny edge detector
[2] and the Difference of Gaussian operator [12]. These methods apply combinations
of image convolution operations in order to enhance selected features. Connected or
isolated feature points can then be identified as maxima on these enhancement images, in
this case step edges and ridge locations respectively. The main difference between these
two approaches is that although a step edge detector will respond to all but the finest of
ridge features, Difference of Gaussian processing will not enhance step edges 6 (the most
common manifestation of an object boundary) and has an output which is more strongly
dependant upon feature scale and illumination.

In order to take advantage of the inherent properties of illumination invariance, fea-
ture detection processes need to be computed as combinations of differences between
measured values g. For many features defined in computer vision, such as conventional
first derivative based edge detectors, this is clearly the case.

e = G(σ)⊗
√

(gi+1−gi−1)2 + (g j+1−g j−1)2

where G⊗ represents a Gaussian convolution of width σ . Interestingly e2 is a smoothed
local estimate of the Fisher Information associated with local image plane orientation.

Although using a multitude of template feature detectors, all matched to distinct fea-
ture types, is a possible algorithmic solution for the extraction of object structure, this ap-
proach raises an important question; What is a valid mechanism to combine the responses
from the different detectors? This must be done in a way which provides generalisation
for recognition of shape, not only for changes in illumination and object scale, but also
over possible responses to changes in scene content (for example arbitrary possible back-
grounds at object boundaries). Interest operators provide an alternative which is capable
of detecting many characteristic feature types with one simple computation. The simplest
interest operator would be a local variance estimate of image signal, which when applied
at a range of spatial scales, is also useful as a descriptor of texture [5]. For example;

v = G(σ)⊗ (g −< g>)2 where < g> = G(σ)⊗g

which can be considered as either the etimate of signal to noise associated with local
image variation, or the inverse of Fisher Information associated with a mean value. This
simplifies to;

v = G(σ)⊗g2 − (G(σ)⊗g)2

6The response to a step edge from a DoG filter (as advocated in SIFT), is exactly zero at the position of
the edge. Although it takes large positive and negative values on either side, the locations of the maxima are
systematicaly shifted as a function of the Gaussian kernel size and therefore cannot be considered as spatially
consistent.
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Notice that these calculations embed directly Gaussian convolutions, which we have al-
ready stated are required for scale invariant resampling.

Another popular feature detector in computer vision is the corner detector and one
approach uses the concept of an interest operator which is often based on the idea of auto-
correlation. Corner detection can also be performed with templates, but is significantly
more difficult than edge detection due to additional variation in orientation and corner
shape [7]. The Harris corner detector [6] defines corner locations using the second order
spatial variation of an auto-correlation around a point. However, auto-correlation can be
interpreted as a log-likelihood for the degree of match between the original local image
patch and a shifted version. In adddition the matrix of second order behaviour is the
second term in a Taylor expansion, so it can also be interpretted as the second derivative
with respect to image location. As the Cramer-Rao bound is the second derivative of a
log likelihood, this is the Fisher Information for spatial localisation.

In summary we now have three definitions of feature detector based upon quantita-
tive measurements which define positions of maximum information; local variance for
spatially varying intensity, edge strength for orientation, and interest operators for spatial
location. In fact, if we consider feature detection as a template based approach sup-
ported in the biology by receptive fields, then grey level scale, orientation and location
are the only measurable quantities possible. It makes sense to suggest that if restrictions
on processing capacity (for example finite connectivity) results in the need for the brain
to identify a subset of features in order to solve quantitative tasks, then those which make
the largest quantitative contribution (ie. those which maximise some aspect of Fisher in-
formation) are the ones it should be using and the ones we should be basing any model of
scene interpretation upon.

Finally, illumination invariance of these measures and also for colour is entirely reliant
upon logarithmic sensitivity to light. As with spherical optical geometry, this is a property
which is lacking in a conventional electronic sensor. It is becoming increasingly obvious
that when it comes to getting a simple solution to visual analysis tasks, the biological
sensor has characteristics which make a lot of sense. Indeed, the analysis of data from a
conventional colour CCD array will be difficult by comparison.

Assuming that the process of shape recognition is based upon conjunctions of detected
features, then the above description of a multi-scale feature detection process eliminates
the need for scale invariance. If we also eliminate the possibility of full 3D rotation in-
variance (on grounds of in-homogenous error characteristics), the required invariances
for a shape representation are therefore translation and rotation within the sensor “plane”.
An ideal representation of shape would be one which supported the reconstruction of the
shape up to an unknown position and orientation. Such a representation has been pre-
viously described as “complete”. Although simple regional histograms of local image
orinetation (as used in SIFT) are not complete [16], the property was established over
a decade before for the representation scheme referred to as “pairwise geometric his-
togrames” [15]. This approach provides an encoding of local shape as a 2D frequency
distribution of relative angle against perpendiular distance.

Methods: Investigating Patterns of Eye Movement
The simplest hypothesis for the role of saccades is that we move our eyes in order to build
up a high resolution measurement of the scene. This hypothesis can be immediately ex-
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cluded by observing real eye movements, which do not uniformly scan the potential view
field, but seem instead to be drawn to particular visual features, movement or objects. A
more sophisticated hypothesis for the role of saccades in visual exploration is that we sac-
cade to areas which are expected to have useful spatial information for the interpretation
of shape or structure [19]. We would therefore expect the eye to saccade to those features
which are most useful for this task. As we have only low resolution data available in the
periphery of the retina, we must assume that this is somehow used to predict the most
useful places for fixation. Although we may not know precisely what the human vision
system does, we suggest here that we can take the standard feature detection processes
as characterised by interest operators and template matching approaches as indicative of
those features which would be useful for the purpose of extracting image structure. We
can then see to what extent the saccadic process targets locations in images which contain
structural features in order to examine our initial hypothesis.

In brief, participants (N = 24; Mean age = 22.67) first viewed sets of six novel 3-D
objects each containing one principal component and three sub- components or volumet-
ric parts (see Fig 3a). 12 objects (6 targets and 6 distractors) were presented from three
different viewpoints (0, 120, 240 degrees) each for 10 seconds while eye movement pat-
terns were recorded. Following the Learning Phase, participants performed a recognition
memory task in which they had to discriminate learned from unfamiliar objects, presented
either at practiced (0, 120, 240 degrees) or novel orientations (60, 180, 300 degrees) in
depth. Behavioural responses (accuracy and Reaction Times (RT)) were recorded. Eye
movement data were recorded on a Tobii ET17 remote eye tracking system running at a
data acquisition rate of 50 Hz. Experimental stimuli were viewed from a distance of 60
cm at a screen resolution of 1280 x 1024.

(a) (b)

Figure 2: Novel objects (a) and reaction times for recognition (b).

Results
Accuracy of target detection in the Test Phase was very high (range 80- 94.17 %). As
expected, targets were detected more accurately at the practiced viewpoints, F (1, 23) =
26.01, p < .001. Mean RTs for correct trials are shown in Fig 3(b). A 2 (Familiar vs
Familiarity) x 3 (Viewpoint) repeated measures ANOVA showed that RTs were faster for
practiced over unfamiliar viewpoints, F (1, 23) = 13.73, p < .001. The main effect of
Viewpoint was not significant. There was no interaction.

Analyses of eye movements were conducted by initially pre-processing raw gaze data
by applying spatial and temporal filters to remove micro-saccades and drift. Fixations
were defined as eye movements that remain within the same circular region (diameter 60
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Figure 3: Time development of fixations.

px) for a minimum of 100 msecs. Filtered data were used to compute fixation frequency
across participants for each stimulus. Figure 4 shows a time series fixation frequency plot
for all participants overlaid onto the original stimulus image. The data are grouped into 10
epochs corresponding to the first 500 msecs post stimulus onset, and then for each 1000
msecs thereafter. The data show that participants rapidly fixate on image regions which
appear to correspond to salient 3-D image segment points around object sub- components.
Figure 5(a) shows an analysis of the consistency of fixations across changes in the 3-D
viewpoint for two of the test stimuli. This shows that participants consistently search for
and fixate the same 3-D image segmentation points across viewpoint, despite changes in
the low-level image properties of these locations (e.g., vertex types). Figure 5(b) shows
an analysis of the consistency of fixations between the Learning and Test Phases for two
items. As in the previous analysis, participants fixate the same image regions between
phases.

Conclusions
This paper has sought to explain saccadic eye movement within a framework which in-
cludes some of the more obvious structural features of the human vision system. It seems
to be possible to account for many observed properties, including logarithmic intensity
sensitivity, and spherical optical geometry, in terms of construction of invariant repre-
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(a) (b)

Figure 4: Changes across viewpoint (a) and consistency between learning and test phases
(b).

sentations which take account of measurement error. The kinds of algorithms generally
developed in the area of computer vision, with regular input lattices and at fixed scales,
may seem a world away from irregular sampling of the retina and saccades. However, it
seems possible to replicate the process of scale analysis by simply processing at multiple
scales and selecting one result. This opens the possibility of applying insights from image
analysis to interpretation of visual biological.

Ultimately the brain must use detected features for the construction of shape repre-
sentations. The brain will need to analyse the incoming spatio-temporal data to extract
compact descriptions for the purpose of accurate prediction and categorisation. Analysis
of the statistical nature of the data tells us that it is not possible to construct a represen-
tation which is invariant to every form of variation produced during image formation.
However, invariances are key to the construction of efficient vision systems, as the more
we can correctly generalise from data we have already learned and understood, the easier
it is to interact with our environment. The development of invariant recognition processes
could be invoked as an implicit target during the process of human evolution, thereby
explaining the kind of structure we see on the retina today.

Our study supports the following conclusions: (1) Human visual biology is consistent
with a simple structural hypothesis (based on multi-scale samples) for the construction of
invariant recognition systems which opens the way for interpretation of retinal data using
conventional machine vision approaches, (2) Fixational eye movement patterns during 3-
D object recognition are not random, but rather structured and highly consistent among
observers. (3) There is remarkable consistency in the patterns of fixational eye movements
shown for 3-D novel objects across both changes in viewpoint and between learning and
test phases. (4) These locations show evidence of ‘top down’ selection and are not the
low level features generally constructed for machine vision.

These conclusions are not dependent upon the particularly simple nature of our stim-
uli, and tell us that tracked features are a long way from the input visual data, in terms
of processing. They imply a high level representation of 3D structure which is already
available prior to eye movement. The most striking observation is that fixated locations
are often on surfaces, which in our data at least contained no low level information. At
first sight this may seem to be at odds with a feature based analysis of shape. However,
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these conclusions can be reconciled with a feature based analysis if we take a view based
approach to recognition, whereby sets of features within a focal region are used for shape
representation such as a learned set of geometric co-occurences (such as the PGH). We can
have every reason to believe that fundamental understanding of the problems involved in
extracting shape information from conventional images is potentially of direct relevance
to understanding high level processing in human vision. This being the case, locations of
saccadic fixation should contain valuable information which can help identify these high
level processes. This is an avenue we intend to explore further.
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Abstract

We present an unsupervised method for learning and recognizing object cate-
gories from unlabeled images. Motivated by the existence ofhighly selective,
sparsely firing cells observed in the human medial temporal lobe (MTL), we
apply a sparse generative model to the outputs of a biologically faithful model
of the primate ventral visual system. In our model, a networkof nonlinear
neurons learns a sparse representation of its inputs through an unsupervised
expectation-maximization process. In recognition, this model is used in a
maximum-likelihood manner to classify unseen images, and we find units
emerging from learning that respond selectively to specificimage categories.
A significant advantage of this approach is that there is no need to specify
the number of categories present in the training set. We present classification
accuracy using three different evaluation metrics.

1 Introduction

Highly sparse representations of objects in the visual environment in which individual
neurons display a strong selectivity for only one or a few stimuli (such as familiar indi-
viduals or landmark buildings) out of perhaps 100 presentedto a test subject have been
observed in the human medial temporal lobe (MTL), a brain area crucial to the forma-
tion of new memories [11, 18]. While highly selective for a particular object or category,
these cells are remarkably insensitive to different presentations (i.e. different poses and
views) of their preferred stimulus. By contrast, neurons inthe inferotemporal cortex (IT),
immediately earlier in the visual pathway, respond in a muchless sparse manner [14].
A natural question to ask is thus “how do neurons in the MTL learn their sparse and in-
variant representations from the incoming visual information?” From a machine vision
standpoint, this question can be viewed as a problem in unsupervised image classification:
given a set of unlabeled training images, can we design an algorithm that will group these
images into categories corresponding to those human observers would impose? This is
clearly distinct from the more common approach to object recognition in which a labeled
training set is used to learn features common to the categorywhich can then be used to
classify unlabeled images [1, 4].

Motivated by the neurobiological results, we study the effects of applying a sparse-
coding model to the outputs of a biologically faithful modelof the primate ventral visual
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cortex [13, 15]. The sparse-coding model, which itself employs biologically plausible
learning operations, is derived from that of Olshausen & Field [10], which they used
to develop a sparse representation of natural images much like that observed in primate
visual cortex. We seek to use a similar learning algorithm tobuild a representation in
which individual units of our output layer respond in a selective and invariant manner to
specific object categories.

1.1 Related Work

Unsupervised image classification has only recently begun to attract attention in the lit-
erature. Sivic et al. [17] apply techniques from unsupervised topic discovery in text to
“words” derived from SIFT descriptors to discover categories in images. While their ap-
proach is very different from that taken here, the problem they attempt to solve is the same
(and we evaluate our results on many of the same datasets). Animportant distinction is
that they found it important to restrict the number of categories searched for to the num-
ber truly present in their datasets, while our method is robust to varying numbers of input
categories. Fergus, Perona, and Zisserman [4] use an unsupervised generative learning
algorithm to build representations of particular image categories, but only images from
a single category are presented to the model, which is then tested in a category-versus-
background setting. In contrast, our model simultaneouslylearns representations for mul-
tiple image categories withouta priori specification of the labels (or even the number
of categories present). Weber, Welling, and Perona [19] also cast the unsupervised cate-
gorization problem as emergent population coding, but without the sparseness constraint
that is key to our results. Serre, Wolf, and Poggio [16] developed the underlying vision
system model we use here, and they show that the features generated are sufficient to
classify our input categories with high accuracy (using a supervised classifier).

Sparse coding as a computational tool has attracted a great deal of attention in recent
years, both in the context of vision and elsewhere. Olshausen and Field developed the al-
gorithm we apply here and showed that, when applied to natural image patches, it gener-
ates a code much like that observed in simple cells in primaryvisual cortex [9, 10]. Hinton
and Ghahramani [6] also cast sparse representation in a generative modeling framework,
but as with Olshausen and Field they work directly at the image level. Sparse coding is
closely related toIndependent Components Analysis [2], which has been used to generate
natural image codes similar to those obtained from sparse coding [3]. Li et al. [7] discuss
the use of sparse representation for blind source separation, including the notion that the
number of sources (in our nomenclature, categories) need not be specified, but they do not
address the application we present here. Mutch and Lowe [8] improve the performance
of the underlying vision system model we use here, in part using sparsification to en-
hance selectivity. Ranzato et al. [12] take an energy-basedapproach to the unsupervised
learning of sparse representations of natural images and briefly discuss its extension to a
hierarchical model. Both of these efforts are at a much lowerlevel of the hierarchy and
so do not address categorization.

2 Approach

We first generate an invariant feature-based representation of our images (analogous to
that found in IT) using the hierarchical feedforward model of object recognition described
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by Serre et al. [15] and available athttp://cbcl.mit.edu. The output of this stage -
applied to many images from several different image categories - is then sent into a sparse
coding model (modified from [10]). This network attempts to identify sparse structure in
its inputs via unsupervised learning on sample input data. To evaluate performance we
examine the selectivity of the trained network to unseen images from the same categories
as the training data.

2.1 Input Processing

All images used in this investigation were taken from the Caltech-256 database of images
from 256 categories [5]. Images were resized (using MATLAB’simresizewith nearest-
neighbor interpolation) so that the smaller dimension was 128 pixels while preserving the
aspect ratio. The outputs of the C2b and C3 layers of the visual processing model [15]
were computed using a feature set derived from training on 500 natural images (no new
features were learned - this investigation used the filters included in the standard distri-
bution of this model). There were 1000 units in each of these layers, for a total of 2000
outputs. These outputs were then normalized so that each output unit’s responses had
zero mean and unit variance across the input set for a given experiment. These normal-
ized outputs were used as inputs to the sparse coding model described below.

2.2 Sparse Coding

We seek to build a generative modelG of the inputsu ∈R
n (here,n = 2000) to our model

with the assumption that there exists some sparse set of causes v ∈ R
m (with m ≪ n)

underlying the observed data. In our case theu are the responses of the underlying vision
system model to the input images, while each elementvi of v will come to represent an
image category. In general, we wish to find probability density functions f (v|G ) and
f (u|v,G ) such that the distribution of generated inputs

f (u|G ) =

∫

v
f (u|v,G ) f (v|G ) (1)

closely matchesf (u), the distribution of inputs observed in the training data. Once
such distributions have been found, we can attribute causesto inputs by a determinis-
tic maximum-likelihood process, or

v(u) = argmax
v

f (v|u,G ). (2)

Following the approach of Olshausen & Field [10], we can use this framework to
search for a sparse code for our inputs. First, we assume the causes underlying the inputs
are sparse and independent, setting

f (v|G ) ∝
m

∏
i=1

exp(S(vi)), (3)

wherevi ∈R is theith element ofv andS(vi) is defined such that the resulting distribution
is sparse. For simplicity we omit the proportionality constant required to make this dis-
tribution integrate to 1. In [10], where this strategy was used to develop a V1-like sparse
code for natural images, the sparse priorS followed a Cauchy distribution. Because we
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seek to develop units that respond in a more-or-less binary fashion (i.e. most responses
are close to 0 or 1), we instead use a weighted sum of two Gaussians with varianceσ2,
one centered at 0 with weight 1− t and the other at 1 with weightt.

Second, we assume that the distribution of inputs given a cause is Gaussian with a
mean given by a linear function of the causes, that isE[u] = Gv for someG ∈ R

n×m,
and diagonal covariance matrixCOV [u] = λ I. The columns ofG are thus basis functions
for representing the inputsu. We further place a zero-mean Gaussian prior distribution
with varianceγ2 on the elementsgi j of G to avoid an extra normalization step required in
earlier work.

Our generative modelG is now parameterized by the matrixG. The function to be
maximized with respect toG is the average log-likelihood of the data within the model,

F (v(u),G) = 〈ln f (v(u),u,G)〉

=

〈

−
1

2λ
‖u−Gv(u)‖2+

m

∑
i=1

S(vi(u))−
1
2γ

n

∑
i=1

m

∑
j=1

g2
i j

〉

.

The first term inF penalizes a mismatch between the true inputu and the modeled input
Gv(u), the second term rewards responses that are likely according to the sparse prior,
and the third term penalizes large weights inG.

We optimize this function via expectation maximization. Inthe E phase, for each
inputu we seek to compute the most likely causev(u) (i.e. the argmax ofF ). Performing
gradient ascent onF with respect tov we obtain the differential equation

v̇ =
1
λ

GT (u−Gv)+ S′(v) (4)

where the vector-valued functionS(v) is shorthand forS evaluated on eachvi andS′ is the
derivative ofS with respect tov. This system can be implemented as a two-layer recurrent
neural network with nonlinear dynamics in the output layer given byS′. This stage of the
optimization computes the set of basis functions that best represent the input, subject to
the sparseness constraint imposed byS.

In the M phase, we compute the optimalG for the currentv(u). Taking the derivative
of F with respect toG, setting equal to zero, and solving forG we obtain the update rule

G → 〈uvT 〉

(

λ
γ

I + 〈vvT 〉

)−1

. (5)

This rule yields the global optimum forG givenv(u) and so lets us take large steps toward
the optimum ofF in the M phase. This in turn leads to much faster convergence than
the incremental update used in previous work [9, 10]. If, however, we wish to perform
on-line learning in which images are presented one at a time,gradient ascent yields a
Hebbian-with-decay update rule.

3 Classification Experiments

We performed several experiments with this model. In all cases the number of outputs
from the C2b and C3 layers of the visual system model [15] - andthus the input to the
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sparse learning network - wasn = 2000, and the number of output units wasm = 10. The
matrix G was initialized with uniformly distributed random weightsbetween−0.5 and
0.5. Equation 4 was simulated in MATLAB for sufficient time to reach equilibrium with
the additional constraint that all responsesvi be nonnegative (using MATLAB’s “NonNeg-
ative” odeset property) and parametersλ = 10, t = 0.05, andσ2 = 0.04. The weight
penalty wasγ = 100. In each experiment we used the batch update rule (eq. 5) and ter-
minated the optimization when the average change in the weightsgi j was less than 1%.
Except for experiment (D), for which fewer images were available, we used 40 random
images from each category for training and reserved 40 different images for testing. After
training, the recognition model (eq. 4) was run on the novel testing images.

We performed the following four experiments:

(A) Three object categories.The model was trained and tested on images of motorbikes,
airplanes, and faces. This is directly comparable to experiment (C) of [17].

(B) Four object categories.We added a fourth category (cars) to the training set from
experiment (A). This is similar to experiment (D) of [17], except that we used side- rather
than rear-views of cars.

(C) Four object categories. As the images from experiment (B) are relatively easy to
classify (a supervised classifier operating on the same inputs can perform this task at near
100% accuracy), we performed the same experiment with four more difficult categories:
blimps, elephants, ketches (a type of sailboat), and leopards.

(D) Five individuals. We sorted the face images from the Caltech 256 database into
categories consisting of images of the same individual. We then presented images of 5
of these individuals. We presented 10 images of each individual in the training stage,
reserving 10 different images of each individual for testing.

4 Results

We ran each experiment 10 times with different random initial conditions forG. All model
parameters were identical between the four experiments - noadjustment was required to
account for different number or type of input categories between experiments.

4.1 Response Profiles

We here focus on describing the response profiles of the output units from a typical run of
experiment (B); results from the other trials and experiments were qualitatively similar.
Figure 1 depicts the responses of two of the selective units (from the same session) that
emerged in training. For each unit this figure shows 20 of the 40 images that evoked the
strongest responses (every other response is omitted for clarity) as well as a histogram of
all responses. The ROC curve for each unit treated as a classifier for its preferred category
is inset in the histogram, along with the ROC curve for the best principal component
for that category for comparison. We see from these figures that category tuning has
spontaneously emerged from the learning process.
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Figure 1: Responses of two selective units after the unsupervised category learning. (a,c):
images that evoked the top responses, with the activation level above each image. Every
2nd image omitted for clarity. (b,d): response histograms.x-axis is the activation level;y-
axis is the number of test images (160 total) evoking a response at that level. Responses to
preferred category in black; responses to all other images in white. Insets: ROC curves.
Solid line is ROC curve for selected unit, dashed line is ROC curve for best principal
component. ROC equal-error accuracies were 100% and 88%.
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4.2 Classification Accuracy

Given that we use a purely unsupervised training process, and that our model is free to
identify fewer or more categories than are present in the training set, there are several
possibilities for evaluating the classification accuracy of this system. We consider three
metrics here, two of which are weakly supervised as they require us to decide what cate-
gory each unit is selective for, and one of which is fully unsupervised:

Metric 1: Single-category classifier.We consider each unit individually as a classifier
for its most selective category. The accuracy figure we use isthe receiver-operating char-
acteristic (ROC) equal error rate (i.e. p(true positive) = 1-p(false positive)) testing against
the other categories. Chance level in this case is 50%. The metric is the average accuracy
of our best classifier for each category.

Metric 2: Weakly supervised classifier. We use all selective units together to classify
each input image into one of the input categories. To do so, wefirst manually assign
to each unit a category for which it is most selective as before (so multiple units could
be assigned the same category). We then classify each image according to which unit
responded the most strongly. The accuracy is then the percentage of testing images cor-
rectly classified, and the chance level is one over the numberof categories.

Metric 3: Unsupervised classifier.In the fully unsupervised setting we rely on the out-
put units to both define the categories and assign images to them. Each image is assigned
to a putative category based on which output unit responded the most strongly. We then
form a confusion matrix in which element(i, j) is the percentage of images from input
categoryj assigned to output categoryi and rearrange this matrix to maximize the average
of the diagonal elements, thereby picking the output categories that best correspond to the
input categories. This average is then the classification accuracy, and chance level is one
over the number of output units (in this case 10).

Note that each of these metrics says something different about the behavior of the
network, and none of them by itself describes exactly the sparse, invariant selectivity that
is our goal. Metric 1 quantifies how selective individual units are for particular cate-
gories, but disregards the separation between on- and off- responses. Metric 3 quantifies
how precisely the categories discovered by the network correspond to those we defined,
but a network that divides one or more categories into subcategories would score poorly
here despite qualitatively good performance. Metric 2 alleviates this issue, but could dis-
regard excessive subcategorization. Hence, sparse, invariant representation of the input
categories is only captured by good scores according to all three metrics.

The results of each experiment as measured by these metrics averaged over 10 trials
are summarized in Table 1. As a baseline for comparison, we also evaluated the perfor-
mance of Principal Components Analysis (PCA) applied to thesame inputs as our sparse
coding network against these three metrics. As we had 10 units in the output layer of
the sparse coding network, we used the top 10 principal components for this comparison.
We also found the best performance we could achieve using a supervised SVM classifier
applied to the same inputs, which provides a reasonable upper bound on achievable per-
formance and an objective measure of task difficulty. For metric 1 we report the average
accuracy of a binary SVM classifier for each category versus the others, while for metric
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Ex Metric 1 Metric 2 Metric 3
SN PCA SVM ch SN PCA ch SN PCA SVM ch

A 91.7 69.2 98.1 50.0 90.6 55.0 33.3 64.0 37.5 96.7 10.0
B 89.8 71.9 97.4 50.0 82.6 46.9 25.0 66.1 40.6 96.9 10.0
C 77.0 69.2 88.1 50.0 63.8 47.5 25.0 41.4 36.3 81.9 10.0
D 94.8 85.0 98.0 50.0 83.6 62.0 20.0 75.0 70.0 100.0 10.0

Table 1: Classification accuracy computed using different metrics averaged over 10 trials
with random initial conditions. In all cases unseen images were used for testing. For each
metric we report the classification accuracy (as a percentage) for the sparse network (SN)
and for PCA applied to the same inputs, as well as chance level. For metrics 1 and 3 we
also provide the accuracy of a supervised SVM classifier applied to the same inputs.

3 we report the accuracy of a multi-way SVM.
One surprising aspect of these results was the excellent performance in experiment

(D), the 5-way face discrimination task which we initially tried as a presumably more
difficult test of our methods. While the distinction betweendifferent faces is clearly more
subtle than the distinction between categories, there is also less within-category varia-
tion in the face images than in the images from other categories, so different images of
the same individual are likely to be tightly clustered in feature space. From this we see
that the within-class homogeneity drives classification accuracy as much as the inter-class
separation. Experiment (D) also highlights the importanceof the statistics of the input
set to the representation learned. In experiments (A) and (B), faces were present often
in the inputs, but no particular individual was present often. In this case we obtain a
representation for “face,” but no individuation within that class. In experiment (D), par-
ticular individuals were present often, giving the networkenough information to identify
multiple individuals and represent them separately.

The seemingly poor results from experiment (C) still occur in the context of units that
show very clean selectivity for each category. However, in each case the units responded
strongly only to asubset of the category in question. Figure 2 gives an example of sucha
unit which responded selectively to some but not all of the ketch images.

5 Conclusions and Future Work

We here demonstrated a system that is able to group unlabeledimages into appropriate
categories through unsupervised learning on image features. This model has at its core the
notion that underlying the high-dimensional vector of features from the model is a sparse
set of causes, and that these causes can be uncovered by optimizing a sparse generative
model of the inputs. This model performs quite well on benchmark image classification
tasks despite being both entirely unsupervised and motivated primarily by the relevant
biology rather than by optimizing machine vision performance. This model has the further
important feature that it is not necessary to specifya priori the number of categories to
search for, except of course to ensure that enough output units are available to represent
all the input categories.

Many open questions remain. The simplest is how well this technique scales to larger
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Figure 2: Responses of a ketch unit from experiment (C). (a):images that evoked the
top responses, with the activation level above each image. Every 2nd image omitted for
clarity. (b): response histogram.x-axis is the activation level;y-axis is the number of
test images (160 total) evoking a response at that level. Responses to ketches in black;
responses to all other images in white. Inset: ROC curve. Solid line is ROC curve for this
unit, dashed line is ROC curve for best principal component.ROC equal error accuracy
with respect to all ketches was 85%.

numbers of categories and categories that resemble one another more closely or are more
diverse. It remains to be seen whether the feature set used inthis investigation is suffi-
cient to discover more (or more similar) categories in this unsupervised setting, or if the
underlying visual system model itself is sophisticated enough to scale regardless of the
number of features used. Our immediate future work will investigate this scalability.
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Abstract

The geometric hashing (GH) is a well-known model-based object recognition
technique with good properties both in retrieval speed and required amount of
memory. However, it has a significant weak point; as the number of objects
increases, both retrieval speed and required amount of memory increase in
the cubic, fourth or higher order. Recently, a new technique “locally likely
arrangement hashing (LLAH)” whose computational cost is a linear order
has been proposed. The objective of the current paper is to reveal how LLAH
improves the performance. By comparing GH and LLAH, we describe four
primary factors of the performance improvement.

1 Introduction

x x In the current paper, we discuss a problem to find the corresponding object from the
database using feature points extracted from a query object. For the problem, rich descrip-
tors such as SIFT descriptor [9] (a typical feature vector is 128 dimensions), PCA-SIFT
descriptor [7] (typically 36 dimensions) and SURF descriptor [2] (typically 64 dimen-
sions) are often used to describe the object. Since the descriptors are designed to be
robust for noises such as change of intensity, rotation and scale, the corresponding object
is retrieved by searching similar values of descriptors from the database. Popular search-
ing methods include approximate nearest neighbor (ANN) [1], locality-sensitive hashing
(LSH) [6, 3] and vocabulary tree [11]. However, distinctive rich descriptors are not al-
ways available. For example, a SIFT descriptor extracted from a texture type repeating
pattern including a text region is not distinctive.

Thus, to the contrary to the rich descriptors, we discuss methods employing a poor
descriptor whose feature is only the location of the feature point. This enables object
recognition techniques to be widely applicable as mentioned below. However, this makes
the problem difficult since retrieving the corresponding feature point in the database only
with a single feature point is impossible. Focusing the arrangement of other feature points
is necessarily required. Furthermore, if the query object image is taken from an oblique
angle, it has undergone some geometric transformation. This makes the problem more
difficult because the arrangement is no longer identical to the stored one in the database.
Therefore, removing the effect of the geometric transformation is also required for precise
retrieval.
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(a) Stored documents (b) Search with a web camera

(c) Captured image in the left window (d) Retrieval result in the right window

Figure 1: Snapshots of a real-time image retrieval system [5] using LLAH [10]. The sys-
tem is invariant against rotation, scaling, perspective distortion, occlusion and curvature
of a page. The system works at around 7Hz for 5,000 pages, and the clock does not de-
pend on the size of the database so much. (a) stored documents in the database, 5,000
pages in this demo. (b) a search scene with a 1.3M pixels web camera. (c) a screen shot
including a captured image in the left window. (d) a screen shot including a thumbnail
of the retrieved page and the corresponding region to the captured image drawn in a red
rectangle in the right window.

The simplest way to resolve the problem is an exhaust search which requires the com-
putational cost of O(N !) for a search of an object including N feature points under per-
spective distortion. The cost is reduced by the geometric hashing (GH) down to O(N 5)
introducing an idea of geometric invariance [8, 16]. GH is known to be a general model-
based object recognition method and widely used not only in computer vision, but also
in many other domains including bioinformatics [12, 16]. However, GH still requires
much processing time and large amount of memory, especially for a large number of ob-
jects. Many variants of GH have been proposed and some of them reduce the cost using
probabilistic approach such as random reduction of feature points. However, probabilis-
tic reduction of computational cost cannot avoid reduction of retrieval accuracy because
computational cost and retrieval accuracy are in a trade-off relationship [4]. Therefore,
it is quite difficult to apply GH and its variants to practical applications requiring quick
response.

For the problem, we have proposed a new technique “locally likely arrangement hash-

1011



Object ID

Basis-
set ID

1
2

3
4

1
2

3

Voting table

# 
of

 v
ot

es

P 2 − P 1

(P 2 − P 1)
⊥

O

P 5

P 4

P 3

Direction of

Direction of Invariant coordinate system
for similarity transformation

1, 4
2, 3

3, 1

1, 2
3, 3

2, 3

Object ID, Basis-set ID

Feature space

P 2P 1

P 5

P 4

P 3

Figure 2: Retrieval process of the geometric hashing.

Object ID
# 

of
 v

ot
es

1 2

Voting tableHash

3

Vectors of similarity-
transform invariants 

C
yc

lic
 p

er
m

ut
at

io
n

of
 in

va
ria

nt
s

2

a c db

ac db

ac d b

a cd b

Feature space

P 2

P 1

P 5

P 4

P 3

Point of interest

Defined
order

Figure 3: Retrieval process of LLAH. Invariants in the figure are a = ‖P 4−P 1‖
‖P 5−P 1‖ , b =

‖P 2−P 5‖
‖P 4−P 5‖ , c = ‖P 1−P 4‖

‖P 2−P 4‖ , and d = ‖P 5−P 2‖
‖P 1−P 2‖ , respectively.

ing (LLAH)” which outperforms GH in both processing time and required amount of
memory [10]. LLAH requires the computational cost of O(N) for a search. Due to its
outstanding performance, we have applied it to a real-time image retrieval system [5]
(see Fig. 1 for snapshots). In about 150 milliseconds, the system with 4GB memory can
retrieve a corresponding image from 5,000 images, and find the corresponding region cap-
tured by a web camera. In spite of its outstanding performance, LLAH has not analyzed
in detail. Therefore, the objectives of the current paper is to reveal where the outstanding
performance of LLAH comes from. For the sake of the purpose, we compare GH and
LLAH, and describe four primary factors of the performance improvement.

2 Geometric hashing and LLAH

2.1 Geometric hashing [8]

We explain the storage and retrieval processes of GH and LLAH in the case under a
similarity transformation.

1012



2.1.1 Storage process

GH describes the object which has undergone a certain geometric transformation using
invariant coordinate systems. We explain the storage process of it. Though Fig. 2 is an
illustration of the retrieval process, it will help understand the storage process because the
most are common.

To begin with, feature vectors are extracted from the image of the object. Two of them
are chosen, and a pair of bases is defined as shown in Fig. 2. In the figure, a basis P 2−P 1

and its orthogonal one (denoted as (P 2−P 1)⊥) are defined. Then, the rest of the feature
points (P 3, P 4 and P 5) are projected to the invariant coordinate system spanned by the
pair of bases (P 2 − P 1 and (P 2 − P 1)⊥). The invariant coordinate system is divided
(quantized) into subregions in advance. Thus, the object ID and a basis-set ID are stored
into the each corresponding subregion.

The storage process finishes after the procedure above is carried out for all the in-
variant coordinate systems spanned by all the pairs of bases and for all the objects to be
stored.

2.1.2 Retrieval process

We explain the retrieval process of GH with the illustration of Fig. 2. The initial phase of
the retrieval process is almost the same as that of the storage one.

To begin with, feature vectors are extracts from the image of the object. Two of them
are chosen, and a pair of bases is defined as shown in Fig. 2. Then, the rest of the feature
points are projected to the invariant coordinate system spanned by the pair of bases. Each
projected feature vector corresponds to a subregion of the invariant coordinate system.
The votes for the corresponding pairs of the object ID and the basis-set ID are made.

The procedure above is carried out for all the invariant coordinate systems. The pair
of the object ID and the basis-set ID with the highest vote determines the corresponding
object. In the illustration of Fig. 2, the object #2 is retrieved because the combination of
the object #2 and the basis-set #3 obtains the highest vote. The process can quit when the
corresponding object is obviously determined.

2.2 LLAH [10]

2.2.1 Storage process

We explain the storage process of LLAH. Like Fig. 2, Fig. 3 is an illustration of the
retrieval process. However, it will also help understand the storage process because the
most are common.

After feature points are extracted, LLAH calculates feature vectors which describe
the arrangements of the m nearest feature points of the feature point of interest. In Fig. 3,
the point of interest is P 3, and the m (= 4) nearest ones are P 1, P 2, P 4, and P 5.
The feature vectors of P 3 are calculated as follows. The m nearest points are ordered in
clockwise rotation as P 5, P 4, P 2, P 1, P 5, · · · . With three points denoted as A, B and
C, a similarity invariant AC

AB is calculated, where AB stands for the line segment between
A and B. Thus, a similarity invariant is calculated from a set of three points. By sliding
the points to regard A, B and C in clockwise rotation,

(
m
3

)
(= 4) similarity invariants

are calculated (i.e. a, b, c and d in Fig. 3). By combining
(
m
3

)
invariants using clockwise
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rotation, m vectors are created (i.e. abcd, bcda, cdab and dabc in Fig. 3). In the storage
process, one of them is chosen arbitrarily. Then, a hash value is calculated from the
chosen feature vector. Finally, the object ID is stored into the corresponding cell of the
hash table in the hash value.

The storage process finishes after the procedure above is done selecting each feature
point of all the objects to be stored as a point of interest.

For simplicity, in the above explanation, we omit an important factor of LLAH. Be-
cause LLAH creates the feature vectors by combining the information of coordinates of
m neighbors (feature points), it is less robust than GH to the appearance and disappear-
ance of feature points. In order to overcome the weakness, LLAH once chooses n (≥ m)
neighbors, and then chooses m neighbors from the n neighbors. This makes it possible to
perform a robust retrieval with a small increase of computational cost. This is described
in Sec. 3.2.4.

2.2.2 Retrieval process

We explain the retrieval process of LLAH. The initial phase of the retrieval process is
almost the same as that of the storage one.

After feature points are extracted, LLAH calculates feature vectors of the point of
interest as in the storage process. With the illustration of Fig. 3, m vectors are created
as in the storage process (i.e. abcd, bcda, cdab and dabc). Though only one of them is
used in the storage process, all of them are used in the retrieval process. Hash values are
calculated from the feature vectors, and votes for the object IDs are made 1.

The procedure above is done selecting each feature point as a point of interest. The
object ID with the highest vote determines the corresponding object. In the illustration of
Fig. 3, one vote for the object #2 and three votes for nothing are made. Thus, the object
#2 is retrieved. The vote for nothing is caused by an empty cell. The empty cells appear
because a high-dimensional feature vector is employed to calculate a hash value described
in Sec. 3.2.3.

Like GH, the process can quit when the corresponding object is obviously determined,
for example, in the case that the difference between the highest vote and the second high-
est one is large.

3 Primary factors of the performance improvement of
LLAH

Computational cost (processing time) and required amount of memory of LLAH decrease
greatly compared to those of GH. In this section, we discuss four primary factors of it.

3.1 Problems of geometric hashing

Before discussing LLAH, we discuss the problems of GH first. In many practical situa-
tions, GH is unusable because it requires large amount of computation and memory. We

1Storing not only object IDs but also feature point IDs enables us to know the correspondence of feature
points between the query and stored images with a slight increase of computational and memory resources. We
have applied this to a real-time document image retrieval system [5].
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consider three causes.
For the preparation, let N be the average number of feature points in an image. M be

the number of stored images. Let b be the number of bases used in GH. b is determined
by the class of invariants, i.e. b = 2 for a similarity transformation, b = 3 for an affine
transformation, and b = 4 for a perspective transformation.

The first cause is that the computational cost based on the number of feature points
(N ). The original GH [8] requires the computational cost of O(N b+1M) in the storage
process and O(N b+1) in the retrieval process. Required amount of memory is the same
as the required computational cost in the storage process. Therefore, even a modern com-
puter cannot handle only several hundred points per image in practical time. Some vari-
ants of GH which reduce computational cost by thinning out feature points or basis-pairs
to process probabilistically have been proposed. However, such probabilistic reduction
of computational cost cannot avoid reduction of retrieval accuracy because computational
cost and retrieval accuracy are in a trade-off relationship [4].

The second cause is hash collisions. The number of stored entries (sets of an object
ID and a basis-set ID) in the hash table of GH is N b+1M . If an invariant coordinate
system is divided (quantized) into k bins per axis, k b subregions per coordinate system
exist. Therefore, the number of entries in a subregion is N b+1M/kb in average. This is
the same as the number of collisions. This means that one hash value causes as many
as N b+1M/kb votes! Since it is not easy to imagine how much N b+1M/kb is, let us
calculate it when N = 100, M = 100, b = 3 and k = 10. We can find the answer is 107!
Even if k is changed to 100, the value is still as much as 10, 000. This is a major reason
that GH cannot employ even moderate size of N and M in practice. A simple solution to
avoid such enormous computation cost is to increase k. However, this also increases the
possibility that a different bin is selected by a same feature vector by a noise because the
hash table is divided finer. As the result, retrieval accuracy is also reduced.

The third cause is selection cost of the highest vote. GH has N bM bins2 in the voting
table. In order to find the bin with the highest vote, all the bins have to be examined.
Therefore, the computational cost of O(N bM) is required.

3.2 LLAH as the outcome of step-by-step improvements on the
original geometric hashing

In order to reveal the relevance and difference between GH and LLAH, we regard LLAH
as the outcome of step-by-step improvements on the original GH. That is, four improve-
ments on the original GH derive LLAH and resolve the problems mentioned in Sec. 3.1.

3.2.1 Introduction of point of interest and m neighbors

The original GH uses all feature points in an image. We reduces the computational cost
by reducing them. As mentioned in Sec 3.1, probabilistic reduction of feature points
and basis-pairs cannot avoid retrieval accuracy. Thus, we define each feature point as a
point of interest. Besides, only m neighbors of the point of interest are used for calcula-
tion. They reduce computational cost as much as O(mbNM) in the storage process and
O(mbN) in the retrieval process.

2NbM comes from the number of the object IDs (M ) and the number of the basis-set IDs (Nb).
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Note that the most important matter is that the same m points are obtained in the
storage and retrieval processes. Obviously, if the image is taken from an oblique angle,
retrieval accuracy can decrease due to change of m neighbors. This problem is discussed
in Secs. 3.2.4.

3.2.2 Non-probabilistic reduction of invariants

We resolve the first problem mentioned in Sec. 3.1 by reducing the number of invariants.
LLAH attaches great importance to select the same feature points to calculate invariants
in reproducible manner. This enables to decreases computational cost without reducing
retrieval accuracy. In order to realize it, we introduce clockwise order because

clockwise order of feature points around the point of interest is invariant to
geometric transformations.

By introducing the order, selectability of a sequence of feature points is greatly reduced.
As an example, let’s think about choosing two out of three points. Let A, B and C
be the three points. Without introducing order, there are six choices such as AB, AC,
BA, BC, CA and CB. However, by introducing an order like A → B → C which
means AB, AC and BC are allowed to choice, but neither BA, CA nor CB is not. This
decreases six choices to three. And, we can employ the same three choices with the order
(reproducibility).

We explain the procedure of calculating invariants in order-introduced LLAH. Firstly,
m neighbors of the point of interest are selected, and ordered in clockwise. Note that
the beginning of the ordered points can be arbitrarily chosen because we handle only
m points; Testing m possible beginning points increases the computational cost only m
times and a constant growth of the cost is trivial compared to an exponential growth.
Secondly, b + 1 points are chosen form the m points keeping the order. Thirdly, an
invariant is calculated with the arrangement of the b+1 points. Since a (b+1)-combination
taken from the m points is

(
m

b+1

)
,
(

m
b+1

)
invariants are calculated for a point of interest.

The above procedure is repeated by selecting one of N points in an image as a point of
interest. Thus, we have

(
m

b+1

)
N invariants for an image. Finally, the computational cost in

the storage process is O
((

m
b+1

)
NM

)
. This is because

(
m

b+1

)
N invariants are calculated

for each of M objects. The cost in the retrieval process is O
((

m
b+1

)
mN

)
. This is because(

m
b+1

)
N invariants are calculated for each of m beginning points.

For comparison, we explain how many invariants GH calculates. GH calculates invari-
ants by projecting feature points to an invariant coordinate system since the coordinates on
the invariant coordinate system are invariants. Since the dimensionality of the coordinate
system is 2, two invariants for each point are calculated. Thus, the number of calculated
invariants is given as

(The number of basis-sets) × (the number of projected points)× 2.

The number is the same order as the computational cost of a retrieval. That of the original
GH is O(N b)× (N − 1)× 2 = O(N b+1) and that of the method introduced in Sec. 3.2.1
is O(Nmb−1) × (m − b + 1) × 2 = O(mbN). This means that the computational
cost of GH and LLAH is proportional to the number of calculated invariants. Therefore,
we confirmed LLAH reduced the cost since LLAH reduced the number of calculated
invariants.
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3.2.3 Introduction of high-dimensional feature vector

We resolve the second problem mentioned in Sec. 3.1, which is the collision problem.
The problem that many collisions occur in GH comes from low discrimination ability.
As mentioned in Sec. 3.1, the number of stored entries is as many as N b+1M , while
the size of the hash table (the number of subregions) is only k b. Thus, as a solution,
LLAH enhances the discrimination ability by enlarging the size of the hash table. For
the sake of that, the discrimination ability of invariants is also enhanced. Thus, LLAH
combines

(
m

b+1

)
invariants and creates a

(
m

b+1

)
-dimensional feature vector. The alignment

is determined by use of clockwise order. Since each invariant is quantized into k discrete

values, the size of the hash table is as much as k( m
b+1) at most.

We show an actual data that a large size hash table reduces collisions. In the case
that LLAH is applied to a document image retrieval task3，very sparse hash tables were
obtained: only 2.95% of hash bins were nonempty for 1,000 pages (images), and 19.7%
for 10,000 pages. In the nonempty bins, the average number of collisions was less than
two.

Such a sparse hash table contributes to not only reduction of processing time, but
also robust retrieval. As mentioned above, combining the information of feature points
requires a complete match of

(
m

b+1

)
discrete values of vector elements. This can cause

failure of a vote because the probability two feature vectors match is much lower than
the one that two elements of vectors match. Even so, if the hash table is sparse, most of
wrong hash values do not harm due to empty bins.

As a side effect of combining invariants, we have resolved the third problem men-
tioned in Sec. 3.1. Due to high discrimination ability of a feature vector, the basis-set
IDs are no longer required for discrimination. Thus, the form of the voting table has been
changed into the one in Fig. 3. This reduces the computational cost of finding the bin with
the highest vote from O(N bM) down to O(M).

3.2.4 Robustness by using “m neighbors from n neighbors rule”

As mentioned before, a feature vector is weak to disturbances such as the appearance
and disappearance of feature points, and change of skew angle of an image. In order to
overcome the weakness, LLAH once chooses n (≥ m) neighbors, and then chooses m
neighbors from the n neighbors. We call this “m neighbors from n neighbors rule”. The
rule creates

(
n
m

)
possible choices of m neighbors. By employing all of them,

(
n
m

)
times

of feature vectors are created. This makes it possible to perform a robust retrieval because
the probability that the same m feature points (i.e., a feature vector) are chosen in the
storage process and the retrieval process is not 0 even if up to n−m points are lost.

Introducing “m neighbors from n neighbors rule” changes the computational cost

of LLAH to O
((

n
m

)(
m

b+1

)
NM

)
in the storage process, and O

((
n
m

)(
m

b+1

)
mN

)
in the

retrieval process. Though the rule increases computational cost
(

n
m

)
times, a good choice

of n and m does not increase it so much. For example, in the case of n = 8 and m = 7,(
8
7

)
= 8, and in the case of n = 10 and m = 8,

(
10
8

)
= 45.

3An affine invariant was used. The size of the hash table was approximately 227 . n = 7, m = 6, k = 15
were used for parameters.
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4 Discussion

LLAH combines the information of feature points to calculate invariants. There are some
methods which combines the information of feature points. In this section, we compare
LLAH and them to clear the novelty of LLAH.

There are some improved methods of GH which employ other primitive features than
a feature point: a line segment [15] and a chain of connected line segments [13]. The
latter reduces the computational cost more; [13] achieved O(N) for N line segments.
However, a chain of connected line segments is not available for most target objects. The
advantage of LLAH is ability to combine discontiguous feature points in a defined order.

For a robust match of local features, [14] introduces a geometric constraint such that
angles between feature points should be in a range, though it does not use GH. Though
the constraint improves discrimination ability, the angles change under a perspective and
an affine transformation. To the contrary, the constraint of LLAH (i.e., order) is invariant
even if the transformation is a perspective transformation.

5 Conclusion

In this paper, we described the important factors of improving performance of the geo-
metric hashing (GH) in both retrieval speed and required amount of memory. For the sake
of it, we compared GH and locally likely arrangement hashing (LLAH). Consequently,
we obtained four primary factors: (1) introduction of point of interest and m neighbors,
(2) non-probabilistic reduction of invariants, (3) introduction of high-dimensional feature
vector, and (4) introduction of “m neighbors from n neighbors rule.” The most important
one is to use non-probabilistic selection of feature points because probabilistic one cannot
escape from the trade-off relationship between computational cost and retrieval accuracy.

In another aspect, the contribution of this paper is the first detailed analysis of LLAH.
We pointed out that LLAH breaks the thetrade-off relationship and resolves a collision
problem of hashing.

Future work includes an evaluation of robustness of LLAH against disturbances such
as the appearance and disappearance of feature points.
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Abstract

This paper presents a method for detecting categories of objects in real-world
images. Given training images of an object category, our goal is to recognize
and localize instances of those objects in a candidate image.

The main contribution of this work is a novel structure of the shape code-
book for object detection. A shape codebook entry consists of two compo-
nents: a shape codeword and a group of associated vectors that specify the
object centroids. Like their counterpart in language, the shape codewords are
simple and generic such that they can be easily extracted from most object
categories. The associated vectors store the geometrical relationships be-
tween the shape codewords, which specify the characteristics of a particular
object category. Thus they can be considered as the “grammar” of the shape
codebook.

In this paper, we use Triple-Adjacent-Segments (TAS) extracted from im-
age edges as the shape codewords. Object detection is performed in a prob-
abilistic voting framework. Experimental results on public datasets show
performance similiar to the state-of-the-art, yet our method has significantly
lower complexity and requires considerably less supervision in the training
(We only need bounding boxes for a few training samples, do not need fig-
ure/ground segmentation and do not need a validation dataset).

1 Introduction

Recently, detecting object classes in real-world images using shape features has been ex-
plored in several papers. Compared to local features such as SIFT [10], shape features
are attractive for two reasons: first, many object categories are better described by their
shape than texture, such as cows, horses or cups; second, for objects with wiry compo-
nents, such as bikes, chairs or ladders, local features unavoidably contain large amount
of background clutter [1, 13]. Thus shape features are often used as a replacement of, or
complement to local features [2, 6, 17].

One practical challenge for shape features is that they are less discriminative than local
features . To overcome this limitation, several methods have been proposed to use a shape
codebook for object detection [4, 16, 21]. Inspired by these works, we propose a new
structure of the shape codebook for object detection in this paper. In the shape codebook,
the shape codewords should be simple and generic such that they can be reused in different
object categories. The geometrical relationships between the shape codewords specify the
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characteristics of a particular object category. Thus they can be viewed as the “grammar”
of the shape codebook.

In this paper, we explore a local shape feature proposed by Ferrariet al, [4] as the
shape codeword and use theImplicit Shape Model[7, 8] to define the shape grammar.
The shape feature is formed by chains ofk connected, roughly straight contour segments
(kAS). In particular, we usek = 3, which is called Triple-Adjacent-Segments (TAS). A
TAScodebook entry consists of two components. (1) A prototypeTASthat represents a
group of similiarTASs, which is calledTAScodeword. (2) a group of vectors specifying
the associated object centroids, and encode the shape grammar. During detection, we
match eachTASfrom the test image to the codebook. When an entry in the codebook is
activated, it casts votes for all possible object centroids based on the associated vectors.
Finally, candidate object centroids are detected as maxima in the continuous voting space
using Mean-Shift Mode Estimation. The object boundary is then refined as the enclosure
of the matchedTASs associated to the detected object centroid.

The main contributions of this work are:

1. We propose a two-layer structure of the shape codebook for object detection. Sim-
ple and generic shape features are used as shape codewords and geometrical con-
straints are used as the shape grammar. Since the shape codewords are not designed
for specific object classes (e.g., cows, horses, cars), they only need to be learned
once. Then they can be used in all object categories.

2. We seperate the procedures of learning shape codewords and building shape gram-
mar. With a set of learned shape codewords, shape grammar can be learned for a
new object category using a simple nearest neighbor rule. This method significantly
reduces the complexity of the codebook and makes our algorithm more flexible.

The paper is structured as follows. The next section reviews related work. The proposed
algorithm is described and evaluated in Section 3 and Section 4 respectively. Finally,
Section 5 presents conclusions and future work.

2 Related Work

Codebook of local features for object categorization and detection: The idea of learn-
ing a codebook for object categorization and detection has widely been used in approaches
using local features in recent years [2, 3, 5, 11, 15, 19, 22, 24]. One of the key differences
between these algorithms lies in the way the geometric configuration of parts in an object
being exploited. The simple “bag-of-words” model is used in [5, 15, 24], where geomet-
rical constraints among visual words are discarded. Loose spatial constraints are used in
[22] to detect the co-occurence of pairs of visual words within a local spatial neighbor-
hood. A slightly tighter spatial constraint called “spatial weighting” is decribed in [11],
where the features that agree on the position and shape of the object are boosted and the
background features are suppressed. Russellet al [19] encode the spatial relationship
among visual words from the same object using segmentation information. Ferguset al
[2] adopt a parameterized geometric model consisting of a joint Gaussian over the cen-
troid position of all the parts. Translation and scale information is explicitly built in a
pLSA model in [3], and clear improvement using this model is demonstrated on object
classes with great pose variability.
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Codebook of shape features for object categorization and detection: The idea
of learning a codebook has also been explored for shape features [4, 6, 9, 14, 16, 18,
21]. The different approaches employ diverse methods for building the shape codebook
and using the geometrical constraints. Moriet al [14] quantize shape context vectors
into a small number of canonical shape pieces, calledshapemes. Liu et al [9] apply
the “bag-of-words” model to 3D shape retrieval. Neither algorithm stores the spatial
information. Kumaret al cluster outlines of object parts into a set of exemplar curves to
handle variability in shape among members of an object class [6]. A pictorial structure
is employed to represent the spatial relationship between parts of an object. Opeltet al
[16, 18] build a codebook for class-discriminative boundary fragments and use boosting
to select discriminative combinations of boundary fragments to form strong detectors.
Similarly, a fragment dictionary is built by Shottonet al [21]. The differences between
them are: the former requires no segmentation mask while the latter does; the former
uses the spatial relationship between the boundary segments in a model similar to Leibe’s
approach [7], while the latter uses grids. Ferrariet al [4] build a codebook ofkAS using
the clique-partioning approximation algorithm. Compared to the codebooks used in [6,
16, 18, 21], thekAS codebook is generic and not designed for specific object classes (e.g.,
cows, horses, cars). Thus, once a codebook for a particulark has been learned, it can be
used in all object classes.

3 The Algorithm

In this section, we present the details of the proposed algorithm (Figure 1). First, the pre-
processing steps are described in Section 3.1. Then we discuss the approach for building
theTAScodebook in Section 3.2. Finally, Section 3.3 explains how to detect objects in a
test image.

(a) Training

(a) Object Category Detection

Figure 1: An overview flowchart of the proposed algorithm.
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3.1 Detecting and ComparingTASs

TheTASis used as the shape feature in our work. It is a special case of thekAS, which is
formed by a chain ofk connected, roughly straight contour segments. It has been shown
thatkAS is very robust to edge clutter. Since only a small number (k≤ 5) of connected
segments are used, kAS can tolerate the errors in edge detection to some extent. ThuskAS
is an attractive feature compromising between information content and repeatability. In
the work of [4], object class detection is implemented using a sliding window mechanism
and the best performance is achieved whenk = 2.

We choosek = 3 in this work. Ask grows,kAS can present more complex local shape
structures and becomes more discriminative but less repeatable. Ferrariet al [4] point out
thatkAS of higher complexity are attractive when the localization constraints are weaker,
and hence the discriminative power of individual features becomes more important. In
this work, since we do not apply explicit spatial contraints, such as dividing the sliding
window into a set of tiles, it is appropriate to use akAS of higher degree.

The procedure to detectTASs is summarized as follows: first, we detect image edges
using the Berkeley Segmentation Engine (BSE) [12]. The BSE supresses spurious edges
and has a better performance than the Canny edge detector. Second, small gaps on the
contours are completed as follows: every edgel chainc1 is linked to another edgel chain
c2, if c1 would meetc2 after extendingn pixels. Contour segments are fit to straight lines.
Finally, starting from each segment, every triplet of line segments is detected as aTAS.

Let θi , l i = ‖si‖ be the orientation and the length ofsi , wheresi for i = 1,2,3 denote
the three segments in aTAS P. Two TASs Pa andPb are compared using the following
measureD(a,b)

D(a,b) = wθ

3

∑
i=1

Dθ (θ a
i ,θ b

i )+
3

∑
i=1

|log(la
i /lb

i )|, (1)

whereDθ ∈ [0,1] is the difference between segment orientation normalized byπ. Thus
the first term measures the difference in orientation and the second term measures the
difference in length. A weightwθ = 2 is used to emphasize the difference in orientation
because the length of the segment is often inaccurate.

3.2 Building the TAScodebook

Building theTAScodebook consists of two stages: learningTAScodewords and learning
TASgrammar. They are discussed in Section 3.2.1 and Section 3.2.2 respectively.

3.2.1 LearningTAScodewords

The TAScodewords are learned fromTASs in a training image set. First, we compute
the distance of each pair of trainingTASs. Then, we obtain a weighted graphG = (V,E),
where the nodes of the graph are the trainingTASs, and an edge is formed between every
pair ofTASs. The weight on each edge,w(a,b), is a function of the distance between two
TASs Pa andPb,

w(a,b) = exp

(
−D(a,b)2

σ2
D

)
, (2)
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whereσD is set to 20 percent of the maximum of allD(a,b). Then clustering the training
TASs is formulated as a graph partition problem, which can efficiently be solved using
the Normalized Cut algorithm [20].

After obtaining the clustering results from the Normalized Cut algorithm, we select a
TAScodeword,Ji , from each clusteri. TheTAScodeword is selected as theTASclosest
to the cluster center (i.e., it has the smallest sum of distances to all the otherTASs in this
cluster). Each codewordJi is associated with a cluster radiusr i , which is the maximum
distance from the cluster center to all the otherTASswithin this cluster.

Figure 2.a shows the 40 most frequentTAScodewords in the codebooks learned from
10 images in the Caltech motorbike dataset. We can observe that the most frequentTAS
codewords have generic configurations of three line segments. Quantitatively, we com-
pared the codewords from variant datasets and found 90% to 95% of theTAScodewords
are similiar. This confirms that theTAScodebooks are generic. In the following experi-
ments, we apply the codewords learned from the Caltech motorbike dataset to all datasets.

(a) (b) (c)

Figure 2: Examples ofTAScodewords. (a) shows the 40 most frequentTAScodewords
learned from 10 images in the Caltech motorbike dataset. (b) and (c) illustrate the 5 most
frequentTAScodewords (the first column) and their associated members in the clusters
for the Caltech motorbikes dataset and the cows dataset respectively.

3.2.2 LearningTASGrammar

To learn theTASgrammar, we need training images with the object delineated by a
bounding boxes. First, we apply the nearest neighbor rule to quantize theTASs within
the bounding boxes using theTAScodewords. Let’s denoteek a TASandJi the nearest
neighbor in the codebook. TheTAS ek is quantized asJi if D(Ji ,ek) < r i . Figure 2.b and
2.c show the 5 most frequentTAScodewords in two datasets and their associated mem-
bers in the cluster. We found that only less than 2% of theTASsin all datasets can not be
found in theTAScodewords learned from the motorbike dataset. This further confirms
the generality of theTAScodebook.

The TASgrammar is defined using theImplicit Shape Model[7]. For the member
TASs in clusteri of sizeMi , we store their positions relative to the object center(vm,m=
1, ...,Mi). Thus, a codebook entry records the following information:{Ji ;(vm,m= 1, ...,Mi)}.
For simplicity, we might also useJi to denote the codebook entry.

3.3 Detecting Object Category by Probabilistic Voting

The procedure for detecting object category is illustrated in Figure 1.b. First, we match
each test imageTAS ek located atlk to the codebook. A codebook entryJi is declared
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to be matched (activated) ifD(Ji ,ek) < r i . For each matched codebook entryJi , we cast
votes for possible locations of the object centers(ym,m = 1, ...,Mi), whereym can be
obtained fromlk andvm. Then, object category detection is accomplished by searching for
local maxima in the probabilistic voting space after applying Parzen window probability
density estimation. Formally, letxn be a candidate position in the test image andp(xn) be
the probability that object appears at positionxn. Candidate object centersx∗ defined as
follows,

x∗ = argmax
x ∑

xn∈W(x)
p(xn), (3)

whereW(x) is a circular window centered atx. The probabilityp(xn) is obtained by
observing evidenceek in the test image. Thus, conditioned onek, we marginalizep(xn)
as follows

p(xn) = ∑
k

p(xn|ek)p(ek). (4)

Without any prior knowledge onp(ek), we assume it is uniformly distributed, i.e.,p(ek) =
1/K, whereK is the number ofTASs in the test image.

Let S be the set of matched codewords,p(xn|ek) can be marginalized onJi ∈ S

p(xn|ek) = ∑
Ji∈S

p(xn|Ji ,ek)p(Ji |ek) (5)

= ∑
Ji∈S

p(xn|Ji)p(Ji |ek). (6)

After matchingek to Ji , the voting will be performed by members withinJi . Thus
p(xn|Ji ,ek) is independent ofek and Equation 5 can be reduced to Equation 6. In Equa-
tion 6, the first term is the probabilistic vote for an object position given an activated
codebook entryJi , and the second term measures the matching quality betweenJi andek.
The matching quality can be measured in a manner similar to Equation 2

p(Ji |ek) ∝ exp

(
−D(ek,Ji)2

r2
i

)
. (7)

For an activated codebook entry, we cast votes for all possible locations of the object
centersym. Thusp(xn|Ji) can be marginalized as

p(xn|Ji) = ∑
m

p(xn|ym,Ji)p(ym|Ji) (8)

= ∑
m

p(xn|ym)p(ym|Ji). (9)

Since the voting is casted from each individual member inJi , the first term in Equation 8
can be treated as independent ofJi . Then Equation 8 is reduced to Equation 9. Without
prior knowledge ofym, we treat them equally and assumep(ym|Ji) is a uniform distribu-
tion, i.e.,p(ym|Ji) = 1/Mi .

The termp(xn|ym) measures the vote obtained at locationxn given an object center
ym. Since we only vote at the location of possible object centers, we havep(xn|ym) =
δ (xn−ym), whereδ (t) is the Dirac delta function.

Combining the above equations, we can computep(xn) from the evidenceek located
at lk. In order to detect instances of the object category, we search for the local maxima

1025



x∗ in the voting space after applying Parzen window probability density estimation. The
score of these candidates is defined as∑xn∈W(x∗) p(xn). If this score is greater than a
thresholdtscore, we classify this image belonging to the training object category. To obtain
a segmentation of the object instance, we find the testTASs voting withinW(x∗) for an
x∗. Then we obtain a smooth contour from theseTASs using the Gradient Vector Flow
snake algorithm [23]. Also a bounding box is obtained in this procedure for each object
instance. Figure 3 shows some detection examples for the Caltech motorbikes dataset and
the cows dataset.

(a) (b) (c) (d) (e) (f)

Figure 3: Example detection results for the Caltech motorbikes dataset and the cows
dataset. (a) The originial images. (b) The edge maps. (c) The voting spaces and detected
centroids. (d) The backprojectedTASs. (e) The bounding box of the detected objects. (f)
The segmentation

4 Experimental Results

In this section, we evaluate the performance of the proposed algorithm and compare it
to the state-of-the-art algorithms that detect object categories using shape features. If a
test image has a detection score greater than the thresholdtscoreand the overlap between
the detected bounding boxes and the ground truth is greater than 50%, we consider the
detection (localization) correct. By varyingtscorewe can obtain different recall/precision
values. The performance is evaluated in terms of the Recall-Precision Equal Error Rate
(RPC EER). All parameters are kept constant for different experiments.

The training data includes training images with bounding boxes annotating instances
of the object class. Compared to the state-of-the-art, we require the least supervision.
[16, 18] uses training image with bounding boxes and validation image sets that include
both positive and negative images. [4] also requires negative images to train the SVM
classifier. [21] requires segmentation masks for 10 positive training images plus a large
amount of positive and negative images to train a discriminative classifier.

Cows Dataset:We use the same cow dataset as in [16] and compare to their results:
20 training images and 80 test images, with half belonging to the category cows and half
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Table 1: Performance (RPC EER) depending on the number of training images with
bounding boxes (NBB) on the cows dataset and comparison to other published results.

NBB=5 NBB=10 NBB=20

Ours 0.93 0.95 0.96
Opelt [16] 0.91 0.95 1.00

Table 2: Performance (RPC EER) on the cups dataset and comparison to other publised
results.NBB is the number of training images with bounding boxes;NV is the numbers of
validation images.

NBB NV RPC EER

Ours 16 - 0.841
Opelt [16] 16 30 0.812

to negative images (Caltech airplanes/faces). But we do not use the validation dataset
while [16] uses a validation set with 25 positive/25 negative.

The performance is shown in Table 1. We also shows the variation in performance
with the number of training images. The results show that our approach outperforms or
performs as well as Opelt’s when the number of training images is small (NBB = 5,10)
but is outperformed when the number of training image is large (NBB = 20). It shows that
our approach is favorable when there are small number of training images available. The
reason is that theTASfeature is very simple and generic. Thus only a few training images
is sufficient to discover the statistical patterns in the training images. In comparison,
Opelt’s features are more complex and have more discriminative power for a particular
object. Hence more training images are needed to fully exploit their advantages.

Cup Dataset: In this test, we evaluate our approach on the cup dataset used in [18].
We use 16 training images and test on 16 cup images and 16 background images. We do
not use the validation set with 15 positive/15 negative, which is used in [18].

The performance is summarized in Table 2. It shows that we can achieve slightly
better performance than Opelt’s algorithm even we use less supervision in the training.

Caltech Motorbikes Dataset: In this test, we evaluate our algorithm using the Cal-
tech motorbikes dataset [2]. Training is conducted on the first 10 images in this dataset.
Testing is conducted on 400 novel motorbike images and 400 negative images from Cal-
tech airplane/face/car rear/background images.

The experimental results are compared to other publised results on object localization
in Table 3. We also compared the degree of supervision in the training in terms of the
number of variant types of training images. It is shown that we can achieve performance
compariable to Shotton’s method but are slightly worse than Opelt’s. This should be
attributed to the class-discriminative contour segments used by Opeltet al.

Discussion: The advantage of the proposed method lies in its low complexity. The
TAScodewords only need to be learned once. Thus the learning procedure for a new
object category can be reduced to a simple nearest neighbor search for the trainingTASs
and the time-consuming clustering can be skipped. Furthermore, There are a limited
number of possible configurations of three line segments. In our experiments, theTAS
codebook has 190 entries. Ferrariet al [4] reported aTAScodebook with 255 entries
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Table 3: Comparison of the proposed algorithm to other publised results on the Caltech
motorbikes dataset. Column 2 through 5 are the numbers of variant types of training
images:NS for images with segmentations;NU for images without segmentations;NBB

for images with bounding boxes;NV for validation images.
NS NU NBB NV RPC EER

Ours - - 10 - 0.921
Shotton [21] 10 40 - 50 0.924
Opelt [16] - - 50 100 0.956

because they used more complex descriptors. Nevertheless, the number of the shape
codewords is bounded, rather than increasing linearly with the number of class categories
as in the codebook used in [18, 16].

5 Conclusion

We have presented a two-layer structure of the shape codebook for detecting instances of
object categories. We proposed to use simple and generic shape codewords in the code-
book, and to learn shape grammar for individual object category in a seperate procedure.
This method is more flexible than the approaches using class-specified shape codewords.
It achieves similiar performance with considerable lower complexity and less supervision
in the training. And thus it is favorable when there is a small number of training images
available or the training time is crucial.

Currently we are investigating methods to combine several shape codewords in the
voting. We will also try other clustering methods, e.g., k-means, aggolomerative cluster-
ing, etc., and compare theTAScodebooks to those used in this paper. Finally we plan
further evaluation of the proposed method in more challenging datasets and over more
categories.
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Abstract

We propose a new methodology to partition a natural image into regions
based on the shock graph of its contour fragments. We show that these re-
gions, or shock patch fragments, are often object fragments, thus effecting a
partial segmentation of the image. We utilize shock patch fragments to rec-
ognize objects with dominant shape cues eliminating the need to segment out
the entire object from the image first. Our preliminary results with minimal
training are promising with respect to the state of the art recognition systems.

1 Introduction
There has been a paradigm shift in computer vision in the past decade moving away
from relying on fully segmented images for recognition and other visual tasks, to using
a collection of features that capture appearance and shape in a small area. The key point
underlying this paradigm shift is the availability of a new generation of feature detectors
such as Harris-Affine, Harris-Laplace and others [15] and a new generation of feature
descriptors such as SIFT [13] and others [14] that are more stable to viewpoint variation,
lighting change, etc. The main idea is that while these features may not remain present
under all variations, given the sheer number of features, the common presence of a few
discriminative features can discriminate between the presence or absence of a particular,
previously observed object in an image.

In contrast to object instance recognition, generic object recognition, where the intra-
category type variations must in addition be accounted for, has proven to be more chal-
lenging. Approaches to generic object recognition which are based on key feature de-
tectors and descriptors span a continuum between two extremes. On one extreme, the
spatial relationship between parts is represented such as in the constellation model [6, 4]
and the k-fan model [3], and these are referred to as “part-based” models. On the other
extreme which completely discards the spatial relationship, the approach relies on an un-
organized collection of features which are coded in a lower dimensional vocabulary of
visual words, or a codebook of appearance parts common to a collection of images, and
are known as “bag of words” models. The former “part based” approach is faced with a
combinatorial search arising from an exponential number of correspondences. The “bag
of words” approach avoids the combinatorial difficulties [29, 5, 28, 35], but is more brittle
to situations when some of the features have been removed, e.g., due to partial occlusion.
In approaches between these extremes, the geometric relationships between neighboring
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features is modeled using specified geometric transformations [21, 22, 33], or using lose
pairwise relationships [1, 34].

The success of the above approaches indicates the significance of the role of appear-
ance in discriminating the presence or absence of objects in typical scenes where bottom-
up segmentation could not conceivably segment figure from ground. However, these ap-
proaches are also limited in several significant ways. The chief drawback is that stable
key features are not always available to the degree of abundance that the approach relies
on. For example, the intensity variation in the interior of an object viewed in low lighting
condition, e.g., a cow at dusk/dawn, or equivalently against bright backgrounds, e.g., a
bird against a bright sky, is too limited to produce reliable key features. In this case the
silhouette is a more reliable cue for recognition. As another example, objects especially
man-made objects, may feature large homogeneous and therefore featureless areas. Sim-
ilarly, cartoons, sketches, and line drawings which are readily recognizable would have
no appearance-based key features. In these cases, the edge content is the sole information
source for recognition. Finally, objects in low resolution imagery, e.g., aerial video im-
ages of vehicles, where the total extent of the object is of the same order as that required
for feature descriptors (25x25) [19], cannot be recognized using this approach.

A second short coming of the use of appearance-based key features for recognition is
that the role of appearance may become severely diminished as the size of the database
grows. This happens when the type variation increases the range of appearances on object
category captures. For example, in recognizing bottles and cups, the surface markings are
simply too varied to be useful [17]. In this case, the edge content of the silhouette and
of the internal markings consistent across the category become the primary source of
information for recognition.

A number of recent approaches to object recognition rely on the edge content of cat-
egory, as represented in an unorganized edge map, or in a collection of curve fragments.
As an example of use of edge maps in recognition, Belongie et al.’s [2] shape context
approach assigns a signature to each edge representing the radial-polar histogram of other
edges. This signature is sufficiently discriminative to enable correspondence and a sim-
ilarity score after an image transformation. As an example of an approach relying on
contour fragments, Nelson and Selinger [16, 24], motivated by the cubist approach to
evoking the visual percept of form from a few fragmentary cues, modeled contour frag-
ment maps by a collection of local context patches (21x21) which are normalized for size
and orientation with respect to a centrally placed key curve. Fergus et al. [7] use segments
of extended edge chains lying between bitangent points in their constellation model. Ku-
mar et al. [12] used contours as a component in a graph-based pictorial structures. In
the Boundary Fragment Model (BFM), a boundary fragment codebook is constructed by
clustering those which are highly class-distinctive and predictive of the object centroid
over a set of training data [17, 25].

A significant disadvantage of the above approaches is that either the relative spatial
distribution of various contour fragments in an object is ignored altogether, or it is cap-
tured through the mediation of an object model, e.g., requiring an object centroid. The
lack of the relative spatial relationship among contour fragments restricts the discrim-
inability of each fragment. The requirement of an object model to mediate the spatial
relationship between fragments renders the approach sensitive to partial occlusion. For
example, if only the head of a horse or a cow is visible, individual contour fragments
for the head can match a large number of fragments from other objects, an effect which

1031



Figure 1: Top row illustrates how the shock graph of a horse is optimally transformed to the shock
graph of a cow (colored edges are matching and the thinner black edges are editted out). While for
segmented images this can be done with a polynomial time algorithm, the algorithm for matching
the shock graphs in the bottom row is NP-complete (blue: boundaries, red: shock graphs).

becomes more significant as the size of the database increases. The spatial relationship
among pairs of contour fragments on the head, on the other hand, make the joint-pair of
fragments highly selective.

The main goal of this paper is to use the joint representation of a pair of contour
fragments for recognition. The medial axis is a structure for the joint representation of
pairs of contour fragments and our paper is focused on the use of this structure in the form
of a shock graph as described below. The only previous work which takes advantage of
pairs of contour fragments in such a “localized” sense is that of Jurie and Schmid [9]
where edges are detected at multiple scales and annular regions are rated for the extent of
significant non-accidental edge support on a wide range of angles around the region, see
also [10]. The annular regions are localized over position and scale and used as distinctive
and discriminative shape features. However, these shape features do not make use of the
geometry of the curve fragments beyond the presence or absence in the small portions
falling in the thin annular regions.

Our work builds on the success of shock graphs as a representation for generic object
recognition from segmented images [23, 27]. Shock graph is a variant of the medial axis
of the contour map of an image and it is obtained by viewing the medial axis as the lo-
cus of singularities (shocks) formed in the course of wave propagation (grass-fire) from
boundaries [11, 26, 32]. The resulting shock graph is a richer descriptor of the contour
map than the medial axis graph and it is a good intermediate representation since its nodes
and edges signify presence of contour pairs and triplets, gaps and T-junctions. Loops in
the graph signify groups of edges. See Figure 2c and 3c for example shock graphs of
two contour sets. The use of the shock graph captures much of the intra-class object vari-
ability since articulation and metric variations in the part shape often leave the structure
intact, while partial occlusion only affects parts of it. Those changes that lead to structural
changes in the shock graph are captured in the context of considering deformation paths
encoded by shock transitions. The precision-recall rates for large number of categories
is excellent [23]: for a database of 1032 shapes roughly organized in 40 categories, the
leave-one-out recognition rate is at 97% and drops to 82% for the last member of the
category.

Generalizing the above approach from recognition of objects in segmented images to
those in real images requires first that edge maps be represented by a shock graph, and
furthermore that perceptual grouping operations, like removing an edge from the map or
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closing a gap, be represented as a sequence of shock transitions, e.g. as described in [30].
The key difficulty is that the shock graph which for segmented images is a tree and which
therefore leads itself to a polynomial-time edit distance algorithm, Figure 1, is no longer
a tree due to the presence of spurious edges and gaps. Thus, matching two shock graphs
faces combinatorial explosion in the search space and becomes NP-complete. This is very
much similar to the combinatorial search space of constellation models, which limits its
use to simpler models. In a similar vein, the complexity of the shock graph edit-distance
algorithm for edge maps in real images motivates the recognition of smaller portions of
objects, or object fragments. Our approach, therefore, probes the presence of an object in
a limited portion of the shock graph, as determined by a collection of subgraphs. Each
shock subgraph models a patch of the image which we refer to as a shock patch fragment.
The recognition of these object fragments is the basis of our approach to object category
recognition. While the use of shock object fragments based on “shock patch fragments”
enables the use of both shape and appearance cues, we focus on shape features in this
paper. However, it is not difficult to construe how a region descriptor of the sort used for
key feature description can be used for shock patch regions to augment the shape aspects
with appearance.

The paper is organized as follows. Section 2 describes how an edge map is processed
to produce a collection of contour fragments from which a shock graph is obtained, Fig-
ures 2 and 3. In Section 3, we explain extraction of shock patches and show examples. In
Section 4 we describe the procedure to match shock patch sets for object recognition and
we report our results on object detection task in Section 5.

2 Contour Fragments
The success of any method based on shock graphs of curve fragments heavily depends on
the reliability and stability of image contours. We now explain the processing stages of
our approach: edge detection, edge linking, and perceptual grouping.
Edge Detection and Edge Linking: We use a pair of recently proposed edge detection
and edge linking algorithms [31] which robustly extract well-localized sub-pixel edges
and stably links these into curve fragments. For edge detection, it advocates the use of a
third-order edge detector with an extremely low threshold, to get as many edges as possi-
ble so that the linking stage has enough options to choose from. Since the low threshold
creates many spurious curve fragments, we prune these after linking by thresholding a
measure consisting of both length and color contrast in the LAB space as used in [20],

Ca = 1− e
−||µR+−µR− ||

γapp (1)

where µR+ and µR− are the mean colors of regions on either side of the curve fragment,
and ||.|| is the L2 distance in R3. We set γa = 14. If a color image is not available
we find the L1 distance of the appearance means. Figure 2b and 3b shows the curve
fragments resulting from this process using a length threshold of 2 pixels and a color
contrast threshold of 0.5 with a support region width of 5 pixels.
Gap Closure: The shock graph of the resulting curve fragments is computed using the
method in [30], see Figures 2c and 3c. There are numerous gaps and spurious curve
fragments which interfere with the process of forming shock segments correspond to ob-
ject fragments. The shock graph provides a clue to the existence of these elements and
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(a) (b)

(c) (d)

Figure 2: (a) An example image; (b) Curve fragments after pruning based on length and color
contrast; (c) Shock graph of the curve fragment set (d) Curve fragments after the gap transform
where the fragment set is shown in green and the gap completions in yellow.

transformations of it can be used to effect gap closure (gap transform) and the removal
of spurious elements (loop transform). Specifically, observe that waves propagating radi-
ally from curve-ends meet, they form degenerate shocks in the shock graph, when they
meet with normal waves propagating parallel to the contours, they form semi-degenerate
shocks [8]. These edges signify gaps and possible T-junctions, respectively, in the curve
fragment map of the image. See Figure 4a for an example of each kind. The gap transform
is based on closing gaps and forming T-junctions by considering each case as rank-ordered
by a measure reflecting both (i) good contour continuity and (ii) appearance discontinuity.
The results are shown in Figures 4c, 2d and 3d.

3 Shock Patch Extraction
We now explore the notion of forming recognizable and stable image fragments which
in effect are hypotheses for partial segmentations of the image. Assuming that the frag-
ments have detectable boundaries, they must be anchored on curve fragments. Since a
single curve fragment is not sufficiently distinctive, multiple contour fragments should be
used to define image fragments. Since each pair of adjacent contour fragments give rise to
a shock segment, selecting shock subgraphs provides a mechanism for selecting a group
of curve fragments. Specifically, given a particular node in the shock graph, we traverse
neighboring nodes in a depth-first manner to extract subgraphs at various depths. Since
each shock segment typically describes a pair of curve fragments and the portion of the
image in-between, we refer to this as a visual fragment Figure 5a, the shock subgraph de-
scribes an image fragment, which we refer to as the shock patch fragment, Figure 5e. The
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(a) (b)

(c) (d)

Figure 3: The same steps in Figure 2 are shown for another horse image.

(a) (b) (c)

Figure 4: (a) Image curves shown in green and shock graph in red (b) D, E and A are degenerate
edges, suggesting the closure of (i-j), (j-i) and (i-k) respectively. B and C are semi-degenerate edges
suggesting to form a T-junction from k to the contour. (b) Completion curves in blue after the gap
(i-j) is closed and a T-junction is formed based on the closure criteria.

boundary of this region is partially detected curve fragments shown in blue in Figure 5d,
and partially by virtual contours imposed by end-nodes, shown in yellow. Figure 6a shows
four subgraphs of increasing depths for a selected node on a real image example. Observe
that when the subgraph contains a loop, e.g. due to a spurious edge, the fragment bound-
ary does not contain this inner boundary, effectively removing it from consideration.

The shock patch fragments then consist of an outer contour as well as an appearance
of the inner region. Each shock graph node produces shock patch fragments at all depths
1,2, etc. This collection of shock patch fragments is highly redundant, since adjacent
nodes produce very similar fragments and since fragments from the same node but at dif-
ferent depths are similar. Furthermore, low-depth patches are often not very informative.
Therefore, we subsample depths (d1,d2, . . . ,dn) = (6, 9, 12, 15, 18), and use the extent of
overlap to remove similar patches generated by nearby nodes. All patches with 80% or
more overlap are considered equivalent, and represented by the patch with the highest ap-
pearance contrast. This reduces the number of fragments from thousands to about 30-100
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(a) (b) (c) (d) (e)

Figure 5: (a) Visual fragment (b) A simple shape with boundaries in green and shock graph in red
(c) A subgraph at depth 1 (d) Induced boundaries in blue, virtual boundaries in yellow (e) Shock
patch fragment.

(a)

(b)

(c)

Figure 6: (a) Shock subgraphs at depths 1, 2, 3 and 4, respectively. The shock graph is shown in
red and the subgraph in light green, image boundaries are shown in green, shock patch boundaries
in blue. (b) shows the simple closed boundary in blue traced from the outer face of the subgraph.
(c) Four shock patch fragments.

per image, as shown for the horse examples of Figures 2 and 3 in Figure 7.

4 Object Matching and Detection using Shock Patches
Shock patch fragments can depict either object fragments, effectively implementing a par-
tial figure-ground segmentation, they can be pieces of the background, or object combined
with the background, for example in Figure 7 some fragments depict meaningful object
parts, e.g., the horse head, limb, torso, etc., while others do not clearly map to a distin-
guishable part. When we compare the two horse images, we do not expect any similarities
between the second type of fragments, while we do expect some similarity between the
head, limb, torso etc. between the two sets, and this can be confirmed in Figure 8.

Our approach therefore relies on finding similar fragments between the two sets. Frag-
ment similarity can be measured by comparing the shape and appearance of the two frag-
ments. As tempting as it is, we have excluded appearance from our current fragment
similarity measure, both to explore the limits of a shape-based measure, and also because
fragment appearance similarity is very well explored elsewhere in the patch-based object
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Figure 7: Example patches with depths (6, 9, 12, 15, 18) from the example horses. Observe that
all major body parts are covered.

recognition work in the form of local descriptors [14]. We expect that the addition of
appearance would improve our recognition results.

Fragment shape similarity should be measured using an algorithm that is robust against
occlusions. This is because one can view the fragments as partial occlusions of the fig-
ure, i.e., when a horse’s torso is compared to a horse. In addition, it must capture intra-
class shape variations very well. We therefore use the approach proposed by Sebastian
et al. [23] which uses an edit-distance algorithm based on shock transitions [8] which
handles both well. Figure 8 shows some example matches and non-matches.

5 Results
We propose an object detection and classification algorithm using only a few segmented
object images as the training set (one in the case of this paper). We tested our system
on the Horse-side class used in [18] consisting of 88 horse images and 88 background
images. First, to explore the strength of the matching algorithm we used a single shock
patch obtained from the silhouette mask of one of the images as the training set, shown
in the second row of Figure 8. We matched all the test image patches to our model patch
and declare a detection if top 3 matches are below a given similarity threshold and return
the detection box to be the union of top 3 image patches. See Figure 8 for the top 5
matches of some test images. An object is deemed correctly detected if the overlap of
the bounding boxes (detection vs ground truth) is greater than 50%. Our recall with best
threshold settings is 75% with a precision of 85%. There are two reasons for the low recall
rate, one is the use of a single model leading to large deviation, e.g. as the pose varies,
and the other is that the partial matching of a single fragment to a full model degrades as
the ratio of fragment area to the full model decreases. Observe from Figure 8 bottom row
that the head of the example horse is correctly matching to the head of the training image

1037



(a)

(b)

(d)

model patches Match 1 Match 2 Match 3 Match 4 Match 5

(c)

(e)

Figure 8: This figure illustrates the similarity between the model horse (a) fragments to fragments
from two other horse images (b, c), as measured by the shock graph edit distance [23]. The detection
boxes outputted by our system are superimposed on the test images shown in (b, c).

despite the pose difference, but there is not sufficient shape content to match against a full
model. This motivates replacing the model by the model shock patch fragments. With
this modification and the constraint that at least two model patches’ top 3 matches should
be within the similarity threshold, recall rate at the best threshold settings increases to
92%, with 85% precision. This second test image is classified correctly in this setting.

In conclusion, we have presented a shape based object detection and classification
system which does not require involved training/learning stages and which has promising
results on a difficult test set. These results can be improved by making use of spatial
constraints which are naturally imposed by the shock topology of the training image, e.g.,
head patch should be detected in correct relative position and orientation with respect to
the torso patch e.t.c. Technical enhancements such as the implementation of the loop
transform to further clean the curve fragment set, the inclusion of a few more training
examples, and the use of appearance in the fragment similarity computation, all should
lead to improvements in the recognition rate. Our main contribution in this paper is to
present a novel method to generate fragments of images and illustrate their use in a generic
object recognition and detection task.
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Foundation under Grant No. 0413215.
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Abstract

Building on recent work by others that introduced RBFs into level sets
for structural topology optimisation, we introduce the concept into active
models and present a new level set formulation able to handle more complex
topological changes, in particular perturbation away from the evolving front.
This allows the initial contour or surface to be placed arbitrarily in the image.
The proposed level set updating scheme is efficient and does not suffer from
self-flattening while evolving which will cause large numerical error. Unlike
conventional level set based active models, periodic re-initialisation is also
no longer necessary and the computational grid can be much coarser, thus, it
has great potential in modelling in high dimensional space. We show results
on synthetic and real data for active modelling in 2D and 3D.

1 Introduction
The application of the level set method [7] to the active contour model has enabled the
latter to adapt to complex topologies. It avoids the need to reparameterise the curve and
the contours are able to split or merge in order to capture an unknown number of objects.
However, the original level set based active contour [1] proved to be of limited use in
real applications as it assumes that contours reach the object boundaries at roughly the
same time. Thus, it often suffers from weak edge leakage. The development of improved
external forces, in particular region based methods, such as [10, 8], have greatly improved
the performance of level set based snakes. They are generally less initialisation dependent
and exhibit better ability in handling textures and image noise interference. Among many
others, some realised, practical applications can be found in [10, 9].

The extension of the active contour model into the active surface model is relatively
straightforward due to their implicit representation in the level set scheme. However, this
implicit representation embeds the contour or surface into a higher dimensional space
which needs to be updated iteratively as a whole, becoming more computationally expen-
sive than traditional parametric approaches. The evolution of the embedded contour or
surface is solved using partial differential equations (PDEs) which in most cases involves
costly finite difference methods (FDM).

More importantly, in conventional level set methods, active contours or surfaces are
not able to create topological changes away from the zero level set where the deformable
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contours or surfaces are embedded [9, 11]. This means, for example, that the level sets
would miss holes inside objects. In order to accurately solve the associated PDEs using
FDM, a local method, it requires the implicit function to be smooth and maintained to be
so while evolving. Thus, re-initialisation is usually necessary in order to achieve numer-
ical stability. Although alternative methods without re-initialisation are available, they
often require dedicated extension of the speed function defined on the contour.

As a primary interpolation tool, radial basis functions (RBFs) have received increas-
ing attention in solving PDE systems in recent years. For example, Cecil et al. [2] used
RBFs to generalise conventional FDM on a non-uniform (unstructured) computational
grid to solve the high dimensional Hamilton-Jacobi PDEs with high accuracy. Very re-
cently, Wang et al. [11] interpolated level set functions using RBFs and transformed the
Hamilton-Jacobi PDEs into a system of ordinary differential equations (ODEs) for struc-
tural topology optimisation in 2D.

In this paper, we adapt the approach presented for structure design in [11] to apply to
active modelling and show how our proposed model greatly enhances the performance of
active models. Following [11], we interpolate the initial level set function using RBFs and
treat the implicit contour/surface propagation as an ODE problem, which is much easier
and more efficient to solve. However, the updating scheme proposed in [11] was found to
be unsuitable for active modelling. A simple yet effective normalisation scheme is pro-
posed to resolve this issue. This new active model exhibits significant improvements in
initialisation invariancy, convergence ability, and topology adaptability. The initial con-
tour or surface is embedded into an implicit function derived from the distance transform
in the way same as the conventional level set approach. However, we then interpolate
it using RBFs which can be placed on a much coarser grid. The interpolation is char-
acterised by its expansion coefficients. Thus, deforming the original implicit function is
achieved by updating the expansion coefficients. Re-initialisation is found no longer nec-
essary and perturbation away from the zero level is allowed to obtain more sophisticated
topological changes. The contour or surface can therefore be initialised anywhere in the
image. We show an implementation of this RBF level set method in a region based active
contour model. The extension of this method to 3D on synthetic data is also demonstrated.

Notably, very recently in [5], Morse et al. placed RBFs at contour landmarks to
implicitly represent the active contour, thereby avoiding the manipulation of a higher
dimensional function. However, the method requires dynamic insertion and deletion of
landmarks which is non-trivial. Similar to the parametric representation, the resolution
and position of the landmarks can affect the accuracy of contour representation.

In the next section we present a brief review of the conventional level set method,
RBF interpolation, the proposed RBF level set evolution, and its application to a region
based active contour model. The extension to 3D is presented in Section 3. Conclusions
and future work are discussed in Section 4.

2 Proposed Method
2.1 Level Set Representation
Using level sets [7], a contour or surface is implicitly represented by a multi-dimensional
scalar function with the moving front embedded at the zero level set. Let C and Φ denote
the moving front and the level set function respectively. The relationship between these
two can be expressed as: C = {x|Φ(x) = 0} where x ∈ R

n, and subject to Φ(x) > 0 for

2
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x inside the front and Φ(x) < 0 for x outside. This representation is parameter free and
intrinsic. Considering the front (contour or surface) evolving according to dC/dt = FN
for a given function F (where N denotes the inward unit normal), then the embedding
function should deform according to ∂Φ/∂t = F |∇Φ|, where F is computed on the level
sets. By embedding the evolution of C in that of Φ, topological changes of C, such as
split and merge, are handled automatically.

The level set function is commonly initialised using the signed distance transform
and its evolution numerically solved using FDM with the upwind scheme [7]. The nu-
merical error using this local approximation method may gradually accumulate and can
contaminate the solution. Thus, periodic re-initialisation of the level set function is usu-
ally applied to maintain numerical stability. The conventional level set method generally
prevents topological changes taking place away from the developing front which restricts
other forms of topological changes, such as developing holes inside objects. The method
presented here will allow the level set contour or surface to deal with regions away from
the evolving front by initiating new fronts in the level set and thus capture holes or inner
boundaries of objects. This makes the active contour or surface framework not only much
more successful but also initialisation invariant.

2.2 RBF Interpolated Level Set Function
Similar to recent works by Cecil et al. [2] and Wang et al. [11], we interpolate the level
set function Φ(x) using a certain number of RBFs. Each RBF, ψi, is a radially symmetric
function centred at position xi. Only a single function ψ is used to form this family of
RBFs. The multiquadric spline, found to be one of the best for RBF interpolation [3] is
used here, with the RBFs then written as:

ψi(x) = ψ(||x− xi||) =
√

(x− xi)2 + c2i , (1)

where ci is usually treated as a constant for all RBFs. The interpolation is expressed as:

Φ(x) = p(x) +
N∑

i=1

αiψi(x), (2)

where N denotes the number of RBFs, αi are the expansion coefficients of the corre-
sponding RBF, and p(x) is a first-degree polynomial, which in the 2D case can be written
as p(x) = p0 + p1x + p2y.1 To ensure a unique solution to this RBF interpolation, the
expansion coefficients must satisfy

∑N
i=1 αi =

∑N
i=1 αixi =

∑N
i=1 αiyi = 0. These

N number of RBFs are uniformly distributed in the domain and their centre values, de-
noted by f1, ..., fN , are given by the level set function. The RBF interpolant then can be
obtained by solving the following linear system:

Hα = f , where H =
(

A P
PT 0

)
, (3)

α = [α1 · · · αN p0 p1 p2]
T
, f = [f1 · · · fN 0 0 0]T ,

and Ai,j = ψj(xi), i, j = 1, . . . , N , Pi,j = pj(xi), i = 1, . . . , N, j = 1, 2, 3, and pj are
the basis for the polynomial. Thus, the RBF interpolation of the level set function in (2)

1For simplicity, we present the solution in 2D. Its solution in higher dimension is straightforward.
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can be written as:
Φ(x) = ΨT (x)α, (4)

where Ψ(x) = [ψ1(x) · · · ψN (x) 1 x y]T .

2.3 Active Modelling using RBF Level Set
As stated in Section 2.1, the deformation of the active contour is achieved by propagating
the level sets along their normal directions according to a localised speed which is usually
image dependent. It can be expressed as the following PDE:

∂Φ
∂t

+ F |∇Φ| = 0, (5)

where F is the speed function along the normal direction. Unlike the conventional level
set method, here we have a level set function interpolated by RBFs. Following [11], we
assume that time and space are separable and the time dependence of the level set function
is now due to the RBF interpolation, i.e. the expansion coefficients. Updating the level set
function is now considered as updating the RBF expansion coefficients. In other words,
the expansion coefficients become time dependent: Φ = ΨT (x)α(t). Thus, the level set
updating function (5) can be re-written as:

∂Φ
∂t

+ F |∇Φ| = ΨT dα

dt
+ F |(∇Ψ)T α| = 0. (6)

This indicates the original PDE problem can now be treated as an ODE problem. The
spatial derivative∇Ψ can be solved analytically using the first order Euler’s method, also
adopted in [11]. Substituting (3) into (6) we have,

H
dα

dt
+ B(α) = 0, (7)

where

B(α) = [F (x1)|(∇ΨT (x1))α| . . . F (xN )|(∇ΨT (xN ))α| 0 0 0]T (8)

The solution can be obtained by iteratively updating the expansion coefficients:

α(tn+1) = α(tn)−∆tH−1B(α(tn)). (9)

The updating of the level set function starts from interpolating its initial state using
RBFs. As usual, the initial level set function is obtained from the signed distance trans-
form. Then RBFs are uniformly spread across the domain and the interpolation takes
place which gives us the initial value of the expansion coefficients, α. The interpolated
level set then is evolved according to (9) and (2). Unlike conventional level set approaches
where the upwind scheme [7] is often used and re-initialisation is applied to maintain
numerical stability, the coefficient updating is much simpler and efficient and does not
require re-initialisation.

Although (9) has been proven useful in structure optimisation in [11], a direct appli-
cation of this updating scheme was found to be unsuitable for active contour models. An
example is given in Fig. 1 where a circular shape is embedded in an initial level set func-
tion. A constant force is applied to this active contour, i.e. F is a constant. This force

4
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Figure 1: Updating RBF level set using non-normalised and normalised schemes - first
row: Non-normalised scheme; second row: proposed normalised scheme.
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Figure 2: Updating the RBF level set using non-normalised and normalised schemes -
first row: Non-normalised scheme; second row: Proposed normalised scheme.

expands the contour outwards which should generally lift the level set function. However,
as shown in the first row, the top of the level set function becomes stationary and grad-
ually turns into a flat surface. This is due to the gradient values of the RBF interpolated
level set at those points being close to zero (|(∇ΨT (xi))α| → 0) and based on (8) and
(9) the expansion coefficients at those places would evolve much slower. As a result, the
level set function tends to get flattened and this is undesirable when topological changes
should be taking place. See for example in Fig. 2 where two circles are expanding due
to the same constant force. The valley in the level set function is affected and introduces
numerical artifacts, and finally contaminates the solution as shown in the last image in the
first row, indicated by the highly irregular spikes in the level set function. Special care is
thus necessary, for example using dedicated velocity extension.

Fortunately, in active contours the direction of the speed along the normal has dom-
inant effect on the final segmentation, not its magnitude. Since the gradient of the level

5
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Figure 3: More complex topological changes are readily achievable - first row: initial
snake and recovered shape using conventional level set method; second row: recovered
shape using proposed method. The final images in both rows show the stabilised results.

set function is generally smoothly varying, a simple yet highly effective solution can be
devised to solve this problem. We modify the speed function by “normalising” it against
the local gradient estimated from the RBF interpolants, i.e.

F ′(xi) =
1

|(∇ΨT (xi))α|
F (xi). (10)

Note that due to this global modelling using RBFs, the gradient is dependent on all the
RBF centres across the domain, instead of local neighbours. Thus, the gradient near the
advancing front is unlikely to be zero, i.e. this normalisation will be unlikely to disturb
the developing front. Eq. (8) then simplifies to:

B(α) = [F (x1) . . . F (xN ) 0 0 0]T . (11)

Updating the expansion coefficients and hence the level set are now even simpler and more
efficient. The second row in Fig. 1 shows the results using the normalised approach.
The level set function does not get flattened while updating the expansion coefficients.
Topological changes, for example merging shown in the second row in Fig. 2, can be
conveniently handled, in contrast to the non-normalised scheme (shown in the first row).

One of the main advantages of using a RBF interpolated level set to represent an active
contour is that more sophisticated topological changes, besides merging and splitting, can
be readily achieved. Let F be a region indication function, i.e. F < 0 for points inside
an object of interest and F > 0 for the rest. In Fig. 3, the object of interest is shown
in dark gray, and the initial snake is drawn in white. The snake using the conventional
level set scheme with re-initialisation failed to recover the hole in the object as periodic
re-initialisation prevents it from doing so. The proposed RBF based level set method suc-
cessfully recovered the shape without dedicated effort in monitoring the front propagation.
This occurs because the proposed method uses RBF interpolants to estimate the level set
gradient, a global estimation instead of a local one. Front propagation is then unlikely to
introduce oscillation around the zero level set. Thus re-initialisation is not necessary to
maintain stability. The proposed RBF expansion coefficients updating scheme prevents
other level sets, away from the evolving front, from flattening themselves so that these
level sets are sensitive enough to sufficient gradient changes for the RBF interpolated
front to grow new fronts (i.e contours or surfaces).
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Figure 4: Comparative result on real image - first row: Segmentation result using con-
ventional level set with the initial snake forced to shrink; second and third rows: Results
using proposed RBF level set method.

2.4 A Region Based Active Contour Model using RBF Level Sets
We now present a region based active contour model as a demonstration of the proposed
RBF level set method. As mentioned earlier in Section 1, region based methods gener-
ally perform better in the presence of weak edges and image noise interference. More
importantly in relevance to this work, region based methods are considered much less
initialisation dependent. There are two classes of popular region based approaches. One
is based on the well-known Mumford-Shah formulation [6], where the contours compete
with each other while preserving the piecewise constant assumption. The other, such as
the works in [10, 8], globally model the image data and the active contour evolves to
maximise its posterior. We opt for the second approach and model the image data using
Gaussian Mixture Models (GMM). Note we are not advocating a region based approach
or this particular GMM based method, but we employ these to demonstrate the perfor-
mance of our proposed RBF level set method. Our aim is to give a comparative study of
the proposed RBF level set method with the conventional level set approach in the same
active contour framework.

The colour (or intensity) histogram of a given image is modelled using GMM. Each
pixel is then assigned posterior probabilities for each class. Let u denote the posterior
probability of the class of interest. The GMM region based active contour can be formu-
lated as:

dC

dt
= (1 − 1

m
)uN , (12)

where m is the number of classes and 1
m is the average expectation of a class probability.

Its level set representation takes the following form:

∂Φ
∂t

= (1− 1
m

)u|∇Φ|. (13)
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Figure 5: Comparative result on real image - first row: Segmentation result using conven-
tional level set; second and third rows: Results using proposed RBF level set method.

For simplicity we ignore the internal contour regularisation terms, but use the image de-
pendent force term alone to deform the active contour. The contour is supposed to expand
and shrink to maximise the posterior of the regions of interest. With the proposed method,
new contours can even grow out in regions away from existing contours, which is not
possible for the conventional level set approach. Equally importantly, the initial contour
can be forced to vanish from the image domain while newly appearing fronts are able to
localise the regions. This gives significant improvement in initialisation invariancy and
achieves global minimum, instead of local minimum (as demonstrated earlier in Fig. 3).

Fig. 4 shows the comparative results of the GMM region snake using the conventional
level set approach (top row) and the proposed RBF level set method (rows 2 and 3). The
initial snake was placed outside the object of interest and was forced to shrink. The con-
ventional method failed to localise the object while the proposed method succeeded by
growing out new contours inside the object. In this case, the conventional method requires
the initial snake to be specifically placed overlapping or inside the object. Another exam-
ple is given in Fig. 5, where multiple regions exist. The proposed method could localise
all the regions that were indicated by the function u, while conventional level sets could
only capture those that the initial contour had touched.

3 Extension to 3D
Similar to the conventional level set method, the extension of the proposed method to
higher dimensions is straightforward. Even better, the proposed method demands only
a much coarser mesh grid. The RBF centres can be more loosely placed in 3D, instead
of the full pixel grid often used in conventional level set approaches. Also, solving the
ODE system in 3D is much easier than solving the PDE system. The updating of the
expansion coefficients are efficient and again does not require re-initialisation of the level
set function. The main computation cost comes from interpolating the initial level set and

8
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Figure 6: Recovering a hollow sphere using proposed method - from left: Initial de-
formable surface, evolving deformable surface, stabilised surface, and the stabilised sur-
face with a section cut away to show the hole captured inside.

Figure 7: Arbitrary initialisation - The initial surface is placed outside the object and is
forced to shrink, but the proposed method allows the level set to deform further to develop
a zero level set outside the initial surface and recover the object.

reconstructing the level set function after it stabilises. However, there are several methods
available to speed up the process, such as the Fast Multipole Method (FMM) [4].

We examine the ability of the proposed method in handling complex 3D topologies
and initialisation invariancy. We apply the 3D RBF level set method on synthetic data
and evolve the active surface according to (5), where F < 0 for regions inside the 3D
objects and F > 0 otherwise, as before. In Fig. 6, the target object was a hollow sphere.
The initial surface was placed to surround the object and was forced to shrink to capture
the object boundaries. With the proposed RBF level set method, not only was the outer
boundary localised, but also the boundary inside was captured, i.e. as the active surface
was deforming, a new zero level set developed inside the object. The next example given
in Fig. 7 shows that the region indication function shrinks the active surface that ini-
tialised outside the target object. There was no intersection between the initial surface
and the object, neither when the initial surface deformed and disappeared. However, the
proposed method allows the level set to deform further to “grow” outside the initial sur-
face and finally recovers the object. This again demonstrates the method’s initialisation
independence feature. In the final example shown in Fig. 8, we demonstrate the ability of
the proposed method in modelling very complex geometry in 3D.

9
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Figure 8: Recovering a complex 3D shape.

4 Conclusion
We have presented a novel method to perform implicit modelling using RBFs. The pro-
posed method has a number of advantages over the conventional level set scheme: (a)
The evolution of the level set function is considered as an ODE problem rather than
a much more difficult PDE problem; (b) Re-initialisation of the level set function was
found no longer necessary for this application; (c) More complex topological changes,
such as holes within objects, are comfortably found; (d) The active contour and surface
models using this technique are initialisation independent; (e) The computational grid can
be much coarser, hence it is more computationally cheaper when updating the level set
function, particularly in high dimensional spaces. Future work includes implementing a
fast implementation of RBF fitting and reconstruction, and applying this method to large
scale 3D segmentation problems.
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Abstract

This paper describes how the generalization ability of methods for non-rigid
Structure-from-Motion can be improved by using priors. Most point tracks
are often visible only in some of the images; predicting the missing data can
be important. Previous Maximum-Likelihood (ML)-approaches on implicit
non-rigid Structure-from-Motion generalize badly. Although the estimated
model fits well to the visible training data, it often predicts the missing data
badly. To improve generalization we propose to add a temporal smoothness
prior and a continuous surface shape prior to an ML-approach. The tempo-
ral smoothness prior constrains the camera trajectory and the configuration
weights to behave smoothly. The surface shape prior constrains consistently
close image point tracks to have a similar implicit structure. We propose an
algorithm for achieving a Maximum A Posteriori (MAP)-solution and show
experimentally that the MAP-solution generalizes far better than the ML-
solution. The proposed method is fully automatic: it handles a substantial
amount of missing data as well as outlier contaminated data,and automati-
cally estimates the rank of the measurement matrix.

1 Introduction

Non-rigid Structure-from-Motion concerns the simultaneous recovery of the deforming
world structure and camera motion from image features. Suchanalysis extends the classi-
cal rigid setup [10] to situations with deforming scenes such as expressive faces, moving
cars,etc. In [1, 3, 5, 13, 18] methods where the non-rigidity was represented as a linear
combination ofbasis shapes were developed and analyzed.

Many previous methods cannot handle situations with missing data [1, 3, 5, 13, 16,
17], but see also [6, 9, 14]. The amount of non-rigidity – the number of basis shapes
– often is assumed known [3, 5, 13, 14, 17]. These assumptionsseriously limit the ap-
plicability of the methods. Recently an implicit low-rank model solving both problems
has been proposed [2]. The present paper reviews and extendsthis approach. One major
difference is the use of a MAP-estimation where priors are added to the ML cost function.

Estimating a model from partial data allows one to predict the projection of all world
points on all images. The model generalizes well if the predicted points, on frames where
the point is not registered, are accurate. In general, the model minimizing the reprojection
error – the ML-estimate – does not generalize well. We derivean alternative approach
where the optimization function is augmented with a temporal smoothness prior and a
surface smoothness prior. The priors we use are different from the ones favoring rigidity
in [7, 14].
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The proposed MAP-estimator is based on four main steps. First, we compute an
initial solution with an existing ML-estimator. Second, wechange the implicit coordinate
frame such that the temporal smoothness prior is minimized.This ensures that the prior is
globally satisfied since we derive a closed-form, optimal solution to this problem. Third,
we re-estimate the implicit structure by minimizing a combination of the reprojection
error and the surface shape prior. Finally, we jointly refinethe motion and structure
estimates by nonlinear optimization. Experimental results on simulated and real data
show that the generalization ability is greatly improved compared to the standard ML-
estimation.

Section 2 reviews the implicit low-rank imaging model, its matching tensors and clo-
sure constraints. In section 3 and 4 the rank and model estimation on partial data is
described. Sections 5 and 6 describe the proposed priors andtheir implementation. Sec-
tion 7 reports the experimental results. Finally, section 8concludes the paper.

Notation. Vectors are denoted using bold fonts,e.g. x and matrices using sans-serif
or calligraphic characters,e.g. M or A . Index i = 1, . . . ,N is used for the images,j =
1, . . . ,M for the points. The Hadamard (element-wise) product is written⊙. Bars indicate
‘centered’ data, as in̄X. We use the Singular Value Decomposition, denotedSVD, e.g.
X = UΣVT whereU andV are orthonormal matrices, andΣ is diagonal, containing the
singular values ofX in decreasing order. The operator vect(X) performs column-wise
matrix vectorization.

2 The Implicit Low-Rank Non-Rigid Model

The standard rigid model describes the affine projectionxi j of a set ofM 3D world points
S j, represented by a 3×M shape matrixS ontoN images represented by a 2N×3 motion
matrixJ of stacked 2×3 affine camera projection matricesJi:

xi j = JiS j + ti (1)

whereti is the position of thei’th camera. The 2N×M matrixX of time varying coordi-
nates is calledthe measurement matrix and has rankr = 3.

In the non-rigid caser > 3. The low-rank assumption isr≪ min{2N,M}. The im-
plicit low-rank non-rigid model extends (1) by letting the camera and shape matrices have
dimensions 2N× r andr×M. The model is implicit because no assumptions are made
on the replicated block structure of the camera matrices that often is used in explicit ap-
proachese.g. [4, 5, 14]. Thus the implicit model is simpler than the explicit one and gives
weaker constraints on point tracks. Note that the implicit (basis) shape vectorsS j are
more difficult to interpret in terms of world coordinates. Similarly, the implicit camera
matrix Ji (comprising camera pose and configuration weights) does no longer directly
relate to the camera orientation.

The factorization of the centered measurement matrixX̄ = JS = (JA )(A −1S) is am-
biguous since the equation holds for any full rankr× r mixing matrix A defining the
coordinate frame in which the cameras and shapes are represented. IfX is filled (no miss-
ing data), one factorization can be found usingSVD as X̄ = UΣVT. The joint implicit
camera and shape matricesJ andS, are recovered as ther leading columns ofe.g. U and
the rows ofΣVT respectively.
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Matching tensors [15] relate corresponding points over multiple images. In the non-
rigid affine case the matching tensor is a matrixN whose columns span thed dimensional
left nullspace of the centered measurement matrixX̄:

N
T
X̄ = 0. (2)

The size ofN is (2N × d) where the tensor dimension isd = 2N− r. N constrains
each point track̄x j – the j-th column ofX̄ – byd linear homogeneous equationsN Tx̄ j =
0. The closure constraints introduced by Triggs in [15] for rigid scenes relate matching
tensors to projection matrices. From (1) and (2) and for all implicit shape pointsS j ∈ R

r

we haveN TJS j = 0, which gives theN -closure constraint:

N
TJ = 0. (3)

The joint implicit camera matrixJ consequently lies in the right nullspace ofN T. From
J, S j is retrieved point-wise by triangulation. Fromx j = JS j we getS j = J†x j, whereJ†

is the pseudoinverse ofJ. In case of outlier contaminated data the computation ofN as
well as the triangulation must be robust so that blunders do not corrupt the computation.
We use aRANSAC-based approach calledMSAC [12]. Finally, we needr to computeN .
As described later we apply theGRIC model selection criterion [11] in conjunction with
MSAC to estimate the optimal model size,i.e. r.

3 Handling Partial Data

As a number of previous methods [1, 3, 5, 13, 17] we factorize the measurement matrix
X using SVD. SinceX often is banded because of occlusions and imperfect tracking,
handling of missing data is important. As [8, 9] we use a blockwise approach where the
measurement matrix is partitioned into a set of highly overlapping blocks. Givenr, a
d-dimensional matching tensorNb can be computed robustly for each blockb. For each
matching tensor, equation (3) gives a closure constraint onthe joint camera matrixJ:

(

0(d×2(ib−1)) Nb
T 0(d×2(N−i′b))

)

J = 0 (4)

whereib andi′b are indexes of the first and last frame in blockb. Stacking the constraints
for all blocks yields an homogeneous linear least squares problem||AJ||2 which must be
solved such thatJ has full column rank. Without loss of generality the full column rank
constraint can be replaced by constrainingJ to be column orthonormal. A solution is
given by ther last columns ofV in theSVD A = UΣVT.

For each block the translation vectortb is computed prior toNb. The joint translation
vectort can be found by minimizing the reprojection error∑b ‖t

b− JbTb− tb‖
2, where

T is the reconstructed centroid, and where the subscriptb in Jb, Tb, andtb denotes the
restriction of the joint matrices and vectors to the frames within blockb. The reprojection
error is rewritten‖Bw−b‖2, where the unknown vectorw containsT andt. The solution
is given by using the pseudo-inverse since there is ar-dimensional ambiguity, makingB
rank deficient with a left nullspace of dimensionr. This correspond to the translational
ambiguity between the basis shapes and the joint translation t: ∀γ ∈ R

r, x j = JS j + t =
J(S j− γ)+ Jγ + t = JS′j + t′.
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Given the estimates ofJ and t, the shape vectorsS j could now be computed by a
robust minimization of the reprojection error. However, asdescribed in section 6.2, we
prefer to postpone this computation until the prior is included.

4 Estimating the rank

With the exception of [1] most of the previous work assumes that the rank ofX is given.
We propose to use the robust estimatorMSAC in conjunction with theGRIC model selec-
tion criterion proposed in [11]. Lettingk be the number of parameters of the model andL

the log-likelihood of the error distribution obtained by marginalizing a mixture of a Gaus-
sian inlier part and a uniform outlier part,GRIC is defined by:GRIC = −2L + k log(M).
Expanding and removing constants the measure becomes:

GRIC =
M

∑
j=1

ρ

(

e2
j

σ2

)

+ Mrλ −
1
2

r(r−1) log(M) (5)

wheree j is the prediction error for thej-th point track,σ2 is the variance of the point
tracker localization error, whereλ = 2log(U)− log(2πσ2), and where the functionρ is
ρ(x) = x for x < T andρ(x) = T otherwise.T is the point of intersection of the Gaussian

inlier distribution and the uniform outlier distribution and defined by:T = 2log
(

γ
1−γ

)

+

(2N − r)λ whereγ is the percentage of inliers. The value ofU is determined by the
relative weighting of the inlier and outlier distribution and have a major influence on the
rank estimation. To estimateU we notice that an alternative approach to the estimation of
T is by the value of inverse cumulativeχ2 distribution with 2N− r degrees of freedom.
For relevant values of 2N− r this is approximately linear with a slope ofλ . More details
are given in [2]. To estimate the rank robustly we must sampletheGRIC value repeatedly
for all relevant values ofr. To limit the computational cost the sequence of trials is divided
into groups using gradually narrower intervals of possiblerank values.

5 The Priors

Below we motivate and formulate the temporal smoothness prior and the surface shape
prior. In the following section the implementation of the priors is described.

5.1 Temporal Smoothness

For most image sequences, the camera motion is smooth. For points on a smoothly de-
forming surface the configuration weights smoothly vary as well which means that the sur-
face does not ‘jump’ between poses but rather smoothly interpolates them. Since both the
configuration weights and the camera coordinate axes are encapsulated in theJi-matrices,
these should vary smoothly from frame to frame giving the smoothness measure:

EJ(J) =
N−1

∑
i=1
||Ji− Ji+1||

2 = ||L||2 (6)
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whereL is the 2(N−1)× r matrix of stacked projection difference matrices. The previ-
ously described factorization is ambiguous up to ar× r full rank mixing matrixA . From
(6) we see thatEJ(J) 6= EJ(JA ).

5.2 Surface Shape

Points which are close in space also are close in the images. In case of points on a de-
forming continuous surface the opposite is true as well. Solutions obtained by the method
described above does not encourage such behavior. As a consequence the projected tra-
jectories for such close tracks may deviate significantly outside the estimation area. Often
the ability to generalize acceptably disappears just 2-5 frames away from the images in
which the points are visible. To improve generalization a surface shape prior is imposed.
The shape similarityα( j1, j2) of two point tracksj1 6= j2 is measured by a Gaussian func-
tion eλ d2( j1, j2) of the maximal distanced( j1, j2) = maxi

{

||xi j1−xi j2||2
}

in the images in
which both tracks are visible. The surface shape prior then is:

ES(S) = ∑
( j1, j2)

α( j1, j2) · ||S j1−S j2||
2. (7)

As for the smoothness prior we see thatES(S) 6= ES(A −1S).

6 Non-Rigid SfM With Priors

The model simultaneously minimizing the reprojection error, the smoothness prior and
the surface shape prior,i.e. the cost:

ERE+ γEJ+ βES (8)

must be obtained by nonlinear optimization. To ensure a goodstarting point, and be-
cause the coordinate frame in which the shapes are represented influences the solution,
we choose (initially) this frame by minimizing the temporalsmoothness prior. As shown
below this fixes the mixing matrix up to an orthogonal matrix,to which the surface shape
prior is invariant. Next, by using the surface shape prior aninitial guess forS is estimated.
Finally J andS are jointly refined by nonlinear least-squares optimization. The constants
γ andβ in (8) are chosenad hoc such that the two priors initially contribute relative to the
reprojection error with certain amounts, say 0.2 and 0.02. Below, the initial application
of the two priors is described.

6.1 The Coordinate Frame

The prior measure (6) obviously depends on the mixing matrix. Consequently we (par-
tially) determine this as ther× r full rank matrixA minimizingEJ(JA ) = ||LA ||2. The
motivation is that determining the mixing matrix ensures that the camera motion is ‘close’
to the optimal one. To avoid the shrinking effect of reducingthe prior value by simply
scaling downJ we require det(A ) = 1. LetL = UΣVT be a (reduced)SVD of L. Below
we sketch a proof for a closed-form solution forA :

A =

(

r

√

r

∏
k=1

σk

)

VΣ−1. (9)
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GivenA we change the coordinate frame byJ← JA andS←A −1S without changing
the reprojection error. However the value of the priorEJ(J) is significantly reduced. It
should be noted that (9) only fixes the mixing matrix up to ar× r orthogonal matrix.

A proof of equation (9). Let A = QDW be anSVD of A . We parameterizeA as
A = QD sinceEJ(JA ) = EJ(JQD). Let Y = VTQ ∈ O(r). We can rewriteEJ(JA ) as:

||LA ||2 = ||UΣVTQD||2 = ||ΣYD||2 = d2
1||Σy1||

2 + · · ·+ d2
r ||Σyr||

2 (10)

wheredr ≥ dr−1 ≥ ·· · ≥ d1 ≥ 0 and withyi the columns ofY. We want to find theyi

and thedk minimizing the expression under the constraints that∏dk = 1, and thatY is
orthonormal. Due to the ordering of the singular values we can split the minimization
problem intor subproblems corresponding to the terms in the sum. From thiswe get
Y = I, i.e. Q = V. The minimization problem then is reduced to:

min
{dk},∏dk=1,dr≥···≥d1≥0

r

∑
k=1

(σkdk)
2. (11)

Introducing Lagrange multipliersλ andµ j a compound object function is formulated:

min
{dk}

r

∑
k=1

(σkdk)
2 + λ

(

r

∏
z=1

dz−1

)

+
r

∑
j=1

µ j(d j−d j−1). (12)

It can easily be shown that this function has a minimum given by:

2σ2
k dk = λ

(

r

∏
z=1,z 6=k

dz

)

=
λ
dk

. (13)

Letting α =
√

λ/2 and checking the unit determinant constraint it is seen that:

α = r

√

r

∏
k=1

σk. (14)

Putting things together we reach expression (9).
To show that the minimum is global the Karush-Kuhn-Tucker conditions can be ap-

plied. A sufficient condition for the minimum to be global is that the three terms in (12)
are twice differentiable and that the Hessian matrix evaluated in R

r+ is positive semi-
definite. The Hessian for the first term is diagonal with elements 2σ2

k . The last term is
linear so the Hessian is a positive semi-definite null matrix. The Hessian for the second
term∏r

z=1 dz can easily be show to be positive semi-definite.

6.2 Surface Shape Prior Implementation

Having fixed the non-rotational part of the mixing matrix it becomes meaningful to com-
pute an estimate of the structureS. Given the modified joint motion matrixJ, S is sought
to minimize a weighted sum of the reprojection error and the surface shape prior:

ERE+ βES = ‖V ⊙ (X− JS− t ·1T)‖2 + β ∑
( j1, j2)∈Ω

α( j1, j2) · ||S j1−S j2||
2 (15)
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whereV is the combined inlier and visibility matrix andΩ is the set of ‘close’ point
tracks. TheS minimizing this expression leads to a larger reprojection error compared
to the initial solution. The reprojection error increases with β . We choose a value ofβ
such that the increase in reprojection error is limited by a factor of 0.1 to 0.5. This is done
using an iterative approach. Equation (15) can be rewrittenas:

ERE+ βES = ||v · (x̄−M s)||2 + β ||L s||2 (16)

wherex̄ = vect(X̄) ands = vect(S). M = diagM(J) is a (2NM)× (rM) block diagonal
matrix with M repetitions ofJ. If p = |Ω| is the number of ‘close’ pairs of tracks thenL

hasp row blocksL( j1, j2) of the form:

L( j1, j2) = α( j1, j2) · (0...0, I,0, ...0,−I,0...0) (17)

where I and0 are ther× r identity and zero matrices, and where the positions of the
two identity matrices correspond to the positionsj1 and j2. ThusL will have the size
(rp)× (rM). With this rewriting we can directly see that the least squares solution is

s = [M⊤
M + βL

⊤
L ]−1

M
⊤x . (18)

7 Experimental Results

In the experiments reported below we concentrate on the improvement with respect to
generalization by using the camera smoothness and surface shape priors.

7.1 Synthetic Data

In the first test we generated synthetic data with 100 frames and 100 point tracks and
with true rank varying from 3 to 18. For each data set, models with and without use
of the two priors were estimated from the diagonal 60% entries. The estimation error
is measured as a function of the generalization distance in frames. For medium to large
distances the error distribution were very long tailed. Therefore for each distance we mea-
sured the improvement in generalization by the ratio of medians without and with prior
use. The generalization improvement measure increased with the rank as well as with the
generalization distance. Figure 1 shows to the left the average (over all data sets) of the
improvement. In more absolute terms we relate the error in the generalization area to the
error in the training area by the percentage of points with generalization error exceeding
a valueµ + kσ , whereµ andσ are the mean and spread of the reconstruction error and
k = 2.5, 5, and 10. An example is shown to the right in Figure 1. The smoothness measure
(6) decreased by a factor between 80 and 500. The results on synthetic data showed that
at the expense of a small increase of the reprojection error,the generalization error can
be significantly reduced. In particular the number of very large errors is reduced. Exper-
iments that are not reported here showed that the generalization improvement increased
with the difficulty of the data,e.g. with the amount of measurement noise and withr.

7.2 Real Data

We applied the same testing procedure on data from two real sequences calledBears and
Groundhog day. Figure 2 shows single frames from the two sequences. From the two
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Figure 1: Results on synthetic data. Left: Average generalization improvement factor as
a function of the generalization distance. Right: Percentage of point tracks with reprojec-
tion error exceeding three thresholds (see text), with and without prior use, as functions
of the generalization distance.

Figure 2: Images from the 94-framesBears sequence (left) and the 75-framesGroundhog
day sequence (right) with marked points.

(originally banded) measurement matrices filled sub-matrices were extracted and a diag-
onal band with 50 % entries selected for training. The measurement matrices showed 94
and 75 frames with 94 and 117 point tracks. On theBears sequence the camera smooth-
ness measure was reduced by a factor of 108.7. The rank was estimated to 5. After
initial estimationERE = 0.82 pixels. Applying the priors increased this to 1.20 pixels, a
small payment for the improved generalization. Figure 3 shows plots of the percentage
of point tracks as function of the generalization distance in frames, with and without use
of the priors, and with reprojection error exceeding the previously described thresholds
µ + kσ , usingk = 2.5, 5 and 10. Figure 3 shows that without prior use the generalization
becomes bad even for short generalization distances. With prior use the error is signifi-
cantly reduced. For the sequenceBears the generalization becomes possible at least up
to a distance of 30 frames. On the more difficult sequenceGroundhog day the camera
smoothness measure was reduced by a factor of 5660.3. The rank was estimated to 14.
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Figure 3: Percentages of point tracks in the sequencesBears (left) andGroundhog day
(right) with reprojection error exceeding three thresholds (see text), with and without prior
use, as functions of the generalization distance.

Figure 3 shows to the right that the generalization distanceis increased by a factor of 2 to
4. This is still significant, but less impressive compared tothe sequenceBears. A main
reason is that a continuous surface is seen on theBears sequence giving strength to the
surface shape prior. This is not the case for theGroundhog day sequence.

In figure 4 a close-up of 4 tracks from theBears sequence is shown. The positions

frame 47 frame 52 frame 57 frame 62 frame 67

Figure 4: Close-up sequence of 4 point tracks which visible parts (use for training) all
ended close to frame number 47. ‘True’ positions, given by the tracker, are shown by
stars. Predicted positions estimated without using the priors are shown by diamonds.
Predicted positions estimated with use of the priors are shown by squares.

computed by using the two are much closer to the true positions than the ones obtained
by not using the priors.

8 Conclusions

We proposed an implicit non-rigid Structure-from-Motion approach with priors for tem-
poral smoothness and surface shape coherency. We showed that the priors significantly
improves the prediction of points in frames where data is missing,i.e. the generalization
ability. Building on previous work the approach automatically estimates the rank of the
measurement matrix, handles outliers and a substantial amount of missing data. Future
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work will show if the improved generalization allows detecting and gluing point tracks
split because of imperfect tracking. We expect the temporalsmoothness prior to drive the
estimated model closer to an explicit configuration. Further work how much this will help
in such ‘self-calibration’.
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Abstract

We describe an approach for automated analysis of deformable objects which
extracts structure information from groups of images containing different ex-
amples of the object with a particular application to human imaging. The
proposed analysis framework simultaneously segments and registers a set of
images, incrementally constructing a model of the composition of the ob-
ject. By fitting an appropriate intensity distribution model to the image we
obtain a soft segmentation which allows us to explicitly model the construc-
tion of each pixel from constituent image segments, rather than its expected
intensity. This effectively decouples the model from the effects of the imag-
ing system and varying statistics in different examples. When estimating the
optimal deformation field for each example, the original image is compared
to a reconstruction, generated using the composition modeland its intensity
distribution parameters for each segment (i.e. an estimateof how the model
would appear given the imaging conditions for that image). In the paper
we describe the algorithm in detail and show results of applying it to two
sets of medical images of different anatomies taken with different imaging
modalities. We present quantitative results demonstrating that the proposed
algorithm is more powerful than current state of the art methods at extract-
ing structural information such as spatial correspondences across groups of
images with varying statistics.

1 Introduction

This paper proposes an automated approach for analysing, understanding and representing
deformable object structure in groups of images, with a particular application to medical
imaging and biometrics. The human body is an abundant sourceof objects that share a
common anatomical structure but exhibit an almost infinite number of shape and appear-
ance variations. Generally, given a set of images of different examples of an object with
a deformable structure, we would like to derive in an automated manner (without user
intervention) the following:

• a dense spatial and structural correspondence between the various examples (regis-
tration)
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• a consistent composition of the pixels in each example imageinto different con-
stituent parts of the structure (segmentation)

• a statistical representation of the variability of shape and appearance of the structure
across the set (modelling)

Furthermore, an explicit advantage would be if all of the above could be achieved
in an efficient and robust (converging) manner. There has already been considerable re-
search into techniques that aim to reach each of the listed goals independently. Non-rigid
image registration, and in particulargroupwise methods provide a method of deriving a
dense, spatial correspondence across sets of images [10, 1](for a review see [14]). Di-
rect segmentation of medical images, into different tissues for example, has also been
studied extensively with methods based on pixel intensity and more advanced deformable
structures [8, 13]. Finally, Statistical Shape and Appearance Models [4], are capable of
capturing and describing the appearance (shape and texture). variation of the modeled
structure.

A number of other works exploit the fact that a good estimate of any one aspect of
the structure, a correct segmentation, registration or a good model, can help derive more
reliable estimates of the other components. For instance combined segmentation and reg-
istration with active contours was considered in [12] to register single objects. Maximum
a posteriori segmentation using hidden Markov random fieldsand B-spline non-rigid reg-
istration was used for more general medical images [2]. Models of deformation have
been constructed from correspondences estimated by non-rigid registration [7, 9], but it
was also shown that it is possible to integrate modelling andregistration more tightly [5].

In this paper we describe an automated approach which combines simultaneous seg-
mentation, registration and modeling of structure in a single iterative framework to satisfy
the requirements laid out above. The method starts with a training set of images and in-
crementally constructs a model of the composition of each pixel in the common structure,
rather than its expected intensity. This decouples the model from details of the imaging
process and modality and allows us to deal with datasets exhibiting significant variation
in intensity. Extensive qualitative and quantitative results demonstrate that the proposed
algorithm is more powerful than current state of the art methods at extracting structural
information such as spatial correspondences across groupsof images with varying statis-
tics.

The method is described in detail in Section 2 while results of applying it to two sets
of medical images of different anatomies taken with different imaging modalities, digital
radiography (X-ray, DR) and magnetic resonance (MR), are provided in Section 3. Finally
we provide a discussion on the relative merits of the presented approach.

2 Method

An overview of the proposed approach is illustrated in Figure 1 showing example im-
ages from an application of the approach to MR images of the human brain. Generally,
a set ofN imagesTi, i = 1...N, (the training set) is assumed to contain a common struc-
ture that consists ofM distinct components whose content is defined according to some
composition modelF and whose intensities obey some specific distribution modelwith
parametersθi. Furthermore, for the entire set, a spatial correspondencewith a reference
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Figure 1: Outline of the proposed structure analysis algorithm: dark arrows indicate the
progress of the algorithm, light arrows flow of data and the central box contains the struc-
tural information derived from the data set

(model) frame, and implicitly with each other, is assumed through a set of spatial de-
formation fields defined for each example in the training set,Wi(). Deformations are
initialised as identity transformations and true correspondencesWi() along with the in-
tensity distribution model parametersθi and the structure composition modelF are then
estimated incrementally across the set in an iterative procedure as follows:

1. Warp each training imageTi into the reference frame using the current estimate of
the deformation field.T ′

i = W−1
i (Ti).

2. Fit the intensity distribution model to each image and extract parameters (means,
SDs and weights) for each of theM components encoded inθi = {µi j,σi j,wik}), as
well as distributions due to mixtures of components.

3. Use the resulting distributions to estimate the most probable composition of each

pixel, and encode a set of fraction imagesF( j)
i , j = 1...M for each training example.

4. Combine the fraction images from all examples to construct a single composition
model for the common structure,{F̂(1)...F̂(M)}.

5. Synthesize a reconstruction of each training set imageSi using the current estimates
of intensity distribution parametersθi (µi j) and the current composition modelF̂

6. Update the current estimate ofWi to best registerSi ontoTi, minimising a suitable
similarity measure,Dim(Ti,Wi(Si)).

The stages listed above are repeated in an iterative procedure until the deformation
field optimisation and the composition model converge. The reference frame defining the
model shape is obtained as the mean of all individual shapes,represented throughWi. Ini-
tial identity deformation fields will contain a considerable misalignment of the examples
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Figure 2: Piecewise affine deformation field: identity fieldson two X-ray images (left),
linear interpolation of a deformed shape (middle) and converged fields on corresponding
areas in three MR brain images

resulting in a fuzzy composition model. However, as the algorithm progresses and correct
correspondences become established both the composition model and the model shape
will converge to a true, crisp representation of the underlying structure.

Note that the described process involves no construction ofa shape model. Instead an
explicit statistical appearance model of the structure canbe constructed directly at the end
of the process from the convergedWi(), see [5].

2.1 Establishing Correspondence

Spatial correspondence between the examples is established by defining a deformation
field for each image in the training set that defines where eachpixel on the reference
structure is located on that image. This implicitly imposesa structural correspondence
that allows equivalent locations to be found across the examples. We adopt a piece-wise
affine deformation field represented as a tesselation (triangulation in 2D) of a set of control
points (vertices) in space, Figure 2. Deformation is controlled by displacement of the
control points, which can be both linear (e.g. affine) and highly non-linear (movements of
individual points). Inside the elements the field is interpolated linearly, Figure 2, which
lends efficiency and more importantly easy invertibility tothis formulation at a price of
limited spatial resolution and flexibility.

Deformation fields are initialised in 2D as a regular hexagonal mesh made up of equi-
lateral triangles, see Figure 2, which provides a regular element density around each con-
trol point as opposed to a square regular mesh. The fields are then optimised in discrete
stages that modify the locations of control points either ingroups or individually. The
details of the optimisation strategy are beyond the scope ofthis paper, but the general
approach is to start with linear transformations (e.g. affine), followed by coarse non-rigid
deformations, e.g. grid deformations [5] and progressively increase the resolution of the
deformations to finish by optimising the location of each control point independently.
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2.2 Segmentation

A broad segmentation of the analysed structure is achieved in two stages. First an intensity
distribution model (IDM) is fit to the intensity histogram ofthe data in the reference frame
and then a most likely composition of each pixel in each example is derived using IDM
parameters. The IDM explains how the intensities in the image are related to the main
components of the structure to be analysed. In principle anytype of distribution model
can be used within this framework but it is likely that each type of data would optimally
obey a specific model. As the choice of the intensity model fora particular dataset is
not central to the structure of the proposed algorithm it is not considered in detail in this
paper. Instead we use relatively simple models that rely only on intensity and demonstrate
the convergence power of the approach.

In general we follow [8] in assuming that each pixel in the structure is either due to one
of M different components or a fractional mixture of at most two different ones. Further-
more, if we know the distributions of intensities for pure components, we can construct
the distribution for a particular fractional distributionby convolution. For example, in the
experiments using MR images we use a limited resolution IDM that assumes components
with Normal distributions,pi(g) = N(g : µi,σ2

i ) (consistent with white matter, grey mat-
ter and cerebro-spinal fluid/background tissue types). In this case it can be shown that
the distribution for a partial volume with fractionf of tissue typei and 1− f of type j is
given by

pi j(g| f ) = N(g : f µi +(1− f )µ j, f σ2
i +(1− f )σ2

j ). (1)

The distribution over all partial volumes containingi and j is given by

pi j(g) =
∫ f=1

f=0
pi j(g| f )p( f )d f =

∫ f=1

f=0
pi j(g| f )d f (2)

where we assume all values off in the range[0,1] are equally likely (p( f ) = 1). Making
the assumption that any pixel contains at most 2 different tissue types, we need only
considerM pure tissue classes with distributionspk(g), k = 1..M, andM(M−1)/2 partial
tissue classes (enumeratedpk(g),k = (M + 1)..Mt = M(M + 1)/2). Thus the measured
image intensity distribution,h(g), can be approximated as a weighted sum

p(g : θ) =
Mt

∑
i=1

wi pi(g) (3)

whereθ = {µi,σi,wk} (i = 1..M,k = 1..Mt).
We thus perform an optimisation to estimate the parametersθ which optimiseDp(p(g :

θ),h(g)), whereDp(p,q) is a suitable measure of divergence between distributions.Hav-
ing estimated the probability that a pixel with intensityg belongs to classk is given by
Pk(g) = wk pk(g)/(∑wk pk(g)) (see Figure 3) that pixel can then be classified as belonging
to class

kc = arg maxkPk(g). (4)

However, we are actually interested in the estimate of the fraction of each pure class
tissue (fi,i = 1..M), in the pixel, not the probability of each class. Ifkc ≤ M then the pixel
is a pure tissue, so we definefkc = 1 and fi 6=kc = 0. If kc > M then the pixel is classified
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as a partial volume, containing two tissues, say of typei and typej. In this case we wish
to find the most likely value of the fractions for each tissue.We define

fi = arg maxf pi j( f |g)
= arg maxf pi j(g| f )p( f )/p(g)
= arg maxf pi j(g| f )

(5)

wherepi j(g| f ) is defined above in Equation 1. We then setf j = 1− fi and fk 6=i, j = 0.
Figure 3 shows an example of this, demonstrating that tissueprobabilities are not the
same as estimates of pure tissue fractions. Using this approach we computeM images,

{F(1)
i , ...F(M)

i }, recording the fraction of each tissue type at each pixel in the normalised
version of imagei (that projected into the reference frame).

2.3 Composition Model Construction

The composition model defines how much of each of the components is present at any
location within the structure that is being analysed. We train this model using theM
fractional images from each of theN images in our set.1 Though more detailed statis-
tical models (eg PCA based methods) are possible, in this preliminary study we simply
compute the mean of the fraction images,

{F̂(1)...F̂(M)} =
1
N ∑

i
{F(1)

i ...F(M)
i }. (6)

Further constraints could be imposed on the model, e.g. limit any pixel to have at most
two non-zero fractions. Although this would directly support convergence, particularly in
the early stages of the process when misalignments between different examples are still
considerable we found that even the simple mean was proving powerful enough to drive
the process to convergence.

2.4 Image Reconstruction

The training set is aligned by optimising a deformation fieldbetween eachTi and the
model (reference frame) embodied in a reconstruction,Si produced using the current com-
position model and the current estimate of the IDM parameters. Pure components exhibit-
ing Gaussian distributions are optimally represented by their mean (µi j) while fractional
pixels are represented by a sum of component means weighted by their fractions:

Si =
M

∑
j=1

µi jF̂
( j). (7)

For an example, see Figure 3. Essentially,Si is an estimate of how the model would
appear given the imaging conditions forTi. Ideally Si is a noise free version ofTi but in
practice it starts blurred due to misalignments and gets progressively sharper as alignment
across the set improves. Deformation parametersWi are optimised with respect to an
objective function measuring similarity betweenTi andSi in the training image frame -
Dim(Ti,W

−1
i (Si)).

1In practice, when working on imagei constructing the model fromN −1 other images tends to give more
generalisable models and lead to faster convergence.
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Figure 3: Results of analysis of brain images: a.-c. composition model estimates for
the three tissue classes (components), d. and e. reconstructed images of two training set
examples (reference frame)

3 Results

We applied the proposed method to two sets of medical images of different anatomies
taken with different imaging modalities, a set of 28 X-ray digital radiography (DR) images
of the knee joint and of a set of 37 near equivalent 2D slices ofmagnetic resonance (MR)
images of the brain (Figure 3)2. For the X-ray images we adopted an absorption IDM
which has 2 classes (no radiation and full radiation) at extremes of the intensity range
represented as delta Diracs and all intensities in between are considered fractional. In
addition we used sum of absolute differences for both the image similarity,Dim(), and
Bhattacharya distance as the divergence between intensitydistributions,Dp().

Figure 3 a.-c. shows composition models for the three (tissue) components present in
the MR brain images processed by the proposed method. In the final estimates all three
classes are crisply delineated and in close agreement with the anatomical distribution of
white and gray matter (WM, GM) and CSF in the human brain. Structure reconstruction
imagesSi corresponding two different training set examples are shown in Figure 3 d.
and e. It can be seen that their intensity statistics have been reproduced faithfully by the
algorithm. In both cases, the composition model starts froma very fuzzy estimate and
becomes more accurate as the alignment across the training set examples is established.

Figure 4 shows the results of analysis on the knee X-rays. This is a difficult data
set containing projections of a structure with highly unconstrained pose, scale and image
statistics, see 4e. Groupwise intensity registration [5] fails to converge resulting in a mean
image 4b, very much like the mean of the non-aligned set 4a. The proposed approach
however converges and its mean 4c. clearly shows the main structures. Final absorption
(composition) model is shown alongside in 4d. Final deformation fields for three differ-
ent examples produced by the proposed algorithm are shown in4e. They demonstrate
its ability to deal with large variations in pose and intensities robustly and converge de-
spite the fact that some examples have diverged during affineregistration (final example).
These failures are caused by the generally sparse structureof these images failing to con-

2David Kennedy of the Center for Morphometric Analysis, Boston, provided the MR and Visaris d.o.o.
provided the DR imagery
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Figure 4: Results of automated analysis of knee images: a. initial mean, b. mean derived
using groupwise intensity registration, c. mean derived using the proposed approach and
associated composition model for full radiation d., e. finaldeformation fields for three
different images using the proposed approach

strain a powerful global search such as affine registration and could be corrected using
relatively straightforward regularisation across the set.

Quantitative evaluation was performed on WM, GM and ventricle (CSF) labels man-
ually defined by experts on the MR brain data using a Tanimoto overlap based metric
proposed in [6] (no such ground truth was available for the knee images). The metric
measures fuzzy overlap of segmented regions between all pairs of registered images in
the set. Results for inverse volume normalised (TOIVol−All) [6] and mean of pairwise
overlaps for individual as well as all labels (TOLabel) are in Table 1. The proposed auto-
mated analysis framework (AAF) system was compared to i) pairwise registration where
each image in the set is registered to a common reference image selected either randomly
PW-random or one closest to the mean of the set PW-opt, ii) groupwise registration where
the set is registered to its progressively sharper intensity mean [5] (all using 24x24 point
piece-wise affine deformation field and sum of absolute differences objective function)
and iii) fluid flow registration (Fluid) [3], using a dense deformation field (defined at
each pixel), sum-squared difference objective function, viscosity coefficientsλ = 1 and
µ = 500, tolerance for convergence 1e-3, two levels of scale andtime step selected by
Brent minimization.

Table 1 shows that the proposed algorithm outperforms othersystems for all metrics
and labels. Figure 5a. shows these results graphically (TOall) including measurement er-
rorbars as well as final intensity means for the PW-opt, GW andthe proposed approaches
in comparison to the initial mean. Also shown on Figure 5a. asthe dashed line is
the TOAll = 0.717 level obtained for groupwise registration of label images, in a way
establishing an upper limit on the performance for the chosen registration approach (de-
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Metric PW-rand PW-opt GW Fluid AAF
TOIVol−All 0.591 0.61 0.646 0.651 0.69
TOAll 0.603 0.616 0.652 0.635 0.693
TOWM 0.662 0.664 0.696 0.684 0.747
TOGM 0.551 0.537 0.59 0.578 0.633
TOVentricle 0.596 0.664 0.669 0.685 0.69

Table 1: Quantitative label overlap scores for registration results of various approaches
applied to the MR brain data (best score given in bold)

Figure 5: MR brain analysis resuts: a. Label overlap (TOAll) results for various ap-
proaches, b. initial (non-aligned) mean intensity of the images and c-e. final intensities
for the PW-opt, GW and proposed AAF approaches

formation field representation and optimisation scheme). The proposed method achieves
overlaps only 2% lower than this limit and much closer than any of the other methods
using the same registration approach (in comparison the equivalent reference value for
the tested fluid registration approach isTOAll = 0.672).

4 Discussion

We have demonstrated a powerful algorithm for automated analysis of deformable struc-
ture in groups of images. By constructing a model of structure composition, rather than
intensities, we decouple the model from details of the imaging process, and concentrate on
explicitly learning object structure. The system should becapable of registering images
from different modalities. In evaluations on two challenging datasets the proposed frame-
work outperforms other state-of-the-art approaches, despite relying on relatively simple
intensity models for segmentation and a relatively coarse deformation field representation.

Future work will include a full implementation to deal with full 3D structures (the
extension is natural) and exploring robust segmentation that includes spatial as well as
local gradient information. Further consideration will also be given to automating he
optimal choice of intensity models for a given dataset, using approaches such as MDL
[10, 11] as well as derivation of generic models capable of dealing with various types of
objects and image data.
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Abstract

In this paper, we propose a distribution-based active contour model for brain
MRI segmentation. As a generalization of the Chan-Vese piecewise-constant
model, our solution uses Bayesian a posterior probabilities as the driving
forces for curve evolution. Distribution prior, if available, can be seamlessly
integrated into the level set evolution procedure. Unlike other region-based
active contour models, our solution relaxes the global piecewise-constant as-
sumption, and uses locally varying Gaussians to better account for intensity
inhomogeneity and local variations existing in many MR images. More accu-
rate and robust segmentations are therefore achieved. Experiments conducted
on synthetic and real brain MRIs demonstrate the improvement made by our
model.

1 Introduction
Magnetic resonance imaging (MRI) is a rich source of information regarding the soft
tissue anatomy of human brains. Segmentation of Magnetic resonance imaging (MRI)
brain images into different tissue types, i.e., gray matter (GM), white matter (WM) and
cerebrospinal fluid (CSF) is a critical and fundamental task for the large volume of 3D
MRI data to be effectively utilized for disease diagnosis, functional analysis of brains and
the treatment of disease related to brain anamolies.

A variety of approaches to brain MRI segmentation have been proposed in the litera-
ture. Histogram-based approaches estimate the probability of a class label given only the
intensity for each voxel. Such estimation problems are usually formulated in the sense
of maximum a posteriori (MAP) or maximum likelihood (ML) estimates. With respect
to the form of the probability density function, finite Gaussian mixture models [12] are
assumed and used in segmentation.

Recently, segmentation algorithms [15, 2, 3, 10, 13, 5] that use region-based active
contour models have gained great popularity. Active contour without edge model, com-
monly known as Chan-Vese piecewise-constant model [2], uses a stopping term based on
Mumford-Shah segmentation functional so that the model can detect object boundaries
with or without gradient. Although impressive experimental results have been reported
for this model and its variants [10, 5] some common drawbacks and limitations exist
within this group of solutions. A mixture of global Gaussians (piecewise-constant can
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be regarded as the degenerate case) has been used a convenient assumption for modeling
the intensity distribution. Global means are utilized to discriminate regions from each
other. However, ”homogenous regions with distinct means” is rarely an accurate account
in practice, especially for medical images. In addition, spatial distribution priors, often
available and being used extensively in histogram-based models, are normally neglected
in the region-based active contour models. Prior knowledge about the organ’s location
sometimes is an indispensable resource to separate certain tissue types from their sur-
roundings.

Non-parametric region-based active contours models (Chan-Vese [3] and Tsai-Yezzi
[13]) can theoretically handle the local intensity variation problem. In their algorithms,
an image u0 is modeled by piecewise smooth functions u+, u− that are defined inside and
outside a closed active contour, respectively. The curve evolution is carried out through
an iterative process. In each iteration, u+ and u− are estimated first, by solving a Poisson
equation with Neumann boundary condition. Then, the level set function is updated fol-
lowing a gradient flow that minimizes the simplified Mumford-Shah functional. Unlike in
the parametric models, images in the piecewise smooth framework (both Chan-Vese and
Tsai-Yezzi) are modeled as a smooth random field within each region. Intensity variabil-
ity thus can be handled across regions without the need to specify the change on statistical
parameters.

However, with the burden to solve a Poisson PDE in each iteration, piecewise-smooth
models suffer from inevitable high computational costs induced from solving certain huge
sparse linear system. Being computationally expensive has been a major obstacle for these
models to be used in practical 3D medical applications [8].

1.1 Our proposed solution
Aiming to reap the benefits and avoid the drawbacks of the piecewise-constant and piecewise-
smooth models, we propose a bridging solution in this paper. To generalize the Chan-Vese
model, we adopt Bayesian a posterior probabilities as the driving force for the curve evo-
lution. Our model has two desired properties: 1) distribution prior can be seamlessly
integrated into the level set evolution procedure and leads to more robust segmentations;
2) piecewise constant assumption is relaxed from ”global” to ”local”, and local means
are used as the area representatives. Being able to better account for intensity inhomo-
geneity, our model works particularly well for the images with low intensity contrasts and
spatially varying brightness variations. When the computation switches from global to lo-
cal, segmentation ”twisting” (same objects are labeled oppositely at different local areas)
may happen if no global control is in place. We tackle this issue with a selective update
scheme, which enforces a global-to-local consistency over the entire image domain.

2 Methods
Let C be an evolving curve in Ω. Cin denotes the region enclosed by C and Cout denotes
the region outside of C. Chan-Vese (two-phase) piecewise-constant model is to minimize
the energy functional

F(c1,c2,C) = µ ·Length(C)+λ1

∫

Cin

|u0− c1|2dxdy+λ2

∫

Cout

|u0− c2|2dxdy
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Figure 1: Chan-Vese model’s inability to handle local image variations. a) is a slice of
brain MRI image before bias correction. b) is the curve evolution result using Chan-Vese
model. c) is the result using our method.

where c1 and c2 are the averages of u0 inside C and outside C respectively.
This model has several attractive properties: 1) it is very robust to weak boundaries

and noise; 2) interior contours can be automatically recovered; 3) the initial curve can be
anywhere in the image; 4) it has few parameters for adjustment compared to MRF-based
methods; 5) Efficiency wise, re-initialization of the level set function often is not required,
and big step size can usually be taken for level set update.

These appealing advantages, however, are not easily utilizable to the full extent in
practice. Global Gaussian distribution assumption are not an accurate depiction of lo-
cal image profile for many medical images. Negligence of local information would of-
ten result in undesired segmentations. Figure 1 shows an example where the Chan-Vese
piecewise-constant model fails to produce an expected segmentation result. Fig 1.a) is an
MR image with bias field. The bias field lights up gradually from the top to the bottom
of the image. Due to this intensity variation, the global means c1 and c2 can not represent
the image well, and undesired segmentation, as highlighted in Fig 1.b), is resulted. (The
figure is better seen on screen than in print)

Piecewise-smooth models [3, 13] provide a solution for the intensity variability prob-
lem. Gradual intensity changes, as in the Fig. 1 can be handled with [3, 13], however, high
computational cost and being sensitive to curve initialization pose a barrier for practical
applications.

2.1 Our Local Distribution-based Model
Let S = {in,out} be the two classes for a two-phase model. The probability of the pixel
(x,y) belonging to in and out is denoted by P(in|(x,y)) and P(out|(x,y)) respectively. Let
Pr(in) and Pr(out) be the class prior probabilities at (x,y). Then,

P(in|(x,y)) =
Pr(in(x,y))P(u0(x,y)|in)

P(B)
P(out|(x,y)) =

Pr(out(x,y))P(u0(x,y)|out)
P(B)

(1)

where P(u0(x,y)|in) is the likelihood of a voxel in class in has the intensity of u0(x,y).
P(B) is a constant. Bayesian decision rule states that u0(x,y) should be classified into the
class in if:

Pr(in(x,y))P(u0(x,y)|in) > Pr(out(x,y))P(u0(x,y)|out)
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(a) (b) (c)

Figure 2: Spatial prior probability images of CSF, GM and WM.

or otherwise into out. If a perfect segmentation/classicition is achieved, this inequality
should hold for each voxel (x,y), if every pixel has been classified into the correct class.
Based on this observation, we can formulate the segmentation problem as the minimiza-
tion of the following energy:

F(C) = µ ·Length(C)−
∫

Cin

log(Pr(in)P(u0(x,y)|in))dxdy

−
∫

Cout

log(Pr(out)P(u0(x,y)|in))dxdy

Note that our overall model is similar to [10, 11], but the setup of the likelihood term
is different, which will be explained next.

2.1.1 Spatial distribution priors: Pr(in) and Pr(out)

Many distribution prior images have been generated from recent brain studies [4]. A
widely used model is provided by the Montreal Neurological Institute [7] as part of the
ICBM, NIH P-20 project. MNI prior is made of three probability images that contain
values in the range of zero to one, representing the prior probability of a voxel being
either GM, WM or CSF after an image has been normalized to the same space (see Figure
2). In this paper, we are particularly interested in extracting sub-cortical GM, therefore we
take the GM and WM prior images as Pr(in) and Pr(out) respectively, for demonstration
purpose. For these prior images to be applied, a registration is need to align the prior and
the input image. We used the affine registration routine provided by SPM [12] in all the
3D experiments of this paper.

2.1.2 Likelihood terms: global Gaussian versus local

As illustrate in Fig. 1, global Gaussians and global means are not an accurate description
of the local image profile, especially when intensity inhomogeneity is present. A remedy
is to relax the global Gaussian mixture assumption and take local intensity variations into
consideration. More specifically, local Gaussians (local binary as the degenerate case)
should be used as a better approximation to model the vicinity of each voxel.

In the Chan-Vese model, two global means c1 and c2 are computed for Cin and Cout . In
our approach, we introduce two functions v1(x,y) and v2(x,y), both defined on the image
domain, to represent the mean values of the local pixels inside and outside the moving
curve. By Local, we mean that only neighboring pixels will be considered. A simple
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implementation of the ”neighborhood” is to introduce a rectangular window W (x,y) with
size of 2k +1 by 2k +1, where k is a constant integer. Therefore,

v1(x,y) = mean(u0 ∈ (Cin∩W (x,y)))
v2(x,y) = mean(u0 ∈ (Cout ∩W (x,y)))

With the new setup, our segmentation model can then be updated as a minimization
of the following energy:

F(v1,v2,C) = µ ·Length(C)−
∫

Cin

(
log(Pr(in))− log(σ1)− (u0− v1)2

2σ2
1

)
dxdy−

∫

Cout

(
log(Pr(out))− log(σ2)− (u0− v2)2

2σ2
2

)
dxdy

The variances σ1 and σ2 should also be defined and estimated locally. However, due to
the fact that local variance estimation tends to be very unstable, we use global variances
(for the pixels in Cin and Cout ) as uniform approximation.

2.2 Level set framework and gradient flow
Using the Heaviside function H, and the one-dimensional Dirac measure δ [2] as the
bridge, the energy function F(v1,v2,C) can be minimized under the level set framework.
Let T1 = log(Pr(in)) and T2 = log(Pr(out)), and we have the following new functional to
minimize:

F(v1,v2,C) = µ
∫

Ω
δ (φ |∇φ |)dxdy−

∫

Ω

(
T1− log(σ1)− (u0− v1)2

2σ2
1

)
H(φ)dxdy

−
∫

Ω

(
T2− log(σ2)− (u0− v2)2

2σ2
2

)
(1−H(φ))dxdy

Under the level set framework, we deduce the associated Euler-Lagrange equation for
the level set function φ . Parameterizing the descent direction by an artificial time t ≥ 0,
the gradient flow for φ(t,x,y) is given as

∂φ
∂ t

= δ (φ)
[

µdiv(
∇φ
|∇φ | )− log

Pr(in)
Pr(out)

+ log
σ1

σ2
−

(
(u0− v1)2

2σ2
1

− (u0− v2)2

2σ2
2

)]
(2)

φ(0,x,y) = φ0(x,y) in Ω

where φ0 is the level set function of the initial contour. This gradient flow is the evolution
equation of the level set function of our proposed method.

Correspondingly, v1 and v2 are computed with

v1 =
(u0 ∗H(φ))⊗W

H(φ)⊗W
v2 =

(u0 ∗ (1−H(φ)))⊗W
(1−H(φ))⊗W

(3)

where ⊗ is the convolution operator. One should note that, Chan-Vese model can be
regarded as a special case of our model — when the window W is set to infinitely large.

In practice, the Heaviside function H and Dirac function δ in eqn. 3 have to be
approximated by smoothed versions. We adopt the H2,ε and δ2,ε used in [2]. For all the
experiments conducted in this paper, we set the size of the window W as 21×21.
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Figure 3: Illustration of the occurrence of ”local twists”. a), b), c) and d) are four snap-
shots of the level set propagation. e) is the resulted segmentation. The effectiveness of
the control term is illustrated in (f-i), which are four snapshot of the level set propagation
of the new gradient flow. (The figures are better seen on screen than in black-white print)

3 Global-to-Local Consistency Constraint
In Chan-Vese piecewise-constant model, as the entire image is considered as a whole, the
signs of the level set function φ correspond very well to the segmented classes. In other
words, if certain class S has more than one components, at the time a perfect segmentation
is achieve, each of them would be enclosed at the same side of φ . The positive side
(φ+) and the negative (φ−) side of φ , partition the image domain into two homogeneous
regions.

However, under our proposed local Gaussian environment, this property is not guar-
anteed. Since the level set function φ evolves based on v1(x,y) and v2(x,y) that are com-
puted locally, the multiple components of a same class might be evolved into the opposite
sides of φ , therefore labeled with different classes. We give a name to this phenomena as
local twisting. An example in Fig. 3 illustrates how a twist occurs. The evolving curve
starts as a circle covering part of the left square. As v1 and v2 are computed locally, it
happens that the left half the level set function φ goes up, and the right half goes down.
Eventually the left square is enclosed under φ+ and the right square under φ−. The two
squares are expected to classified into the same class, but the evolution based on Eqn.3
sends them into two different groups, as shown in Fig 3.b. The phenomenon is due to
the lack of global control over the evolution process. Whenever local twisting happens,
incorrect segmentation will be resulted.
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Assume we use φ+ to capture the brighter portion of a bimodal image. In order to
eliminate local twists, the following consistency constraint needs to be enforced every-
where in the image domain:

Constraint: v1(x,y)≥ v2(x,y), for all (x,y) ∈Ω

There would be many different implementations to enforce this constraint, and we
find the following approach particularly effective and simple:

Solution: use sign(v1(x,y)−v2(x,y)) as a control term to guide the update of φ .

where sign(x) = 1, if x > 0 and sign(x) = 0 otherwise.
At the locations where no twist is present, v1 > v2, this control term sign(v1(x,y)−

v2(x,y)) would let the level set update as Eqn.3 specifies. At certain locations, if v1(x,y) <
v2(x,y) happens, the control term put a halt to the level set update at (x,y), and further de-
velopment of a potential twist is avoided. Through this mechanism, twists are controlled
at an early stage, and will eventually disappear when the normal configuration (v1 > v2)
dominates over the image domain.

The above analysis, together with the solution, also applies to the case that we use
φ+ to capture the darker object. Putting the above analysis together, the updated gradient
flow for our model is modified to:

∂φ
∂ t = sign(v1− v2) ·δ (φ)

[
µdiv( ∇φ

|∇φ | )− log Pr(in)
Pr(out) + log σ1

σ2
−

(
(u0−v1)2

2σ2
1

− (u0−v2)2

2σ2
2

)]
(4)

φ(0,x,y) = φ0(x,y) in Ω

4 Results and Discussions
The fist experiment we conducted is based on the image shown in Fig 1.a. We tried to
segment this 2D brain image into GM and WM. Since no prior information is available,
we set log(Pr(in)) and log(Pr(out)) both to 0.5. Our result is shown in Fig 1.c, along
with that of Chan-Vese model in Fig1.b. It is evident that our method can capture the
local details, and produces a very accurate segmentation.

The second example is another MR image with bias field. Due the existing bias field,
this image greatly violates the global Gaussian/mean assumption, therefore traditional
region-based approaches, including the Chan-Vese model, are expected to fail. Figure
4 shows the result of using Chan-Vese model (left column) and that of using our local
median model (right column). Three snapshots of the executions are provided. As evident,
Chan-Vese model has trouble in capturing the GM area in the top-left and right-bottom
corners, while our model separate the two issues very accurately.

The third experiment is based on the same MR image, but with an added artificial bias
field. The result is shown in Fig 5. The purpose of the added field is to test how well our
new model in handling severe intensity variation. Owing to the tremendous amount of
inhomogeneity, piecewise-constant model totally failed, while our model still works very
well without being affected by the bias level. This experiment also serves as a very good
indication of the robustness of our approach.

The last group experiments were conducted on seven 3D MR images. All subjects
are participants in the longitudinal University of Kentucky Alzheimer’s Disease Center
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Figure 4: Segmentation comparison of Chan-Vese model and our model in handling bias
field. First row: three snapshot of the execution on Chan-Vese model; Second row: three
snapshot for our model. (The figures are better seen on screen than in print)

”biologically resilient adults in neurological studies” (BRAiNS) group. Scanning was
performed on a Siemens Vision 1.5T instrument. We compared our solution with that of
SPM [12] and Chan-Vese model. Fig. 6 shows a single slice result from all three meth-
ods. Fig.6.a is the input image, and 6.b, 6.c and 6.d are the GM segmentation from SPM,
Chan-Vese and our model, respectively. The sub-cortical GM tissues in all the seven im-
ages have a bit higher intensity values than cortical GM, therefore the Chan-Vese model,
using a piece-wise constant assumption, mis-classifies quite a portion of putamen as WM.
Our model, on the other hand, clearly separates the putamen and thalamus from their
surrounding WM. The comparison for the sub-cortical area has been highlighted with a
red circle in Fig.6 (Figures are better seen on screen than in black-white print). Spatial
distribution prior and local Gaussians both play a role in achieving this improvement.
Compared to SPM, our model has the edge in outlining cleaner cortical GM (highlighted
with a blue circle; better seen on the screen). Since level set methods all generate binary
segmentations, our model can be used as a discrete alternative for SPM.

References
[1] K. V. Leemput et al., Automated model-based tissue classification of MR images of

the brain”, IEEE Trans. on Medical Imaging, vol. 18, pp. 897-908, 1999

[2] T. F. Chan and L. A. Vese, Active contours without edges, IEEE Trans. on Image
Processing, Vol. 10, No. 2, pp. 266-277, 2001.

[3] T. F. Chan, L. A. Vese, A level set algorithm for minimizing the Mumford-Shah func-
tional in image processing, 1st IEEE Workshop on Variational and Level Set Methods
in Computer Vision, pages 161-168, 2001.

1077



20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

200

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

200

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

200

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

200

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

200

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

200

Figure 5: Segmentation comparison of Chan-Vese model and our model in handling se-
vere intensity inhomogeneity. First row: three snapshot of the execution on Chan-Vese
model; Second row: three snapshot for our model. (The figures are better seen on screen
than in print)

[4] C. A. Cocosco et al., BrainWeb: Online interface to a 3D MRI simulated brain
database, Neuroimage, vol. 5, no. 4, part 2/4 S245, 1997

[5] D. Cremers, M. Rousson and R. Deriche, ”A review of statistical approaches to level
set segmentation: integrating color, texture, motion and shape”, IJCV, 2006. To appear.

[6] J. Yang, H. Tagare, L. H. Staib, J. S. Duncan, ”Segmentation of 3D Deformable
Objects with Level Set Based Prior Models”. ISBI 2004: 85-88.

[7] A. C. Evans, D. L. Collins and B. Milner, “An MRI-based stereotactic atlas from 250
young normal subjects”, Society of Neuroscience Abstrasts, 18:408, 1992.

[8] S. Gao, T. D. Bui, Image Segmentation and Selective Smoothing by Using Mumford-
Shah Model. IEEE Transactions on Image Processing 14(10), 1537-1549, 2005.

[9] C. Li, J. Liu, M. D. Fox: Segmentation of Edge Preserving Gradient Vector Flow: An
Approach Toward Automatically Initializing and Splitting of Snakes. CVPR (1) 2005:
162-167.

[10] N. Paragios and R. Deriche, ”Coupled Geodesic Active Regions for Image Segmen-
tation: A Level Set Approach”, ECCV (2) 2000, pp. 224-240.

[11] M. Rousson, R. Deriche, ”A Variational Framework for Active and Adaptative Seg-
mentation of Vector Valued Images”, INRIA Technical Report, 2002.

[12] A. Mechelli, C.J. Price, K.J. Friston, and J. Ashburner. ”Voxel-Based Morphometry
of the Human Brain: Methods and Applications”. Current Medical Imaging Reviews,
pp 105-113, 2005.

1078



50 100 150 200 250

50

100

150

200

250

(a)

50 100 150 200 250

50

100

150

200

250

(b)

50 100 150 200 250

50

100

150

200

250

(c)

50 100 150 200 250

50

100

150

200

250

(d)
Figure 6: Input image and 3 GM segmentation results from SPM (b), Chan-Vese (c) and
our model (d).

[13] A. Tsai, A. Yezzi, W. Wells, C. Tempany, D. ”Approach to Curve: Evolution for
Segmentation of Medical Imagery”, IEEE TMI, Vol. 22, No. 2, 137-154, February
2003

[14] C. Xu and J. L. Prince, ”Snakes, Shapes, and Gradient Vector Flow,” IEEE Transac-
tions on Image Processing, 7(3), pp. 359-369, March 1998.

[15] S. Zhu and A. Yuille, ”Region competition: Unifying snakes, region growing, and
bayes/MDL for multiband image segmentation”, PAMI, 18(9):884–900, 1996.

1079



Sparse MRF Appearance Models for
Fast Anatomical Structure Localisation∗
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Abstract

Image segmentation methods like active shape models, active appearance
models or snakes require an initialisation that guarantees a considerable over-
lap with the object to be segmented. In this paper we present an approach that
localises anatomical structures in a global manner by means of Markov Ran-
dom Fields (MRF). It does not need initialisation, but finds the most plausible
match of the query structure in the image. It provides for precise, reliable and
fast detection of the structure and can serve as initialisation for more detailed
segmentation steps.

Sparse MRF Appearance Models (SAMs) encode a priori information
about the geometric configurations of interest points, local features at these
points and local features along the edges of adjacent points. This information
is used to formulate a Markov Random Field and the mapping of the modeled
object (e.g. a sequence of vertebrae) to the query image interest points is
performed by the MAX-SUM algorithm.

The local image information is captured by novel symmetry-based in-
terest points and local descriptors derived from Gradient Vector Flow. Ex-
perimental results are reported for two data-sets showing the applicability to
complex medical data.

1 Introduction
The reliable and fast detection and segmentation of anatomical structures is a crucial is-
sue in medical image analysis. It has been tackled by a number of powerful approaches,

∗We would like to thank Philipp Peloschek, MD and Klaus Friedrich, MD of the Department of Radiology,
Medical University of Vienna, Austria, for supplying the medical images. This research has been supported by
the Austrian Science Fund (FWF) under grant P17083-N04 (AAMIR), as well as the European Union Network
of Excellence FP6-507752 (MUSCLE) and the Region Île-de-France.
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2 SYMMETRY BASED INTEREST POINTS AND DESCRIPTORS 2

among them active shape models [3], active appearance models [4, 5], active feature mod-
els [12], graph-cuts [2] and snakes [7].

These approaches have been successfully employed to segment structures in cardiac
MRIs [16] or for registration in functional heart imaging [19]. In [17] vertebrae in the
spine were delineated, and in [20] active shape models were utilised for bone densiome-
try.

All approaches rely on a reasonable initialisation of the iterative active appearance
model or active shape model search: ASMs and AAMs need to be placed with consider-
able overlap with the object of interest. Graph-cuts need a set of manually annotated seed
points placed within and outside of the object, and while snakes need spatial constraints,
to ensure the delineation of the correct object. Usually the initialization is either done
manually or by application specific approaches.

Several approaches to a detect coarse initialization positions rely on pair-wise point
matching using local descriptors like SIFT [13], shape context [1] or PCA-SIFT [8], and
typically rely on a robust method like RANSAC [6] to deal with ambiguous structures.
They match interest points between a source (i.e. example) image and the until now
unseen target image. These approaches have several drawbacks: (1) For complex non-
rigid transformations between source and target image a large number of correct interest
points matches is required, which increases computation time considerably for the robust
matching. (2) Information about the spacial relation of adjacent descriptors is difficult to
incorporate into the matching process.

In this paper we propose a deterministic method based on Markov Random Fields
(MRF) that incorporates both interest point positions and local features to perform the de-
tection of landmark configurations from a single example. The detection is performed in
a fast manner by the MAX-SUM algorithm [21]. The approach uses all interest point fea-
tures and positions and finds a solution which minimizes the combined costs of non-rigid
deformations and local descriptor feature differences. Arbitrary interest points and local
descriptors can be used. We report results for interest points based on local symmetry and
a complementary local descriptor derived from gradient vector flow [22].

Local symmetry detectors were investigated in [15, 10], but they are either computa-
tionally expensive or use radial symmetry detection with predefined radii. Recently [14]
proposed an approach to detect symmetry in the constellation of interest points detected
by existing point detection methods.

The paper is structured as follows: In Sec. 2 we explain the interest point detector
and local descriptor. Sec.3 details Markov Random Fields and in Sec. 4 the mapping of
the source- to the target points by MRFs are explained in detail. In Sec. 5 we present
the experimental evaluation of our approach, followed by a conclusion and an outlook in
Sec. 6.

2 Symmetry based interest points and descriptors
Many structures of interest to medical experts, like bones, veins and many anatomical
structures or their parts exhibit a shape with a high degree of symmetry w.r.t. one or more
axes. This property of (local) symmetry is well preserved even when dealing with 2D
slices of 3D data sets like MRIs, as the cross sections of these body parts will appear as
round or elongated structures. Even regions of interest that do not exhibit this property can
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2 SYMMETRY BASED INTEREST POINTS AND DESCRIPTORS 3

be localized by observing their neighborhood, e.g. an initialization for e.g. meniscoids
can be provided by correctly localizing the discs and vertebrae of the spine.

2.1 Interest Points from Local Symmetry
Popular interest point detectors which are often used in conjunction with SIFT are the
Harris corner detector and the Difference of Gaussians (DoG) approach, neither of which
possess an affinity to local symmetry. A comparison of the interest points detected by
DoG and interest points derived from local symmetry is shown in Fig. 1 (a,b).

To detect points of high local symmetry we use the gradient vector flow (GVF) field,
which was originally proposed in [22] to increase the capture range of active contours.
Its strengths include the ability to detect even weak structures while being robust to high
amounts of noise in the image. The GVF can be computed either from a binary edge
map or directly from the gray level image I. We compute the GVF of an image as G =
u+ i∗v = GV F(I), yielding the complex matrix G used for all subsequent computations.
The resulting field G is depicted in Fig. 2 for a synthetic example and a section of a hand
radiograph, overlaid over the image I.

The field magnitude |G| is largest in areas of high image gradient, and the start- and
endpoints of the field lines of G are located at symmetry maxima. E.g. in the case of a
symmetrical structure formed by a homogeneous region surrounded by a different gray
level value the field will point away form or towards the local symmetry center of the
structure, as shown in Fig. 2 (a,b). The symmetry interest points are thus defined as the
local minima of |G|. In contrast to techniques based on estimating the radial symmetry
using a sliding window approach this will yield a sparse distribution of interest points
even in large homogeneous regions.

After detecting the interest points the orientation αi ∈ [0,2π[ of the local region sur-
rounding the interest point can be estimated. Around each interest point rays gr

α at the
360 angles α ∈ [0, . . . ,2π[ at radii r ∈ {2, . . . ,8} are sampled from |G| using bilinear
interpolation. The interest point i is then assigned the angle αi which minimises

αi = argmin
α∈[0,2π[

∑
r

gr
α . (1)

The scale si of the region around the interest point is estimated by the mean distance of
the interest point i to the two closest local maxima of |G| in the directions of αi and αi +π .
Examples for the resulting estimates for orientation and scale are shown in Fig 1 (c). If
the scale varies only within a limited range as for the medical images examined in this
paper the scale can remain fixed.

2.2 Local Descriptors from Gradient Vector Flow Fields
A measure is needed to specify the similarity of the local regions around the symmetry
interest points and edges. Several local descriptors have been proposed in recent years,
including SIFT [13] and Shape Context [1]. While most of these approaches yield de-
scriptors suitable for building the MRF, they would require additional computations. In
contrast, we can directly use G to describe local context.

In [8] normalized patches of the image gradient are used, extracted according to the
interest points’ orientation and scale as local descriptor are. Similarly, we extract patches
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2 SYMMETRY BASED INTEREST POINTS AND DESCRIPTORS 4

(a) (b) (c)

Figure 1: Comparison of the (a) interest points found by Difference of Gaussians (DoG)
and (b) the symmetry points found as minima of GVF magnitude. Note how the symmetry
points pick up the structures which are of interest to medical experts, greatly facilitating
the correct localization of these structures. (c) depicts the scale and orientation estimates
obtained around the symmetry points.

of G around the symmetry interest points, according to scale si and orientation αi, as de-
picted in Fig. 2. They are re-sampled to a 10×10 grid and the vector field’s orientations
are stored relative to αi to form the actual local descriptor. This encodes the information
about the image gradients within and around the patch in a rotation-invariant way. Be-
cause of the GVF’s smooth structure, Euclidean distance can be used used to compute
the distance between two descriptors. This eliminates the need for complex histogram
construction as performed by SIFT for example, while still retaining a feature vector of
low dimensionality.

As the orientation of the local interest point is usually only stable up to ±π , the ac-
tual distance between two local descriptors D1 and D2 is computed as min(‖abs(D1 −
D2)‖,‖abs(D1−D∗

2)‖), where D∗
2 denotes the descriptor 2 rotated by π .

Local edge descriptors In addition to the local descriptors around interest points the
appearance along the models’ edges forms an important part of sparse appearance models.

Again the GVF G is used to extract the relevant information. Given 2 interest points
in the image, G is sampled at equidistant points along the edge. The sampled field is
then stored relative to the edge’s orientation, forming a complex vector e as displayed in
Fig. 2 (d). For the experiments in this paper, 40 points were sampled per edge.

By describing an image using the GVF-based local descriptors around interest points
and along edges, the essential information about the structure of the anatomical object is
captures in a sparse fashion. Sec. 4 describes how the descriptors from several training
images are combined to form a sparse appearance model.
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Figure 2: (a) Examples of GVF with the detected symmetry interest points (diamonds).
(b) Descriptor extraction from the GVF field. Around each symmetry point patches are
extracted from the vector field according to their scale and orientation. The patch is
then resampled to a 10× 10 grid, relative to the interest points’ orientation, to form the
actual descriptor. The image is displayed for better visualization, the symmetry points
are marked as diamonds. (c) Schematic edge descriptor of the edge between two points,
formed by sampling the GVF at equidistant points along the edge. (d) Resulting edge
descriptor, relative to the edge’s orientation.

3 Markov Random Fields and the MAX-SUM problem
The Markov Random Fields considered in this paper represent graphs where each of the
M nodes, called objects, has N fields, or labels, with associated qualities. The labels
of two adjacent nodes are fully connected by N2 edges, again with a weight to encode
quality. Which objects are adjacent is encoded in an additional graph A with A edges.
This basic structure is depicted in Fig. 3 (a). There are 4 objects with 3 labels each, with
N2 = 9 edges between the adjacent objects, A is 5.

Of interest is now to select one label for each object, so that the sum of label and
edge qualities of the resulting sub-graph becomes maximal, illustrated as thick lines. The
MAX-SUM solver can be used to tackle this problem. The MAX-SUM (labeling) problem
of the second order is defined as maximizing a sum of bivariate functions of discrete
variables. The solution of a MAX-SUM problem corresponds to finding a configuration
of a Gibbs distribution with maximal probability. It is equivalent to finding a maximum
posterior (MAP) configuration of an MRF with discrete variables [21].

Let the M×N-matrix C represent the label qualities for each of the objects, and the
A×N2-matrix E represent the edge qualities between the pairs of labels.

The total quality of the label selection S = {n1, . . . ,nM} with ni ∈ {1, . . . ,N} is then
defined as

C(S) = ∑
m=1...M

C(m,S(m))+ ∑
a=1...A

E(a,β (E,S,a)), (2)

where β (E,S,a) denotes the column representing the quality of the edge between the
labels chosen to represent the edge A (a).

Solving the MAX-SUM problem means finding the set of optimal labels

S∗ = argmax
S

C(S). (3)

Recently, a very efficient algorithm for solving this problem through linear program-
ming relaxation and its Lagrangian dual, originally proposed by Schlesinger in 1976 [18],
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Figure 3: (a) The MRF graph consists of M objects with N labels each. Qualities are
assigned to both labels and edges. Finding the solution to a MAX-SUM problem means
selecting a label for each object, such that the sum of qualities of the selected labels
and the edges connecting them is maximized. (b) Illustration of how the relative angles
between an edge and the orientations of its adjacent vertices is computed.

has been presented [21].
The MAX-SUM solver permits several labels to be defined while still keeping the

processing time within reasonable bounds. There are other attempts to solve the label-
ing problem for MRF using, e.g., second order cone programming [11], sequential tree-
reweighted max-product message passing [9] or belief propagation methods [23]. How-
ever, neither of the algorithms, nor the MAX-SUM approach, solve the problem of a multi-
label MRF exactly, as it is NP-hard. If the graph is a tree the global optimum of Eq. (3)
is guaranteed [9], in the case of a non-tree graph MAX-SUM takes various approximations
into account to reach a possibly optimal solution.

4 Sparse Appearance Model Matching
This sections describes how the sparse appearance model is constructed from training
data. This model is then used to specify the Markov Random Field for a target image.

Building a Sparse Appearance Model Sparse appearance models extract information
from images using local descriptors around interest points and along the edges between
these points. No PCA based model is used to avoid the need for a large number of training
samples and the global character of PCA-based models. The shape model is based on a
Delaunay triangulation of the model points, and statistical models of the edges’ lengths,
relative angles and local descriptors are recorded. This yields a locally deformable ro-
tation invariant model. The interest points and local point/edge descriptors are based on
local symmetry and GVF as described in Sec. 2.

For each of the n model images, a subset of M interest points is manually selected
to describe the anatomical structure to be found. One of the model images is used to
define the graph structure using a Delaunay triangulation of its M model points. The
resulting adjacencies of model points yield the set A of index-tuples describing the edges.
Examples of the generated model are shown in Fig. 4 (a,b).
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4 SPARSE APPEARANCE MODEL MATCHING 7

The M selected model points represent the objects of the MRF graph, while the N
target interest points correspond to the labels. A solution S thus represents a mapping of
the model interest points to a subset of the target interest points.

We now need to build the a priori statistical models from the n training samples for
the M model points and the A edges between these model points. First the orientations of
the model points are normalized. As the n training orientations for a model point m are
only stable up to ±π , π is added to a subset of them such that the circular variance of the
n orientations of model point m is minimised.

As there are generally too few training samples to estimate the parameters of a multi-
variate Gaussian in the space of the local descriptors, only the mean of the n local descrip-
tors for each model point m is used, yielding descriptors Dm.

For each edge a of the A model edges, the mean length la and the standard devia-
tion lσ

a is computed. Similarly, from the n angles βa1 and βa2 between the edge and the
orientations of its vertices the mean angles and standard deviations β a1,β a2 and β σ

a1,β σ
a2,

computed using circular statistics, are stored (see Fig. 3 (b)). The third edge property
which is modelled is the local descriptor (see Fig. 2). Similarly to the point descriptors,
the mean descriptor ea is computed for each model edge.

Constructing the MRF Given a sparse appearance model and a target image, the Markov
Random field is used to model the confidences that a model point or edge should be
matched to a certain interest point or edge in the target image. As we are solving a max-
imization problem, all confidences or qualities are in the interval [−∞,0]. The descriptor
distances are normalized to having a maximum of 0 and a median of -1, while the length
and angle confidences are ∈ [−1,0].

The quality of a (model point, target point)-match equals the negative distance be-
tween the local target descriptor and the model point descriptor Dm. All mutual dis-
tances between model and potential target correspondences are computed, resulting in the
M×N-matrix C.

The qualities of the AN2 edges in the model are stored in E. The quality of an edge e
between two labels ni,n j in E is computed by comparing its length le and relative angles
βe1, βe2 with the corresponding Gaussian distributions of the model edge (la, lσ

a , β a1,β a2,
β σ

a1,β σ
a2). Identity with the mean yields a confidence of 0, the minimum confidence is -1.

The confidence for the edge’s appearance equals the negative distance between the edge
descriptor and the model edge descriptor ea. The overall confidence of edge e representing
the model edge a is finally set to the minimum of the confidences for length, angles and
descriptor, thus effectively filtering out unlikely candidates.

It can occur that no interest point is detected in one location of the medical structure
in the target image where the model would expect one. It is thus important to include
the possibility of omitting a model point. This is achieved by adding one artificial target
interest point (dummy point), yielding Cd and Ed of sizes M×N + 1 and A× (N + 1)2,
respectively. The last column of Cd is set to the mean of C multiplied by a factor f
controlling how costly it should be to omit a model point. Similarly, the edges of Ed
involving the dummy point are set to f times the mean of E.

The MAX-SUM solver is then applied on Cd, Ed, yielding the set S = {n1, . . . ,nM} of
optimal labels for each model node, maximizing the quality C in Eq. 3.
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(a) (b) (c) (d)

Figure 4: (a,b) Model graph A automatically generated from the M selected interest
points (landmarks) depicted for two of the training images. (c,d) The results of the model
matching for two test images.

5 Experiments
The approach was evaluated1 on 2 data sets (Fig. 4). 1. For a set of 25 hand radiographs
(300×450 pixels) 17 landmarks in each image were manually annotated. 2. On 8 spine
MRIs (280×320 pixels) manual annotations of the centers of 6 inter-vertebral discs were
used for validation, plus 2 landmarks to disambiguate the matching. The error between
found landmarks and ground truth landmarks was recorded, where only the points of
medical interest (only the 6 spine landmarks which correspond to vertebral discs) where
considered. The typical number of detected interest points was between 400 and 600, the
model graphs contained 17 and 8 nodes, respectively. In Fig. 4 (a,b) the model graphs are
depicted on two of the training images. In Fig. 4 (c,d) matching results are depicted: the
red lines represent the model graph matched to the target image, while the green circles
are the positions of the found landmarks.

Quantitative analysis was performed by a leave-one-out procedure i.e a single image
was chosen as target image and the model graph was built from the the remaining 24 or
7 images respectively. The mean/median error for matches is 2.79 / 0.0 pixels for hand
data and 0.56 / 0.0 pixels for the spine data, reflecting the excellent matching accuracy.
The error histograms for both sets are depicted in Fig. 5. Typical run times for solving the
MRF are in the order of few seconds.

6 Conclusion and Outlook
We present a framework for the fast and accurate localisation of anatomical structures.
Configurations of symmetry interest points and local descriptors derived from Gradient
Vector Flow are represented by graphs and Markov Random Fields. The matching is
performed by the MAX-SUM algorithm. The approach integrates local descriptor similar-
ities and deformation constraints in a single optimization step. Results indicate that the
method provides the localization accuracy necessary for the initialization of subsequent
segmentation algorithms. Future research will focus on improvements to allow for the
application to segmentation tasks as well as the extension to 3-dimensional data sets.

1 The implementation used in this evaluation is available at http://www.aamir.at/bmvc07/
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Figure 5: Result histograms for the pixel distances of result landmarks to ground truth
landmarks for (a) the hand radiograph data set and (b) the spine MRI data set. Note the
high quality of the model matching, with most of the landmarks being matched perfectly.

Figure 6: Example of the rotation invariance of Sparse Appearance Models: The model
was trained on upright hand radiographs. As only relative angles are modeled, the hand
is successfully detected in the rotated image.
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Abstract

In the framework of indoor mobile robotics, place recognition is a chal-

lenging task, where it is crucial that self-localization be enforced precisely,

notwithstanding the changing conditions of illumination, objects being shifted

around and/or people affecting the appearance of the scene. In this scenario

online learning seems the main way out, thanks to the possibility of adapt-

ing to changes in a smart and flexible way. Nevertheless, standard machine

learning approaches usually suffer when confronted with massive amounts of

data and when asked to work online. Online learning requires a high train-

ing and testing speed, all the more in place recognition, where a continuous

flow of data comes from one or more cameras. In this paper we follow the

Support Vector Machines-based approach of Pronobis et al. [26], proposing

an improvement that we call Online Independent Support Vector Machines.

This technique exploits linear independence in the image feature space to in-

crementally keep the size of the learning machine remarkably small while

retaining the accuracy of a standard machine. Since the training and testing

time crucially depend on the size of the machine, this solves the above stated

problems. Our experimental results prove the effectiveness of the approach.

1 Introduction

Place recognition is an open and highly challenging problem in computer vision, espe-

cially when applied to mobile robotics in indoor environments. Simply stated, the prob-

lem is that of determining what room of a house or office a mobile robot is in, based upon

what the robot sees through one or more cameras. The problem is made very difficult

by at least three factors: (a) the input space is huge, since we deal with images, usually

at a reasonable resolution and in colour; (b) images of the same place can be quite dif-

ferent as illumination conditions change and moving obstacles get in the way; and (c),
recognition must be done on-line in real time, as the robot is moving around. The topic is

widely researched, but incremental learning approaches have been so far mostly used for
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constructing the geometrical map, or the environment representation, online [6, 1]. Ro-

bustness to illumination changes, and more generally to realistic visual variations in time,

has been addressed in [26], where it was shown that a pure learning approach can be very

effective for tackling the first two issues: indeed it was demonstrated that an approach

based upon Support Vector Machines (SVM, see, e.g., [4]) in batch mode could achieve a

remarkable robustness to illumination changes and variability due to the normal use of the

environments. At the same time the work elicited the problem of the growth of the testing

time when a bigger training set was used, to have better recognition performances. In fact,

as far as the third issue is concerned, it is well known that both the training and testing

time of an SVM crucially depend on the number of samples considered [16]; as well, the

number of Support Vectors (SVs) found, which determine the complexity of the solution

to the problem, grows proportionally with respect to the number of samples [28]. This

makes the approach unsuitable, at least so far, for on-line learning, where a potentially

endless flow of data is acquired by the machine. SVMs can be up to 50 times slower than

other specialized approaches with similar performances [8]. Several exact and approxi-

mate approaches have been proposed so far for simplifying the SVM decision function:

see for instance [12], based upon linear independence of the SVs in the feature space per-

formed after training, and other after-training simplification methods (e.g. chapter 18.3 in

[27] and [23]). The exact solution to online SVM learning was given by Cauwenberghs

and Poggio in 2000 [9], but their algorithm cannot be used to reduce the number of SVs.

In [29] and [25] approximate incremental versions of the SVM are proposed, that also

achieve a reduction of the number of SVs with small degradation of their performances.

In this paper we propose an improvement to SVMs that we call Online Independent

Support Vector Machines (OISVMs). OISVMs incrementally select “basis vectors” that

are used to build the solution of the SVM training problem, based upon linear indepen-

dence in the feature space: vectors which are linearly dependent on already stored ones

are rejected, and a smart, incremental minimization algorithm is employed to find the

new minimum of the cost function. This keeps the number of SVs much smaller than

usual, reducing the complexity of the solution and therefore both the training and testing

time. Unsupervised rank reduction methods have been proposed [3] as well as super-

vised ones [2] that achieve the same goals, but no application of these ideas appears so

far, to the best of our knowledge, in online settings. This is particularly important since

in an online setting the size of a SVM would grow indefinitely, and so would the test-

ing time. Our experiments instead indicate that the number of basis vectors of OISVMs

does not grow linearly with the training set, but reaches a limit and then stops growing.

This result is theoretically confirmed, e.g., in [14], even in the case the feature space is

infinite-dimensional.

Such an approach is actually what is needed to tackle the problem of place recognition

in mobile robotics. To support this claim, we show a set of experimental results obtained

by comparing SVMs and OISVMs on a real-world place recognition problem in an indoor

environment. Data images are acquired continuously by two robot platforms under dif-

ferent weather conditions and across a time span of several months. Our results show that

our method achieves a speed-up of 3.5− 2.3 times with respect to the time required by

the standard SVM, respectively with χ2 kernel and matching kernel [30], while retaining

essentially the same accuracy.

The paper is structured as follows: after an overview of background mathematics

proper to SVMs, Section 3 describes OISVMs. Section 4 shows the experimental results
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and lastly, in Section 5, conclusions are drawn and future work is outlined.

2 Background Mathematics

Due to space limitations, this is a very quick account of SVMs — the interested reader

is referred to [7] for a tutorial, and to [11] for a comprehensive introduction to the sub-

ject. Assume {xi,yi}
l
i=1, with xi ∈ R

m and yi ∈ {−1,1}, is a set of samples and labels

drawn from an unknown probability distribution; we want to find a function f (x) such

that sign( f (x)) best determines the category of any future sample x. In the most general

setting,

f (x) =
l

∑
i=1

αiyiK(x,xi)+b (1)

where b ∈ R and K(x1,x2) = Φ(x1) ·Φ(x2), the kernel function, evaluates inner products

between images of the samples through a non-linear mapping Φ. The αis are Lagrangian

coefficients obtained by solving (the dual Lagrangian form of) the problem

min
w,b

1
2
||w||2 +C ∑

l
i=1 ξ p

i (2)

subject to yi(w ·xi +b)≥ 1−ξi

ξi ≥ 0

where w defines a separating hyperplane in the feature space, i.e., the space where Φ

lives, whereas ξi ∈ R are slack variables, C ∈ R
+ is an error penalty coefficient and p is

usually 1 or 2. In practice, most of the αi are found to be zero after training; the vectors

with an associated αi different from zero are called support vectors. Notice that, from (1),

the testing time of a new point is proportional to the number of SVs, hence reducing the

number of SVs implies reducing the testing time.

In the following, the term kernel dimension will refer, as is customary, to the dimen-

sion of the feature space. The kernel dimension is related to the generalization power of

the machine, and it depends on the choice of the kernel itself. Widely used kernels include

the polynomial one (finite-dimensional) and the Gaussian one (infinite-dimensional).

3 Online Independent Support Vector Machines

Let the kernel matrix K be defined such that Ki j = K(xi,x j), with i, j = 1, . . . , l. The

possibility to obtain a more compact representation of f (x) follows from the fact that the

solution to a SVM problem (that is, the αis) is not unique if K does not have full rank [7],

which is equivalent to some of the SVs being linearly dependent on some others in the

feature space (this is the core of Downs et al.’s [12] original idea). In an online setting, to

apply Downs et al.’s idea, or any other post-training method to reduce the number of SVs,

means to simplify the solution each time a new sample is acquired, which is obviously

infeasible. We need a way to use independent SVs only, that is to decouple the concept

of “basis” vectors, used to build the classification function (1), from the samples used to
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evaluate the ξi in (2). If the selected basis vectors span the same subspace as the whole

sample set, the solution found will be equivalent — that is, we will not lose any precision.

We hereby propose, after having received a new training sample, to incrementally add

it to the basis if it is linearly independent in the feature space from those already present

in the basis itself. The solution found is the same as in the classical SVM formulation;

therefore, no approximation whatsoever is involved, unless one gives it up in order to

obtain even fewer support vectors (see Section 4 for a deeper discussion on this point).

Denoting the indexes of the vectors in the current basis, after l training samples, by

B, and the new sample under judgment by xl+1, the algorithm can then be summed up as

follows:

1. check whether xl+1 is linearly independent from the basis in the feature space; if it

is, add it to B; otherwise, leave B unchanged.

2. incrementally re-train the machine.

Hence the testing time for a new point will be O(|B|), as opposed to O(l) in the stan-

dard approach; therefore, keeping B small will improve the testing time without losing

any precision whatsoever.

In the following, the notations AIJ and vI , where A is a matrix, v is a vector and

I,J ⊂N denote in turn the sub-matrix and the sub-vector obtained from A and v by taking

the indexes in I and J.

3.1 Linear independence

In general, checking whether a matrix has full rank is done via some decomposition, or by

looking at the eigenvalues of the matrix; but here we want to check whether a single vector

is linearly independent from a matrix which is already known to be full-rank. Inspired by

the definition of linear independence, we check how well the vector can be approximated

by a linear combination of the vectors in the set [13]. Let d j ∈ R; then let

∆ = min
d

∣∣∣∣∣

∣∣∣∣∣∑
j∈B

d jφ(x j)−φ(xl+1)

∣∣∣∣∣

∣∣∣∣∣

2

(3)

If ∆ > 0 then xl+1 is linearly independent with respect to the basis, and {l +1} is

added to B. In practice, we check whether ∆ ≤ η where η > 0 is a tolerance factor,

and expect that larger values of η lead to worse accuracy, but also to smaller bases. As

a matter of fact, if η is set at machine precision, OISVMs retain the exact accuracy of

SVMs. Notice also that if the feature space has finite dimension n, then no more than n

linearly independent vectors can be found, and B will never contain more than n vectors.

Expanding equation (3) we get

∆ = min
d

(

∑
i, j∈B

d jdiφ(x j) ·φ(xi)−2 ∑
j∈B

d jφ(x j) ·φ(xl+1)+φ(xl+1) ·φ(xl+1)

)
(4)

that is, applying the kernel trick,

∆ = min
d

(
dT KBBd−2dT k+K(xl+1,xl+1)

)
(5)
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where ki = K(xi,xl+1) with i ∈B. Solving (5), that is, applying the extremum conditions

with respect to d, we obtain

d̃ = K−1
BB

k (6)

and, by replacing (6) in (5) once,

∆ = K(xl+1,xl+1)−kT d̃ (7)

Note that KBB can be safely inverted since, by incremental construction, it is full-

rank. An efficient way to do it, exploiting the incremental nature of the approach, is that

of updating it recursively: after the addition of a new sample, the new K−1
BB

then becomes





0

K−1
BB

...

0

0 · · · 0 0




+

1

∆

[
d̃

−1

][
d̃T −1

]
(8)

where d̃ and ∆ are already evaluated during the test (this method matches the one used

in Cauwenberghs and Poggio’s incremental algorithm [9]). Thanks to this incremental

evaluation, the time complexity of the linear independence check is O(|B|2), as one can

easily see from Equation (6).

With this method we are approximating the original kernel matrix K with another

matrix K̂ [2]; the quality of the approximation depends on η . In fact it is possible to show

that trace(K− K̂) ≤ η |B| ≤ η l, where l is the number of samples acquired [14]. If we

consider a normalized kernel, that is a kernel for which K(x,x) is always equal to 1, we

can write trace(K− K̂)/trace(K) ≤ η . On the other hand a bigger η means of course a

smaller number of SVs, hence it controls the trade-off between accuracy and speed of the

OISVM.

3.2 Training the machine

The training method largely follows Keerthi et al. [17, 16], that we have adapted for online

training. The algorithm directly minimizes problem (2) as opposed to the standard way

of minimizing its dual Lagrangian form, allowing to select explicitly the basis vectors to

use. We set p = 2 in (2) and transform it to an unconstrained problem. Let D ⊂{1, . . . , l};

then the unconstrained problem is

min
β

(
1

2
β T

KDDβ +
1

2
C

l

∑
i=1

max(0,1− yiKiDβ )2

)
(9)

where β is the vector of the Lagrangian coefficients involved in f (x), analogously to the

αis in the original formulation. If we set D = B, then the solution to the problem is

unique since KBB is full rank by construction. Newton’s method as modified by Keerthi

et al. [17, 16] can then be used to solve (9) after each new sample. When the new sample

xl+1 is received the method goes as follows:

1. let I = {i : 1− yioi > 0} where oi = KiBβ and β is the vector of optimal coeffi-

cients with l training samples; if I has not changed, stop.
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Figure 1: Sample images illustrating the variations in the IDOL2 database. Images in

the top row show the variability introduced by changes in illumination as well as people

appearing in the environment. The middle row shows the influence of people’s everyday

activity (first four images) as well as larger variations which happened over a time span

of 6 months. Finally, the bottom row illustrates the changes in viewpoint observed for a

series of images acquired one after another in 1.6 seconds.

2. otherwise, let the new β be β − γP−1g, where P = KBB +CKBI KT
BI

and g =
KBBβ −CKBI (yI −oI ).

3. go back to Step 1.

In Step 2 above, γ is set to one. In order to speed up the algorithm, we maintain an

updated Cholesky decomposition of P. It turns out that the algorithm converges in very

few iterations, usually 0 to 2; the time complexity of the re-training step is O(|B|l), as

well as its space complexity; hence, keeping B small will speed up the training time as

well as the testing time.

4 Place Recognition via OISVMs

In this section we report the experimental evaluation of OISVMs on the place recognition

scenario, where the aim is to update the model to handle variations in an indoor environ-

ment due to human activities over long time spans.

Experiments were conducted on the IDOL2 database (Image Database for rObot Lo-

calization 2, [22]), which contains 24 image sequences acquired using a perspective cam-

era mounted on two mobile robot platforms, while moving in an indoor laboratory envi-

ronment consisting of five different rooms. The sequences were acquired under various

weather and illumination conditions (sunny, cloudy, and night) and across a time span of

six months. Thus, this data capture natural variability that occurs in real-world environ-

ments because of both natural changes in the illumination and human activities. Fig. 1

shows some sample images from the database, illustrating the difficulty of the task. The

image sequences in the database are divided as follows: for each robot platform and for

each type of illumination conditions, there were four sequences recorded. Of these four

sequences, the first two were acquired six months before the last two. This means that, for

each robot and for every illumination condition, there are always two sequences acquired

under similar conditions, and two sequences acquired under very different conditions.
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This makes the database suitable for different kinds of evaluation on the adaptability of

an incremental algorithm. For further details about the database see [22].

The evaluation was performed using Composed Receptive Field Histograms (CRFH)

[19] as global image features and SIFT descriptors [20] of local features computed using a

Harris-Laplace detector [15]. In the experiments, we consider both exponential χ2 kernel

for SVM (when use CRFH), and local kernels [30] (SIFT). Note the kernel in [30] is not

always positive semidefinite [5], so this is also a test on non-Mercer kernels that have

proved useful for visual recognition. The kernels used are infinite-dimensional, so for

both kernels we run the OISVM using different values of η .

OISVMs have been implemented in Matlab and tested against LIBSVM v2.82 [10].

The software library has been extended to various families of kernels, and to the fixed-

partition incremental SVM [29], an approximate incremental extension of SVM. In this

way we can do a straightforward comparison between exact and approximate methods on

this task. Notice that for the standard SVM the training is not online.

As in the experimental setup of [21], the algorithm was trained incrementally on three

sequences from IDOL2, acquired under similar illumination conditions with the same

robot platform; the fourth sequence was used for testing. In order to test the various

properties of interest of the incremental algorithms, we need a reasonable number of in-

cremental steps. Thus, every sequence was split into 5 subsequences, so that each subset

contained one of the five images acquired by the robot every second (image sequences

were acquired at a rate of 5fps). Since during acquisition the camera’s viewpoint con-

tinuously changes [21], the subsequences could be considered as recorded separately in

a static environment but for varying pose. This setup allows us to examine how the al-

gorithms perform on data with less variations. In order to get a feeling of the variations

of the frame images in a sequence, bottom row of Fig. 1 shows some sample images ac-

quired within a time span of 1.6 sec. As a result, training on each sequence was performed

in 5 steps, using one subsequence at a time, resulting in 15 steps in total. Overall, we con-

sidered 36 different permutations of training and test sequences for both the exponential

χ2 and matching kernels; here we report average results with standard deviation. Fig. 2,

left, shows the recognition rates of the exponential χ2 kernel (top) and matching kernel

(bottom) experiments obtained at each step using OISVM, the fixed-partition algorithm

and the standard SVM. Fig. 2, right, reports the number of support vectors stored in the

model at each step of the incremental procedure, for both kernel types.

We see that, performance-wise, all methods achieves statistically comparable results;

this is true for both kernel types. As far the machine size is concerned, the OISVM

algorithm shows a considerable advantage with respect to the fixed-partition method. In

the case of the exponential χ2 kernel this advantage is truly impressive (Fig 2, top right):

for η = 0.017 and 0.025 the size at the final incremental step is 34%/22% of that of the

fixed-partition method and 28%/18% of that of the standard batch method. Even more

important, OISVM, for these two values of η , has found a plateau in memory, while for

other methods the trend seems to be of a growth proportional to the number of training

data. Note that the choice of the parameter η is crucial for achieving an optimal trade-off

between compactness of the solution and optimal performance.

It is very interesting to note that, in the case of the matching kernel, the memory

reduction for OISVM is less pronounced, and there is not a clear plateau in memory

growth by any of the algorithms. This behavior might be due to several factors: to begin

with, the matching kernel is not a Mercer kernel [5], which might affect the algorithm.
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Figure 2: Average results obtained for experiment performed on the IDOL2 database,

using OISVM with three different values of η , the fixed-partition and the standard SVM.

Also, the algorithm does not reach a plateau in the SVs growth because, in the induced

space of the matching kernel, there seems to be a high probability that pair of training

points are orthogonal, or almost orthogonal, to each other (notice that, as the kernel is not

a Mercer one, the geometric interpretation might not be valid). Anyway, given enough

training points, the machine will always reach a maximum size and will stop growing

[14]. Other tests on a set of standard databases commonly used in the machine learning

community, as well as more details about OISVM can be found in [24].

It is worth noting that, even if the solution is kept small and the number of support

vectors will be finite in any case, all the received training samples must be stored. This

can be a problem in an online setting, but it could be solved using, for example, some

kind of forgetting strategy. Another strategy can be the use out-of-core storage of the data

(i.e., storage on the hard disk) in order to be able to deal with big training sets.

5 Discussion and conclusions

In this paper we have shown a promising improvement to Support Vector Machines, that

we call Online Independent Support Vector Machines (OISVM). OISVMs can effectively
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solve the problem of place recognition by a mobile robot, at least in the experiment we

have shown. OISVMs were tested on the IDOL2 image database, which consists of image

sequences acquired by two robot platforms under different weather conditions and across

a time span of several months. OISVMs avoid using in the solution those support vectors

which are linearly dependent of previous ones in the feature space. The optimization

problem is solved via an incremental algorithm which benefits of the small number of the

basis vectors.

As far as we know, this method is different from all analogous procedures presented

so far in literature (e.g., [12, 23, 18, 31, 16]) since it is not an after-training simplification

and it assumes no knowledge whatsoever of the full training set beforehand. Moreover

in case of finite-dimensional kernel and η = 0, the solution is exactly the same of the

standard formulation because no approximation is used.

Our experimental results show that in the case of infinite-dimensional kernels, the

number of support vectors is dramatically reduced at the price of a negligible degradation

in the accuracy. In fact in the case of χ2 kernel, we get as few as 3.5 times less SVs

with respect to the batch formulation and 3 times less with respect to the fixed-partition

method, while retaining essentially the same accuracy. In the case of the local kernel, the

speed up are respectively 2.3 and 2.1.

Since the training and testing time depend polynomially on the number of support

vectors, reducing them brings an obvious speed up. A careful study of the relationship

between η and the degradation in performance is being carried on; in fact, according

to [14], imposing a value of η strictly larger than zero will eventually result in a finite

number of basis vectors, even in the case the feature space is infinite-dimensional. Further

research about finding a precise relationship between η and this number will allow us to

precisely dimension the machine depending on the required precision.
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Abstract

Using simultaneous localization and mapping to determine the 3D surroundings and
pose of a wearable or hand-held camera provides the geometrical foundation for sev-
eral capabilities of value to an autonomous wearable visionsystem. The one explored
here is the ability to incorporate recognized objects into the map of the surroundings
and refer to them. Established methods for feature cluster recognition are used to
identify and localize known planar objects, and their geometry is incorporated into
the map of the surrounds using a minimalist representation.Continued measurement
of these mapped objects improves both the accuracy of estimated maps and the ro-
bustness of the tracking system. In the context of wearable (or hand-held) vision, the
system’s ability to enhance generated maps with known objects increases the map’s
value to human operators, and also enables meaningful automatic annotation of the
user’s surroundings.

1 Introduction
Three principal threads run through research into wearablecomputing. The first is the
creation of strata of portable and genuinely wearable hardware, and the second is the
development of unobtrusive and socially acceptable sensors and interfaces to gather data
and feed information back to the user. These two alone allow adegree of environmental
and self monitoring by the user, or monitoring of the user by aremote operator. The
last thread involves the exploration of perceptual modalities which can assess the user’s
environment, the user’s relationship to it and activities within it, and thence augment the
user’s capabilities by offering contextually pertinent advice.

Work in the first thread has been greatly aided by the inexorable increase in the inte-
gration of electronic components. Wearability, however, requires account to be taken of
human factors which must still be determined empirically over several cycles of design,
build, and test. The hardware series from Smailagic, Sieworek and coworkers at CMU
(e.g. [24]) and more recently by Tröster and colleagues at ETH (e.g. [1]) are ones where
the design methodology is particularly clear. Within the second thread, sensors can be
grouped into those sensing the wearer or sensing the surroundings. A raft of physiological
signals has been used to determine muscle, brain and heart activity, skin conductance, res-
piration, blood pressure, and body temperature; and accelerometers and motion-sensitive
textiles have measured user activity [17] [22] [20] [31]. Outward looking environmental
sensors include those for ambient quantities like noise, ortemperature (e.g. [5]); those
giving just the user’s position (e.g. [2]); and those givinga more fine-grained understand-
ing of the surroundings (e.g. [27] [11] [19] [30]). Of this last group, it is visual sensing
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that provides the strongest first-person perspective on thesurroundings. The breadth of
information available from imagery (or potentially so) makes it the “must-have” sensor
for the third research thread.

Key to providing a wearable camera system with a greater degree of autonomy are
the abilities both to locate the camera in the environment and to determine what is where
around it [18]. In [18] it was demonstrated that once a partial 3D map of the camera’s
environment is established, locations can be selected for the camera to fixate upon, coun-
teracting movements of the wearer, while continuing both toaccumulate scene structure
and to determine the camera pose. Whilst that process demonstrated the ability of a wear-
able system to direct attention independently of the wearer’s movements, the 3D structure
had no intrinsic significance to the wearable system. The fixated 3D pointsmayhave
been related to known objects, but the semantic link betweenpoint and object had to be
established by the wearer.

In [4] this limitation was removed by using learned appearance models to recognize
objects in the scene. As well as permitting graphical augmentation of the recovered map,
it was found that incorporating the recognized objects’ geometry into the map improved
the robustness and accuracy of localization. A minimal representation of the objects was
used, which had the benefit of causing minimal disruption in the underlying localization
mechanism, meaning they could run independently.

In this paper we advance the method in [4] by proposing a novelimplementation
with a solution to providing synchronization between the localization process, which runs
regularly at video rate, and the recognition process which takes both a considerably longer
and variable time. We adapt the method of delayed decision making of Leonard and
Rikoski [12], a method developed to enable the initialization of features using data from
multiple steps. We demonstrate the method working on a localized desk top environment,
showing that a spatially-aware dialogue can be establishedbetween the wearable system
and its wearer.

The following two sections briefly review the methods of establishing the camera po-
sition and map using monocular SLAM, and object identification using SIFT features.
Section 4 describes the new method of organizing the combination of localization and
recognition, and Section 5 gives an experimental evaluation. The paper closes with re-
marks on current work to combine fixation with recognition.

2 MonoSLAM
In contrast to batch methods of structure from motion recovery, simultaneous localization
and mapping [26] [14] [28] places emphasis on continual recovery of the state of the
camera and structure, and on maintaining information on thecorrelation between state
members — not only to allow re-matching after neglect, but also to allow uncertainty to
be reduced throughout the camera and map state vector when loop closing occurs.

Early applications were based on the extended Kalman filter [25] using landmarks in
the sensor data, whether sonar [13] [14] or visual [3] [7]. The quadratic computational
complexity of the EKF has made finding other methods to handlelarge-scale maps a major
concern (e.g. [9] [10] [15] [29] ), and EKF-SLAM is no longer used in its general form in
field robotics. However, it remains well-suited to wearablevision using sparse landmark
points. First, for wearables, sparseness of representation is no hindrance to navigation —
one can rely on the wearer to get around. Secondly, the need toimpose a limit on the
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Figure 1: Typical initialization and evolution of structure and camera track in
monoSLAM.

growth of the feature map in order to maintain video-rate performance is quite compat-
ible with the notion of a local “workspace” of fixed volume around the wearer. Thirdly,
such points may be annotated or recognized as points or objects of intrinsic interest to
the wearer. Sparseness does make for fragility however. In monoSLAM with uncon-
strained camera motion, depth is not recovered from a singleview or multiple views of a
single point. Information comes from all points collectively, but, as processing has to be
completed in a fixed time, a limit must be imposed on the feature map size.

In this paper we use the EKF monoSLAM formulation of Davison [6], [8]. The state is
X = [c, X1, . . . , Xn] where theX are 3D locations of map features, andc = [t, q, v, ω]
is the camera position, orientation, translational velocity and angular velocity, all defined
in the world frame. The usual non-linear state update equation,Xk+1 = f (Xk, uk) + ek,
from time-stepk tok+1 is assumed, whereuk is a control input, andek is an uncorrelated
zero-mean Gaussian noise sequence. Here, as there is no source of odometry, the control
input is taken to be zero. In the update, the 3D positions are assumed to be static, but the
camera’s state is updated according to a constant velocity model. The projections of the
scene points are assumed to be related to the state at time-stepk by mk = h (Xk) + dk

wheredk is an uncorrelated zero mean Gaussian noise sequence. The standard EKF
update of the state and fully populated covariance matrix isfollowed.

For this implementation, “standard”1 features for (potential) insertion into the 3D map
are detected with the Shi-Tomasi saliency operator [23], and features that are eventually
inserted are stored with an 11×11 pixel appearance template. Active search for corre-
spondence is made within the predicted match region using normalized sum-of-squared
difference correlation. Standard features are initialized using an inverse depth represen-
tation, using the state representation of Montielet al. [21]. Figure 1 shows a typical view
of recovered structure and camera track from monoSLAM that underpins the recognition
process discussed below.

3 Object detection and identification
The aim now is to detect and identify known objects in the scene and to determine their
location in the world frame from just a single image, while maintaining frame-rate opera-
tion. The location of a detected object will serve as an extrameasurement for the SLAM

1The description standard merely distinguishes features used for SLAM from those used for recognition.
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process. To unify recognition and localization, a point-based representation is adopted
throughout, and ideally the same point features would be used for both purposes. How-
ever, Shi-Tomasi is insufficiently discriminating for recognition, making necessary a more
robust method, invariant to scale and orientation changes.For this we adopt Lowe’s SIFT
[16], which is known to perform well, but is too computationally expensive for frame-rate
operation.

3.1 The object database
The database includes at present only planar objects. To construct an entry, an image
of the object is captured and, after correcting for radial distortion, SIFT descriptorsσi

and their positionsxi, i = 1...I are computed. The image need not be fronto-parallel,
and so the homographyH between the scene and image is found by choosingn ≥ 4 image
points whose corresponding scene pointsX = [X, Y, 1]⊤ can be located in a object-based
Euclidean plane. The database entry

Oj = {IR, {σi, Xi = H
−1xi}i=1...I , {X

k
B}k=1...K , {k1, k2, k3 ∈ 1...K}}j

contains (i) the imageIR of the object rectified by the homography so that it appears as
a fronto-parallel view, (ii) the list of SIFT descriptors and their scene locations, (iii) the
locations of several scene boundary pointsXk

B to define the object extent, and (iv), as
explained later, the indices of three boundary points flagged for use in the SLAM map.

3.2 Object detection and localization
During a run, a video frame is selected at regular intervals and SIFT features are extracted.
The detected feature locations are corrected for radial distortion2, and are then matched
to the stored keypoints of the known objects. Candidate matching descriptors are found
using a pre-computed kd-tree based method [16] to search thedatabase. If the number
of matched points from any given object’s database entry to the current image is greater
than a threshold, we regard that object as a candidate. Because of repeated structure or
other scene confusion, some of the features may be incorrectly matched. However, as the
database objects are known to be planar, the database scene pointsX and currently ob-
served image pointsx are related by a plane-to-plane homographyx = H

′X. RANSAC
is used to estimate the homographyH

′ and, if a sufficiently large consensus set is found,
we infer that the database object is visible in the current frame.

Having determined an object is visible we recover its location by decomposing the
homography between scene and current image. In the Euclidean object-centred coordi-
nate frame, the object lies in the planeZ = 0, and 3D homogeneous points on the object
areX(4×1) = [X, Y, 0, 1]⊤. In any view, the projection can therefore be written in terms
of extrinsic and intrinsic parameters asx = K[R|t]X(4×1). Hencex = KAX , where
A = [r1 r2 t] contains the translationt and the first two columns of the rotation matrix
R, all modulo a scaling factor. Using the homography already computed as the output of
RANSAC and assuming known camera calibrationK,

[

r1 r2 t
]

= K
−1

H
′, again up

to scale. Because the estimateH
′ is noisy, there is no guarantee thatr1 andr2 found as

above will be orthogonal (which they are required to be as they are columns of a rotation
matrix). The closest rotation matrix, and hence the overallscale for the translation, is
determined using singular value decomposition.

2This is faster than undistorting the whole image, and the distortion is not significant enough to effect SIFT.
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The rotation matrix and translation vector calculated in this way specify the transfor-
mation of the camera from the frame of reference of an object’s canonical database image.
We apply this transformation in reverse to place the object in the frame of reference of
the camera at the time the image was selected; and then apply afurther transformation
determined by the camera’s pose at the time of capture relative to the world coordinate
frame defined by the SLAM map to derive the position of the object in world coordinates.

3.3 Adding recognized object locations to the SLAM map
A number of methods for adding objects to the 3D map can be envisaged. The straight-
forward, but certainly effective, approach used here is to allow the recovered 3D position
of the planar object to define 3D point measurements. The feature positions themselves
are not entered, but instead the three pointsXk

B, k = k1, k2, k3 from the object’s bound-
ary designated in the object database entry are used. For example, for the rectangular
pictures used in experiments, three of the four corners are inserted into the map. The
benefits in this approach are, firstly, no additional mechanism is required in the SLAM
process. Provided reasonable values are supplied for the (typically much lower) 3D error
in these points, constraints on the scene will propagate properly through the covariance
matrix. Secondly, there is no reliance on any particular SIFT features being re-measured
over time. Thirdly, the boundary points provide a convenient representation of the extent
of the object for graphical augmentation.

4 A novel implementation with delayed object insertion
The detection, localization, and SLAM methods have been re-implemented to take ad-
vantage of the capabilities of a dual core processor (2.13 GHz Intel Pentium Core 2 Duo).
Including operating system overheads, monoSLAM, executing on one core with around
20 point features, takes approximately 10 ms for a640× 480 image, leaving some 20 ms
per frame to perform any further computation. Object detection and localization is run in
a separate thread on the second core, continuously grabbingand processing frames.

For a typical frame, SIFT detects around 500 keypoints and takes on average 700 ms
to complete. Matching against a database of 16 objects containing3.2×104 features takes
around 100 ms. While the point based SLAM runs at 30 Hz the object detection runs at
around 1.5 Hz at best. These timings will of course vary with the size of the database, the
number of features found in a frame, and the number of objectsfound in the scene.

4.1 Delayed object insertion
Because object detection takes a variable amount of time, and because it runs much more
slowly than SLAM, the process must be done in the background —that is, it must al-
ways defer to the needs of monoSLAM to run at frame-rate. A mechanism is required to
permit measurement updates using recognized objects atwhatevertime the detection and
recognition processes manage to complete processing a frame.

We use the delayed decision making proposed by Leonard and Rikoski [12]. Suppose
the single camera SLAM system runs as normal, and that at sometime stepk the object
recognition and object localization module described in§3.2 is able to start processing.
At this point the current state vector is augmented by the camera pose,s = [t, q],

XA = [c s X1 · · · Xn]
⊤

, (1)
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No. Object label No. of keypoints Image Size Metric Size (m)
1 Colosseum 2562 480× 640 0.198 × 0.264

2 Durdle Door 3026 600× 480 0.246 × 0.198

3 Grasshopper 1362 600× 480 0.246 × 0.198

...
...

...
...

...
14 Multiple View Geometry 1245 446× 637 0.174 × 0.247

15 Pansy 940 600× 480 0.246 × 0.198

16 Pots of Fire 596 480× 640 0.198 × 0.264

Total 31910

Table 1: Database objects, keypoints, and the sizes.

initialized to the current pose valuesk. The covariance matrix is similarly augmented

P
A =















Pcc Pcs PcX1
· · · PcXn

Psc Pss PsX1
· · · PsXn

PX1c PX1s PX1X1
· · · PX1Xn

...
...

...
. . .

...
PXnc PXns PXnX1

· · · PXnXn















, (2)

wherePsc = Pcc[∂s/∂c]⊤. After the saved camera pose has been added to the state, its
value can no longer be directly measured. However, the correlation values contained in
P

A, between this saved pose and other elements of the state, enable its value to be updated
as EKF updates continue. Therefore, as the state continues to be updated, the saved pose
will be refined such that it remains consistent with newer state estimates. Once the object
detection and localization completes, sayn frames later, the updated saved camera pose
sk+n is used to determine the position of any recognized objects in the world, rather than
sk. Then the saved pose is deleted from the state vector and covariance matrix. Although
only one saved state is used here, the mechanism allows for multiple detection processes
to start and finish at different times, were further processors available.

Using a saved camera pose to calculate the location of objects relies on the monoSLAM
system maintaining a good estimate of the camera pose and trajectory during the interven-
ing frames. In [4] it was shown that the inclusion of recognized object locations improved
the quality of the map, and examples of object localization rescuing a failing SLAM pro-
cess have been observed. However, this cannot be relied uponowing to the varying and
relatively long time between object measurements. This delayed insertion method pro-
vides a faster and less complex update compared with the alternative of rolling back the
EKF, inserting the measurement, and then rolling forward byrecalculating all measure-
ments from the frame the object detection was performed on.

5 Experimental evaluation
In the tests of the system reported here, a database of 16 planar objects with a total of
31,910 features was used (a sample of which is shown in Table 1), but only a subset of
these objects appear in the scene. The database was created by running SIFT on each
object image to generate the keypoints and measuring the metric sizes of the objects.
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(i) Start of the sequence with the calibration plate visiblein the map.

(ii) Two objects already initialized (Pots of Fire and Colosseum) and Multiple
View Geometry just initialized.

(iii) Final object (Grasshopper) located.

(iv) All objects have been detected and successfully localized.

Figure 2: The sequence runs from top to bottom with the cameraview shown on the left
and the map on the right.
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(a) Perspective view (b) Along thex-axis (c) Along they-axis

Figure 3: (a) View of the whole 3D map. (b,c) Individually recognized and located planar
objects on theXY wall are recovered as coplanar to within map error. See Table2.

Object label Actual angle (◦) Measured angle (◦) Error (◦)
Colosseum 90 91.2 ±6

Grasshopper 90 84.7 ±3

Multiple View Geometry 90 87.1 ±3

Pots of Fire 0 5.0 ±9

Table 2: Angles between the calibration plate and the objects.

Fig. 2 shows the evolution of processing, from initial calibration of the SLAM system
to a time when there are four recognized planar objects in theSLAM map. The 2D views
show the automatically generated overlaid identities and extents of the objects, typical of
that which would be useful to the user of a wearable or hand-held camera. The views on
the right show the evolution of the 3D map with recognized objects represented by their
database image.

Fig. 3 shows various views around a particular 3D map in whichthere are four picture
objects, one of which (Pots of Fire) should be coplanar with the calibration plate (and
hence in theXY -plane), two of which (Multiple View Geometry, Grasshopper) are in the
XZ plane and the final object (Colosseum) is in theZY plane. It can be seen that all of
the objects are in their respective planes to within experimental error. Table 2 shows the
angles between the planes recovered from the SLAM map. Tuning the performance to
the size of the covariance suggest that the lateral and deptherrors are of order 10 mm and
20 mm respectively.

6 Discussion
This paper has described a system able to detect and recognize planar objects using
appearance-based methods and to insert both their geometryand identity into a map — a
map which is initialized and updated by an underlying monocular SLAM process which
runs at fixed frame-rate using for the most part more cheaply-computed features. In par-
ticular here, the variable and relatively slow rate of delivery of geometry from the recog-
nition process has been properly accommodated in SLAM’s statistical framework using
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Leonard and Rikoski’s method of delayed decision-making, which inserts a temporary
“place-holder” location in the state and covariance. This is updated during the time the
recognition takes to complete, and is then deleted once it has been used to calculate the
geometry of recognized objects. The paper demonstrates thesystem working in a desk
top environment, providing automatic feedback on locationand identity to the user.

Two avenues of application are being explored, one in the area of hand-held cameras,
the second using an active wearable camera. With input from ahand-held camera, the
system has no direct control over what imagery is captured. We are exploring guiding the
user to different parts of the scene to search for new or already discovered objects using
directional feedback provided on screen and by auditory instruction. Street frontages and
art galleries are areas where the use of planarity is not a particular constraint to experi-
mentation. When an active wearable camera supplies the imagery, the system has some
autonomy to explore the world itself. As mentioned in the introduction, in [18] 3D point
positions in the map were hand-labelled to allow a remote operator to command an active
wearable to fixate on objects of interest while continuing tomap. This method can now
be automated to command the system to locate and fixate upon particular objects, without
intervention of the wearer. Another avenue of exploration is that of extending the method
to non-planar objects. There seems no fundamental impediment to doing so.

7 Acknowledgements
This work was supported by UK Engineering and Physical Science Research Council
(grants GR/S97774 and EP/D037077). The authors are grateful to David Lowe for the
SIFT source code, and for insightful conversations with members of the Active Vision
Laboratory.

References
[1] U. Anliker, J. Beutel, M. Dyer, R. Enzler, P. Lukowicz, L.Thiele, and G. Tröster. A systematic approach
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Abstract

Traditional egomotion estimation algorithms have largely depended on deter-
ministic feature correspondences to infer information about the camera and
have been oblivious to the scene geometry by treating scenes with varying
projectivities uniformly. This paper builds on the statistical framework of
the joint feature distribution (JFD) which models the joint probability distri-
butions of the positions of corresponding features in different images. This
framework explicitly gives probabilistic correspondence search regions that
can be stably estimated for the whole range of planar, shallow and deep
scenes using relatively few correspondences. These joint probability dis-
tributions are constrained by the epipolar constraint to yield a distribution
over all feasible egomotions. The paper also compares the proposed method
against existing well-known methods and quantifies the improvements in the
egomotion estimates.

1 Introduction
Egomotion estimation is a critical step while analyzing scenes from moving cameras. The
aim of egomotion computation is to estimate translation and rotation, i.e. external camera
parameters, the camera undergoes while capturing the sequence of images. An array of
methods to estimate egomotion of moving cameras with respect to both stationary and
dynamic scenes using a deterministic framework have been proposed. Tian et. al [15] and
Armangue et. al [1] summarize these methods and group them based on their underlying
principles.

Kanatani’s method [7] based on the epipolar constraint has been the basis for several
linear egomotion algorithms. The Essential matrix which serves as the support for the
epipolar constraint faithfully captures the epipolar geometry between the camera views
and can be estimated using the linear 8 point algorithm [5], or the state of the art 5 point
algorithm [11] [9].

The above mentioned methods directly use feature correspondences between images
and use these matches to robustly estimate the Essential matrix. However, given the va-
garies in scene structure, extracting dense feature correspondences between images is not
always possible. This paper builds on the premise that robust egomotion estimation does
not have to rely on dense, deterministic image correspondences. Instead, a probability
distribution of the uncertainties in correspondences would be sufficient. This paper uses
the joint feature distributions (JFD) [17] to build these probability distributions. The JFD
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(a) (b) (c)
Figure 1: Joint Feature Distribution (JFD) and Epipolar line : (a) shows the point under
consideration marked in red. (b) shows the corresponding epipolar line (calculated using
the ground truth data) and probability distribution of the point correspondence using JFD,
(c) the iso-contour plot of the probability distribution and the epipolar line overlaid on the
second image.

is used to predict feature correspondences between images. Probability distribution for
the Essential matrix is computed from the JFD by evaluating how well each tentative
Essential matrix’s epipolar lines fit the feature correspondence distribution.

The motivating application for this paper is to estimate the motion of a vehicle using a
rigidly attached camera. In some cases this task becomes difficult as multiple hypotheses
may fit the epipolar geometry for e.g. the camera view may be of shallow scene or a deep
scene or a largely planar scene. If an incorrect hypothesis is chosen, the estimated motion
can break and lead to an incorrect state from which the motion estimate is unlikely to
recover. The uncertainty estimates from the joint feature distributions provide us with a
mechanism to choose the best hypothesis from the space of available choices.

The paper is organized as follows. Section 2 motivates the requirement to represent
the correspondence information probabilistically and later describes our chosen method
of probabilistic representation. Section 3 goes on to describe the method used to extract
egomotion information from this probabilistic representation. Section 4 compares and
contrasts our approach with other known methods in literature. The paper ends with a
summary on future work.

2 Probabilistic Correspondence
Estimation of the correspondences of features between images is a difficult task. Tra-
ditionally, a feature detector (e.g. the Harris corner detector [4]) is used to find points
whose correspondence is most easily established. Then, matching techniques are used to
find probable matches between the feature points in both images (e.g. normalized cross
correlation, or SIFT features [10]).

Most feature extraction and subsequent matching process are hindered by noise, scale,
orientation changes, aperture effect, and repetitive scene structure. The ambiguities aris-
ing from these effects would cause feature based matching techniques to reject true feature
points as weak ones or as outliers. A probability distribution gives us a mechanism for
representing this ambiguity.

There is a good deal of literature regarding representing these ambiguities explicitly
using probabilistic methods. For the purpose of computing optical flow [2] estimates
traditional flow vectors at each point, by first estimating flow probability distributions,
and then combining this information using spatiotemporal support regions. For the same
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problem [14] creates a probability distribution over the optical flow by assuming image
gradients are corrupted by a Gaussian noise model. These distributions are then used
to estimate optical flow vectors with higher accuracy. Object tracking has also been ad-
dressed [13] using the probabilistic notions of correspondence. In [3] the authors proposes
a method to compute correspondence probability distributions using Gabor filters that are
tuned to different orientations and scales. They use the fact that for a given filter, matching
points will have matching phase. They further illustrate the application of this approach
to the problem of egomotion estimation. However, their method is only suitable for sit-
uations with limited rotation or scale change and does not have a mechanism to counter
the effects of varying projectivities in a scene. Also, in presence of regularly repetitive
texture, the responses of the Gabor filter bank are identical at multiple places and this
would lead to problems during the egomotion estimation phase.

Joint Feature distribution (JFD) [17] allows statistical representation of feature corre-
spondences in different image as a probability distribution. The probability distribution
serves to capture the correspondences entirely as conditioning on a feature gives tight
probabilistic correspondence search regions for the remaining ones. As concisely stated
in [17], JFDs are descriptive statistical models rather than normative geometric ones:
they aim to summarize the observed behavior of the given training correspondences, not
to rigidly constrain them to an ideal predefined geometry.

The problem we address in this paper is egomotion estimation of a camera mounted on
a moving vehicle. This application involves situations with deep scale and steep rotation
changes. The JFD’s offer a principled mechanism to generate the joint distributions of
feature points that undergo these changes. The uncertainty distributions generated by the
JFD are then used as the input to our egomotion algorithm.

2.1 Joint Feature Distributions
Noisy image projections xi|i = 1 · · ·m of a fixed 3D feature f can be modeled as proba-
bility distributions p(xi| f ) centered on f ′s true projections. If f varies across some 3D
features with distribution p( f ), the joint feature distribution (JFD) of the resulting popu-
lation of image features is

p(x1, · · · ,xm) =
∫

p(x1, · · · ,xm| f )p( f )d f . (1)

JFDs are image-based models originally derived from 3D quantities (in this case, the
3D feature prior p( f ) and the projection models p(xi| f )), but typically estimated from
observed image correspondences.

Let x = (x,y,1) and x′ = (x′,y′,1) be the homogeneous coordinates of the correspond-
ing points (correspondences established using traditional feature detection and matching)
in the image im1 and im2. Then a joint image vector is defined as

t = x⊗x′ = (xx′,xy′,x,yx′,yy′,y,x′,y′,1). (2)

Given N correspondences between images im1 and im2 a 9 x N matrix M is obtained
by stacking the joint image vectors. Thus M = [t1 t2 ... tN]. The homogeneous scatter
matrix V is

V =
1
N ∑

p
tptT

p =
1
N

MMT .
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The fundamental matrix uses just the smallest eigenvector of MMT whereas the JFD
model captures the underlying uncertainty using an appropriately-weighted average over
all of the eigenvectors ((MMT )−1). Conditioning the JFD gives compact correspondence
search regions consistent with all the likely models in the average. The JFD information
matrix that forms the basis of our probabilistic representation is W ≈ V−1. Now the
probability of a point x = (x,y,1) to correspond to x′ = (x′,y′,1) using JFD is given by

p(x,x′) = kie
−1
2 tT Wt

, (3)

where t is as defined by equation (2) and ki is a constant to normalize the distribution.

2.2 Reducing the probability distribution
The joint image vector can be reformulated as follows

t = x⊗x′

= [xx′,xy′,x,yx′,yy′,y,x′,y′,1]T9×1

=




xI3
yI3
I3




9×3

•



x′
y′
1




3×1

where I3 is a 3×3 identity matrix. Let Q = [xI3 yI3 I3]
T , thus t = Q ·x′. Using equa-

tion (3), the probability for correspondence between x and x′ is given by

p(x,x′) = kie
−1
2 x′TQTWQx′

= kie
−1
2 x′TAx′ (4)

where A = QTWQ.
Figure 1 shows the probability distribution obtained using the equation (4). It can

be noted that the probability distribution models the correspondence and the associated
uncertainty well.

3 Egomotion Estimation
Egomotion of a moving camera is in essence the relative geometry between subsequent
camera views. This geometry is well captured by the 3× 3 homogeneous Essential ma-
trix. Consider a camera with constant intrinsic matrix K observing a static scene. Two
corresponding image points x and x′are then related by a fundamental matrix F:

x′TFx = 0 (5)

A valid F must also satisfy the cubic singularity condition detF = 0. If the camera is
fully-calibrated with K as the internal camera calibration matrix, then the fundamental
matrix is reduced to an essential matrix denoted by E, and the new equation is:

K−TEK−1 = F. (6)
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The Essential matrix E is a representation of the motion (translation and rotation, up to a
scale), it has only five degrees of freedoms. Consequently, to be a valid essential matrix
E, it must further satisfy two more constraints, which are characterized by

2EETE−Tr(EET)E = 0, (7)

where Tr(A) is the trace of the matrix A. The above constraints can also be satisfied
by formulating the Essential matrix in terms of the translation and rotation the camera
undergoes. A unit length vector for translation can be uniquely represented by a point on
the unit sphere. Thus it can be characterized by two parameters (α,β ).

T = [sin(α)cos(β ),sin(α)sin(β ),cos(α)]T

The rotation is represented by a vector ω = [x,y,z]T . Here the angle of rotation is θ =√
x2 + y2 + z2 and the axis of rotation is ω̂ = ω/θ = [x̂, ŷ, ẑ]T . Thus given the 5 parameters

(α,β ,x,y,z) the essential matrix can be composed as follows.

E = [T]×R(ω), (8)

where R(ω) is the rotation matrix corresponding to the rotation vector ω .

3.1 Probability of egomotion given a point
Given a correspondence probability distribution for a single point x, the probability of a
given hypothesis (α,β ,x,y,z), and hence E (by equation (8)), is taken to be maximum
probability p(x,x′) such that x and x′ satisfy the epipolar constraint, i.e. xTFx′ = 0 where
F is the fundamental matrix given by equation (6). This translates to

Px(E) = maxx′ p(x,x′) (9)
subject to xTFx′ = 0

All x′ which satisfy the epipolar constraint lie on the line given by l = Fx. Consider two
points on the epipolar line l = [l1, l2, l3].

p1 = [0,
−l3
l2

,1] p2 = [
−l3
l1

,0,1]

Any point on the epipolar line can thus be represented as

x′(t) = o+ td, (10)

where o = p2 and d = (p1− p2).
Equation (9) can be reformulated using equation (10) along with equation (4) to have

new parameterization of t which inherently incorporates the epipolar constraint. This es-
sentially converts the constrained maximization over x′ to an unconstrained maximization
over t.

Px(E) = maxt p(x,x′(t))

= maxt kie
−1
2 x′(t)TAx′(t) (11)
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Maxima for the equation (11) will occur for a value of t which minimizes x′(t)TAx′(t).
Thus

t̃ = arg mint (o+ td)T A(o+ td). (12)

Minimizing the equation (12) we have t̃ =− oT Ad
dT Ad . Hence

Px(E) = kie
−1
2 x̆TAx̆, (13)

where x̆ = o− oT Ad
dT Ad d.

3.2 Probability distribution of egomotion
The probability of egomotion computed over all the points is given by combining the
information given by all points. Hence

P(E) = C
∀ points

∏
i

Pxi(E), (14)

where C is the normalizing constant for the distribution. Ideally we would like to con-
sider all the points on the image, not only the points for which the correspondence was
established during the initial JFD calculation phase in the above equation. However, em-
pirically we have found that taking even few equally spaced points on a grid results in an
accurate probability distribution of E and calculated egomotion (refer section 4).

Using equation (13) the above equation becomes

P(E) = C
∀ points

∏
i

kie
−1
2 x̆i

TAx̆i .

To estimate the egomotion Ẽ, we find the motion parameters (α,β ,x,y,z) which maximize
the P(E). Hence

Ẽ = arg maxE (C
∀ points

∏
i

kie
−1
2 x̆i

TAx̆i)

= arg maxE (
∀ points

∏
i

e
−1
2 x̆i

TAx̆i)

= arg minE (
∀ points

∑
i

x̆i
TAx̆i) (15)

In practice the optimization of the equation (15) over this 5 dimensional space is
carried out as follows.

• Evaluate P(E) at 250 random samples in 5D motion space.

• Sort in descending order and select top 50 samples.

• Use them as seed points to start nonlinear search for optimal parameter set.

• Select the parameter set which gives minimum value for P(E) from the resulting
parameter set of above nonlinear search.
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Figure 2: Comparison of (a) error in the translational and (b) error in rotational component
of the estimated egomotion using various approaches with varying amounts of noise levels
in the correspondences.

4 Experimental results
We compare the performance of the proposed approach with several well established
methods on real as well as synthetic data . The error metric for estimated translation
T with respect to the ground truth translation T̃ is computed as

eT = cos−1(T′T̃).

Similarly, the error metric for estimated rotation matrix R with respect to the ground truth
rotation matrix R̃ is computed as

eR = cos−1(
Tr(R′R̃)−1

2
).

Since the internal camera parameters are assumed to be known in all the experiments on
synthetic data, we have used normalized coordinates for the correspondences.

In general for minimization in 5D space it is hard to guarantee of convergence. How-
ever, due to the Gaussian nature of correspondence and parameterization of equation (15)
very few local minima were observed. This coupled with evenly distributed multiple seed
points in the 5D space resulted in convergence to the global minima each time in our
experiments.

4.1 Synthetic data
For synthetic data, 100 3D points were randomly selected in front of the camera covering
the field of view. These points were then projected on a image considering a unit focal
length camera at canonical position on origin. The camera undergoes T̃ translation and
R̃ rotation and the points are re-projected, using the new camera position, on the image.
The correspondences thus generated are then perturbed by zero mean Gaussian noise to
quantify the performance of various algorithms with increasing levels of noise. In our
experiments, the noise variance was varied from 2×10−3 to 12×10−3 (in units of focal
length) which approximately translates to 0.5 pixels to 2.5 pixels for a 512× 512 image
with unit focal length and 90◦ field of view.

Figure 2 shows the performance of the proposed approach on noisy data in comparison
with Kanatani-A [7], Kanatani-B [8], Jepson-Heeger [6], Prazdny [12], Triggs [16], Eight
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(a) (b)

Approach Error in translation Error in rotation
Proposed approach 1.0856 0.0026
Domke’s approach 1.1786 0.3009

Eight point approach 2.9182 1.0144
(c)

Figure 3: Translation and rotational error in degrees for the estimated egomotion between
cameras of the image (a) and (b). The comparision table is shown in (c).

Point [5], and Seven Point [18] approaches. Implementation of the Kanatani-A, Kanatani-
B, Jepson-Heeger, Prazdny have been adapted from the MATLAB toolbox given by Tian
et. al [15]. The Triggs method is based on the projective factorization approach pro-
posed by [16] to calculate the projection matrices for the two cameras. These are then
decomposed to obtain the egomotion. On similar lines, the Eight point and Seven point
algorithms are used to obtain the Fundamental matrix. Since the image coordinates are
normalized in our case, we compute the Essential matrix which is then factorized to ob-
tain the solution for the egomotion. It can be observed from the comparisons in Figure
2 that the egomotion estimates using the proposed probabilistic approach performs bet-
ter then deterministic approaches which can be attributed to the ability of the probability
distribution to handle noise in the correspondences.

4.2 Synthetic and Real Images
We have used synthetic image from SOFA 1 for evaluating the performance of the pro-
posed method. The pairs of images in which the camera undergoes translation and rotation
have been selected for this set of experiments.

Besides the comparisons in Figure 2, we also compare our results with the only other
method, Domke et. al [3] that uses probabilistic correspondences for egomotion estima-
tion. We use an available implementation 2 of this method for our evaluation. The table in
the Figure 3 show some results of our experimentation. The comparisons shown are be-
tween the proposed method, Domke’s method and the linear approach. For the proposed
and linear approaches, point correspondences are obtained between images using SIFT
based matching. For the Eight point approach, fundamental matrix is calculated based on
this matches using RANSAC. Essential matrix obtained from the fundamental matrix and
is decomposed to obtain the solution for egomotion. It can observed that the proposed
approach outperforms both the linear and Domke’s method.

In the case of real images, SIFT based feature matching was used to generate the
point correspondences which are then used to calculate the JFD. To show the validity of
our approach for real images we have calculated the epipolar lines based on the egomotion

1SOFA synthetic sequences courtesy of the Computer Vision Group, Heriot-Watt University
(http://www.cee.hw.ac.uk/ mtc/sofa)

2http://www.cs.umd.edu/ domke/egomotion/
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(a) (b)
Figure 4: Epipolar lines calculated based on the egomotion, estimated by proposed ap-
proach, overlaid over the real images in (a) and (b).

evaluated using the proposed approach. Figure 4 shows the epipolar lines overlaid on the
respective images.

We also have experimented by varying the number of points in the equation (14) and
have found that taking few equally spaced points on the image gives accurate results.
As observed in Figure 5 increasing the number of equally spaced point beyond 36 (i.e.
grid size= 6) does not yield a significant improvement in the accuracy of the estimated
egomotion.

5 Conclusion and Discussions
In this paper, we have described a method to compute the egomotion of a moving camera
using the statistical concept of joint feature distributions (JFD). The JFD’s captured the
statistics of a given collection of training correspondences and we used them to build a
dense set of correspondences of the same kind. In this work, we focussed on using the
JFD to predict correspondences and then used the epipolar constraint to find a probability
distribution for the egomotion.

The JFD contains all the information regarding the uncertainties in egomotion. When
the scene is decidedly deep, the fundamental matrix is well defined and we have a homo-
geneous covariance matrix for the family of epipolar lines associated with a given point
xi and the corresponding epipole e. So, the translation direction (e) and the rotation in-
formation (available from the fundamental matrix and e) can be calculated. For shallow
scenes, the uncertainty in homographies is well characterized by the JFD information ma-
trix (its inverse contains the homogeneous information of the homography) and this can
be decomposed into translation and rotation components.

For scenes with varying degrees of projectivities (or collections of planes), a mix-
ture of shallow JFD’s (their shared eigenvector) would allow us to characterize the scene.
We are currently exploring approaches that would allow us to compute the uncertainty in
egomotion directly from this information without imposing the additional epipolar con-
straints.
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Abstract

We show that application of modern multiview stereo techniques to the new-
view synthesis (NVS) problem introduces a number of non-trivial complex-
ities. By simultaneously solving for the colour and depth of the new-view
pixels we can eliminate the visual artefacts that conventional NVS-via-stereo
suffers. The global occlusion reasoning which has led to considerable im-
provements in recent stereo algorithms can easily be included in the new
algorithm, using a recently improved graph-cut-based optimizer for general
multi-label conditional random fields (CRFs). However, the CRF priors that
are important to success in stereo cannot be easily applied if the reconstruc-
tion is to be computed in the reference frame of the novel view. We address
this problem by extending recent work on the fast optimization of texture
priors in NVS to model the image edge structure, yielding a synthesis of the
two approaches which yields good results on difficult image sequences.

1 Introduction
The problem addressed in this paper is new view synthesis (NVS): given multiple images
of a 3D scene captured by a set of cameras, or by a single moving camera, generate a
synthetic view of the scene, as it would appear from a new viewpoint. Such new views
can be used in teleconferencing [1] or in 3-dimensionalizing monocular film footage.

Algorithms to solve this problem can be subdivided into two categories: scene re-
construction, and image-based rendering. Reconstruction methods form a representation
of the 3D scene, for example as a 3D depth map [9], volumetric grid [11] or plenoptic
function [7], from which the new view can be rendered. Stereo methods in particular can
produce extremely accurate reconstructions, with only sparse input images, as occlusion
between pixels is explicitly modelled [5, 12], and the smoothness prior can encourage
depth discontinuities in the reconstruction to coincide with intensity edges in the input
images—a conditional random field (CRF) prior [3]. However, the considerable, and uni-
versal, disadvantage of these methods is the generation of artefacts when the new view
is finally rendered, such as “tearing” [9], distortion of fine features, and general aliasing
caused by the change in reference frame.

In contrast, image-based rendering (IBR) methods solve directly for colour in the new
view, thus avoiding these pitfalls. IBR methods can be further categorized into implicit
and explicit geometry methods. Of these, implicit geometry methods [2, 13] marginal-
ize out the depth, solving only for the colour of new-view pixels. Such methods generally
employ image-based priors, working well on fine scene features. Explicit geometry meth-
ods [10] generate a depth map for the new view, much in the same way as traditional stereo
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methods, but the important link between input image edges and depth discontinuities pro-
vided by the CRF is lost. IBR methods have also accounted for occlusion between pixels
using occlusion models based on robust statistics [10, 13] rather than geometry, so do not
enjoy the global occlusion reasoning of the stereo methods.

In this paper we combine these strands of stereo reconstruction and IBR. We take
a recently introduced stereo algorithm [12] and adapt it to the NVS domain, requiring
that a number of nontrivial problems be addressed. The primary contributions are (1)
simultaneously solving for the new view and depth, with occlusion modelling, and (2)
replacing the CRF with an efficient texture prior [13]. While stereo literature sometimes
alludes to its potential application in NVS, the conversion process and the challenges it
produces have not been addressed until now. This is, to our knowledge, the first IBR
method to use a geometrical occlusion model in a global optimization framework, and is
certainly the first to combine this with a texture term.

The paper proceeds in these stages: formal statement of the problem; definition of the
energy function to be minimized; description of the graph-cut based optimization strategy;
and evaluation of the results.

2 Problem statement
The task of NVS is to generate a new view, V , of a scene, given a set of calibrated input
views, I1, .., IN . A 2D vector, x, denotes a pixel location in V , the colour of which is
written as V (x). A projection function πi(x, z) computes the 2D projection in image i
of the 3D point at depth z in front of pixel x in the novel view. This function is easily
computed from the images using commercial camera calibration software. The colour of
this pixel projected into image Ii is written Ii(x, z), shorthand for Ii (πi(x, Z(x))), with
Z(x) (and z) being the estimated depth of the pixel. Pixel colours at non-integer locations
are linearly interpolated from the image; locations outside the image boundaries are given
a value of ∞.

The problem is poorly constrained—many candidate solutions V can explain the data
equally well—so a powerful prior is needed to select good solutions. Following many
current NVS [10] and stereo [5, 12] approaches, we cast our problem in a CRF energy
minimization framework explicitly over depth (as well as colour), in contrast to methods
which marginalize out depth, optimizing solely over colour [2, 13]. Our objective function
contains costs over pixels and cliques of pixels, of the form

E(V,Z) = Ephoto(V,Z)︸ ︷︷ ︸
data costs

+Esmooth(V,Z)︸ ︷︷ ︸
surface smoothness

, (1)

for which we can use a powerful global optimizer based on graph cuts to compute strong
local optima of the energy.

2.1 Data costs
The data cost is a term that ensures that each pixel in V is photo consistent with the input
views. It enforces the constraint that the colour of output pixels which are visible (not
occluded) in a given input view should match the colour of their projected location in that
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view. We use a standard truncated SSD data cost. Ephoto is the sum of data costs over all
pixels in the novel view, denoted by the set X , averaged over input views, thus:

Ephoto(V,Z) =
1
N

N∑
i=1

∑
x∈X

Oi(x,Z)min(‖V (x)−Ii(x, z)‖2, κ)+(1−Oi(x,Z))ν (2)

where κ is a robustness threshold, ν is a penalty cost for occluded pixels, and Oi(x,Z)
indicates whether pixel x is occluded in Ii; 1 means visible, 0 means occluded. We must
have ν > κ in order to avoid our objective function encouraging self-occlusions.

We use the asymmetrical occlusion model of Wei and Quan [12] to evaluate the visi-
bility of pixels—the value of Oi(x,Z) is determined entirely from our single depth map,
Z . It is defined to be 0 if there exists another pixel, p, which projects to the same point1

in Ii as pixel x, and for which the projected depth is less than that of x, otherwise it is 1.

2.2 Surface smoothness
Surface smoothness priors regularize out uncertainties in depth, especially in untextured
regions, by placing a cost, S(), on a neighbourhood, N , of pixels, which encourages
smoothness. Esmooth is the sum of smoothness costs over a defined set of pixel neighbour-
hoods, N, commonly defined as:

Esmooth(Z) =
∑
N∈N

λs min
(

S(N ,Z), δs

)
(3)

where λs weights the smoothness prior, and δs is a discontinuity preserving threshold.
This is a truncated linear kernel, which approaches the Potts model kernel as δs → 0.

Stereo methods in this graph cut optimized framework generally use, as a smoothness
cost, a prior on the first order of disparity of two pixel neighbourhoods:

S({p,q},Z) =
∣∣∣∣ 1
Z(p)

− 1
Z(q)

∣∣∣∣ . (4)

Many stereo methods locally vary λs and/or δs as a function of the reference image,
in order to encourage occlusion boundaries to fit to image contours. Since, in NVS, the
reference image (the new view, V) is unknown, this approach is not possible here. How-
ever, Woodford et al. [13] recently introduced a pairwise texture prior which discourages
discontinuities only where there is no supporting evidence from the input sequence. We
therefore define a new Esmooth which incorporates this prior, thus:

Esmooth(V,Z) =
∑
N∈N

Etexture(V,N )λs min
(

S(N ,Z), δs

)
, (5)

Etexture(V,N ) = 1 + λt min
(

min
T∈TN

‖T−V(N ,Z)‖2, δt

)
(6)

where V(N ,Z) represents the vector of colours of the pixels inN , defined by {V (x,Z)|x ∈
N}, TN represents a library of patches specific to theN , constructed as described in [13],
and λt and δt are a further two model parameters.

1We define ‘same point’ to mean within half a pixel in both directions. This measure is an approximation,
as different pixels have different projected footprints. While a more accurate definition could be employed, we
found ours to work suitably well.
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2.3 Computing colour
NVS differs from stereo in that one is optimizing over both colour and depth, as opposed
to just depth. However, by making colour a function of depth, we can reuse the stereo
optimization framework. We define the colour of pixel x to be the mean of visible input
image samples of x, thus:

V (x,Z) =
∑N

i=1 Oi(x,Z)Ii(x, z)∑N
i=1 Oi(x,Z)

. (7)

While the truncation term, κ, means that equation (2) is not necessarily unimodal in V ,
given Z , if we assume that all visible samples are a good match (as they should be for
the correct solution), then equation (7) gives the colour that minimizes the Ephoto term.
Therefore, we can rewrite all the above energies in terms of Z only, and, by discretizing
depth, we can now optimize this energy using a recently introduced method to obtain
high-quality solutions, as we now describe.

3 Optimization
Despite the apparent complexity of the energy in fig 1, it ultimately boils down to an
energy of the form

E(Z) =
∑
x∈X

ux(Z(x))︸ ︷︷ ︸
unary terms

+
∑
N∈N

cN (Z(N ))︸ ︷︷ ︸
clique terms

(8)

where the cliques include 2-cliques of pixels which may be a long way apart, defining the
occlusion term O (for which the reader is referred to [12]). A recent study of optimiza-
tion algorithms [4] showed that such long range and irregularly connected terms are only
effectively optimized using graph cut algorithms.

In order to optimize the energy, we therefore follow recent work [8], and reduce it to a
sequence of binary problems as follows. Suppose we have a current estimate of the depth,
Zt, and a proposal depth map Zp. The goal is to optimally combine (“fuse”) the proposal
and current depth maps to generate a new depth map Zt+1 for which the energy E(Zt+1)
is lower than Zt. This is achieved by taking each pixel in Zt+1 from one of Zt,Zp, as
controlled by a binary indicator image B with elements B(x):

Z(B) = B · Zt + (1− B) · Zp, (9)

where dot indicates elementwise multiplication. Then the energy E(Z) is a function only
of the indicator image B, so we may define

Zt+1 = Z
(

argmin
B

E(B · Zt + (1− B) · Zp)
)

. (10)

If this binary optimization problem leads to a submodular2 graph then a globally optimal
B can be found using graph cuts. However, as Wei and Quan [12] explain, the occlusion
term O is not guaranteed to fulfil the submodularity constraint.

2A submodular pairwise energy graph is one for which every pairwise energy term, φpq(lp, lq), lp, lq ∈
{0, 1}, satisfies the submodularity constraint: φpq(0, 0) + φpq(1, 1) ≤ φpq(0, 1) + φpq(1, 0).
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V (x,Z) :=

∑N
i=1 Oi(x,Z)Ii(x, z)∑N

i=1 Oi(x,Z)

Ephoto(Z) :=
1

N

N∑
i=1

∑
x∈X

(
Oi(x,Z)min(‖V (x,Z)− Ii(x, z)‖2, κ)

+ (1−Oi(x,Z)) ν

)

S({p,q},Z) :=

∣∣∣∣ 1

Z(p)
− 1

Z(q)

∣∣∣∣
Etexture(V,N ) := 1 + λt min

(
min

T∈TN
‖T−V(N ,Z)‖2, δt

)
Esmooth(Z) :=

∑
N∈N

Etexture(V,N )λs min

(
S(N ,Z), δs

)
E(Z) := Ephoto(Z)︸ ︷︷ ︸

data costs

+ Esmooth(Z)︸ ︷︷ ︸
surface smoothness

Figure 1: Energy function. The energy E(Z) minimized as a function of the new-view depth
map Z . Note that although complex, with many terms, this function can be effectively reduced to
a sequence of binary optimization problems, for which the QPBO algorithm finds either a global
optimum, or a local optimum with an indication of how far from the global optimum it is.

Rather, we can now use the Quadratic Pseudo-Boolean Optimization (QPBO) strategy
introduced to computer vision in [8]. QPBO is an extension of graph cuts that can be
used to optimize non-submodular energies. Unlike the globally optimal submodular case,
QPBO returns a partial solution to B and an associated mask M, with the guarantee that
at pixels x where M(x) = 1, the value B(x) is at the value it would have at the global
minimum, but pixels where M(x) = 0 have “unlabelled” values. A further guarantee of
QPBO is that, after forcing B(x) = 1 at those unlabelled pixels, E(Zt+1) ≤ E(Zt), thus
ensuring a convergent optimization. In practice, we find that, while there may be many
unlabelled pixels at each fusion step, those pixels for which the proposal depth is optimal
tend to be labelled, so the energy is minimized quite effectively.

In principle our choice of proposal depth map is not constrained when using QPBO,
but we emulate the simple approach of [12] in setting the proposal at each fusion step to
be a fronto-parallel plane at one of a discrete set of depths.

3.1 Graph construction
NVS has the additional complexity over stereo that the colour of pixel x, as given by
equation (7) depends not only on its depth (current or proposed), but also on the binary
visibilities O1(x,Z), .., ON (x,Z). Therefore, in order to accurately model the energy
of equation (2) our graph requires cliques of size N + 1, as shown in figure 2(a), while
equation (6) requires cliques of size 4N + 2.

QPBO, like all graph cut algorithms, can only solve graphs with cliques up to size
two. Energy terms of any order can always be decomposed into a set of pairwise energy
terms, with additional, latent nodes, but this set grows exponentially with the clique size.
In order to avoid an explosion in graph complexity, we limit our maximum clique size
to three. This requires approximations to be made in our graph structure, the details of
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(a) Exact energy representation. (b) Approximate, soluble construction.
Figure 2: Graph construction. Graphical representations of (a) our objective function, and (b) the
approximate energy graph we construct, for a 2 × 1 pixel image, with N = 3. Ellipses (including
circles) represent nodes of the graph (and associated unary terms); lines (edges) represent pairwise
energy terms. Nodes p and q encode the depth labels of the two image pixels. The nodes O1|z0,
etc. encode whether (by way of example) pixel p is occluded at depth label 0 (i.e. depth z0) in
I1, given the depth labels of all other pixels also. The blue lines are infinite edge costs which set
these visibilities, as per [12]. The list of occlusion interactions (i.e. blue lines) is computed prior
to solving the graph, and it should be noted that not every occlusion node has such an interaction,
while others may have more than one. The dashed lines in (a) encircle nodes in higher order
cliques, which accurately model the data costs (black lines) of equation (2), and surface smoothness
cost (red line) of equation (5). However, since graph cut optimizers can only solve graphs with
pairwise and unary terms, we approximate these cliques to generate graph (b) as follows. First,
we approximate the surface smoothness cost with a single pairwise edge (red line), by using a
fixed approximation of pixel colour in equation (6). Then we remove all occlusion nodes with no
occlusion interactions—the image samples associated with those nodes will always be visible—
reducing some of the cliques in size. Cliques of size 1, 2 and 3 can then be modelled exactly using
unary and pairwise terms (black lines), as shown by the graph structures in corners A, D and C of (b)
respectively. In particular, the triple clique energy is decomposed into 6 pairwise terms according
to [6], which also generates an additional, latent node, aux. Cliques of size 4 (corner B) or larger
are approximated using a set of pairwise edges, as described in §3.1.

which are one of the main contributions of this paper.
To remove the complexity generated by the variability of colour in equation (6), we

simply fix the colour of each pixel x at a given depth z to V ′(x,Zt, z), i.e. we assume all
pixels other than x to be at the depth output by the previous fusion, thus:

V ′(x,Zt, z) =
∑N

i=1 Oi(x,Zt)Ii(x, z)∑N
i=1 Oi(x,Zt)

. (11)

Rather than use this approximation as standard in equation (2) as well, we prefer to model
the data costs as accurately as possible, as they have a much greater impact on the quality
of the solution. Figure 2(b) shows that, once unnecessary occlusion nodes have been
removed from the graph, pixels at a given depth with up to two possibly occluded input
samples can be modelled exactly with a single unary, pairwise or triple clique term for
the data cost over all input images. We can therefore model all data costs exactly when
N = 2. However, in the case of larger cliques we use the fixed colour, V ′, in evaluating
Ephoto. Potentially occluded image samples therefore generate a pairwise edge, as in
stereo [5, 12], while data costs for unoccluded samples are simply added to the correct
unary term of the node representing the pixel in question.
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The approximation of equation (11) means we no longer model the true value of our
objective function in our graph. When we evaluate the true value of colour, V (x,Zt+1),
given by equation (7), after the fusion operation, some of the pixels will change colour
due to the visibilities of the input image samples changing with the new depth map. The
result is that the objective energy E(Zt+1) may increase, such that the guarantee of con-
vergence given by the stereo framework is lost. However, we have found this to be rare
and negligible in practice.

4 Experiments
In all our experiments we use the parameter set given in table 1, which we chose after
a grid search over parameter space and qualitative inspection of the results. We make
two passes through the set of depth proposals, which is dependent on the sequence, but
numbers of the order of 100 depths spaced equally in disparity space (1/depth); the passes
run through the set in order, from near to far. The first pass fixes most pixels, with the
second making only a few corrections. While additional passes improve the result further,
returns on computation time diminish rapidly. We ran experiments on a range of standard
NVS and stereo image sequences, and compared our results with other methods.

Figures 3 & 4 show images synthesized from a viewpoint halfway between the two
rectified input views. The former compares our method with warping a known view with
a depth map [9] (here we use ground truth3). Warped stereo leaves holes sometimes (cyan
pixels), but also sets a single depth for mixed depth pixels, which then causes artefacts
(e.g. around depth discontinuities) when rendered in the new view. By rendering directly
into the new view we avoid this rerendering step and its associated artefacts.

Figure 3 also demonstrates the impacts on our synthesis framework, our main contri-
bution, of two further contributions of our work—employing a texture prior to weight the
surface smoothness cost, and sensibly approximating data costs in our graph. In image
(d) (no texture prior), some of the cone tips are truncated. The aim of our texture prior
is to encourage depth discontinuities to fit to the edges of objects, and we can see in (c)
that these cone tips have been corrected, as desired. Comparing (c) with (e) demonstrates
that accurately modelling data costs in cliques with less than three potentially occluded
pixels produces far fewer rendering artefacts, though this improvement becomes less pro-
nounced as N increases.

Figure 4 shows a comparison of our method with the DP method of Criminisi et
al. [1]. While producing similar results on this sequence, and in real-time, their method
enforces the less general “ordering” constraint in modelling occlusions. Our approach is
therefore preferable in scenes with complex foreground objects and wide baseline input
views. Note that the input images have different exposures—this is handled by equalizing
the mean and variance of the two images.

Figure 5 shows a new view of a challenging sequence, with many occlusions, syn-
thesized from 8 input images. Our method is able to reconstruct the colour in occluded
regions (e.g. wall above nose, and between ribs) well, in contrast to the implicit depth
method of Woodford et al. The explicit depth model and smoothness prior allows us
to extract the correct depth of the wall, and the geometric occlusion model the correct

3Sequence and ground truth depth maps downloaded from www.middlebury.edu/stereo.
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Parameter κ ν δs λs δt λt

Value c(12.5N/(N − 1))2 κ + 1 1.9d 0.24κ/δs 5000c 6/δt

Table 1: Parameter settings. Values of the constant parameters in our objective function, where
c is the number of colour channels in the input sequence, and d is the constant disparity spacing
between the discrete proposal depths, which varies between input sequences.

(a) Ground truth (b) Warped stereo views

(c) Our result (d) λt = 0 (e) Always fix to V ′

Figure 3: Cones sequence. (a) A ground truth central view, and (b) a view synthesized by warping
(in a manner similar to that of [9]) two outer images into the central view using ground truth depth
maps—blue pixels are unknown due to holes in the depth maps, while cyan pixels are regions
occluded in both input views. Our result (c), and our results (d) removing the texture prior and (e)
using the approximate colour of equation (11) in all data cost calculations.

(a) Input views (b) Result of [1] (b) Our result
Figure 4: Teleconferencing. Rendering a centre view (c) from 2 rectified input views, for direct
gaze teleconferencing. Sequence taken from [1], with the result from the same paper (b).
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(a) Our result

(b) Method of [13] (d) Ephoto

(c) 1/Z (e) Esmooth
Figure 5: Edmontosaurus sequence. (a) New view of a sequence from [13], and the result of the
method of the same paper (b). (c)–(e) show other outputs of our method, as labelled. N = 8.

texture. Some artefacts, such as shadows and jaggedness, exist around the edges of the
foreground object.

Figure 6 demonstrates the results of our algorithm on a further two difficult sequences.
While fine details such as fur and feathers are accurately rendered, some areas (e.g. under
the forearm and upper arm in (a), to left of head in (b)) appear blurred; this is due to the
wrong depth being chosen in these regions.

Artefacts in our results are generated by a combination of two processes: (1) the
optimal solution to our objective function not accurately representing the scene, and (2)
nodes being unlabelled in each fusion step when the optimal solution would select the
proposed new depth. We found that optimizing parameters for a particular sequence or
view often produced better results than with the standard parameter set—future work
may involving developing methods to automatically evaluate the optimal settings. We
expect the performance of QPBO, an algorithm relatively new to the field, to improve
significantly in the future, further reducing the appearance of artefacts.

(a) Our result (b) Our result (c) Ground truth
Figure 6: Monkey and plant & toy sequences. (a) A new view of the monkey sequence (from
[2]). N = 8. (b) A leave-one-out test on the plant & toy sequence (from [13]). (c) The ground truth
view of (b). N = 8.
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5 Conclusion
We have confirmed the common suggestion that graph-cut stereo methods can be applied
to the task of new-view synthesis. While straightforward in principle, this repurposing
presents a number of technical difficulties, the solutions to which are the main contri-
butions of this paper. The results improve on the current state of the art NVS methods,
demonstrating the power of an explicit depth model with global, geometric occlusion
reasoning in determining colour in partially occluded regions, as well as showing that
rendering directly into the new view avoids artefacts generated by scene reconstruction
methods. While the texture prior which we apply is not in principle as powerful as the
stereo CRF prior (which cannot be applied), we show that it acts similarly in improving
rendering at discontinuity boundaries.
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