8 The Dependency Modelling Tool

In this chapter, we shall describe a new EM tool, the Dependency Modeling Tool
(DMT). The motivation for developing the DMT is similar to that of developing
WING and EME - they aim to enhance users experience in the process of EM.
However, the emphasis in DMT is on the ways to visualise various structures that
commonly exist in EM models.

We start our discussions by identifying these structures in section 8.1. In section
8.2, we describe some tools developed by others in relation to visualising structures
that are similar to the ones that exist in EM models. The development of DMT is
partly inspired by some features of these tools. In section 8.3, we introduce DMT’s
user interface with a ssimple example. Two maor considerations for the development
of DMT are model comprehension and reuse. In section 8.4, we discuss how DMT
facilitates model comprehension. In section 8.5 we shall discuss how DMT facilitates
model reuse. The final section highlights various issues related further research and
development DMT.

8.1 Structures in an EM model

The term ‘structure’ is used in this chapter to refer to some recognised pattern
associated with an EM model. These patterns are directly related to the
understanding of the model with respect to its context which is gained from the
modelling process. For example, the definition of “a is b+c;” hasthe structure of
dependency: the value of observable a is dependent on the values of observables b
and c. Dependency is not the only type of structure that exists in an EM model. In
fact, there are three common structures that can be easily distinguished from a script:
dependency structure, locational structure and contextual structure. Dependency
structure is the pattern of which observables are related to each other; locational
structure refers to the physical organisation and arrangement of definitions in a
script; contextual structure to grouping of definitions according to different contexts
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8 The Dependency Modelling Tool

for observation and interpretation. In our experience, it is usualy necessary for the
modeller to keep all the structures in mind during the modelling process for
purposes of model comprehension.

In a TkEden script, the dependency structure is determined by formulae of
definitions. Locational structure is determined by the organisation of definitions in
this list (see left-hand-side of the Figure 8.1). There is no direct support for
representing contextual structure.

a \
A0S DFC; ™) aeintonat-atis olowsd by b’ \ . €
. “b”is then followed by “c”. b
bis e; c4«
cis b+d;

Implicit dependency structure
represented by formulae
of the definitions.

Figure8.1: Linear locational structureand implicit dependency structure represented by a

script of three definitions (Ieft) and a dependency structure graph of the same definitions (right).

Abstractly, we can represent a dependency structure by adirected acyclic graph®
(showing all dependencies among observables in the model). In the graph,
observables are represented as nodes, and dependencies as edges. We can lay out the
graph hierarchically: the nodes at the higher levels are dependent on the nodes at the
lower levels of the graph®. Therefore, nodes at the lowest level of the graph are
constant observables or ‘undefined observables (see right-hand-side of the Figure
8.1).

The importance of contextual structure seemsto have been largely overlooked in
our previous work, athough there have been some attempts to deal with them
implicitly (e.g. via openshapes in Donald [Bey86] and virtua agents in DTkEden
[Sun98]). In Donald, we can define an openshape whose shape is determined by a set
of other shapes. For example, an openshape S with two lines1.1 and 1.2 isdefined as:

* Similar to a spreadsheet, in an EM model cyclic dependencies are not explicitly represented. Thisis
because cyclic dependencies cause an infinite loop of variable updates.

® This hierarchy is the basis for determining the order of variable updates. For example, a topological
sort can be performed based on the hierarchy, which can minimise the number of evaluations
required for variable updates. Synchronous updates are also possible while still maintaining the

integrity of the model.
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8 The Dependency Modelling Tool

%donald

openshape S

within 8§ {
line L1
line L2

}

Subsequently, we can refer to two lines individualy by s/1.1 and S/L2.The
contextual structure in this case is accommodated by a syntactic construct of
within-clause and a reference symbol ‘/'. In DTKEden, we can associate definitions
with avirtual agent. The following is an example of virtual agent declaration:

>>bird
windspeed is 20;
height is 1000;
>>

This defines a virtual agent bird with two observables. The symbol ‘>>’ at the
beginning and the end of the declaration specifies contextual information — in this
case windspeed and height belong to the bird agent. The actua definitions
created by the above declarations are:

bird windspeed is 20;
bird height is 1000;

Literaly, aprefix ‘bird’ has been added to both definitions with a separator *

Representing dependency, locational and contextual structures by using textual
syntax in TkEden and DTkEden has amajor limitation: it isdifficult for amodeller to
understand these structuresin isolation from other syntactic constructs. Two new tools
introduced in the previous chapter had made attempts to address the limitations —
WING provides direct support for organising the contextual structure by visualising
using a tree explorer similar to the file explorer and locationa structure by
spreadsheet-like cells. EME visualises the dependency structure by drawing a
dependency structure graph. But the results are still not satisfactory.

The aim of the research described in this chapter is accordingly to find better
ways of representing the structures that are common to al EM models. On this
account, we have developed DMT to represent the structures graphically. We believe
that by representing the structures graphically in a coherent way, the experience of
building an EM model as an artefact can be significantly enhanced. At the sametime,
the research enhances the prospects of making EM tools more accessible and usable
for general users.
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8 The Dependency Modelling Tool

8.2 Inspiration from other tools

In this section, we discuss some existing tools that organise structures similar to the
structures in EM models. Unlike TkEden script, these tools use graphical techniques
to organise the structures. The development of DMT was partly inspired by our
experience of using these tools.

A common contextual structure can be found in modern operating systems. That
isthe organisation of files by ahierarchical structure of directories. Interfaces like the
file explorer provide a graphical representation of the directory structure. Most PC
users nowadays use them to manage their filesinstead of typing in command prompts.
There are some limitations on using a hierarchical structure to represent contextual
structure in EM model. We shall discuss them later in this chapter. However, the idea
of organising filesby an explicit representation of contextual structureisinvaluableto
the usability of modern computers.

The importance of explicitly representing both locationa and contextual
structuresiswell attested by a popular note taking thinking skill called Mind Mapping
[Buz95]. Figure 8.2 shows a Mind Map about the contents of this chapter. A Mind
Map is a hierarchical graph with the highest level root located in the centre and
branches radiating out in all directions. The root represents a central context of
interest. The branches with keywords written on them represent concepts in the
context of the keyword from a higher level branch. Relative locations between
branches can also convey meanings. Empirical studies of Mind Map use indicate that
identifying and managing the hierarchical structures associated with a concept helps
peopl e to organise and think about the concept more naturally and creatively [Buz95].

V' [MindManager - [MindManager.mmp]
File Edit WYiew Insert Format Multi-Maps Symbol-Gallery Table Tools Window Help
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Figure8.2: A Mind Map about the contents of this chapter created by using MindM anager.
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8 The Dependency Modelling Tool

The Mind Map in Figure 8.2 was created by using the MindManager tool
[Min0Q]. One important feature of the tool isthat it allows the user to move the nodes
freely. This can be interpreted as allowing the user to change the locational structure
of the Mind Map. It helps users to organise information according to their subjective
preference and, therefore, has cognitive significance.

The feature of explicitly representing dependency structure can also be found in
connection with understanding a spreadsheet. The dependencies between cells in a
spreadsheet are normally hidden from the user. This makes a spreadsheet difficult to
understand [Gre98a]. Newer versions of spreadsheet applications contain a
dependency tracing feature. For example, Excel can trace dependencies between cells
by showing arrows, as shown in Figure 8.3.
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Figure 8.3: A spreadsheet in Excel (left) and its dependency traces (right).

8.3 User interface

The development of DMT is motivated by the need to enhance users’ experience of
the process of EM. DMT provides features for users to build EM models as artefacts
that are visually as well as physically more tangible than a definitive script — it uses
acyclic graphs to visualise three common structures (dependency, locational and
contextual structures) that exist in an EM model, and provides means to manipulate
them directly by using a pointing device. In addition, a user can extract definitions
created by DMT as Eden definitions, or conversely import Eden definitions from a
definitive script. The current version of DMT is implemented in Java with standard
Java libraries, so it is platform independent. Figure 8.4 shows the user interface of
DMT with an empty model.
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2 Dependency Modelling Tool v0.72 g@@

Model Script Lawout Zoom  Help

Figure8.4: User interfaceof DM T

The interface provides a large empty white area for drawing the dependency
graph structure of an EM model. The major functionalities of DMT are reflected by
the primary menu options — Model provides save, load, print and combine models
functions; Script provides translation functions to and from definitive scripts, Layout
provides functions to automatically arrange graphica positions of the nodes; Zoom
provides functions to scale the entire graph; Help provides online help for using the
interface (see Appendix H for menu reference).

The basic means of entering a definition can be explained by creating a smple
definition: a is b+c ;. Figure 8.5 shows a sequence of stepsto create a graph of this
definition and the mechanism to move around the nodes of the graph. The figure
illustrates the following basic features of DMT:

e A node can be created by clicking the right mouse button.

e Thedefinition of a node can be edited by double-clicking the node with the left
mouse button.

e Any undefined observables will be automatically created as new nodes.

e The details of a node can be checked by pointing at it with the mouse. The
details are shown at the top-left region of the graph.

e A group of nodes can be selected by drawing a rectangular selection box
around them.

e The selected group of nodes can be moved by drag and drop manipulation of
the rectangular selection box (individual node can aso be moved by drag and
drop without a selection box).
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Figure 8.5: A sequence of stepsto enter a definition and to move nodes around.

DMT uses a colour coding for different graphical elements of the graph.
Unfortunately, the figures here are printed in black and white. However, the colour
coding has significancein understanding the graph. Examples of the colour coding are:
nodes with definitions are coloured in grey; nodes with no definitions are coloured in
green; the selection box isin light blue.

The semantics of a DMT model, when interpreted as an EM model, can be
summarised as follows:

e  Observables are nodes.

e Dependency structure is represented by directed-edges joining the nodes. For
example, if node a depends on node b, there is a directed-edge pointing from b
to a.
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8 The Dependency Modelling Tool

e Locational structure is represented by arrangement of nodes in a
two-dimensional space.

e Contextual structure is represented by abstractions (which will be introduced in
another section).

By providing featuresto graphically represent the structuresin an EM and means
of directly manipulate them, DMT improves the comprehensibility of the model. In
addition, it provides mechanisms to allow easy reuse of existing models. We shall
discuss model comprehension and reuse in more detail in the following two sections.

8.4 Model comprehension

DMT provides various features to help the user gain and maintain understanding of
the developing model in the process of EM. We shall discuss these features under
three headings. automatic dependency highlighting, understanding scripts and
abstraction.

8.4.1 Automatic dependency highlighting

As mentioned before DMT uses colour coding to help the user understand the model.
For instance, the dependencies related to a particular node are highlighted
automatically. By way of illustration, the left-hand-side of Figure 8.6 shows a graph
associated with the script of five definitions:

is b+c;
is 10;
is a;
is 10;
is a;

O Q Q0w
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Figure 8.6: Automatic dependency highlighting

Initially all the nodes and edges are in grey colour. When the user moves the cursor
over node a, DMT immediately highlights the nodes and edges associated with its
determinants in blue and its dependents in pink (see right-hand-side of Figure 8.6).
This automatic visual feedback feature is very useful especially when studying a
model with alarge number of nodes and edges.

8.4.2 Understanding scripts

We can use DMT as a tool for understanding existing models represented by
definitive scripts. DMT can import a definitive script, interpret it and find out all the
observables and dependencies represented in it. Since the only positional
information explicit in the script is the linear order of the definitions, we need some
methods to lay out the graph. There has been much research on algorithms for the
automatic arrangement of directed graphs (e.g. [Sug81, Tol96, Pur00]). A typical
criterion used for arranging the nodes is minimizing edge crossings. Ordering a
directed graph hierarchically is also common. We found that such strategies are of
limited use for arranging the layout of an EM model.

The geometric location of nodes in a DMT graph conveys information about a
modeller’s understanding of the model. A modeller’s subjective perspective on the
model, asreflected by the location of nodes, is difficult to capture in automatic layout
algorithms. Our experience shows that one of the most effective waysto usethe DMT
isto alow the modeller to arrange the position of the nodes manually. For example,
Listing 9.1 shows a definitive script of an ATM model. This script is imported into
DMT by choosing the Script and Direct Import menu options.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

%eden
userInput is [PINentered,required];
currtime is 71;

required is 0;

overLimitToday is accLimitPerDay <
(accDrawnToday+required) ;

accLimitPerDay is 200;

transpossible is cardInMachine &&
cardvalid && Dbankvalid && PINvalid
&& loverLimitToday && idvalid &&
accStatus && !accOverLimit &&

moneyReady;
accDrawnToday is 0;
ATMbank is ['A', 'B', 'C'];
accStatus is 1;

environment is
[currtime, cardInMachine] ;

cardInMachine is 0;

cardExpiryDate is 320;

rl0 is (required - 20*actual20) / 10;
card is [cardBank, cardID, cardPIN,
cardStartDate, cardExpiryDate,
cardStatus] ;

ATMtens is 100;
r20 is required / 20;
accOverDraftLimit is 10;

moneyOut is
[transpossible,actual5,actualll, actua
1207 ;

actuallo is
(ATMtens>=r10) ?r10:r10-ATMtens;

cardStartDate is 1;

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

cardvalid is (cardStatus==1) &&
(currtime >= cardStartDate) &&
(currtime <= cardExpiryDate) ;

cardBank is 'A‘';

actual20 is
(ATMtwenties>=r20)?r20:r20-ATMtwe
nties;

cardID is 123;

ATMtwenties is 100;

ATMfives is 100;

PINvalid is cardPIN == PINentered;

actuals5 is
(ATMfives>=r5) ?r5:r5-ATMfives;

accOverLimit is required >
(accTotal+accOverDraftLimit) ;

cardPIN is 999;
accTotal is 10000;
ATMcardIDlist is

[123, 321];

r5 is
10*actuallo)

(required - 20*actual20 -

/ 5;

moneyReady is
(actualb*5+actuallO*10+actual20*2
0) ==required;

PINentered is 999;
cardStatus is 1;

ATMbalance is ATMfives *5 +
ATMtens*10 + ATMtwenties*20;

idvalid is isin(cardID,
ATMcardIDlist) ;

accDetails is [accStatus,
accLimitPerDay, accTotal,
accDrawnToday, accOverDraftLimit] ;

bankvalid is isin(cardBank,
ATMbank) ;

Listing 9.1: A definitive script of an ATM model

After importing the script, DMT randomly positions all the nodes representing

observables in the script. The result is usually a graph with a messy arrangement of
nodes where many edges cross over, and it is difficult to understand (see Figure 8.7).
However, the modeller can get more understanding of the model by moving around
the nodes interactively using a pointing device. Moving a node around immediately
contributes to the understanding of the determinants and dependents of the observable
that the node represents (because of the feature of automatic dependency
highlighting). Further grouping of the nodes assists in gaining a better understanding
of the model. Eventually, as shown in Figure 8.8, awell-organised layout that reflects

the semantics of the model will typically emerge.
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Figure 8.7: Random layout of the ATM dependency graph
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Figure 8.8: Organised representation of the ATM dependency graph

For asmall model, amodeller can rapidly understand the model. However, when
the model is larger, and consists of say 100 nodes and 300 dependencies, moving the
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nodes around becomes tiresome. The exploration of the model becomes difficult. This
can be solved if we have knowledge of some observablesthat are more important than
the others. If a modeller knows the key observables, nodes can be more easly
arranged by firstly locating the nodes corresponding to the key observables, then the
observables that are directly connected to the key observable and so on. In the ATM
case, if we know that transpossible is the most important observable, the
arrangement of nodes can be based on it.

For any one particular definitive script, there is a virtualy infinite number of
ways to layout its dependency graph. Different modellers end up with different
layoutseven if they al start from the same random layout. Thisin part reflectsthe fact
that we all understand a particular concept differently. Building amodel by arranging
the nodes can contribute directly to our construal of the model. The geometric
positions of the observables embody part of our understanding of the model.

Apart from understanding an existing model, geometric positioning of nodes can
also help in building new models. In this case, the modeller positions an observable
(node) each time he or she introduces a definition. Grouping observables and moving
groups of observablesin conjunction with the model-building activity can contribute
visual support for model understanding as it evolves.

8.4.3 Abstraction

This subsection explains the concept of ‘abstraction’ in DMT. The contextual
structure of the script can be represented in a way that is similar to the directory
navigation of files in a modern operating system. Johnson et al. [Joh99] discuss
different ways of representing a directory structure such as outline views, tree
diagrams, Venn diagrams and tree-maps (see Figure 8.9).

A
B
CD A
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F B C F
/\ 0 INN
D G H I

Outline view Venn diagram Tree diagram

Figure 8.9: Different representations of directory structure
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The design of the WING interface attempts to mimic outline view navigation
(see Figure 8.10). A user can create new containers that contain sets of definitions just
as directories contain sets of files. A dependency isimplicitly defined in the sense that
acontainer is dependent on the aggregation of definitionsthat it contains.

| Operators | “systemidrawing/door;
Definitions | Actions | ;ECIassPaneI[,0,90,492x4l1|ﬁ,|ayum=jm.a
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window Finas FrrT .
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§¢ Elwalls
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Figure 8.10: Outline view of containersin WING

An outline view, however, cannot represent a node with two parent nodes. A
typical topological tree of an EM model has nodes with one or more parents. For
example, consider the status of the variable c in following definitions:

is b+c;
is c;

is 10;
is 10;

Qoo

There is no direct way of representing the dependency using an outline view. Only
the other two kinds of directory representation can be used, as shown in Figure 8.

N

Tree diagram Venn diagram

Figure 8.11: Diagram with a node with 2 parentsand the Venn diagram.

Abstraction in DMT combines the merits of the tree and Venn diagram. We can
understand abstraction by firstly consider two example definitions:
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L1 L2

Ll is (a+b) *4;
L2 is f+a+b;

By examining the formulae in these two definitions, it is obvious that they are both
dependent on observables a and b or more precisely on the expression a+b. This
knowledge of pattern can be captured by replacing the two definitions by the
following three ‘equivalent’ definitions:

L1l is X*4;
L2 is f+X;
X is a+tb;
/\h |

The third definition here is an abstraction of what we observed. Observable X isat a
higher level of abstraction than the other observables. To represent the fact that x
has an abstraction level different from the others, DMT allows a modeller to visual
X differently by directly specifying it is an abstraction. If X is an Abstraction, the
colour of it becomes orange and there is a round-cornered orange rectangle that
embraces X and al its determinants. Figure 8.12 shows a sequence of steps to
specify X as an abstraction. This figure also shows that the edges from a and b are
hidden as aresult of declaring X as an abstraction.
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Figure 8.12: A sequence of stepsto set up an abstraction.

Defining an abstraction can also be viewed as a way of hiding excessive
complexity. For alarge model, hiding edges directed from the determinants can make
the graph less messy. For example, Figure 8.13 shows an observable z that depends
on another 20 observables. Specifying z as an abstraction hides all the edges directed

towardsit.

Figure 8.13: Two different representations of the same model —normal representation (left) and

‘Z’ asan abstraction (right).

Defining an abstraction is also away to explore agency. In the ATM model, we
can specify the observables card and cardvalid as agents. As shown in Figure
8.14, their abstractions overlap each other. This might give a clue to the modeller
that two separate sets of card and cardvalid observables are needed.
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Figure 8.14: Overlapping of two abstractions.

Abstraction can be a unified way of representing agents, directories in Jam2
[Car99], structures in Modd [Geh98] and containers in WING To summarise,
abstraction can be used for:

e Hiding excessive information
e Deriving agency
e  Representing agency

By experiencing this way of identifying agents, we notice that an LSD specification
can be viewed as aresult of the modelling process but does not have the generality of
an arbitrary script-based EM model. This is because an LSD specification is more
suitable for representing settled agents. It does not have the degree of openness that a
DMT model has.

Other kinds of abstraction may aso be usefully introduced into the DMT. A
counterpart of Harel’s hierarchical organisation of statesin a statechart [Har88] isone
possible candidate. As will be illustrated later in connection with modelling a
draughts game, it would be useful in some contexts to be able to abstract groups of
observablesthat exhibit ageneric dependency pattern (cf. the observablesrelating to a
single square of the draughts board, as displayed in Figure 8.21.).

8.5 Model reuse

Apart from model comprehension, the other main contribution of DMT is new ways
of reusing an EM model. In subsection 8.5.1, we shall describe a mechanism to
extract Eden definitions from part of a DMT model. This mechanism is very useful
for selecting reusable parts of a model. Model reuse in DMT is based on
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well-defined strategies of combining two EM models. We shall discuss the strategies
in the subsection 8.5.2 and give a simple example of model reuse in subsection
8.5.3.

8.5.1 Extracting part of a model

It is common for some part of an EM model to be generic enough to be reused in
building a new model. DMT allows a modeller to extract part of a model and save it
for later reuse. Figure 8.15 shows how to extract part of an existing model into a
definitive script. DMT automatically appends $eden at the beginning of the
extracted script. The modeller can save the extracted script to afile for later reuse.

Script | Layout Zoom Help Script Layout Zoom Help
Input window... , "
Direct import... 2 Script Output ... @@@
%eden
Export selection... > ais b,
e s a,
‘2\ o Jdisa;

TN _soo ||

1. select part of the model and 2. a window pops up with script
choose “Export selection...". definitions translated from selected
nodes.

Figure 8.15: Extracting script definitionsfrom a DM T model.

8.5.2 Strategies for combining two models

A definition has three ingredients. the definitive variable (or ‘observable’) at the
left-hand-side of the definition, the formula at the right-hand-side and the current
value of the variable. What does it mean to say that the definition of a variable is
well-defined? Does it mean that al three ingredients of the definition are defined? —
or that some ingredients are defined and some are not? We have to take a closer ook
at each individual ingredient of a definition before answering these questions.

A definitive variable is a metaphorical representation of some external
observable. This meansin effect that avariableis ‘defined’ as soon asit isreferenced
by any definition. That isto say, a particular variable should be treated as defined not
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only when it is given a defining formula, but when other definitionsrefer toit in their
formulae. Only when a variable is defined in this sense can other ingredients of its
definition become meaningful. If a variable has a defining formula, its value can be
determined by attempting to evaluate the formula, and if the evaluation is successful,
we have adefined value for the variable. On the other hand, if the evaluation fails, the
value for the variable will be undefined.

In modelling a situation, the modeller may initially have only a vague idea of
what defining formula is appropriate when he or she decides to introduce a variable.
In that case, athough the variableis defined, itsformulais not yet defined and neither
isits value. The following table (see Figure 8.16) illustrates all the possibilities that
can arise when avariable has been first defined.

Formula defined Formula undefined
Value defined A defined definition Impossible case
Value undefined An evaluation exhibits an | The dependency of the
error. variable is still subject to
investigation.

Figure 8.16: Cases when an observable is defined

DMT’s strategies for combining existing models are based on the above notions
of defined and undefined ingredients. Here is an example. Suppose we have two
models X and Y. We want to combine them to form amodel z. This can be written as:

Z = X union Y

The general rule for combining two models is to preserve as much knowledge about
observables within the two models as possible, subject to avoiding conflict. For
example, if the first model has observable v defined and the second has not, the
resulting model will have an observable v defined as it is in the first model. Figure
8.17 shows possible cases relating to the definition of v in combining X and Y to
form z.

model case 1 | case 2 case 3 case 4 case 5 case 6 case 7 case 8 case 9
X @ @ @ vis 20 | v is 20 vis20|vis@ |[vis @ | v is @
Y @ visl0 | v is @ | @ v is 10 v is @ | @ vis 10 | v is @
Z @ vis 10 | v is @ | vis 20 | conflict [ vis20 | v is @ | vis 10 | v is @

Figure 8.17: An example of possible casesfor combining models X and Y toform Z (* @ means
‘undefined’).

The problematic caseis case 5, where definitions of v exist in both X and Y with
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different formulae. This conflict cannot in general be resolved by applying rules
automatically. For example, if we are currently building a model x and we want to
reuse model Y as a building block in X, we should choose which definition we
actualy want manually.

8.5.3 Reusing a model

Reusing a model can be interpreted as combining the model with the new model
which we are currently building. Therefore, DMT uses the strategies discussed in the
previous subsection to facilitate model reuse. It is convenient to explain and
illustrate the idea by an example. The following script defines a generic triangle
comprising three lines:

x1 is
vl is

v2 is
x3 1is
y3 is
Ll is line(x1, yl1, x2, y2);
L2 is line(x1, yl, x3, y3);
L3 is line(x2, y2, x3, y3);

®® e OO

Its DMT equivalent is shown on the left of the left-hand-side screen capture in
Figure 8.18. Suppose our task is to define a generic pattern of two triangles sharing
one vertex. In this case the shared vertex is (x3, y3). Thestepsare asfollows:

1. Savethe generic triangle model into afile.

2. With the generic triangle still on screen, choose Combine to load the file. This
brings up a window that contains a second generic triangle (left-hand-side of
the Figure 8.18).

3. Rename the nodes in the newly loaded generic triangle to avoid name clashes
with the existing ones except in the case of the vertex (x3, vy3).

4. Choose Accept to combine the two generic triangles into one figure. The result
is shown in right-hand-side of Figure 8.18.
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Figure 8.18: The Model Combine dialog with nodes renamed (left) and the result of combining

two triangles (right).

Asthe example shows, when we want to reuse amodel, we often need to rename
the observables. The renaming of observablesin ascript is sometimestedious. Thisis
because the references to an observable may be scattered around everywherein along
script. For example, we need to find and rename each of coordinates in the generic
triangle script 3 times. With the graph representation, DMT centralises all references
into one place. Therefore, in DMT, we need only carry out the renaming once for each
coordinate to achieve the same resullt.

8.6 Some remarks

In this section, we discuss various issues related to further research and development
of DMT.

8.6.1 Scalability issue

To test the scalability of DMT, we have tried to import many existing EM modelsin
the form of definitive scripts. With afair amount of time, we can generally rearrange
the locations of nodes in each imported model from the initial random layout to a
more comprehensible form. However, DMT has encountered problems when we try
to visualise models with a large amount of dependencies. For example, the script for
the board of an OXO game model contains 209 definitions and 814 dependencies
(see Appendix I). After importing this model to DM T, we found that there is no way
to rearrange the nodes to get a better layout out of the random layout (see Figure
8.19). In this case, DMT does give the user a hint about the complexity of the model.
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However, it is difficult to go a step further in terms of understanding the model out
of the random graph. With reference to Appendix I, we can see that the actual script
is easier to understand! This illustrates a common scalability problem in visua
language for modelling or programming that relates to the limited size of the screen

display.

Figure 8.19: Visualisation of a definitive script with a large amount of dependencies

One possible solution is to alow user to select and visualise just parts of the
whole complex model, and hide the remaining parts. A simple technique for
extracting suitable subscripts for this purpose is to use a text editor to identify all
definitive variables with acommon pattern or feature. A more sophisticated technique,
currently under development by EM research group involves storing the symbol table
of a script in a relational database. All the definitions can be stored in a relational
database implemented within TkEden using the Eddi definitive notation mentioned in
section 2.3.1. The user can then use relational queries to select parts of the model as
views. DMT can be developed to allow the user to link these views with their
graphical representations. This technigque has been used in studying a bug in an EM
model described in the following subsection.

8.6.2 Potential for model debugging

One possible use of the DMT isto help the process of debugging EM models. By way
of apractical example, we here study a bug in a draughts game model written using a
TKkEden script (see Figure 8.20). The draughts model contains an 8 by 8 board and
some circular pieces. Each square on the board has acircle on it. Thefill colour of the
circleisasfollows: if there is no piece occupying the square its colour should be the
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same as the background colour of the square, otherwise, its colour should be black or
white depending on the colour of the occupying piece. When the background colour
of the squares was changed by assigning a new value to the observable bgcol the
following problem resulted: if a piece was placed on a square and then removed, the
fill colour of the circle no longer matched the background colour.

screen (tkeden 1.46) 2|

.i‘iSquare 68
/4 Circle 68
|
screen -

| INPORMATION

B [
e Ew
___!!’EPF_P}P“_’ _____ i

_mem m Eots

EEEE
CONTROL PANEL
Start/Reset Game |

[t

Figure 8.20: Thedraughtsboard (bottom) and the study of square 68 (top)

With the help of relation database queries such as we described in the last
subsection, we are able to study the problem by selecting and extracting all the
definitions relating to a particular square. In this case, we have extracted all the
definitions relating to the square and circle on column 6 and row 8 of the board, as
shown at the top of Figure 8.20 above. We then study the extracted definitions by
using the DMT. Figure 8.21 shows the DMT of the definitions. After rearranging the
nodes, we find that the DMT model divides into two sub-graphs: one for the
definitions of the circle 68 and the other for the square 68 (see the top screen capture
in the Figure 8.21). The fact that the fill colour of the circle (bgcolor) and the
background colour of the square (bgco1) should be the same when no pieceison the
square indicates that there should be a dependency between two colours. However,
the DMT analysis tells us that there is no dependency between the circle and the
square. The bug is removed by adding a new observable (bckgrncol) to represent
their common colour and defining both bgcol and bgcolor to be equal to
bckgrncol. In this way, we make a ‘link’ between the two separate dependency
graphs, as shown at the bottom of Figure 8.21. By using the DMT, we found it easier
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to understand the complex dependencies involved in the EM model. This illustrates
one way in which the DMT can lead to more effective debugging of EM models.

% Dependency Modelling Tool v, 72
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Definitions for circle 68 Definitions for square 68
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Figure8.21: The DM T model for a single squar e of the draughtsboard (top) and the missing

dependencies (bottom)
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8.6.3 Other types of dependency

The development of DMT prompts us to ask a question: can we visualise al the
dependencies that possibly exist in an EM model? This question leads us to identify
different types of dependencies in EM models. In general, we can identify three
types of dependencies: definitive dependency, procedural dependency and dynamic
dependency. Definitive dependencies are specified explicitly by formula definitions.
For example, the definition a is b+c; specifies a definitive dependency between
observable a and its determinants b and c. As we have seen, DMT visualises this
type of dependency by a directed graph. However, DMT does not visualise the other
two types of dependency.

Procedural dependencies are implicitly established by actions. For example, the
following action contains a procedural dependency:

proc add: b, c {
a=>b + c;
1

This action monitors changes of b and ¢ and assigns the sum of them to a.
However, by just looking at this action, we cannot be sure a ismerely dependent on b
and c. Thisis because there may be other actionsthat also changethe value of a. Only
if we are sure that there is no other action that changes the value of a can we replace
the action with adefinition: a is b+c;. Inthiscase, the procedural dependency is
transformed to a definitive dependency. The transformation cannot be automatically
established. This is because the fact that there is no other action that can change the
value of a cannot be generated without intelligent intervention from the modeller.

Dynamic dependencies are also implicitly established by actions. But unlike a
procedural dependency, a dynamic dependency involves actions making definitions.
For example, the following actions establish a dynamic dependency for a:

proc x: vi{
a is b+c;
1

proc y: v2{
a is y;
1

In this case, the definition (not value!) of a depends on the changes of some other
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external observables v1 and v2. If v1 changes, a will depend on b and c. On the
other hand, if v2 changes, a will depend on y.

In our experience, both procedural and dynamic dependencies are difficult to
detect automatically. Detecting these dependencies may involve extensive analysis of
the semantics of agents and actions in the model. On the other hand, to some extent
they can also be seen as reflect the limitations of our current understanding of the
scope for definitive dependency.

8.6.4 Further research

Apart from addressing the scalability issue and visuaising other types of
dependencies, there are many other possible interesting research topics and
developments that can be conducted in relation to DMT in the future. Here we list
some of them.

e Research on end-user interface — As we have mentioned in chapter 6, we can
use an EM model to control a ubicomp system (as soft-interface). Techniques
developed in DMT to visualise and manipulate an EM model are more user
friendly than entering definitions using the input window of TkEden where
small scripts are involved. Small scripts are arguably easier to build and
understand by using the DMT approach than by direct use of TKEden.

e Developing other script translators — Currently, DMT allows only Eden
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TkTcl-based TkEden. Alternatively, TkEden can be used as a platform for
implementing DMT.

e Development of a grid-free spreadsheet application — The main functionality of
a spreadsheet application is not only calculation but also report generation. To
our knowledge, all the commercia spreadsheet applications available at the
time of writing this thesis are based on table layouts with grid reference. DMT
provides an alternative grid-free layout. In this case, every node in the DMT
graph represents a spreadsheet cell whose location can be arranged by the user
freely. The user can arrange all the nodes into a report format for printing. For
this purpose, the user can choose to print only current values of nodes without
the drawing the nodes and edges.

8.7 Summary

In this chapter, we have discussed the research, development and use of DMT. DMT
provides a means to visualise and manipulate dependency, locational and contextual
structures that commonly exist in EM models. The main contributions of DMT are
features to help model comprehension and reuse. In the case of model
comprehension, we can trace the dependency of an observable easily by the feature
of automatic dependency highlighting. We can import an existing definitive script
and explore the dependency within the script interactively. In addition, we can use
the concept of abstraction to represent contextual structure discovered in the model.
In the case of model reuse, DMT provides interactive ways to extract and combine
EM models based on well-defined strategies. We have also discussed the scalability
issue of DMT and the limitations in visualising procedural and dynamic
dependencies. We have also described some possible further researches and
developments.
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