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ABSTRACT
In open Multi-Agent Systems, where there is no centralised
control and individuals have equal authority, ensuring co-
operative and coordinated behaviour is challenging. Norms
and conventions are a useful means of supporting coopera-
tion in an emergent decentralised manner, however it takes
time for effective norms and conventions to emerge. Iden-
tifying influential individuals enables the targeted seeding
of desirable norms and conventions, which can reduce the
establishment time and increase efficacy. Existing research
is limited with respect to considering (i) how to identify in-
fluential agents, (ii) the extent to which network location
imbues influence on an agent, and (iii) the extent to which
different network structures affect influence. In this paper,
we propose a general methodology for learning the network
value of a node in terms of influence, and evaluate it us-
ing sampled real-world networks with a model of convention
emergence that has realistic assumptions about the size of
the convention space. We show that (i) the models result-
ing from our methodology are effective in predicting influ-
ential network locations, (ii) there are very few locations
that can be classified as influential in typical networks, (iii)
that four single metrics are robustly indicative of influence
across a range of network structures, and (iv) our method-
ology learns which single metric or combined measure is the
best predictor of influence in a given network.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence — Multiagent systems; I.2.6 [Artificial Intelli-
gence]: Learning

Keywords
Influence, Networks, Conventions, Learning, Network value

1. INTRODUCTION
The interactions between agents in many open Multi-Agent

Systems (MAS) domains are constrained by an underlying
network connecting individuals. A wide body of research
has shown that such networks often display a rich structure

that significantly influences the dynamics of agent interac-
tions and the flow of information (e.g. [6, 8, 25, 31, 33, 37]).
Determining how these structures affect such processes is
important in a variety of fields including computer science,
biology, chemistry, sociology and economics. A key ques-
tion is determining the network value of an agent, namely,
some measure of its influence. This is often formulated as
an influence maximisation problem where we aim to pick a
(minimal) set of k agents that would maximize the spread
of information/behaviour through the population. In this
paper, we propose a methodology for learning the network
value of agents requiring only (i) a way of estimating the ef-
fective influence an agent exerts on a population, and (ii) the
ability to sample a portion of a network. Our methodology
is domain independent and can be applied ‘offline’ where the
structure of a network is known or ‘online’ in networks where
the structure is unknown but information can be obtained
through some API. As such, it is more generally applicable
than typical influence maximisation mechanisms.

In this paper, we determine the extent to which vari-
ous topological metrics predict influence, and use Princi-
pal Components Analysis (PCA) and supervised learning to
build models that predict influential locations. We evaluate
our methodology on a selection of samples from real-world
networks, and identify four metrics that effectively predict
influence across a range of networks.

In MAS conventions can emerge through the “gradual ac-
cretion of precedence” [35], due to feedback effects in which
an agent’s choice in an interaction influences the choices of
agents in the future. Influence is therefore important for
convention emergence, since the actions of a highly influen-
tial agent are more likely to be reproduced in the rest of
the population than a less influential agent. To evaluate
our approach, we use a representative model of convention
emergence, namely Salazar et al.’s [30] language coordina-
tion scenario. We also discuss possible sampling techniques,
and the overheads inherent in applying our methodology and
calculating each metric.

2. BACKGROUND

2.1 Influence propagation
Domingos et al. [4] were amongst the first to determine the

network value of an individual, using Markov random fields
to model markets of individuals. More recently, influence
has been investigated in the context of Linear Threshold
and Independent Cascade models [17], in which nodes are
considered to be either active or inactive, where active rep-
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resents believing an idea or adopting a convention. Nodes
switch from inactive to active either based on the proportion
of neighbours that are active, or by active nodes being given
a chance to activate their neighbours. In general, solving the
influence maximisation problem itself is NP-hard, however
we can obtain approximate solutions. Watts [34] has shown
that high degree nodes are more likely to cause cascade ef-
fects. Kempe et al. [17] showed that a simple hill-climbing
algorithm can find a set of k agents whose influence is within
a known bound (slightly better than 63%) of the optimal, al-
though their approach remains computationally expensive.
More recently, Chen et al. [3] proposed a computationally
cheap degree-discount heuristic, in which the node degree is
discounted when its neighbours are already selected.

Influence maximisation has been extensively investigated
(e.g. [12, 14]), but the extent to which these results gener-
alise to open MAS is unknown. For example, a recent study
concluded that node in-degree does not correlate with in-
fluence in the Twitter social network [20], placing empirical
data at odds with the success of node degree in the influ-
ence maximisation literature. Although this is an isolated
disagreement, we hypothesise that there are various facets of
influence propagation that are missed by the influence max-
imisation problem formulation. Our methodology mitigates
this by learning a model of influence from empirical data.

We are aware of relatively few investigations of influence
in realistic open MAS. Sen and Airiau [31] investigated con-
vention emergence with private interactions, showing that
a small proportion of agents can exert significant influence,
with a small convention space with no underlying connect-
ing topology. Other investigations have also shown that a
small number of individuals can influence a population [9,
28, 36]. Due to space constraints we omit a discussion of
these investigations, however none have focused on the in-
fluence maximisation problem in the context of MAS.

2.2 Conventions
Conventions are considered to be social rules or standards

of behaviour agreed upon by a set of individuals [18, 35].
Typically, a convention is considered to be established if 90%
of a population adheres to it around 90% of the time [18].
Conventions can increase levels of coordination in MAS [15],
and they are a powerful abstraction tool for modelling the
aggregate interactions of agents.

Conventions can be generated offline by system design-
ers or dynamically emerge through interactions. Generat-
ing conventions offline is difficult, due to limited knowledge
of society characteristics, time variance, and computational
expense. Such conventions also lack robustness to evolv-
ing populations and environments. As such, much research
has concentrated on generating conventions online (e.g. [24,
30]), and this remains an open research problem. Conven-
tions in open MAS are characterised by uniform levels of
agent authority, lack of centralised institutions, and com-
plex network structures restricting the interactions between
individuals. Such domains are particularly suited to tech-
niques in which specific agents are targeted or inserted to
influence convention emergence.

Most models of convention emergence consider small con-
vention spaces (i.e. a small number of possible conventions).
Sen and Airiau [31] and Pujol et al. [29], for example, both
use models with only two potential conventions. An excep-
tion is the work of Salazar et al. who explore convention

emergence in a language coordination domain [30], contain-
ing 1010 possible conventions. Many real-world contexts
have a large convention space, and so in this paper we adopt
the language coordination domain. Franks et al. [9] recently
introduced the Influencer Agent (IA) concept, in which a
small proportion of agents are inserted with goals and strate-
gies chosen specifically to influence the population to adopt
particular conventions They demonstrate that (i) IAs can
significantly manipulate which convention emerges in a pop-
ulation, even with a large convention space, and (ii) posi-
tioning IAs using topological information can increase their
efficacy. While there has been some work investigating the
role of network topology in convention emergence (e.g. [29]),
to our knowledge previous work has not attempted to exploit
intrinsic network influence in MAS.

3. METHODOLOGY FOR INFLUENCE ES-
TIMATION

In this section we present a general methodology for pre-
dicting the influence of an agent at a given location within
a network. We assume the existence of a measure of influ-
ence, to be chosen depending on the domain. We also as-
sume a network G < V,E > where V is a set of agents and
E is a set of edges that constrain the permitted communica-
tions between agents, the ability to sample locations within
the network, and either global knowledge of the network or
(more practically) the ability to sample smaller sub-networks
around the nodes in question.

The offline instantiation of our methodology is as follows:

1. If necessary, sample a sub-graph Gs ⊂ G from the
network around selected locations to obtain a portion
of the network of interest. In cases where the domain
involves very large populations, this may be required
to allow practical application of the methodology. For
clarity, in the following steps we use V and E to refer
to agents and edges in G or Gs as appropriate.

2. Sample a representative set S ⊂ V of n locations
within the network, where n << |V |, where repre-
sentative implies sampling nodes of both high and low
influence.

3. Choose a measure of influence, and a model of influence
propagation.

4. Compute the influence of an agent located at each of
the locations in S, on the rest of the agent population
(e.g. by running multiple simulations of the influence
model).

5. Calculate topological location metrics for all nodes in
V .

6. Build a model using the topological metrics and the
estimated influence of agents placed at locations in S to
predict which network locations are highly influential,
and use it to predict the influence of all nodes in V .

To perform this methodology online, we modify step 3
as follows. Rather than running multiple simulations for
each sampled node, select a measure of influence that can
be measured online (e.g. if investigating Twitter, one might
choose the number of re-tweets) and measure sufficient data
for building the prediction model.
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Once the influence of each agent in S has been calculated
(step 4), the agents in S can be ranked according to influ-
ence. We cannot, however, rank the entire population, since
we do not have a measure of influence for all agents. Instead,
by building the prediction model (step 6) we are able to es-
timate the influence for any agent in the population based
on its topological metrics.

The main computational expense in our methodology is
the calculation of topological metrics for all nodes in V and,
if used, the influence model simulations for each location in
S, which is O(|S||E|k), where k is the number of simulation
cycles. Depending on the size of S this can be significantly
less than using the full network, which is O(|V ||E|k). Ad-
ditionally, step 1 allows us to use a sample of the network
to estimate influence, reducing the computational expense
of the methodology. We recognise that the expense of com-
puting the location metrics is varied and might be high,
and while we do not explicitly account for this within the
methodology, we discuss local and approximation algorithms
for our selected metrics in Section 4.

In order to effectively predict influence our methodology
requires a sample of nodes that reflect the range of influence
and topological metrics in the network. If the influence dis-
tribution is highly skewed then a random sample will not be
representative (we discuss this further in Section 7). There-
fore, we propose selecting a sample by stratifying vertices
using degree. Since degree is known to be indicative of in-
fluence [3], our hypothesis is that this approach will give a
more representative sample in terms of influence.

To obtain a stratified sample, we divide the network into
bins, and sort the nodes by degree. In this paper we use 10
bins, with a threshold of N/10 nodes per bin, where N is the
number of nodes in the network. We add all nodes of each
degree into the current bin until the threshold is reached.
If adding all nodes of a given degree pushes a bin over the
threshold, we do not split the remainder but add all nodes
of that degree. We then sample an equal number of nodes
from each bin, until we reach our required sample size.

4. TOPOLOGICAL LOCATION METRICS
A wide range of metrics can be used for quantifying a

node’s position in a given network. However, based on the
literature we hypothesise that the following metrics may be
implicated in determining influence.

Degree: Node degree is commonly used as a proxy for in-
fluence [17], as intuitively the more individuals a node
can communicate with the more it is able to influence.

Local Clustering Coefficient (LCC): LCC is a measure
of the extent to which a node is embedded within a
local cluster of nodes with high internal connectivity.
It is defined as the proportion of neighbours of a given
node that are also neighbours of each other.

Lowest, Highest and Average Edge Embeddedness:
Edge embeddedness is the number of neighbours two
endpoints of an edge have in common. A highly em-
bedded edge is indicative of high levels of commu-
nity structure in the local area. We define three met-
rics based on embeddedness: Lowest (LEE), average
(AEE) and highest (HEE) edge embeddedness, taken
as the lowest, average and highest value of embedded-
ness a node exhibits over all its edges respectively.

Lowest, Average and Highest Edge Overlap: Overlap
is the proportion of nodes that are neighbours of both
endpoint nodes to the total number of neighbours of
both nodes (i.e. a normalised form of edge embedded-
ness). Again, we define three measures: lowest (LEO),
average (AEO) and highest (HEO) edge overlap.

Average Shortest Path Length (ASPL): The average
shortest path length from a given node to any other
node in the network.

Average Neighbour Degree (AND): The average degree
of the nodes that are connected to a given node.

Closeness Centrality (CC): Closeness centrality is the
reciprocal of the average shortest path length from a
node to every other node in the network. By tak-
ing the reciprocal, higher closeness centrality indicates
that the node is more ‘central’, in the sense that it has
a lower average path length to other nodes.

Betweenness Centrality (BC): Betweenness centrality is
defined as the fraction of shortest paths between all
node pairs in the network that a given node lies on.
As such, a node with high betweenness is intuitively
influential by virtue of being a conduit for more infor-
mation flows [27].

Eigenvector Centrality (EC): Eigenvector centrality is
the amount of time a random walk across the network
spends at a given node. It is often interpreted as a
measure of influence or importance of a node, since
it weights connections to other highly valued nodes
more highly than low value nodes. Google’s PageRank
algorithm is a variant of this measure [27].

Hyperlink-Induced Topic Search (HITS): Initially in-
troduced by Kleinberg [19] in analysis of link structure
on the world wide web, HITS attempts to determine
hubs and authorities in a network, where a hub is a
node that links to many authorities, and an author-
ity is a node that is linked to by many hubs. Each
node is assigned an authority score which is used as a
topological feature.

In total we evaluate 14 metrics for the extent to which they
predict node influence. Broadly, each metric can be linked
to influence as follows. HITS, ASPL, and the centrality mea-
sures (EC, BC, and CC) measure the ability of a node to
manipulate information flow in a network. LCC, embedded-
ness, and overlap measure the extent to which a node is part
of a cluster of nodes. Clusters have efficient internal infor-
mation propagation, and nodes in clusters are likely to be
able to influence that cluster effectively. Degree is a measure
of how many nodes a given individual is able to directly in-
fluence, while AND is a measure of how many nodes a given
individual can indirectly influence to a depth of 2.

While several of these metrics are highly tractable, some
require (i) global knowledge of the network, (ii) significant
computational resources, or both. We cannot typically ex-
pect to provide both, but approximations exist for the less
tractable metrics. The most significant difficulty is with the
centrality measures, which typically require both full knowl-
edge of the network and significant computational resources.

Gregory [13] has proposed h-betweenness, a local measure
that considers paths of maximum length h. Computation

449



Sampling mech. BC EC CC
h = 2 h = 3 h = 2 h = 3 h = 2 h = 3

BFS 0.90 0.96 0.36 0.42 -0.37 0.41
SNS 0.75 0.93 0.14 0.36 -0.49 0.62
MHRW 0.02 0.02 0.50 0.61 -0.72 -0.74
MHRWDA 0.02 0.02 0.51 0.61 -0.73 -0.74

Table 1: Correlation between estimated centrality
using h-betweenness and actual centrality, for Be-
tweenness Centrality (BC), Eigenvector Centrality
(EC), and Closeness Centrality (CC).

Local Data Global Data
Metric Computable Approximatable Fast approx.
Degree X
LCC X
EE X
EO X
AND X
BC x X
CC x x X
EC x X
HITS x x X

Table 2: Data requirements and computational
tractability for the metrics we consider.

involves calculating betweenness on a Breadth-First Search
(BFS) induced sub-graph of depth h around the target node.
Table 1 shows the correlation between estimated centrality
measures (for completeness, we include CC and EC) and
the actual value over 15 networks of size 1000 in each of
our datasets (see Section 5) for h = {2, 3}. The sampling
method has a significant impact on estimation accuracy,
showing that (i) estimation of metrics is sensitive to local
structure, and (ii) each sampling technique produces very
different network structures.

PageRank, a variant of EC, can be calculated using only
local information and O(e−1) nodes for a given error bound
e [2]. Given global knowledge, CC is computable in either
O(n3) or O(nm + n2logn). There exists a fast approxima-
tion algorithm but this still requires global knowledge [7].
While there are no known local algorithms for HITS, an
approximation algorithm for HITS-like ranking algorithms
gives considerable efficiency gains [11]. Calculating HITS
does not require global knowledge, but requires a snowball
sample around an initial seed set of nodes (around 200 for
the WWW) [19].

Table 4 summarises this discussion — for clarity, we have
categorised HITS as requiring global information, but note
that it requires sampling of a portion of the global network
rather than the entire network itself.

5. NETWORK SAMPLING ALGORITHMS
A wide variety of synthetic network generators have been

proposed, but tend to be poor models of real-world net-
works [22, 26]. Use of real-world networks is typically con-
strained by (i) impractically large node counts, and (ii) lim-
ited knowledge of the global structure. Consequently, sam-
pling part of the network is often necessary.

Ideally, the sampled structure should display similar prop-
erties to the full network, including clustering coefficient,

average degree, degree distribution [10], and edge embed-
dedness distribution [32]. A wide variety of sampling tech-
niques have been proposed (e.g. [10, 16, 21]). To evaluate
our approach, we use Snowball Sampling (SNS), Metropolis-
Hastings Random Walk (MHRW) [10], and MHRW with De-
layed Acceptance (MHRWDA) [21]. Each starts with a ran-
domly chosen node in a seed set. SNS iteratively adds neigh-
bours to the sample at random from the neighbours of sam-
pled nodes using a breadth-first search, until the threshold
is reached. MHRW and MHRWDA perform a random walk
with biased transition probabilities, with the aim of pro-
ducing a uniform sample. MHRWDA uses modified MHRW
transition probabilities to reduce the chance of backtracking.

SNS (and others, including BFS and vanilla random walks)
are biased towards high node degrees [10], but SNS can pro-
duce good coverage of the local area around the start node.
It is subject to greater variation between samples but may
be useful for ensuring that a wide variety of structural prop-
erties are tested. MHRW and MHRWDA converge towards
the node degree distribution exhibited in the full network,
but there are no guarantees about the reproduction of any
other metrics or structural properties.

In this paper, we use three networks: (i) a peer connec-
tion network from Gnutella (a P2P file-sharing platform),
(ii) the Enron email dataset, and (iii) the arXiv general rela-
tivity section collaboration network1. The Enron and arXiv
networks are both based on human interactions, but are gen-
erated by very different processes: the Enron dataset repre-
sents email communications, while arXiv is based on more
formal links made through research collaborations. Con-
versely, Gnutella is a computational network of links in a
P2P system. Since these networks are generated by very
different processes they display varied structural properties,
allowing us to evaluate our methodology on a range of struc-
tures. MHRW and MHRWDA sampling explicitly consider
only undirected networks, and so we treat each network as
undirected.

The high-level metrics are summarised in Table 3. Data
for each sampling technique is averaged over 15 networks of
1000 nodes per sampling technique per dataset (for a total of
135 networks). The global clustering coefficient (GCC) is the
average of the clustering coefficients for each node. Diameter
describes the longest shortest path-length between any pair
of nodes. Centralization measures how much heterogeneity
exists in a graph [5], defined as:

Centralization =
max(k)

N
− mean(k)

N − 1

where k denotes node degree and N the number of nodes.
Centralization indicates the variation of node degree in the
network — low centralization indicates that most nodes have
a similar connectivity, whereas high centralization implies a
higher degree of structural variation. Centralization is a
useful indication of the extent to which a mechanism has
generated a uniform sample.

No single technique produces an ideal sample. The stan-
dard deviation between samples is highest using SNS, in-
dicating a large variation in structural properties between
samples. Centralization is high using SNS, indicating a
higher level of internal heterogeneity. Both MHRW and
MHRWDA produce networks with metric values closer to

1All taken from the Stanford large network dataset collec-
tion, http://snap.stanford.edu/data/
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Graph Nodes Edges Avg.Degree GCC Diameter Centralization
Gnutella-FULL 62586 147892 4.726 0.005 - 0.001
Gnutella-SNS 1000 (0) 1197.8 (54.5) 2.40 (0.11) 0.02 (0.008) 7.33 (0.98) 0.034 (0.008)
Gnutella-MHRW 1000 (0) 1122.3 (13.1) 2.24 (0.03) 0.008 (0.004) 36.4 (4.4) 0.005 (0.001)
Gnutella-MHRWDA 1000 (0) 1120.1 (10.8) 2.24 (0.02) 0.007 (0.003) 38.7 (3.22) 0.005 (0.001)
Enron-full 36692 183831 10.02 0.497 13 0.037
Enron-SNS 1000 (0) 7751 (3760) 15.5 (7.5) 0.44 (0.13) 4.5 (0.92) 0.51 (0.31)
Enron-MHRW 1000 (0) 4480 (443) 8.96 (0.89) 0.52 (0.03) 11 (1.41) 0.10 (0.02)
Enron-MHRWDA 1000 (0) 4495 (255) 9.00 (0.51) 0.52 (0.02) 10.6 (1.04) 0.10 (0.02)
arXiv-full 5242 14496 5.526 0.530 17 0.014
arXiv-SNS 1000 (0) 3663 (405) 7.32 (0.81) 0.53 (0.04) 8.67 (1.18) 0.06 (0.01)
arXiv-MHRW 1000 (0) 3561 (413) 7.12 (0.83) 0.57 (0.02) 14.3 (1.04) 0.05 (0.01)
arXiv-MHRWDA 1000 (0) 3190 (394) 6.38 (0.79) 0.58 (0.02) 15.5 (1.41) 0.04 (0.01)

Table 3: Summary of structural metrics, averaged over 15 networks for each sampling technique and dataset.

the full network than SNS. However, the diameter of MHRW
and MHRWDA is approaching that which we see in the full
graph, due to the random walks covering large areas of the
network. Since these networks no longer display the small-
world property, we cannot assert that many of the structural
properties of the full network are reproduced, beyond the
node degree distribution (as discussed above).

To effectively evaluate our methodology we consider a
range of network structures, and use a portfolio of net-
work samples derived using a variety of sampling techniques.
Using SNS allows us to run our model on samples which
are more representative of localised areas of the full net-
work, and the high variance between samples indicates that
a wide variety of structural properties will be included. Us-
ing MHRW and MHRWDA allows analysis of samples which
more accurately reproduce the full degree distribution, but
we cannot make any assertions about other properties. Given
the large diameters, there are likely to be other as-yet un-
documented biases. In this paper, therefore, we sample from
each of the Gnutella, Enron, and arXiv datasets, taking 5
samples using each of the SNS, MHRW, MHRWDA sam-
pling methods, giving a total of 45 network samples.

6. EXPERIMENTAL SETUP
To evaluate our methodology, we adopt Salazar et al.’s

model of language coordination [30] (introduced in Section 2).
In each experiment, we insert a single fixed-strategy Influ-
encer Agent (IA) [9] at a randomly chosen location and mea-
sure the extent to which the population converges on the
strategy of the IA. This model exhibits a natural measure
of influence, as described below.

From the three networks introduced above, we sample 45
sub-networks of 1000 vertices. We demonstrate our method-
ology on two sets of data: (i) 50 locations sampled at ran-
dom from each network, and (ii) 50 locations sampled using
a stratified approach. We run our simulation 20 times for
each location, for a total of 1000 simulation runs per net-
work sample. We measure the extent to which the agent
at each location influenced the rest of the population and
calculate the 14 metrics of location. We use Principal Com-
ponents Analysis (PCA) for unsupervised learning and fit
Linear Regression (LR) models for supervised learning. We
run new simulations using the location predicted as most
influential by each model and determine the extent to which
influence has increased against random placement.

We use the Java Universal Network/Graph Framework2 in

2http://jung.sourceforge.net/

our simulations and Cytoscape3 for offline structural analy-
sis of networks. Statistical analyses are performed using R4

and Weka5.

6.1 Language coordination domain
In the language coordination domain agents attempt to

establish a social convention in the form of a shared vocab-
ulary. We adopt the formulation of the domain described
by Salazar et al. [30], in which agents are associated with a
lexicon that maps words to concepts. We use their parame-
ter settings of 10 concepts and 10 words, with 10 mappings
per lexicon (giving a convention space of size 1010). Each
timestep, three phases are executed. First, each agent in
turn communicates a single mapping from its lexicon to a
single randomly chosen neighbour. It is assumed that agents
can determine whether the recipient’s lexicon contains the
same mapping, in which case the communication is success-
ful, otherwise it is unsuccessful. Second, each agent has a
chance to propagate part of its lexicon to all of its neigh-
bours, along with the communicative efficacy of the lexicon,
defined as the proportion of successful communications in
the last 20 communications. Third, each agent has a chance
to update their internal lexicon based on the partial lexicons
received from their neighbours, using a two-point crossover.
Agents use an elitist strategy, such that they update their
lexicon with the received mappings that have the highest
communicative efficacy.

Over time, a shared lexicon (or set of lexicons) emerges.
We define the dominant lexicon as the one that is shared
by the highest number of agents. Each simulation is run for
50000 timesteps, and each agent propagates their lexicon
with a probability of 0.01 and updates their lexicon with a
probability of 0.01. By the end of a typical simulation run
600–800 agents have adopted the dominant lexicon.

In this model, we define an agent’s influence as the sim-
ilarity between its lexicon (L) and final dominant lexicon
in the population (L′) using Jaccard’s similarity coefficient:
J(L,L′) = |L ∩ L′|/|L ∪ L′|, where a similarity of 1 implies
that agents use an identical lexicon, and 0 implies that there
are no mappings in common.

7. RESULTS
In this section, we analyse the predictive power of indi-

vidual metrics, and apply our methodology by constructing
a number of models to predict influence.

3http://www.cytoscape.org/
4http://www.r-project.org/
5http://www.cs.waikato.ac.nz/ml/weka/
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Network Average lexicon similarity Number of wins (normalised)
Degree HE EC HITS Random Degree HE EC HITS Random

arXiv-SNS 0.58 0.54 0.6 0.54 0.16 0.47 0.41 0.5 0.40 0.03
arXiv-MHRW 0.54 0.6 0.56 0.58 0.18 0.41 0.50 0.47 0.42 0.02
arXiv-MHRWDA 0.6 0.58 0.56 0.48 0.16 0.5 0.5 0.47 0.37 0.02
Enron-SNS 0.58 0.56 0.48 0.54 0.16 0.45 0.47 0.34 0.42 0.02
Enron-MHRW 0.62 0.48 0.55 0.63 0.16 0.55 0.41 0.44 0.56 0.02
Enron-MHRWDA 0.56 0.58 0.6 0.6 0.16 0.47 0.47 0.6 0.6 0.02
Gnutella-SNS 0.4 0.3 0.38 0.5 0.18 0.30 0.18 0.25 0.41 0.06
Gnutella-MHRW 0.22 0.18 0.2 0.38 0.16 0.08 0.05 0.06 0.21 0.02
Gnutella-MHRWDA 0.3 0.2 0.3 0.34 0.18 0.2 0.06 0.17 0.18 0.04

Table 4: Results for placing a single IA at a location maximising a chosen topological metric. The best
performing metrics in each row are shown in bold.

Inspecting the extent to which individual metrics predict
influence may allow us to refine our models, and analysis of
the correlations between each metric and influence reveals
that Degree, EC, HEE, and HITS all robustly correlate with
influence over all networks. These metrics are statistically
significantly correlated in over 90% of the networks (with
correlations ranging from 0.68 in the arXiv networks to 0.27
in the Enron networks), whereas the other metrics statis-
tically significantly correlate only in isolated networks (on
average, in 48% of networks). Correlating with influence
in isolated networks is likely to be due to unique network
structures, and these metrics are less likely to indicate in-
fluential nodes in the general case. This corroborates previ-
ous research on the link between node degree and influence
(e.g. [3]), but to our knowledge this is the first time that EC,
HEE and HITS have been shown to predict influence.

Ranking nodes by each of the four identified metrics re-
sults in significant overlap over the top 5 vertices — with 7.8
unique nodes over the top 5 for each metric (a 0.39 propor-
tion, standard deviation 0.15), where disjoint sets would give
20 unique nodes. While each metric selects roughly similar
sets as most influential, their relative rankings are unique.
Figure 1 plots normalised EC, HEE and HITS against de-
gree, from which we can see the correlations. Interestingly,
HEE and HITS clearly bisect the population, which may
be useful for splitting a population into influential and non-
influential nodes, while EC has an approximately linear re-
lationship with degree.

Table 4 shows the results of placing an IA at the location
that maximises each heuristic, where a win is defined as a
simulation run in which the dominant lexicon in the popu-
lation has at most 2 different mappings from the IA lexicon.
Results are averaged over each class of network. We see
significant gains across all four metrics, particularly in the
arXiv and Enron networks. With random placement, an
agent is only able to successfully influence the population
2 times in 100, but placing by heuristic can increase this
to 60 times in 100. There is no consistency in which met-
ric performs best, and this is likely due to unique network
structures in each class of network.

We subsequently apply our methodology by learning three
models: (i) the Principal Component (PC) that most corre-
lates with influence, (ii) a Linear Regression (LR) model on
all 14 metrics, and (iii) a linear regression model on Degree,
EC, HEE and HITS (4LR), which are the best 4 heuristics as
discussed above. We consider two sampling approaches for
selecting a representative set of nodes: random and stratified
(as described in Section 3).

Table 5, shows the correlations between predicted influ-
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Figure 1: Correlation of HEE, EC, and HITS with
node degree in an example arXiv-SNS sample.

ence and actual influence, demonstrating that models learnt
on randomly sampled vertices are particularly poor. Con-
versely, learning on stratified data shows high correlations,
indicating higher quality models. This corroborates our hy-
pothesis that there are relatively few nodes of influence in a
network, with the majority having similar and low influence.
This indicates that a random sample is not representative in
terms of influence, and so the stratified approach should be
used. Figure 2 plots the predicted influence in an arXiv-SNS
sample using the LR model on a stratified sample, and we
can clearly see that less than 10% of the vertices account
for almost all the influence. The Gnutella-MHRW samples
do not fit a model using randomly sampled data, since the
majority of nodes are zero-valued for many of the metrics.
This occurs for nodes of very low degree, and is an extreme
example of the effect discussed above.

To evaluate the efficacy of each prediction model, we place
an IA at the location predicted as most influential by each
model, and repeat the simulations. Table 6 shows the results
using models learnt on stratified sampling. We have omit-
ted results for models learnt using random sampling, since
they are less effective: across all networks, average lexicon
distance is 0.35 (standard deviation 0.1) and the average
proportion of wins is 0.2 (standard deviation 0.12). Nodes
selected as influential by these models exhibit less than half
the influence of those selected by either individual heuristics
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Random Stratified
Network PC LR 4LR PC LR 4LR
arXiv-SNS -0.08 0.164 0.19 0.71 0.91 0.90
arXiv-MHRW 0.018 0.10 0.11 0.67 0.93 0.92
arXiv-MRHWDA -0.03 0.34 0.08 0.75 0.88 0.86
Enron-SNS -0.03 0.16 0.13 0.69 0.80 0.85
Enron-MHRW -0.10 0.17 0.21 0.71 0.88 0.87
Enron-MHRWDA 0.08 0.06 -0.03 0.73 0.90 0.89
Gnutella-SNS -0.01 0.03 -0.10 0.33 0.67 0.58
Gnutella-MHRW 0.02 - - 0.44 0.75 0.65
Gnutella-MHRWDA 0.09 -0.15 0.06 0.36 0.73 0.52

Table 5: Correlation of each model with influence,
using separate training and test data.

Network Average lexicon similarity Number of wins (normalised)
PC LR 4LR Ran. PC LR 4LR Ran.

arXiv-SNS 0.44 0.42 0.58 0.16 0.34 0.30 0.50 0.03
arXiv-MHRW 0.5 0.32 0.62 0.18 0.42 0.20 0.55 0.02
arXiv-MHRWDA 0.34 0.38 0.6 0.16 0.22 0.27 0.50 0.02
Enron-SNS 0.62 0.32 0.68 0.16 0.56 0 0.62 0.02
Enron-MHRW 0.2 0.5 0.58 0.16 0.30 0.36 0.53 0.02
Enron-MHRWDA 0.34 0.16 0.52 0.16 0.21 0.06 0.43 0.02
Gnutella-SNS 0.18 0.46 0.36 0.18 0.03 0.37 0.24 0.06
Gnutella-MHRW 0.4 0.4 0.24 0.16 0.27 0.29 0.10 0.02
Gnutella-MHRWDA 0.38 0.36 0.36 0.18 0.25 0.24 0.22 0.04

Table 6: Results for placing an IA at a location cho-
sen by the predictive models. The best performing
placement strategies are shown in bold.

or the models learnt from stratified sampling, indicating that
random sampling of nodes does not give a sufficient range
of influential nodes to generate accurate models.

Targeting IAs using locations predicted as influential by
models based on stratified data results in significant gains
in influence. In the arXiv, Enron and Gnutella-SNS net-
works, these increases are roughly equal to that gained by
placing by single metric compared to random placement. In
the arXiv and Enron networks, the best performing model
is 4LR, indicating that the other metrics are unlikely to con-
tribute to influence prediction. We believe that 4LR is learn-
ing which metric is best to place by, given the results in Table
4. In Gnutella, 4LR is always outperformed by PC or LR,
indicating that metrics other than Degree, EC, HEE and
HITS are indicative of influence in these networks. More-
over, the linear combination of metrics in these networks
outperforms placement by single metrics. The Gnutella net-
works show reduced potential for influence compared to En-
ron and arXiv, and exhibit lower edge counts, average de-
gree, and clustering coefficients, and higher diameters. All
these properties reduce the ability of an agent to exert in-
fluence, and may provide an indication of the likely efficacy
of our methodology prior to application.

Our results suggest that if computational expense is an
issue, targeting by Degree (or EC, HEE or HITS) will yield
significant gains in influence, but if computational expense
is less important then applying our methodology results in
further gains. If our methodology is applied using online
measurements of influence (i.e. not requiring repeated sim-
ulations), the computational cost is significantly reduced.

8. CONCLUSIONS AND FURTHER WORK
In this paper, we describe a methodology for learning the

influence of nodes in a network. We evaluate our model
using a representative model of convention emergence on
networks sampled using a variety of techniques from three

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0  100  200  300  400  500  600  700  800  900  1000

P
re

d
ic

te
d

 i
n

fl
u

e
n

c
e

Agents

Figure 2: Predicted node influence in an arXiv-SNS
sample.

base datasets. We corroborate results in the literature that
degree is highly indicative of influence, and additionally also
show that Eigenvector Centrality, Highest Edge Embedded-
ness, and HITS are linked to influence. Applying our pro-
posed methodology gives significant gains in influence. In
the arXiv and Enron networks, linear regression on these
4 metrics gives the best results and is comparable with the
gains in influence from placing using single metrics over ran-
dom placement, indicating that the model learns which met-
ric best predicts influence in that network. In the Gnutella
networks, our models outperform single metric placement.
Supervised learning using LR almost always outperforms un-
supervised learning using PCA.

The form of influence in the arXiv and Enron samples
and the Gnutella samples are significantly different. The
Gnutella samples demonstrate (i) that single metric heuris-
tics do not guarantee optimal influence, and (ii) that differ-
ent network structures result in significantly varied ranges of
influence. We believe that the overall network metrics (such
as average degree, clustering coefficient, or diameter) may
indicate the potential for maximising influence in a given
network, and we intend to test this in future work, along
with other models of influence propagation to ensure our
methodology generalises.
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