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ABSTRACT
The propagation of concepts in a population of agents is a
form of influence spread, which can be modelled as a cas-
cade from an initial set of individuals. In real-world envi-
ronments there may be many concepts spreading and inter-
acting. Previous work does not consider utilising concept
interactions to limit the spread of a concept. In this paper
we present a method for limiting concept spread, in envi-
ronments where concepts interact and do not block others
from spreading. We define a model that allows for the inter-
actions between any number of concepts to be represented
and, using this model, develop a solution to the influence
limitation problem, which aims to minimise the spread of
a target concept through the use of a secondary inhibiting
concept. We present a heuristic, called maximum probable
gain, and compare its performance to established heuristics
for manipulating influence spread in both simulated small-
world networks and real-world networks.

CCS Concepts
•Computing methodologies ! Multi-agent systems;

Keywords
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1. INTRODUCTION
In many environments it is possible for strategies, con-

cepts or infections to spread within a population. The na-
ture of propagation is determined by the interactions be-
tween individuals. Populations of autonomous entities are
complex systems, meaning that the net e↵ects of propaga-
tion are hard to predict or influence despite being due to
individual behaviour. Such propagation is a form of influ-
ence spread, which can be modelled as a cascade from a set
of initial individuals [12].

Insight gained by understanding how to control cascades
in abstract populations has many applications, such as in-
forming epidemic control, viral marketing, and understand-
ing convention emergence in multi-agent systems. For exam-
ple, characterising the spread of disease aids in identifying
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at risk groups, enabling containment e↵orts to be focused
to avoid wider spread. Understanding how ideas propagate
can inform viral marketing or identify influential individuals.
The key enabler is being able to identify the set of individ-
uals who can help spread an idea or product, or who can
restrict future spreading (e.g. through their vaccination).

Several models have been developed to characterise in-
fluence spread [6, 12], along with techniques to maximise
spread [3]. These models represent a population as a net-
work, with individuals being represented as nodes and edges
representing the influence that can travel from one individ-
ual to another, with some that try to model complex so-
cial relationships [15]. Existing models of influence spread
typically assume that only a single concept exists, or that
concepts are blocking, preventing an individual from activat-
ing multiple concepts [9, 10]. However, individuals in real
world environments can have many concepts active simulta-
neously. Furthermore, these concepts can interact, a↵ecting
the strength with which they spread between individuals.

Not every concept that can spread in a population is desir-
able or beneficial, for example a disease or rumour, and we
may wish to limit its spread. Previous investigations assume
blocking concepts, selecting nodes that are either immunised
against the undesirable concept or chosen as seeds for a sec-
ondary blocking concept. While the use of blocking concepts
is reasonable in an epidemiology context, as immunisation
is often e↵ective, it is less generally applicable, for example
in limiting the spread of rumours or opinions. We assume
that individuals can activate, or adopt, multiple interacting
concepts, that can a↵ect how other concepts spread.

Minimising the spread of a target concept, through the
selection of a seed set for a secondary inhibiting concept, is
known as the influence limitation problem. Previous inves-
tigations have focused on finding nodes present on a high
number of shortest paths [26], or nodes connecting com-
munities [5]. In environments where concepts are blocking,
selecting these nodes prevents the undesirable concept from
utilising the most influential network paths. However, when
concepts merely inhibit each other, the blocking of a path
cannot be guaranteed and such methods are less e↵ective. If
a node is on many shortest paths, but is not near to the start
of the target concept’s cascade, it is unlikely to encounter the
target concept, and so cannot help to limit concept spread.
Where concepts interact, the likelihood of a node to activate
the target concept, and the expected gain from that activa-
tion, must be considered when attempting to limit spread.

In this paper, we focus on an adaptation of the influence
limitation problem, where concepts can interact. We present
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a model of concept interactions and propose the maximum
probable gain heuristic, measuring its e↵ectiveness against
established methods. Furthermore, we investigate the e↵ect
of response time, by attempting to limit the spread of a con-
cept at di↵erent stages of a cascade. The evaluation focuses
on synthetic small-world networks, as many real-world net-
works exhibit small-world properties [4, 20], and on selected
real-world networks from the Stanford SNAP project.

2. RELATED WORK
Many influence spread problems are sub-modular, and a

greedy approach is often e↵ective in approximating the op-
timal solution [5, 12]. Hill climbing can be used to select the
node that provides the largest incremental increase to the
performance of the current seed set [7, 8, 12]. However, for
real-world problem sizes, this approach is often intractable,
since it has a time complexity of O(n3) or higher [23]. De-
spite this, hill climbing is often used as a baseline when new
influence spread models are defined. Methods to e�ciently
evaluate the performance increase from selecting a node have
been proposed, notably, the degree discount heuristic [3].

Some greedy approaches can be made tractable, such as
the Greedy Viral Stopper (GVS) algorithm, for environ-
ments in which ‘correct’ and ‘incorrect’ information propa-
gates, with the correct information superseding incorrect [21].
While typically intractable, if we divide the network into
communities [1], the GVS algorithm can be performed on in-
dividual communities e�ciently and the solutions combined.

Methods for influence limitation typically assume that
concepts block. Fan et al. propose using nodes that con-
nect one community within a network to another, known as
bridge ends [5]. Similarly, Li et al. select nodes identified
as ‘protector’ nodes, whose immunization against an unde-
sired concept protects nodes identified as bridge ends con-
necting to other communities [17]. Other methods have also
been proposed that remove edges between communities [19].
While protecting bridge ends can limit the spread of a con-
cept, it becomes less e↵ective when path blocking cannot be
guaranteed. Measuring the betweeness of nodes is also an
e↵ective, but computationally expensive, approach [26].

Kotnis and Kuri propose a solution where individuals can
be trained, at a cost based on their degree and the qual-
ity of training, to be better at deciding if information is a
rumour [14]. For a given budget, having more low qual-
ity trained individuals produces better results than having
fewer individuals with higher quality training. This model
assumes a single cascade, but discusses the possibility of
other messages a↵ecting the spread of a rumour.

A related problem, selecting a group of nodes and improv-
ing their ability to spread a target concept, is discussed by
Liontis and Pitoura [18]. Only the selected nodes have this
improved spreading ability, which cannot be passed on to
neighbouring nodes. This approach is based on the PMIA
algorithm for influence spread, proposed by Wang et al.,
which considers nodes likely to activate a concept, and the
expected activations gained from that node’s influence [25].
Liontis and Pitoura focus on boosting concepts, but these
techniques may also prove e↵ective for inhibiting concepts.

An individual’s opinions can a↵ect the concepts they ac-
tivate or spread. These opinions can be represented through
network and node attributes, as in the adaptation of the lin-
ear threshold model proposed by Kaur and He [11]. Each
edge has two separate influence strengths, representing a

positive and negative opinion respectively. Similarly, a node
has both a positive and negative threshold. A node will acti-
vate the opinion that first exceeds its corresponding thresh-
old. Nodes with high positive influence are selected to block
the negative opinion from being further spread. Stitch et al.
present another method of representing opinions, by assign-
ing an attitude score to individual nodes [24]. Nodes with a
high attitude score are more likely to spread negative word-
of-mouth, even if they have been mostly exposed to positive
opinions, and vice versa for nodes with low attitude scores.
Both of these models again utilise the blocking assumption.

Budak et al. propose the highest infectees heuristic that,
for environments with ‘good’ and ‘bad’ cascades, gives re-
sults comparable to greedy hill climbing [2]. This heuristic
assumes knowledge of the ‘bad’ cascade’s seed set, and sim-
ulates a large number of cascades using that seed set. Nodes
are ranked by the number of simulations in which they be-
came infected with the ‘bad’ cascade, and are selected as
seeds for the ‘good’ cascade in descending order.

Others have focused on modifying edges in the network,
rather than selecting nodes to block the spread of a concept.
Li et al. proposed reducing the edge weight to limit the rate
of transmission [16]. The weight of an edge is expressed as
a function of the degree of its end points, and the trans-
mission rate between two nodes is proportional to the edge
weight. The use of inflammation immunization, which re-
duces edge weight by a chosen factor, is shown to be e↵ective
in this model and may translate well to real-world scenarios.
Notably, the reduction of edge weights lowers the transmis-
sion weight while not compromising network e�ciency as a
whole. Conversely, the bond percolation approach suggested
by Kimura et al. curbs the spread of an infection but, by re-
moving links, damages the network structure and in turn,
the ability of the network to transmit other concepts [13].

3. CONCEPT INTERACTION MODEL
To model complex concept interaction, we propose a model

for concept interaction based on that presented by Sanz et
al. [22], extended to be applicable to any number of con-
cepts. We focus on the Independent Cascade Model (ICM),
due to its widespread use in previous work. In the ICM,
newly activated nodes make one attempt to spread the con-
cept to each of their neighbours, with a probability, p, of
success [6]. Although we define propagation and influence
strength in terms of the ICM, the model for concept inter-
action is more generally applicable.

We assume that an environment consists of nodes in a
network. Each node, v, has a set of incoming neighbours,
N

i

v

, and outgoing neighbours, No

v

, where N

i

v

can influence v,
and v can influence N

o

v

. These sets are not necessarily dis-
joint and may be equivalent in some environments, allowing
directed and undirected graphs to be represented. A node
can adopt, or activate, multiple concepts. The set of active
concepts for node v at time j is Cj

v

.
We must also define how the concepts active on a node

a↵ect interactions with other concepts. The concepts al-
ready active on a node will a↵ect its ability to spread and
adopt future concepts. For each node, v, we represent the
adopting context and the spreading context. The function
Context

v,j

adopt

(c) describes how the concepts active on v at
time j a↵ect the chance of v adopting concept c, while
Context

v,j

spread

(c) describes how the concepts active on v

modify v’s chance to spread concept c.
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When nodes interact, the spread of a concept can be af-
fected by other concepts active on both the infector and the
receiver. The concept relationship function CR

spread

(c, c0)
describes the e↵ect of c0 on the chance of c being successfully
activated on a receiver node, when an infector spreading c

also has c

0 active. Similarly, the concept relationship func-
tion, CR

adopt

(c, c0), describes how c

0 a↵ects the chance of c
being adopted by a receiver with c

0 active.
These functions describe the relationship, positive or neg-

ative, between any two concepts. A concept relationship
function with a positive value defines a boosting relation-
ship, a negative value defines an inhibiting relationship, while
0 implies that the concepts do not a↵ect each other. Concept
relationship functions are used when evaluating the adopting
or spreading context of a node, and are node independent.

Some concepts may prevent others from spreading to a
node, which is known as blocking. Each concept c has an
excluded set, X

c

, of concepts it blocks. No concept in X

c

can activate on a node with c already active.
The ability of a concept to propagate from one node to

another is dependent on the strength of the influence one
node exerts on the other. The influence strength, Ic

m,n

(j),
that node m can exert on node n at time j for concept c,
captures this. If I

c

m,n

(j) = 0, then m cannot influence n

with respect to concept c.
For this work, we define I

c

m,n

(j) = p for any pair of nodes
such that m 2 N

i

n

and p is the chance of infection. In each
timestep, each node that activated a concept in the previous
timestep can attempt to spread that concept to each of its
neighbours. To consider concept interaction, we define the
concept relationship functions, as follows:

CR

adopt

(c, c0) = CR

spread

(c, c0) = r

where r 2 [0, 1] is a feature of the environment that repre-
sents the extent to which concept c0 a↵ects concept c. With
this definition, c is a↵ected by c

0 in the same way when c

0

is active on either the infector or the receiver. For a given
concept, c, we must define how it interacts with the context
of a node, v, at time j. The adopting and spreading contexts
for concept c are defined as:

Context

v,j

adopt

(c) = 1 +
X

c

02C

t
v\c

CR

adopt

(c, c0)

Context

v,j

spread

(c) = 1 +
X

c

02C

t
v\c

CR

spread

(c, c0)

Here, we sum the contribution of the corresponding concept
relationship function for each concept already active on the
node. We add 1 to this sum, allowing the context functions
to scale the strength of the influence. Finally, we define how
these context functions a↵ect the influence exerted on a re-
ceiver by an infector. For a node v, the contextual influence,
CI

c

w,v

(j), exerted by incoming neighbour w in relation to
concept c at timestep j is defined as:

CI

c

w,v

(j) = I

c

w,v

(j)⇥ Context

v,j

adopt

(c)⇥ Context

w,j

spread

(c)

The influence strength is weighted by the adopting context
of the receiver and the spreading context of the infector.

4. INFLUENCE SPREAD LIMITATION
Previous work has focused on blocking concept spread,

typically allowing a node to have a maximum of one concept

active [5, 11, 17, 24]. For the influence limitation problem,
we aim to select the seed set for a secondary inhibiting con-
cept to minimise the spread of a primary target concept. We
do not assume blocking concepts, and so require a method
of selection that uses inhibiting concepts e↵ectively.

At the start of a cascade, a set of nodes will begin with a
concept active, which can then spread to other nodes. This
initial set of nodes is known as the seed set for that concept.
Selecting seed nodes for a concept in order to limit the spread
of another concept requires consideration of a node’s posi-
tion in the network in relation to nodes that have the tar-
get concept active. Nodes that are closer to target concept
nodes will be more likely to encounter the target concept.
Typically, in the ICM, each successive round of a cascade
infects fewer nodes than the previous round due to the low
probability of infection. This means that early rounds are
when a concept maximises its spread, and so limiting early
spread is likely to be e↵ective.

To limit spread we should focus on nodes that have a high
expected value to the target concept, such as nodes with a
high degree, or those present on the shortest path to more
central nodes. Infecting these nodes with the inhibiting con-
cept will lower the expected gain of the target concept, and
the influence limitation problem becomes a case of maximis-
ing that loss of expected gain.

Aiming to maximise the spread of the inhibiting concept
may also prove e↵ective. By maximising the spread of the
inhibiting concept, we aim to maximise the number of nega-
tive interactions with the target concept, inhibiting its abil-
ity to spread. In the remainder of this section we describe an
established influence maximisation heuristic, namely degree
discount, and our proposed influence limitation heuristic,
called Maximum Probable Gain.

4.1 Degree Discount
Degree discount has been shown to be an e�cient method

of influence maximisation, approaching the performance of
the greedy algorithm [3]. It relies on calculating the expected
nodes gained from adding a node to the seed set. When a
node is selected as a seed, the expected gain of selecting
its neighbours is lowered. Additionally, those neighbours
now have a chance to be activated in the first round of a
cascade. Nodes are initially ranked by degree, and when a
node is added to the seed set its neighbours have their degree
set to d

v

� 2t
v

� (d
v

� t

v

) ⇤ t

v

⇤ p, where d

v

is the original
degree, t

v

is the number of neighbours in the seed set and p

is the probability of infection. This calculation is based on
the expected benefit of such nodes (details of its derivation
can be found in [3]).

4.2 Maximum Probable Gain
Typically, heuristics to limit influence spread select nodes

based on the assumption that they block the target concept,
and as such focus on nodes that are likely to be encountered
or that link groups of nodes together. Intuitively, under the
blocking assumption, the aim is to remove paths that the
target concept could travel, limiting its spread. However,
without the blocking assumption, a focus on these nodes
may not be the best approach.

Without the blocking assumption, the local influence of a
node is more important. We wish to select locally influential
nodes, that can spread the inhibiting concept and minimise
the spread of the target concept. This is similar to betwee-
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ness, and selecting nodes with high betweeness means that
they are likely to be encountered by the target concept and
to reach a higher number of nodes. However, betweeness is
expensive and requires the calculation of a large number of
shortest paths. As such, we need an alternative method.

To maximise the chance of interactions between the two
concepts, we should focus on nodes more likely to be reached
by the target concept. By inhibiting the ability of a node to
spread, we also lower the chance of its neighbours activat-
ing the target concept. Therefore, the higher the expected
gain in target concept activations of a node, the greater the
impact to the spread of the target concept if that node acti-
vates the inhibiting concept. As such, the aim of the Maxi-
mum Probable Gain (MPG) heuristic is to select nodes that
are likely to activate the target concept, and provide a high
number of expected activations for it.

To calculate a node’s viability as a seed node for the in-
hibiting concept, we set a threshold for exploration, ✓. From
any node, we consider only nodes that can be reached with
a probability higher than ✓.

We define the set S

t

as the set of nodes with the target
concept, t, active. Each node n 2 S

t

has a set of reachable
nodes, R

n

, which contains all nodes with a probability of
being reached more than, or equal to, ✓. The probability of
a concept to reach node m from n is the propagation prob-
ability, p(n,m), which can be calculated recursively using
the most probable path from n to m, MPP(n,m). This is
the path with the highest chance of traversal, which can be
calculated for a neighbourhood of nodes relatively simply.

Since all paths from a node will be a↵ected by that node
adopting the inhibiting concept, we consider only the most
probable path for simplicity. The most probable path acts as
an indicator of the influence between two nodes and has been
similarly used by other heuristics with positive results [25].

MPP(n,m) is an ordered set, with length l, of nodes,
{n0, n1..., nl�1}, where n0 = n and n

l�1 = m. Thus, for
a given node, n

i

2 MPP(n,m) we define p(n, n
i

) as:

p(n, n
i

) = p(n, n
i�1)⇥ p(n

i�1, ni

) (1)

where p(n, n) = 1.
We can calculate MPP(n,m), where m 2 R

n

, as we con-
struct the R

n

set of reachable nodes, through a snowball
sampling method. Starting at n, we sample each neigh-
bour, v, and calculate their p(n, v). Since we are looking at
one hop neighbours, this is also their most probable path,
MPP(n, v). We add each v for which p(n, v) > ✓ to R

n

,
and explore the neighbours of these nodes. We calculate the
propagation probability and most probable path for each of
these neighbours, adding each neighbour, u with p(n, u) > ✓

to R

n

, then repeat our exploration until no nodes are added
to R

n

. If a node w is encountered multiple times, we choose
the neighbour that results in the highest propagation prob-
ability, and define MPP(n,w) as:

MPP(n,w) ={MPP(n, v)

+ w|8m 2 N

i

w

^m 2 R

n

: p(n, v) � p(n,m)}
(2)

where N

i

w

is the set of incoming neighbours of node w.
The process continues until we can add no more nodes that

have a propagation probability above ✓. Since probability
decreases with each hop, all paths to each node in R

n

that
could possibly have a propagation probability above ✓ are

explored. If we re-consider a node when we encounter it
again, we will eventually find the most probable path for
all nodes in R

n

. Furthermore, if a node, w has the target
concept, t, already active then p(n,w) = 0 and we do not
add it to R

n

and so do not explore w’s neighbour nodes.
We wish to find the nodes that are most likely to be

reached by the target concept, and so we consider each node
in the R

n

sets for all n 2 S

t

. We wish to find the proba-
bility that a node, v will activate the target concept from
any possible source, n 2 S

t

. This is known as v’s activation
probability, ap(v), defined as:

ap(v) =
X

n2St,v2Rn

p(n, v) (3)

That is, the sum of the propagation probability to v from
each node in S

t

that can reach v. While ap(v) can exceed 1,
the term activation probability is used, relating it to termi-
nology used in other heuristics to calculate similar proper-
ties. After calculating ap(v), we must consider the expected
gain of a node if it activates the target concept.

To do this, for a node v that is a member of at least one R
n

set, where n 2 S

t

, we construct R
v

, using the same method
as before. Again, we focus on the target concept and, if a
node has the target concept already active we do not add
it to R

v

and do not explore its neighbours. We can find
the expected number of nodes that will activate the target
concept, E(v), if v activates the target concept by totalling
the propagation probability of nodes in R

v

:

E(v) =
X

w2Rv

p(v, w) (4)

If a node has both the target and inhibiting concepts ac-
tive, its expected gain will lower by a proportion determined
by the strength of the inhibiting relationship. The higher the
expected gain, the higher the loss of infections for the target
concept, and as such we desire nodes with a high E(v).

The expected gain of a node is weighted by the probability
it will activate the target concept, to help identify influential
nodes. This weighted expected gain for a node v, WE(v),
represents the value of v to the spread of the target concept:

WE(v) = E(v)⇥ ap(v) (5)

We select the node with the highest WE(v) value as a
seed node for the inhibiting concept, as it represents a node
likely to interact with the target concept and presents a high
possible gain for the target concept.

If we select a node v to be a seed node for the inhibit-
ing concept, its target concept activation probability will
change, and similarly for its outgoing neighbours. The ex-
pected gain for v’s incoming neighbours will also change. As
such, we update two groups of nodes.

First, for any node w such that v 2 R

w

, we must update
E(w). This involves considering the e↵ect of the inhibit-
ing concept on not only the propagation probability of our
chosen node, v, but any nodes m where v 2 MPP (w,m).
As such, we must recalculate E(w) using the new chance of
infection, which takes the relationship between the two con-
cepts into account. For a nodem, such that v 2 MPP (w,m),
we replace the original value of p(w,m) with p

t

(w,m), which
will include the concept context between v and its preced-
ing and proceeding nodes in the path. The context functions
can scale p(w,m) to calculate p

t

(w,m), due to p(w,m) being
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Table 1: Experimental parameters.

Parameter Values

Graph Size (nodes)
1000, 5000, 10000, 25000,

50000, 100000
Clustering Exponent 0.25, 0.75

Seed Set Size 10, 25, 50, 100, 250, 500
CR function values -0.2, -0.4, -0.6, -0.8, -1
Burn-in Timesteps 0, 2, 5

calculated through a series of multiplications:

p

t

(w,m) = p(w,m)⇥ Context
wi�1,j

spread

(t)⇥ Contextwi,j

adopt

(t)

⇥ Contextwi,j

spread

(t)⇥ Context
wi+1,j

adopt

(t)

(6)

where t is the target concept, j is the current timestep, and
v = n

i

2 MPP(n,m). The updated propagation probabili-
ties are used to recalculate E(w) as before.

Second, any node m such that v 2 MPP(n,m), where n 2
S

t

, will have its activation probability, ap(m), a↵ected by v

being chosen to activate the inhibiting concept. We subtract
the original p(n,m) for all n where v 2 MPP(n,m) from
ap(m) and add p

t

(n,m), calculated as above. If p

t

(n,m)
falls below ✓, then we remove it from R

n

and do not include
p

t

(n,m) in m’s updated ap(m) calculation. If this causes
ap(m) = 0, then we do not consider m any further.

With this update, we can recalculate WE(v) for all nodes
and select the new highest valued node, then update the
required nodes. We repeat this until the seed set for the
inhibiting concept has reached its desired size.

5. EXPERIMENTAL SETUP
We wish to evaluate the e↵ectiveness of our proposed

heuristic, Maximum Probable Gain, for providing a solu-
tion to the influence minimisation problem against heuristics
used to maximise the spread of an inhibiting concept. For
this work, we assume ✓ = 0.001, to allow for the exploration
of the local neighbourhood of a node in the MPG heuristic.

The primary target concept has a randomly selected seed
set in all our experiments. We use the following heuristics
to select a seed set for our secondary inhibiting concept:

• Random nodes – nodes are chosen randomly

• Highest Degree – we select nodes with highest degree

• Single Discount – nodes with the highest degree that
do not connect to a previously chosen seed are selected

• Degree Discount – nodes with the highest 1-hop ex-
pected gain are selected

• Maximum Probable Gain (MPG) – nodes likely to ac-
tivate target concept, with high expected gain, are se-
lected

We evaluate our heuristics using a variety of ‘burn-in’
times, to explore the impact of response time on e↵ective-
ness. The primary target concept will spread for a given
number of timesteps, referred to as the ‘burn-in’, before we
introduce the secondary inhibiting concept and select seeds
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Figure 1: Mean activations of the target concept given the
heuristic used to select the inhibiting concept, for small-
world networks of 25000 nodes, with a clustering coe�cient
of 0.75, a seed set of 100 nodes and no burn in time.

for it. If the burn-in is too long, the primary concept will
have completed its cascade by the time we introduce our
second concept, and so influence minimisation will be inef-
fective. Therefore, we focus on short burn-in times.

Furthermore, we test a range of inhibiting relationship
strengths. This allows us to determine if di↵erent strategies
may be more viable at di↵erent levels of inhibition.

Simulated small-world networks are used to evaluate the
performance of our heuristic, with a range of sizes and two
di↵erent clustering components, 0.25 and 0.75. These are
generated using the Kleinberg small world generator pro-
vided in the JUNG graph framework1. We also run tests
on selected real-world topologies from the Stanford SNAP
project2, namely DBLP, CA-CondMat and soc-Epinions1.
The experimental parameters are given in Table 1.

6. RESULTS
MPG performs best with no burn-in, as shown in Ta-

ble 2 where we see a significant di↵erence between the per-
formance of MPG and other heuristics. The other, degree
based, heuristics are consistently outperformed by MPG, re-
gardless of seed set size or network clustering coe�cient.
Further, we note that for the larger networks displayed in
Table 2, the performance di↵erence of MPG compared to
others begins to extend beyond the range of MPG’s stan-
dard deviation. In the results displayed in Table 2, there is
a statistically significant di↵erence between the performance
of MPG and other heuristics (p < 0.05), with our certainty
increasing as the seed set size increases. We observe no sig-
nificant di↵erence between the performance of the degree
based heuristics, with their expected ranges overlapping sig-
nificantly. Seed set size impacts performance more than net-
work size, with MPG performing similarly for the same seed
set sizes across di↵erent networks.

As the burn-in time increases, there is a significant impact
in the performance of the MPG heuristic. Figure 1 shows its
1http://jung.sourceforge.net/
2http://snap.stanford.edu/data
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Figure 2: Mean activations of the target concept given the
heuristic used to select the inhibiting concept, for small-
world networks of 25000 nodes, with a clustering coe�cient
of 0.75, a seed set of 100 nodes and a burn in of 5 timesteps.

performance with no burn-in, and Figure 2 presents the per-
formance for a 5 timestep burn-in, highlighting this e↵ect.
Higher burn-in times decreases the performance di↵erence
between the heuristics, with a burn-in of 5 resulting in nearly
identical performance. The expected ranges of each heuris-
tic also begin to converge, and while with larger seed sets
we still see MPG outperforming the other heuristics with a
low burn-in, at higher burn-in times there is no statistically
significant di↵erence between the performance of any heuris-
tic (p > 0.5 in all cases). In Figure 2, the results vary by a
maximum of 1.2 nodes, which is much smaller than the range
of 30 shown in Figure 1. The reason for this performance
impact appears to be that, after the first 3 timesteps, activa-
tions begin to plateau, as seen in Figure 3. Regardless of the
selection strategy, introducing an inhibiting concept as the
primary concept’s cascade stops will naturally be less e↵ec-
tive. In particular, the approach of MPG, which attempts to
find nodes with high expected gain and inhibit their ability
to spread the target concept, is less e↵ective when a cascade
is nearing its end, as there will be fewer activations, reduc-
ing the importance of expected gain. Overall, lower burn-in
times result in better MPG performance, with no di↵erence
between performance at the highest burn-in times.

Thus far we have focused on the larger networks used in
our evaluation, however in smaller networks, and smaller
seed sets, we still see a statistically significant di↵erence
in the performance of MPG compared to the other degree
based heuristics. Across all network sizes, it can be seen that
MPG performs best with a low burn-in, becoming less e↵ec-
tive as the burn-in increases. The performance di↵erence
scales with network size, as seen by comparing Figure 4 and
Figure 1, although seed set size is also a factor, as discussed
above. Figure 5 demonstrates that a high burn-in results in
no significant di↵erence between heuristics for smaller net-
works. A high burn-in results in erratic performance within
a narrow range for all heuristics, and this range only mini-
mally increases with network size.

While our discussion in this paper mainly focuses on small-
world networks, we also evaluated the performance of MPG
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Figure 3: Mean activations of the target concept each
timestep in a 25000 node small-world network (0.75 cluster-
ing exponent), for varying heuristics and burn-in (BI) times
for introducing the inhibiting concept, and a CR relationship
of -1 and seed set of 500 nodes.

for a small set of scale-free networks for comparison. In
scale-free networks, all non-random heuristics performed at
a similar level. It is only in scale-free networks with a non-
zero burn-in time that a statistically significant result is
observed, with MPG being outperformed by degree based
heuristics. This further highlights the importance of burn-
in time. We also note that in scale-free networks, the target
concept can spread much further than in similar small-world
networks. For scale-free networks with 25000 nodes, and a
seed set of 100 nodes, the target concept achieves an aver-
age of 389 nodes with the least e↵ective heuristic, random
selection. Alternatively, in small-world networks of the same
network and seed set size the target concept gains 218 acti-
vations when using random selection.

Part of the reason for this reduction in performance could
be linked to the degree distribution of the di↵erent networks.
The MPG heuristic focuses on finding nodes with a high ex-
pected cost, that are likely to be activated by the target
concept, typically nodes of high degree or the neighbours
of those nodes. Due to the existence of hub nodes within
scale-free networks, this can result in many seed nodes fo-
cused on blocking the target concept from the same node,
which is still likely to activate the target concept because of
its extremely high degree. High degree nodes are less vul-
nerable to inhibiting e↵ects, as they will be exposed to the
target concept enough times that the activation probability
remains high. If a majority of our resources are focused on
hub nodes, which in a 25000 node network may include up
to 6 nodes with more than 500 edges each, smaller clusters
of highly connected nodes can activate and spread the tar-
get concept unimpeded. Furthermore, there is a high chance
of a hub node activating the target concept regardless and
spreading it to its neighbours. Comparatively, in a small-
world network of 25000 nodes, we see on average a majority
(more than 18000) of nodes have a degree of 5 or 6. This
more balanced degree distribution avoids the situation where
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Table 2: Average infections for the target concept for small-world networks, with no burn-in and a CR strength of -1, with
standard deviation in brackets, and the best performing heuristic in bold.

Network
Size

Clustering
Exponent

Seed Set
Size

MPG
Degree
Discount

Single Discount Degree

10K 0.25 10 Seeds 19.88 (5.71) 21.63 (6.39) 21.73 (6.44) 21.74 (6.46)
10K 0.25 25 Seeds 48.23 (8.94) 54.33 (10.1) 54.6 (10.43) 54.45 (10.54)
10K 0.25 50 Seeds 97.01 (13.17) 108.16 (14.12) 107.71 (14.16) 107.88 (13.95)
10K 0.75 10 Seeds 19.57 (5.48) 22.06 (6.4) 21.78 (6.4) 21.78 (6.43)
10K 0.75 25 Seeds 48.95 (9.12) 54.03 (10.47) 54.72 (10.26) 54.37 (10.5)
10K 0.75 50 Seeds 97.81 (13.28) 107.77 (14.39) 108.21 (14.83) 107.98 (14.17)
25K 0.25 100 Seeds 196.17 (16.91) 218.26 (18.59) 218.71 (19.71) 218.13 (19.68)
25K 0.25 250 Seeds 477.96 (29.03) 527.64 (30.84) 527.4 (31.53) 528.88 (30.69)
25K 0.25 500 Seeds 924.11 (39.33) 1005.3 (40.94) 1007.34 (40.4) 1007.11 (39.46)
25K 0.75 100 Seeds 195.53 (17.04) 218 (19.33) 217.75 (17.96) 217.7 (18.56)
25K 0.75 250 Seeds 476.78 (28.14) 527.74 (30.88) 526.58 (30.11) 528.58 (30.12)
25K 0.75 500 Seeds 926.95 (35.66) 1008.87 (40.34) 1007.51 (39.1) 1006.26 (38.15)
50K 0.25 100 Seeds 199.03 (18.17) 220.93 (19.62) 220.66 (19.77) 220.93 (19.79)
50K 0.25 250 Seeds 487.13 (28.19) 541.93 (32.733) 541.96 (33.94) 541.58 (33.92)
50K 0.25 500 Seeds 954.39 (38.48) 1053.61 (43.77) 1053.82 (43.87) 1052.27 (44.89)
50K 0.75 100 Seeds 197.37 (17.55) 219.29 (19.54) 220.23 (19.5) 220.35 (19.8)
50K 0.75 250 Seeds 485.69 (30.17) 540.7 (32.74) 541.18 (31.91) 541.1 (32.48)
50K 0.75 500 Seeds 954.79 (38.74) 1055.72 (43.79) 1054.37 (43.68) 1054.72 (41.29)
100K 0.25 100 Seeds 197.88 (19.52) 221.83 (20.93) 221.8 (20.84) 221.45 (19.87)
100K 0.25 250 Seeds 491.21 (29.61) 548.68 (33.08) 548.47 (32.84) 548.44 (33.39)
100K 0.25 500 Seeds 974.5 (42.95) 1079.57 (47.63) 1080.02 (47.32) 1079.74 (45.82)
100K 0.75 100 Seeds 196.83 (17.52) 221.07 (19.41) 221.72 (19.33) 221.68 (19.6)
100K 0.75 250 Seeds 490.74 (28.78) 549.35 (33.95) 549.02 (32.9) 549.17 (33.46)
100K 0.75 500 Seeds 971.04 (40.17) 1079.89 (44.8) 1079.78 (46.07) 1079.64 (46)

one node is significantly increasing the expected activations
of many, allowing for more influence paths to be a↵ected.

We also evaluated the performance of MPG using real-
world network topologies. While these networks have small-
world properties, they are not pure small-world networks, as
is the case for the synthetic networks considered above. We
would therefore expect to see a reduction in the performance
of MPG. As in the synthetic networks, we see that a non-zero
burn-in time removes the di↵erence in performance and that
MPG begins to be less e↵ective, becoming comparable to, or
sometimes worse than, other heuristics. Additionally, when
compared to synthetic networks, the inhibiting relationship
strength has a larger impact on the performance of MPG.

Table 3 shows the performance of di↵erent heuristics, when
the inhibiting relationship is strongest. We see that MPG’s
performance within this networks varies. Clustering coe�-
cient is important, as the network that MPG performs least
e↵ectively in is also the network with the lowest clustering
exponent, namely soc-Epinions1. A high clustering coe�-
cient is a characteristic of the pure small-world networks
used, highlighting this property as important to the perfor-
mance of MPG. Looking at the CA-CondMat network, we
see the impact of diameter and average degree. The higher
average degree and lower diameter of CA-CondMat when
compared to DBLP appears to significantly a↵ect MPG’s
performance. MPG performs significantly better than other
heuristics in DBLP, while performing inconsistently in CA-
CondMat. A node with a higher degree has more paths
available to spread a concept, and will have a higher num-
ber of expected activations. If a network has low diameter,

the average path to any other node is shorter. These charac-
teristics are similar to those observed in the pure scale-free
networks, and result in spending resources on a node that is
likely to activate the target concept regardless.

This may also help to explain why MPG performs com-
paratively worse in CA-CondMat with a higher number of
seed nodes, as the target concept will also be wider spread,
and MPG will still spend the majority of its resources on any
nodes with hub-like properties. MPG performs well in the
DBLP network and pure small-world networks due to their
similar properties. Overall, we observe that these character-
istics may be a better indicator of MPG’s performance than
the use of the labels ‘small-world’ and ‘scale-free’, which can
both be applicable to real-world networks.

Furthermore, we see that the impact of the inhibiting rela-
tionship is greater in real-world networks than the synthetic
networks. Particularly within the DBLP network, where we
see the greatest di↵erence in the performance of MPG and
other heuristics. At a CR strength of �0.6, we still see a
significant di↵erence, but at �0.4 this diminishes. With a
CR strength of �0.2 the di↵erence is minimal, sometimes
only 30 nodes, with a standard deviation of 300. This shows
that there is no major di↵erence between the heuristics when
the inhibiting relationship is weak, even in a network that
is favourable towards the use of MPG.

Overall, we see that MPG performs best in small-world
networks, with no burn-in time. In these environments,
MPG consistently, significantly, outperforms degree based
heuristics. With a high burn-in time, all heuristics per-
formed at a similar level, due to the inhibiting concept be-
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Table 3: Average infections for the target concept for real-world networks, with no burn-in and a CR strength of -1, with
standard deviation in brackets, and the best performing heuristic in bold.

Network Nodes Edges
Seed Set

Size
MPG Degree Discount Single Discount Degree

DBLP 317080 1049866 100 695.68 (341.04) 1076.65 (335.48) 1102.83 (318.76) 1161.06 (389.88)
DBLP 317080 1049866 250 1117.76 (252.22) 1710.72 (283.72) 1773.45 (281.41) 1954.52 (381.47)
CA-

CondMat
23133 186936 100 367.31 (70.26) 415 (63.26) 439.66 (74.06) 440.62 (82.92)

CA-
CondMat

23133 186936 250 722.86 (75.84) 676.51 (55.69) 699.74 (69.06) 735.29 (65.65)

soc-
Epinions1

75879 508837 100 469.36 (123.01) 324.14 (71.84) 320.57 (72.06) 324.51 (71.96)

soc-
Epinions1

75879 508837 250 938.72 (162.6) 575.31 (73.9) 580.86 (71.29) 584.92 (71.17)
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Figure 4: Mean activations of the target concept given the
heuristic used to select the inhibiting concept, for small-
world networks of 5000 nodes, with a clustering coe�cient
of 0.75, a seed set of 10 nodes and no burn-in.

ing introduced as the target concept’s cascade is ending.
In scale-free networks, we see no heuristic significantly per-
forming better than others. MPG is outperformed in scale-
free networks when the burn-in time is higher, showing that
concept maximisation heuristics for the inhibiting concept
should be used in those cases. Real-world network tests fur-
ther show the importance of burn-in time, with lower burn-
in times again resulting in better performance for the MPG
heuristic. The inhibiting relationship strength is more im-
portant in real-world networks, with MPG performing bet-
ter as it becomes stronger, and the MPG heuristics favours
networks with strong small-world properties.

7. CONCLUSIONS
In this paper, we introduce the influence limitation prob-

lem, where we aim to limit the spread of a target concept
through the use of a secondary inhibiting concept. We pro-
pose the maximum potential gain (MPG) heuristic as a so-
lution to this problem, and evaluate its e↵ectiveness against
influence maximisation techniques. Our evaluation focused
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Figure 5: Mean activations of the target concept given the
heuristic used to select the inhibiting concept, for small-
world networks of 5000 nodes, with a clustering coe�cient
of 0.75, a seed set of 10 nodes and a burn-in of 5 timesteps.

on small-world networks, but also explored a small set of
scale-free networks and selected real-world networks. We
have shown that MPG performs significantly better than
other heuristics in small-world environments with no burn-
in time. Burn-in time was shown to be a significant factor in
the performance of MPG, with higher burn-in resulting in
no statistically significant di↵erence between the heuristics
in small-world environments.

In the future, we wish to evaluate the performance of MPG
when used for indirect influence maximisation. Since the
heuristic aims to find nodes with a high expected potential,
and utilise the inhibiting relationship to lower it, it may also
be e↵ective if we aim to increase that potential. In addi-
tion, we also wish to investigate the performance of MPG in
more complex network environments, including multi-layer
networks, representing the di↵erent social networks an indi-
vidual may belong to.
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