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Abstract. Feature sets in many domains often contain many irrelevan-
t and redundant features, both of which have a negative effect on the
performance and complexity of agents that use the data [7]. Supervised
feature selection aims to overcome this problem by selecting features that
are highly related to the class labels, yet unrelated to each other. One
proposed technique to select good features with few inter-dependencies
is minimal Redundancy Maximal Relevance (mRMR) [10], but this can
be impractical with large feature sets. In many situations, features are
extracted from signal data such as vehicle telemetry, medical sensors, or
financial time-series, and it is possible for feature redundancies to exist
both between features extracted from the same signal (intra-signal), and
between features extracted from different signals (inter-signal). We pro-
pose a two stage selection process to take advantage of these different
types of redundancy, considering intra-signal and inter-signal redundan-
cies separately. We illustrate the process on vehicle telemetry signal data
collected in a driver distraction monitoring project. We evaluate it using
several machine learning algorithms: Random Forest; Naive Bayes; and
C4.5 Decision Tree. Our results show that this two stage process signif-
icantly reduces the computation required because of inter-dependency
calculations, while having little detrimental effect on the performance of
the feature sets produced.

1 Introduction

Feature sets in a range of domains often contain numerous irrelevant and re-
dundant features, both of which have a negative effect on the performance and
complexity of agents that use the data [7]. Supervised feature selection aim-
s to overcome this problem by selecting features that are highly correlated to
the class labels, yet uncorrelated to each other. However, finding redundancy
between features is computationally expensive for large feature sets.

In many cases the features themselves are extracted from multiple signal da-
ta such as vehicle telemetry [15], medical sensors [13], weather forecasting [9], or
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financial time-series analysis [12]. When features are extracted from signal da-
ta, it is possible for feature redundancy to be either between features extracted
from the same signal (intra-signal), or between features extracted from differ-
ent signals (inter-signal). In this paper we propose to consider these types of
redundancies separately, with the aim of both speeding up the feature selection
process and minimizing redundancy in the feature set chosen. We illustrate this
two stage process on vehicle telemetry data collected in a driver distraction mon-
itoring project, although the concept generalizes to other domains where signal
data is used as the basis for intelligent agents to build prediction models.

The remainder of this paper is structured as follows. In Section 2, we ex-
amine current approaches to feature selection and introduce driver monitoring
and the issues associated with vehicle telemetry data. In Section 3 we propose
a two stage feature selection process aimed at minimizing feature and signal
level redundancies, which reduces the computational cost compared to existing
methods. Finally, in Section 4, we describe our evaluation strategy and present
results for the proposed method alongside results existing techniques.

2 Related work

2.1 Feature selection

In general, there are two approaches to performing feature selection: wrapper
and filter [7]. The wrapper approach generates feature subsets and evaluates
their performance using a classifier to measure their discriminating power. Filter
approaches treat feature selection as a preprocessing step on the data without
classification, thus being agnostic to the classification algorithm that may be
used.

The wrapper approach requires a search through the feature space in order
to find a feature subset with good performance [7]. The merit of a feature sub-
set is determined by the performance of the learning algorithm using features
from that set. Methods for searching through the space of feature combinations
include complete, forward, and backward searches. A complete search generates
all possible feature subsets in order to find the optimal one, but can be infea-
sible with more than a few features. Forward selection starts with no selected
features and the feature which improves performance the most is then added to
the selected features. This is repeated until some stopping criterion is met, such
as when performance cannot be improved further, or the required number of
features have been selected. Backwards selection begins by selecting all features
and than removes those which degrade performance the least. This is repeated
until a stopping criterion is met.

With large datasets however, the wrapper approach still requires significant
computation in building several classification models, as features are added or
removed from the set. Therefore, filter methods, which require considerably less
computation, are often preferred. The filter methods can be split into ranking
algorithms [6], which consider features independently, and those which consider
inter-dependencies and redundancy within the feature sets [1,10,11].
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This means that the process can be slow on datasets with large numbers of
features and samples, as is the case in many domains with signal data. Kira
and Rendell, proposed the Relief algorithm [6], which was later extended by
Kononenko to deal with noisy, incomplete and multi-class datasets [8]. The Relief
algorithm repeated compares random samples from the dataset with samples
that are most similar (one of the same label and one of a different label), to
obtain a ranking for feature weights. Although less computationally expensive
than wrapper approaches, this still requires searching through the dataset for
Near-hit and Near-miss examples. This means that the process can be slow on
datasets with large numbers of features and samples, as is the case in many
domains with signal data.

Other ranking methods are based on information measures, such as Mutual
Information (MI),
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where f1 and fy are discrete features, p(v;) is the probability of seeing value v;
in feature f;, and p(v;,v;) is the probability of seeing values v; and v; in the
same sample.

Because MI is summed over all the values of a feature, it tends to score
features with many values highly. Therefore, normalized variants of MI are often
used to remove this bias. A common method of normalization is to divide by the
entropy of the features, H(f),

H(f)y=-= > plv)log,p(v). (2)
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Two variants of MI which normalize by entropy are the Gain Ratio (GR)
and Symmetric Uncertainty (SU),
MI (f 1 f 2)
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However, none of these ranking methods consider the issue of feature redun-
dancy. Redundancy is known to cause problems for efficiency, complexity and
performance of models or agents that use the data [1,7]. Therefore, it is im-
portant to consider interdependencies between features and remove those which
are redundant. Common approaches involve minimizing the inter-dependencies
of the selected feature set, as with the concept of minimal redundancy maxi-
mum relevance (mnRMR), introduced by Ding and Peng in [1,10]. The relevancy,
Rel(F,C), of a feature set, F, is given by the mean MI of the member features
and the class labels, C, is.

Rel(F,C) = |qu| > MI(f;,0). (5)
€S
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The redundancy, Red(F'), of F is given by the mean of all inter-dependencies
as measured by MI:

1 .
Red = e > MI(fi, £5). (6)
fl VfJ ES
The difference between relevance and redundancy can be used for mRMR.
max Rel(S,C) — Red(S). (7)

Other measures such as ratios can also be used [1]. In practice, Ding and Peng
suggest performing forward selection for mRMR, iteratively selecting the features
which satisfy
max Rel({f},C) — Red(SU{f}). (8)
fEF\S

Here, MI is used as a measure of both relevance and redundancy, and this
may again bias towards features with many values. It therefore is possible to
use normalized variants of MI, such as GR or SU instead. We will refer to these
versions as MImRMR, GRmRMR and SUmRMR depending on whether MI, GR
or SU are used as relevance measures respectively.

Other approaches exist, such as the correlation-based feature selector [4], but
are outside the scope of this paper, and do not address the issue of redundancy.

2.2 Driver monitoring

Driving a vehicle is a safety critical task and demands a high level of attention
from the driver. Despite this, modern vehicles have many devices with functions
that are not directly related to driving. These devices, such as radio, mobile
phones and even internet devices, divert cognitive and physical attention from
the primary task of driving safely. In addition to these distractions, the driver
may also be distracted for other reasons, such as dealing with an incident on
the road or holding a conversation in the car. One possible solution to this
distraction problem is for an intelligent agent to limit the functionality of in-
car devices if the driver appears to be overloaded. This can take the form, for
example, of withholding an incoming phone call or holding back a non-urgent
piece of information about traffic or the vehicle.

It is possible for an autonomous agent to infer the level of driver distraction
from observations of the vehicle and the driver. Based on these inferences, the
agent can determine whether or not to present the driver with new information
that might unnecessarily add to their workload. Traditionally, such agents have
monitored physiological signals such as heart rate or skin conductance [2,15].
However, such approaches are not practical for everyday use, as drivers cannot
be expected to attach electrodes to themselves before driving. Other systems
have used image processing for computing the driver’s head position or eye
parameters, but these are expensive, and unreliable in poor light conditions.

Therefore, our aim is to use non-intrusive, inexpensive and robust signals,
which are already present in vehicles and accessible by the Controller Area Net-
work (CAN) [3]. The CAN is a central bus to which all devices in the vehicle
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connect and communicate by a broadcast protocol. This allows sensors and ac-
tuators to be easily added to the vehicle, enabling agents to receive and process
telemetric data from all modules of the car. This bus and protocol also enables
the recording of these signals, allowing us to perform offline data mining.
Agents processing data from the CAN-bus on modern vehicles have access
to over 1000 signals, such as vehicle and engine speeds, steering wheel angle,
and gear position. From this large set of signals, many potential features can
be extracted using sliding temporal windows. These include statistical measures
such as the mean, minimum or maximum, as well as derivatives, integrals and
spectral measures. In [15], Wollmer et al. extract a total of 55 statistical features
over temporal windows of 3 seconds from 18 signals including steering wheel
angle, throttle position and speed, and driver head position. This provides a total
of 990 features for assessing online driver distraction. They used the correlation
based feature selector as proposed in [4] with SU as a measure of correlation.

3 Proposed approach

As previously noted, redundancy in signal data can be considered as either intra-
signal, between features extracted from within one signal, or inter-signal, between
features extracted from different signals. For instance, in CAN-bus data there
is unsurprisingly a large inter-signal redundancy between the features of Engine
Speed and Vehicle Speed signals. This is confirmed by the correlation between
the raw values of the signals, of 0.94 in our data. There may also be a high intra-
signal feature redundancy, as with the minimum, mean and maximum features.
This is particularly the case when the temporal window is small and the signal
is slowly varying.

Therefore, we propose a two step procedure to remove these intra-signal and
inter-signal redundancies, by considering them separately. In the first stage, fea-
ture selection is performed solely with extracted features from individual signals,
aiming to remove intra-signal redundancies. In the second stage, selection is per-
formed on these selected features as a whole, removing inter-signal redundancies.
This then produces a final feature set with an expected minimal redundancy for
an agent to use in learning a prediction model.

This two stage process has benefits with regards to computation. For in-
stance, the forward selection method of mRMR requires a great deal of compu-
tation with large feature sets. Moreover, large feature sets, such as in CAN-bus
data, often do not fit into memory in their entirety, meaning that features have
to be loaded from disk in sections to be processed. This not only lengthens the
feature selection process, but also impacts on the complexity of the implemen-
tation. With our two stage process however, smaller numbers of features are
considered at a time, meaning that at each stage, these problems do not occur.

In using this process, we expect there to be fewer redundancies in final feature
sets because redundancies are removed at both stages. However, returning fewer
features in this first stage may reduce the relevance of the selected features to
be used in learning. This will particularly be the case when many of the best
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Secondary Task Description

Select Radio Station Selection of a specified radio station from presets
Mute Radio Volume The radio is muted or turned off

Number Recall Recite a 9 digit number provided before the drive

Satellite Navigation Programming A specified destination is programmed into the in
car Sat-Nav

Counting Backwards Driver counts backwards from 200 in steps of 7
(i-e.., 200, 193, 186...)
Adjust Cabin Temperature Cabin temperature increased by 2°C

Table 1: Secondary tasks the driver was asked to perform. If there is a secondary
task being performed, the data is labelled as Distracted for the duration, oth-
erwise it is labelled as Normal. Tasks were performed in the same order for all
experiments, with intervals of between 30 and 300 seconds between tasks.

performing features are from the same signal, but this is assumed to be an
extreme and uncommon case.

4 Evaluation

4.1 CAN-bus data

CAN-bus data was collected during a study where participants drove under both
normal and distracted conditions. To impose distraction on the driver, a series of
tasks, as listed in Table 1, were performed at different intervals. For the duration
of a task, the data is labelled as Distracted, otherwise it is labelled as Normal.
In this study there are 8 participants, each driving for approximately 1.5 hours
during which each of the 6 tasks are performed twice. Data was recorded from
the 10 signals shown in Table 2 with a sample rate of 10Hz.

In addition to the tasks listed in Table 1, participants performed two driving
manoeuvres, namely abrupt acceleration and a bay park. The data from these
are, however, considered to be unrelated to distraction and therefore can be
viewed as noise and were removed from the dataset. This removal was done
after feature extraction to avoid temporal continuity issues.

The features listed in Table 2 are extracted temporally from each signal
over sliding windows of sizes 5, 10, 25 and 50 samples (0.5, 1, 2.5, 5 seconds
respectively), providing 120 features per signal. This gives a feature set of size
10 x 30 x 4 = 1200 in total. After feature extraction, the data is sub-sampled
temporally by a factor of 10, providing a total of 6732 samples with the label
Distracted, and 26284 samples with the label Normal over 8 datasets. This sub-
sampling is done in order to speed up experiments and allow more features to
be selected per signal to go forward to the second stage, which would otherwise
be limited due to computational limits.
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Signal Features
Steering wheel angle Convexity
Steering wheel angle speed First, Second and Third derivatives
Pedal position First 5 and Max 5 DFT coefficient magnitudes
Throttle position Max 5 DFT coefficient frequencies
Absolute throttle position Entropy
Brake pressure Fluctuation
Vehicle speed Gradient: positive, negative or zero
Engine speed Integral and absolute integral
Yaw rate Min, Max, Mean and Standard deviation
Gear selected Number of zero values and Zero crossings

Table 2: The 10 Signals and 40 Features used in the data mining process. Signals
are recorded from the CAN-bus at 10Hz. Features are extracted temporally from
each signal over sliding windows of 5, 10, 25 and 50 samples (i.e. 0.5, 1, 2.5, 5
seconds). This gives 120 features per signal and a feature set of size 1200.

4.2 Experimental set-up

We select features with the MImRMR, GRmRMR and SUmRMR feature selec-
tors. During the first selection stage, 1, 2, 3, 4 and between 5 and 50 in intervals
of 5 features are selected from each signal. The second stage outputs a ranking
of features from which between 1 and 30 are selected for evaluation. In the cases
where 1 and 2 features are selected from each signal, there will be a maximum
of 10 and 20 features output from the two stage process respectively. In the e-
valuations where more than these numbers of features are required, we use all of
the available features. The selection algorithm used in the first stage is always
the same as the one used in the second stage.

The feature sets are then evaluated using the Naive Bayes, C4.5 Decision
Tree, and Random Forest learning algorithms available in WEKA [14]. In each
experiment, after feature selection the data is sub-sampled in a stratified random
way by a factor of 10. This gives 673 samples with the label Distracted, and 2628
samples with the label Normal for each experiment. This random sub-sampling
reduces autocorrelation in the data, which would mean evaluations give overly
optimistic performance and cause models to overfit. It also introduces some
randomness into the evaluations, meaning that they can be run multiple times
to gain a more accurate result. All evaluations are run 10 times, each giving an
area under the receiver operator characteristic (ROC) curve (AUC).

In each evaluation, a cross folds approach is used, where training is performed
on seven datasets and testing on the final one for each fold. These are averaged
to give a performance metric for each feature selection procedure. A higher AUC
value with smaller number of features indicates a good feature selector.
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4.3 Results

First we present performance of our two stage process with the selection of
varying numbers of features from each signal in the first stage. Second, we show
computation times for our two stage selection process and compare these with
selecting all of the features at once. Finally, we compare the performance of our
two stage selection against selecting features without our two stage process.
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Fig. 1: AUC values for (a) MImRMR, (b) GRmRMR and (¢) SUmRMR using a
Naive Bayes classifier for different numbers of features being selected after the
two stage process. Each line represents a different number of features selected per
signal in the first stage. In most cases, performance is unaffected by the number
of features selected per signal. However, in some cases where small numbers of
features are selected, performance can be worse.

Figure 1 shows AUC values for different feature set sizes, selected using the
two stage selection process. Each line represents a different number of features
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per signal selected in the first stage. From these results we can make three obser-
vations about the two stage selection process. First, learning with more features
provides better performance. Second, with more than five features, there is little
further performance gain. Finally, in most cases, performance is unaffected by
the number of features selected per signal. However, in some cases where small
numbers of features are used for learning, worse performance is observed when
small numbers of features are selected per signal. Also, when using GRmRMR
we can see that selecting 1 feature per signal is not sufficient for maximal per-
formance. This is possibly because GRmRMR is not selecting the best feature
from each signal first, and therefore produces a sub-optimal feature set.

AUC
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Fig.2: AUC values for MImRMR using the (a) Decision Tree and (b) Random
Forest classifiers for different numbers of features being selected after the two
stage process. Each line represents a different number of features selected per
signal in the first stage. We see the same results as with the Naive Bayes learner,
that there is little difference in performance in most cases.

The same results are also seen with other learning algorithms. In Figure 2,
the AUC values are shown for the C4.5 Decision Tree and Random Forest classi-
fication algorithms built with features selected by MImRMR using our two stage
process. One small difference here is that the Decision Tree performs much worse
than Naive Bayes and Random Forest with very few features, but still achieves
comparable performance when 10 features are used for learning.

Second, we show that, while selecting features that have the same perfor-
mance, computation times are substantially reduced. In Table 3, computation
times for selecting 30 features using our two stage process are presented. De-
noted in parentheses are the speed-ups when compared to selecting from the
total 1200 features without using the two stage process. Selecting more than 15
features per signal does not provide any significant speed-up. Selecting 1 or 2
features per signal in the first stage provides speed-ups of over 30x, however, this
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is not advised due to the performance results presented above. Selecting between
3 and 5 features provides equivalent performance to other methods investigated,
and gives a speed-up, of over 10x for GRmRMR and SUmRMR. The smaller
speed-ups for MImRMR are likely due to a simpler selection process, as multiple
entropies do not have to be computed.

Features/Signal MImRMR GRmRMR SUmRMR
1 2.6 (16.4x) 5.0 (73.2x) 5.1 (71.7%)
2 4.2 (9.9x) 11.3 (32.6x) 11.6 (31.6x)
3 6.1 (6.9x) 19.1 (19.3x) 19.4 (18.9x)
4 8.4 (5.0x) 25.6 (14.3x) 25.8 (14.2x)
5 9.9 (4.2x) 32.3 (11.4x) 33.0 (11.1x)
10 18.7 (2.2x) 67.6 (5.4x) 66.7 (5.5x)
15 26.5 (1.6x) 102.4 (3.6x) 102.3 (3.6x)
20 35.4 (1.2x) 144.2 (2.5x) 143.8 (2.5x)
25 43.3 (1.0x) 186.3 (2.0x) 186.0 (2.0x)
30 52.7 (0.8x) 236.1 (1.6x) 232.1 (1.6x)

Table 3: Computation times in seconds for selecting 30 features from 1200 using
the two stage process with varying features per signal. Denoted in parentheses
are the speed-ups, which are computed with respect to selecting 30 features from
1200 as a whole. We see that selecting more than 15 features per signal does not
provide significant speed-up. However, as the performance results show, only a
small number of features is required for equivalent performance. In these cases
we see a much larger speed-up, of around 10x.

It is worth noting that these timings do not include reading the data from
disk. Obviously, with larger feature sets, reading the data requires more time.
However, in the two stage process 10 times would continue to increase linearly
with the number of features. This is because we consider each signal separately
and only select a small number of features from each, meaning the features
brought forward to the second stage are likely to fit in memory. Without this
process, the increase in IO times may be more than linear because redundancies
between all features are required. It is unlikely that all features will fit in memory,
meaning that the data would have to be loaded in chunks, with each chunk being
loaded multiple times. Therefore, the speed-ups we present here are likely to be
optimistic for very large datasets.

Finally, in Figure 3 we compare the performance of feature sets produced
with and without our two stage feature selection process. The performances are
again very similar, even when selecting a small number of features from each
signal. For example, there is almost no difference between selecting with the two
stage process with 5 features per signal, and selecting without it. Therefore, this
equivalent performance and the speed-ups with this number of features, make it
beneficial to use the two stage selection process.
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Fig.3: AUC values for MImRMR using the (a) Naive Bayes and (b) Random
Forest classifiers for different numbers of features being selected. These results
compare our two stage process (selecting 1, 2, 3 and 5 features per signal), with
selecting features at once (OneStage). We again see very similar performance for
the two methods.

5 Conclusions

In this paper we have investigated a two stage selection process to speed up fea-
ture selection with signal data. We evaluated this process on vehicle telemetry
data for driver monitoring, and have shown that the process provides a compu-
tational speed-up of over 10x while maintaining the same performance. It follows
then, that it is worthwhile to consider features extracted from each signal before
considering them as a whole. Furthermore, the first stage of our process can
easily be parallelized, selecting features from each signal in a different thread,
which would provide further speed-ups.

In future work, we intend to inspect the feature rankings after selection. This
will provide insight into the features that are selected, rather than merely their
performance. Also, it will highlight any instabilities in the feature sets produced
by the two stage process, which could harm performance [5].

In this paper, we have assumed that each signal has an equal probability
of producing a good feature. This may not be the case, as some signals may
have many high performing features whereas others may have none. Second,
this assumption means that selecting 5 features from 1000 signals produces a
total of 5000 features for selection in the second stage. Therefore, selection of
signals may be necessary before any feature selection in order to gain a further
speed-up.

Finally, although it is unlikely given the size of the data we have used, it
is possible that the feature selection methods are overfitting to the data [7]. In
future we will evaluate the feature selector algorithms on a hold-out set, not
included during the feature selection process, to avoid this.
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