
An Integrated Approach to Courseware

Nathan Griffiths
Department of Computer Science

University of Warwick
Coventry, CV4 7AL, UK

nathan@dcs.warwick.ac.uk

Mike Joy
Department of Computer Science

University of Warwick
Coventry, CV4 7AL, UK

M.S.Joy@warwick.ac.uk

Abstract

Software engineering is becoming increasingly important as an engineering discipline,
and its teaching in universities and other higher education institutions should be of high
quality. In this paper we describe a tool (BOSS — the Boss Online Submission System)
which aids the education of software engineers. BOSS allows students to submit
programming assignments online, and to run black-box tests on their programs prior to
submission. Instructors can use BOSS to assist in marking such assignments by allowing
submitted programs to be tested against multiple data sets. We describe how BOSS helps
in the teaching of specific conceptual aspects of software engineering, and how it
addresses some of the practical issues involved in teaching large student numbers in a
pedagogically neutral manner.

Introduction

The practice of engineering requires a high degree of precision with respect to specifying
problems and to designing and instantiating solutions. Effective engineering education
should include a similar level of exactitude in both teaching and assessment. The
students’ learning experience should prepare them for the commercial context in which
they are likely to find themselves upon graduation. In this paper we describe a software
system that addresses some of the issues related to achieving such a learning experience
in the context of teaching a Computer Science MEng programme, in particular with
respect to teaching software and information systems engineering.

In common with other engineering disciplines, software engineering requires a precise
and exact specification of a problem, and the design and implementation of a solution.
Moreover, software engineering in a commercial setting typically involves a team of
engineers working towards a common goal, rather than a single developer working alone,
so requiring a precise task decomposition. The education process should reflect these
needs by requiring students to develop exact software solutions to problems along with
the ability to function as part of a group, and both skills should be assessed. We have
developed a software system, BOSS (the Boss Online Submission System), to support

Proceedings of the 2003 WFEO/ASEE e-Conference, 2003, American Society for Engineering Education.

such assessment across the range of software engineering tasks, from small programs
through to large scale group projects. In BOSS an instructor can give precise
specifications of tasks and students are able to test and submit their solutions to these
tasks. Students’ work is automatically assessed using a combination of black-box test
harnesses and software metrics to measure the correctness and accuracy of the
submission, along with the general quality of the program code. The results of these
automatic tests are then available to the instructor during the assessment process.

From an educational perspective, BOSS allows us to teach and assess students in a more
realistic setting, and encourages the ethos of precision from the early stages of the course.
For example, students may be asked to construct a software module according to a
precise description with a view to incorporating the module as part of a larger system.
Using BOSS we can assess such tasks by using unit testing to simulate the inclusion of
the module in a larger system. Reliability and consistency in marking are increased, and
the staff overhead required is reduced. Our solution is scalable, and is regularly used with
class sizes in excess of three hundred students.

In this paper we describe the BOSS system, considering both the pedagogical issues and
practical constraints. We discuss our experiences with the system, which has now been
used for several years, identifying the strengths and weaknesses of utilising an automated
system in general, and the BOSS system in particular.

Software Development as an Engineering Activity

Over the last twenty years software engineering has evolved from a relatively obscure
idea, practiced by a relatively small number of enthusiasts, to an accepted engineering
discipline13. Furthermore, as the importance and pervasiveness of computer software
increases, the application of good software engineering becomes ever more important.
Today’s world is reliant on software for almost all aspects of everyday life, from science
and business to entertainment — each of these areas requiring the same fundamental
software engineering good practice. As educators, it is our role to ensure that our
students, who are tomorrow’s software engineers, have the skills necessary to operate
effectively in such a world.

Software engineering is an active research field in its own right, and there is an
abundance of work on the processes involved, from both academic and industrial
perspectives. There are many alternative models and methodologies for software
engineering, ranging from the formal11,12, through the business oriented3,8, to client
focused approaches1,10. Each model or methodology has advantages and disadvantages,
and is applicable in a certain set of circumstances. However, these alternatives all share
certain key practical stages: requirements analysis and problem definition, specification,
design, implementation, testing, and integration. The extent to which a given stage is
present in a particular model or methodology varies, but with only a few exceptions each
of the common software engineering approaches contains these stages. From an
educational perspective, it is important that we not only teach students details of specific

Proceedings of the 2003 WFEO/ASEE e-Conference, 2003, American Society for Engineering Education.

approaches, but also about these stages. We must ensure that students learn about, and
have practical experience in, these key stages that apply to any specific model or
methodology. Our aim is to teach students to be software engineers rather than to simply
have knowledge of some specific model or methodology at a surface level. In other
words, we would like our students to develop the intellectual tools to quickly adapt to
new situations and models for software engineering, rather than being constrained by
academic knowledge of a small number of specific approaches.

In a commercial setting, software engineering typically involves a team of engineers
working towards a common goal, rather than a single developer working alone. It is
important that students’ learning of software engineering equips them to practice as
professionals in such an environment. In addition to the social skills needed to work as
part of a development team, there are a number of practical skills that are required.
Specifically, students need the ability to:

1. effectively decompose problems into subproblems or tasks,

2. be precise in the specification of tasks,

3. be precise in the implementation of tasks, and

4. integrate components from disparate sources into a coherent whole.

As educators, we aim to give students these fundamental practical skills. In doing this we
aim to encourage learning at the deeper levels of Bloom’s taxonomy2, engendering
understanding and synthesis, rather than surface learning requiring only knowledge recall.
A key part of our approach to encouraging this kind of learning is to give students the
opportunity to learn through experiential learning4. Experiential learning involves more
than just doing — it involves analysing what happens and reflecting upon experiences to
extract meaning from what took place. Thus, it is not sufficient for students to simply
undertake a software engineering task, but rather they must reason about what they are
doing and its implications. For students to learn in this manner they must be given an
appropriate framework giving suitable guidance and feedback to encourage reflection.

Teaching Software Engineering

Practical computing courses that involve significant amounts of programming continue to
attract increasingly large numbers of students. The use of automated submission and
testing of student programs is helpful to the instructor by reducing the time spent on
administrative tasks, and increasing the accuracy and efficiency of the marking and
feedback processes.

The problems of programming a solution to a course assignment, and those of developing
software to address a task in an industrial or commercial context, share many qualities. In
both cases, the problem must be well-specified so that the task is clear, and the solution
must be constrained to provide an appropriate means of achieving it. The design choices
faced by the programmer, apart from those critical to implementation itself (including the
algorithm, modularisation and the data structures), are minimal.

Proceedings of the 2003 WFEO/ASEE e-Conference, 2003, American Society for Engineering Education.

For these educational reasons, a programming assignment should be carefully and
accurately specified. Without such a precise specification of the task, the assessment of
programs can become significantly more difficult, as conformance to the specification
may not be easy to judge. A tight specification allows the submitted program to be tested
against suitable test data, so that the output of the program can be compared with the
expected output for each set of data. The requirement that solutions must conform to
specification thus serves the dual purpose of enforcing software engineering good
practice and enabling a measurable assessment of the program.

Automated “black box” testing is an important software engineering technique. Allowing
students to view — and to use — tests which may be applied during the marking process
to software they have written, reinforces the engineering character of the software
development process.

Any such automated submission and testing package should be user-friendly in that both
students submitting assignments and staff involved in marking them should find it easy to
use. In keeping with good practice for educational software, it should not, however,
constrain students to work on their assignments in fixed ways instead of allowing them
the flexibility of choice in development tools. Likewise, it should not constrain
instructors to use particular teaching methods or assessment strategies. Feedback must
also be provided to students, giving an indication of the performance of assessed
programs and offering material for them to reflect upon the software engineering process.

The Local Context

At a practical level there are many constraints governing the manner in which software
engineering is taught, depending on the local context. The authors’ context is that
software engineering is just one of many components in the Computer Science
curriculum. However, software engineering issues pervade many other aspects of the
curriculum, since students are required to design or implement software as part of other
aspects of their course. Our approach to teaching software engineering is to integrate it
within this wider curriculum. Students learn about software engineering in each of their
four years of study. However, there is only a single module formally devoted to software
engineering alone, the remainder of the teaching being embedded within the context of
other course components.

In year one students take a number of programming modules, covering a variety of
programming paradigms in order to establish a common base on which to subsequently
build. The programming tasks are relatively small, and are undertaken individually. In
addition to the explicit aims of teaching students particular programming paradigms and
languages, we begin to teach them about software engineering. The tasks that students
are set are tightly specified and the programs they produce are assessed, amongst other
criteria, according to how precisely they meet the specification. In year two students
undertake a formal software engineering module, which has an associated practical task,
based on a relatively broad specification of a piece of software. Students are divided in

Proceedings of the 2003 WFEO/ASEE e-Conference, 2003, American Society for Engineering Education.

groups of five or six and are required to undertake the main stages of software
engineering: requirements analysis and problem definition, specification, design,
implementation, testing, and integration. This gives students direct experience of the
complete software engineering process, and allows them to put into practice the theory
they have been taught, and to utilise their experiences from the previous year (especially
regarding the importance of precision). During year three students undertake a large
individual project, and in the final year students undertake a large group project, and
again they should practice good software engineering. A key difference in the assessment
of these projects compared to the tasks from years one and two is that students are also
assessed on their ability to reflect on the software engineering process. This is important
since, not only does it given them chance to consider the more esoteric aspects of
software engineering and teamwork, but it also encourages the reflection that is important
to experiential learning4.

Testing

Rigorous testing is fundamental to good software engineering, and all approaches to
software engineering encompass some methodology for testing. One of the most
common, and widely applicable, approaches to testing is unit testing where each
component of a system is extensively tested to ensure that it functions correctly as an
individual unit. Once unit testing has been undertaken and unit functionality verified,
components can be integrated to form a complete software system. Integration and
validation testing ensures that the integration process has been successful. The
importance of testing, and the details of unit testing in particular, are taught to students
throughout the four years of their course. The tightly specified programming tasks that
we use in year one ensure that students understand how important it is that the “units”
they produce comply with the specifications. Students are largely responsible for
undertaking their own test procedures, to ensure that their software meets the
specification. However, to aid the learning experience we provide a mechanism for
students to perform certain “black-box” tests on their software automatically. These
automatic tests simply represent a subset of the tests that students should themselves be
undertaking as part of their testing regime. Moreover, the tests reinforce the importance
of precision since a student’s software is incorporated into a wider software system over
which they have no control.

Programming Style

Good software engineering is about more than expert programming and strict adherence
to a development methodology; there are more esoteric aspects related to program and
code structure, documentation, and layout. These aspects can be loosely categorised
under the banner of “program style”. In a commercial setting, where over time several
engineers are likely to be involved in a single project, the maintainability and
extensibility of the resultant system is in part dependent on program style. Like good

Proceedings of the 2003 WFEO/ASEE e-Conference, 2003, American Society for Engineering Education.

writing, good style is partially a subjective judgement. However, there are certain criteria
that are universally accepted, and assessment of the extent to which a program meets
these criteria can be aided by an automated tool. These criteria form a set of metrics
which can be used to characterise the style of a given program. Metrics, such as the ratio
of code to comments, complexity of program structure, and the depth of inheritance of
object-oriented programs, can aid the assessment of the quality of a program.

Plagiarism

Plagiarism is a perennial problem in teaching across all disciplines. As student numbers
rise, the difficulties in detecting plagiarism also increases. Plagiarism detection is
especially difficult for a human to detect in a software engineering environment, where a
large number of students are required to produce programs adhering to a tightly defined
specification. By definition, if the students are all successful then their submissions will
produce exactly the same output for a given input. Thus, the only way to detect
plagiarism is to consider the internal structure of the programs themselves. Manually
attempting to detect plagiarism across large numbers of submissions is an intractable
problem, but detection of plagiarism is a necessary activity in order to ensure the validity
of students’ submissions.

Scalability

Many of our modules are taken by over three hundred students, and checking each
submission accurately for its correctness and precision is a large task. In an educational
environment, an instructor should be responsible for actually assessing and giving
feedback to a student. However, any automation that can assist in this task is highly
beneficial. The allocation of marks and feedback remains role of the instructor, but
automation greatly increases accuracy when assessing large numbers of students and
significantly speeds up the process.

The BOSS System

The BOSS system for automatic submission of assignments was created in an effort to
address the problems described above. The system comprises a collection of programs,
each of which performs a different task contributing to the overarching goal of effectively
managing the process of submitting programming assignments on-line. Although BOSS
was designed specifically for courses with large numbers of students, assessed by means
of programming exercises, it can be used on other courses as simply a collection tool. It
can also be applied to courses where the submitted work does not consist of computer

Proceedings of the 2003 WFEO/ASEE e-Conference, 2003, American Society for Engineering Education.

programs, but is in a format suitable for automatic processing.

The individual component programs of BOSS are designed to be used by two kinds of
individual. First, students are able to submit programs and gain feedback. Second,
instructors and any course tutors involved in assisting the instructor must be able to gain
access to the submitted programs in order to test and mark the student submissions.

The structure of the system reflects the conceptual division of the software into three core
modules, each well-defined, which can be treated as largely independent components.
These are represented as the ovals at the top of Figure 1, and address submission of
assignments, their testing and their marking. These components offer the following
functionality.

Students may submit programs on-line by means of a user-friendly program that conducts
a dialogue with the student to ensure that the correct submission is made. The submission
is stored and simple checks are carried out (to ensure the correct programming language
is used and to verify the student’s identity, for example), so that the instructor can
subsequently test and mark it. A receipt is emailed to the student confirming the
submission and including signatures of the files submitted for verification purposes.

Figure 1. System overview

All submissions for a specified item of coursework can be run against a number of sets of
data. The output from the students’ programs are compared with the expected output for
each set of data, either as text, or using JUnit unit tests. Time and space limits are placed
on the execution of a program so as to prevent a looping program from continuing
unchecked, and other steps are taken to minimise the potential for a program to damage
the system.

Submissions, the results of the testing process, and the results of calculating a selected set
of metrics on the submissions, can be inspected on-line by authorised staff. Anonymity is
preserved by storing data by University ID number (or other code used for the purpose).

Proceedings of the 2003 WFEO/ASEE e-Conference, 2003, American Society for Engineering Education.

Students can test their programs themselves by running them against one or more data
sets on which the programs will eventually be tested, and under precisely the same
conditions. Thus a student can check that their program will run correctly under the final
testing environment. This ensures that the program will work as the student expects when
being tested and marked. In addition, it provides students with confidence that their
submitted work does pass some minimal requirement.

Final marks are stored in a SQL database and correlated with information from the
University database (names and courses versus ID numbers and course registration, for
example) to produce final marksheets for examination secretaries.

The BOSS system provides a plagiarism detection tool6, bringing to the instructor’s
attention submissions that share many similarities. The criteria for similarity is fully
configurable so to be applicable to different tasks. Indeed, it is not restricted to
programming tasks, but can also be used for essay based assessments.

The BOSS system is a tool to allow students to submit assignments, and for those
programs to be tested automatically. It is not an automated marking system. It is the
responsibility of the individual instructor to provide a marking scheme which takes
account of the results produced by BOSS, together with all other factors which may be
regarded as important (such as program style, commenting, etc.).

Action that should be taken when a student’s program does not pass one or more of the
tests on which it is run is, again, the instructor’s responsibility. It may be desirable to
award marks for a partially working program — however BOSS does not address that
problem. We do not aim to remove the instructor from the teaching loop, but instead
simply to assist the instructor in achieving a quicker, more accurate and more consistent
assessment of programming assignments. This is important, and should be made clear to
students to avoid any misconceptions about the extent and scope of the automated
system. It is our experience that students gain confidence from the system, but they are
also uneasy about its significance in the assessment process.

The History of BOSS

When BOSS was originally introduced9, it was coded in C, and ran with a command-line
interface on a single UNIX machine. Since then, it has been re-coded as a Java client-
server package, using RMI technology5 for remote access. Both client and server are
platform-independent, and the interface is a GUI with a standard Java look and feel. Data
is now stored in an SQL database into which student registration data from the
institution’s Student Record System may be included via an intermediate database, called
Coresoft7.

It has been deployed on several courses, including those covering Pascal, UNIX Shell,
C++ , Standard ML and Java, each course attracting up to three hundred and fifty
students. As it stands, the system is functioning well. There has been a generally
favourable student response, and this has improved as the culture of automatic

Proceedings of the 2003 WFEO/ASEE e-Conference, 2003, American Society for Engineering Education.

submission has become established within the Department. In addition, instructors and
tutors have also found the system to be simple and easy to use, and marking times have
been reduced significantly with a corresponding increase in consistency throughout.

We have also introduced the system into a second-year course which covers the practical
application of software tools. Though this normally requires a slightly more involved
testing regime, the BOSS toolkit provides a very adequate and appropriate means of
automatic submission and testing. More importantly, perhaps, students have had virtually
no difficulty in using the system. This seems to imply that the newly established culture
has taken root, and that our initial efforts at integrating the system into the fabric of the
degree courses are paying off.

In 2002 the software was made open source, and can be downloaded as a single
package14,15.

The Future for BOSS

We believe that BOSS successfully addresses the problems of online submission and
assessment in our local context, and there is no intention to expand the functionality of
BOSS significantly beyond that which it currently supports. Our methodology of
building outwards from a core functionality reflects our concern for ensuring that the
tools we use on our courses do not cause problems in the learning process. Future
developments will simply keep the system in step with technological developments, both
in hardware and software. For example, during Summer 2003 we intend to deploy an
enhanced user interface (applying current best practice in HCI design), a web-based
interface, and improvements to the installation harness.

Future work will also include the provision of additional measuring harnesses. BOSS
currently includes harnesses for testing, software metrics, and plagiarism detection. We
intend to continue to refine these existing harnesses, and to consider the inclusion of
further harnesses to aid the assessment process. For example, we are considering
mechanisms for automating the testing and assessment of programs which have a
graphical user interface.

Experiences with using BOSS

The BOSS system has provided us with a number of benefits without compromising the
general approach taken of maximising exposure to standard tools and utilities. Large
numbers of students have been handled efficiently by the system, with security of
assignment submission being assured. Programs submitted cannot be copied by other
students, and the possibility of paper submissions being accidentally lost is removed.
Secretarial staff do not need to be employed at deadlines to collect assignments, making

Proceedings of the 2003 WFEO/ASEE e-Conference, 2003, American Society for Engineering Education.

more efficient use of secretarial time, and the volume of paperwork involved can be
reduced to (almost) zero both for the instructor and for administrative and secretarial
staff.

More importantly, perhaps, the time needed to mark an assignment is reduced
considerably, while the accuracy of marking, and consequently the confidence enjoyed by
the students in the marking process, is improved. In addition, consistency is improved,
especially if more than one person is involved in the marking process.

We sought feedback from students by means of questionnaires which required students to
comment on their experiences of using the system, and also questionnaires which
required numerical responses for questions relating to system use. These were generally
favourable, and most students considered it an easy system to use. The ability to use the
utility to test programs in advance of submission to check the conformance of their
programs to the specification was also widely appreciated.

The principal concerns expressed fell into two categories. The first of these covered
minor criticisms about the user-interface and the specific messages that the system
provides to students when a program fails the test utility. Many of these criticisms have
since been addressed in the latest version of the BOSS system and, as noted above, we are
continuing development so that the user-interface is improved still further.

The second — and perhaps more interesting — category of criticism was that the output
expected was too precisely specified. BOSS is far too “fussy”. This criticism relates to
the format of the output specified such as in the precise layout of tabular output, and also
to some students’ desire to design their own user-interfaces such as by establishing
interactive prompting for input. This is an important point, for it seemed to reflect the
preference of first year undergraduates who had had considerable programming
experience prior to joining our course. Many of them were used to programming in an
unstructured fashion and were unused to being required to follow precise specifications.

Issues Encountered

Where students are asked to produce a complete program, rather than a software unit, the
current BOSS system requires a textual interface to be specified. This is adequate for
most of the functionality that we wish to assess, and it certainly emphasises the need for
precision of software. However, in some situations a textual interface is not ideal, and we
would prefer to specify a graphical interface for a programming task. Although BOSS can
be used for the submission of graphical programs, and can be used to assess software
metrics and detect plagiarism, it cannot currently be used for testing such submissions. As
noted above this is likely to be an important area of future extension.

In common with textual interfaces for programs, a high degree of precision is required
when defining unit tests for software component tasks. The task descriptions given to
students must include a specification of the inputs to the module, and the expected
outputs. However, in many programming paradigms there is much scope for ambiguity,

Proceedings of the 2003 WFEO/ASEE e-Conference, 2003, American Society for Engineering Education.

since there may be several alternative data types that can be used for a given concept.
These data types are typically incompatible with each other, and have subtly different
features. Therefore, when setting software component tasks it is important that the
instructor be precise about the exact interface that is expected, down to a detailed
definition of the data types and structures used.

At an administration level BOSS relies on a database of students, modules, and staff. In
related work we have developed an intermediate, institution independent, database
(Coresoft) in which this data is stored7. We currently have a mechanism for an automated
daily update of this data from the University’s central Student Record System. However,
due to internal procedures, and the propriety nature of the Student Record System, this is
not a smooth procedure. BOSS and Coresoft are both open source, and so are available
for other institutions to use locally. The use of this intermediate database ensures that
BOSS does not rely on a particular Student Record System.

The propensity of students to submit work close to the deadline causes certain scalability
issues. In particular, the load on the system tends to be fairly low until a few days before
a deadline, at which point it rises and continues to rise until the deadline passes. This
means that although the number of student submissions through the system during any
one academic year may be relatively low, these submissions tend to be bunched together
resulting in prolonged periods of low load followed by short spikes of very high load.
This has implications both for the reliability of the software and the hardware. At a
hardware level the system must have the physical resources (i.e. network and disk
bandwidth, memory and processor capacity) to cope with several hundred submissions
within a short space of time. At the software level this is compounded by the fact that
often several students are submitting simultaneously, and so there are issues relating to
concurrent database and file access. BOSS is in general a stable system, and the model is
certainly scalable, however our experience is that hardware constraints can cause limited
problems when a very large number of students attempt to use the system simultaneously.

Automatic tests can be made available to students in addition to being run by the
instructor during the marking process. Originally, we would make just one test available
to students in order that they could ensure that their programs would work as expected in
the test harness — this is particularly important where the programming language is
heavily dependent on the environment (UNIX shell, for example). Recently, multiple
tests have been made available to students, partly in response to student feedback that a
single test is insufficient.

Whilst this is pedagogically beneficial, since we expect that students will test their
programs themselves and use the BOSS tests as a final “sanity check”, the pattern of use
does not match our expectations. Many students do not write their own tests and instead
incorporate the BOSS test harness into their software development cycle. This results in
poor testing by those students, and a restricted learning experience (since they have not
fully thought through the testing phase of the software lifecycle). Furthermore, an
unexpectedly high load is occasionally placed on the BOSS software, and the machine on
which it is running.

Proceedings of the 2003 WFEO/ASEE e-Conference, 2003, American Society for Engineering Education.

Evaluation

As described above, the most common student complaint about BOSS is about its “fussy”
nature. For example, the output from a program task may be specified to be “hello
world”, but a student may produce a program that outputs “Hello world” (which has
different capitalisation). Other examples of such differences are whitespace, and
differences in output due to operating system features (e.g. line feeds are different under
Linux/UNIX and Windows). This raises the question of whether a submission meets the
specified criteria. From an engineering perspective, since their submission clearly differs
from the criteria, we can confidently say that the specification is not met. The
justification for this is to imagine the student’s software forming part of a larger system
that requires a particular interface. From a semantic perspective, however, it is clear that
the submission is not significantly different from the specification, although the detail is
different. We must, therefore, make a pedagogically informed decision about how to
handle such situations. Since we are concerned with teaching software engineering we
tend towards the view that such a submission does not meet the specification. However,
give our pedagogical concerns it is important that this is correctly perceived by the
students, in order for them to reflect upon the implications. BOSS gives an instructor the
opportunity to give students suitable feedback, explaining the importance of such
seemingly subtle differences. However, an instructor can also choose to ignore such
differences if they deem it appropriate.

Prior to university, students tend to be conditioned to specifications being relatively loose
— if they are creative and add more functionality are usually rewarded. At the university
level, however, we start by teaching them the importance and value of precision. Thus, if
they are asked to develop a program with certain functionality, it should have exactly that
functionality, no more and no less. An appreciation of the importance of such precision is
fundamental to their professional development as software engineers. In the later years
we combine these two views — precision is required and is fundamental, but students are
able to negotiate a suitable specification if they feel that certain functionality is valuable.

The BOSS system is now relatively mature, and broadly has all the required functionality.
However, student expectations and the fast moving nature of the field give rise to
something of a moving target. In particular, student expectations of a suitable user
interface to the system changes over time. BOSS originally had a simple textual interface,
but has developed to included a graphical front end. As computer ownership amongst
students has risen, along with the proportion of students having home broadband Internet
connections, the desire for a web based interface has risen, and we are currently
incorporating such an interface. It is likely that as future technologies emerge, similar
changes will be required. We must also ensure that BOSS supports suitable programming
paradigms and languages. The system currently supports a range of languages, however
as new ones emerge, we will need to adapt to them.

Proceedings of the 2003 WFEO/ASEE e-Conference, 2003, American Society for Engineering Education.

Conclusions

We have described BOSS, a software tool which allows students to submit programming
assignments and other coursework online, and allows automatic tests to be run on
submitted programs. The software also includes plagiarism detection modules, and a
database which is structured to facilitate the upload of student registration data from
institution student record systems. We have used BOSS over a number of years on our
Computer Science degree courses, and it has benefited our courses by speeding up and
increasing the accuracy of the assessment process.

The automatic testing process pervades the students’ learning experiences, and reinforces
the engineering character of the software development process. BOSS is a pedagogically
neutral learning support tool which does not dictate the teaching approach, leaving the
instructor free to adopt any teaching methodology, whilst retaining the precision and
exactitude needed when viewing software engineering as an engineering discipline.

Bibliography

1. K. Beck, Extreme programming explained: Embrace Change. Addison Wesley, 1999.

2. B. S. Bloom and D. R. Krathwohl, Taxonomy of Educational Objectives: The Classification of
Educational Goals, by a committee of college and university examiners. Handbook I: Cognitive
Domain. Longman, 1956.

3. G. Booch, Object-oriented analysis and design: with applications. Benjamin Cummings, 1994.

4. G. Gibbs, Learning by Doing. FEU Longmans, 1988.

5. W. Grosso, Java RMI. O'Reilly, 2001.

6. M. S. Joy and M. Luck, Plagiarism in Programming Assignments. IEEE Transactions on
Education 42(2), pp. 129-133, 1999.

7. M. S. Joy, N. Griffiths, M. Stott, J. Harley, C. Wattebot and D. Holt, Coresoft: A Framework for
Student Data. Proceedings of the 3rd Annual Conference of the LTSN Centre for Information and
Computer Sciences, LTSN Centre for Information and Computer Sciences, pp. 31-36, 2002.

8. J. Kerr and R. Hunter. Inside RAD. McGraw-Hill, 1994.

9. M. Luck and M. Joy, Automatic submission in an evolutionary approach to computer science
teaching. Computers and Education 25(3):105-111, 1995.

10. R. Martin, Agile Software Development. Prentice Hall, 2003.

11. H. D. Mills, M. Dyer and R. C. Linger, Cleanroom software engineering. IEEE Software 4(5) 19-
25, 1987.

12. B. Potter, J. Sinclair and D. Till, Introduction to Formal Specification and Z. Prentice Hall, 1996.

13. R. S. Pressman, Software Engineering: A Practitioner's Approach. McGraw-Hill, New York,
2001

14. http://www.dcs.warwick.ac.uk/boss/ (The BOSS home page)
15. http://sourceforge.net/projects/cobalt/ (The BOSS SourceForge.net project from which the

package can be downloaded)

Proceedings of the 2003 WFEO/ASEE e-Conference, 2003, American Society for Engineering Education.

Biographical Information

Dr NATHAN GRIFFITHS is a lecturer in Computer Science at the University of Warwick, UK.

Dr MIKE JOY is a senior lecturer in Computer Science at the University of Warwick, UK.

Proceedings of the 2003 WFEO/ASEE e-Conference, 2003, American Society for Engineering Education.

