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ABSTRACT

In this paper we investigate data mining approaches to road
type classification based on CAN (controller area network)
bus data collected from vehicles on UK roads. We consider
three related classification problems: road type (A, B, C and
Motorway), signage (None, White, Green and Blue) and car-
riageway type (Single or Double). Knowledge of these clas-
sifications has a number of uses, including tuning the engine
and adapting the user interface according to the situation.
Furthermore, the current road type and surrounding area
gives an indication of the driver’s workload. In a residential
area the driver is likely to be overloaded, while they may
be under stimulated on a highway. Several data mining and
temporal analysis techniques are investigated, along with se-
lected ensemble classifiers and initial attempts to deal with a
class imbalance present in the data. We find that the Ran-
dom Forest ensemble algorithm has the best performance,
with an AUC of 0.89 when used with a wavelet-Gaussian
summary of the previous 2.5 seconds of speed and steering
wheel angle recordings. We show that this technique is at
least as good as a model-based solution that was manually
created using domain expertise.

Categories and Subject Descriptors
1.2.6 [Artificial Intelligence]: Learning
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1. INTRODUCTION

In modern road transport systems it is useful to adapt the
vehicle and its user interface to the current situation or envi-
ronment. For example, when a lane departure warning sys-
tem (LDWS) detects an unintentional lane deviation it can
alert the driver, aid the driver in correcting the deviation,
or turn on the indicator light. This system improves safety
on multi-lane roads, but is inconvenient in a residential set-
ting where the driver has to move in and out of lane to avoid
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parked cars, bicycles, or buses. Therefore, the LDWS should
be enabled on multi-lane roads, and disabled elsewhere. A
further example of adaptation is to alter the engine config-
uration to maximize efficiency according to different road
types [8].

Murphey et al. use features extracted from the speed profile
within a time window to predict the driving environment,
including road type and congestion levels [8]. Features in-
clude its standard deviation, average, maximum, the dis-
tance travelled and percentage of time spent in a certain
speed or acceleration interval. The road type categorisation
consists of 11 drive cycles relating to US road types such as
freeway, freeway ramp, arterial, and local [11]. Using an
artificial neural network (ANN) they predict the road type
and congestion level, which is subsequently used for energy
optimization in hybrid vehicles.

Tang and Breckon apply image processing to the road clas-
sification problem [10]. They present a method to analyse
a real-time image of the road by extracting colour, texture
and edge features from three subregions of the image: road,
road side and road edge. Two classification problems are
considered, namely: (i) on or off road, and (ii) off-road, ur-
ban, major/trunk road or multi-lane motorway/carriageway.
Again an ANN is used, which is shown to have a 86% suc-
cess rate on the four class problem and 97% on the two class
problem. However, the authors do not consider poor light
conditions, which are known to have a detrimental affect on
the performance of image processing algorithms

General examples of machine learning on data collected from
the CAN bus are in driver monitoring, including fatigue de-
tection [4], driver prediction [7, 12], and driver assistance
systems [6, 5]. These driver monitoring examples make use
of pedal and steering wheel angle (SWA) measurements,
since these are the controls with which the driver is in con-
stant contact. These cases demonstrate the potential for in-
ferring information about the environment and driving style
from data collected from the CAN bus.

This paper investigates data mining approaches to the road
classification problem. Although we use a global positioning
system (GPS) sensor to generate ground truth, GPS sen-
sors and mapping software are not present on all vehicles
and require up-to-date accurate maps which are may not be
available in all markets and regions. Therefore, rather than
using GPS for road type classification, we use other sensors



which are already installed in the vehicle and accessible via
the vehicle CAN bus. Such sensors provide data including
steering wheel angle, wheel speed, gear position, and suspen-
sion movement for each wheel. The CAN bus enables the
communication between sensors and actuators in the vehicle
via a message-based protocol, without a central host. Mes-
sages sent between devices in the vehicle can be recorded
and post-processed in order to sample sensor measurements
at a certain frequency.

2. DATA

Three separate classifications of UK roads are considered,
namely, road type, sign type and carriageway type. Road
type classifications are taken from the UK road classes: A, B,
C and motorway (M). In the UK, A roads are main roads,
including both trunk and residential; B roads are smaller
and more local roadways; C roads are car parks, lay-bys
or other unnamed roads; and motorways are highways. The
sign type classification relates to the colour of signs found on
the road, namely white (W), green (G) and blue (B), with a
fourth class indicating no signs on the road (N). All UK mo-
torways are blue signed, all B roads are white signed and all
C roads are unsigned. A roads, however, are either white or
green signed, with green signs typically used on major roads
with higher speed limits, meaning that there is an overlap
between the two classification problems. The third classifi-
cation, carriageway type, divides roads into those with single
(S) lanes or multiple/dual (D) lanes. Here, all motorways
have multiple lanes, along with 20% of A roads — the ma-
jority of which are green signed. Approximately 1% of all
B roads are dual lane carriageway, and likewise for white
signed roads. All C roads, and therefore unsigned roads, are
single lane carriageways.

The data was collected over 10 drives in the same car with
multiple drivers. Data is recorded and sampled at 20Hz with
17 sensor measurements present in each sample. The mean
length of the drives is 71 minutes, with the longest lasting
for 115 minutes and the shortest for 50. Labels are given to
samples by hand using Google Earth, into the classifications
outlined above. In the resulting dataset, approximately 70%
of instances which are A roads are also green signed.

In the data there is a class imbalance, for example there is
a b:1 ratio of single carriageway examples to dual carriage-
ways, and a smaller number of motorways than other classi-
fications, as shown in Table 1. Because of this, in this paper
we consider approaches to dealing with class imbalance.

2.1 Class imbalance

Training machine learning models with class imbalanced data
can adversely affect accuracy [3]. This problem is generally
addressed by oversampling the minority class or undersam-
pling the majority class. In oversampling, random replica-
tion of examples can be performed, but this introduces a bias
as multiple instances in the minority class will be the same,
which can lead to model overfitting. In undersampling, ran-
dom deletion of examples from the majority class can be
performed, meaning that some information is lost from the
majority class which may be necessary for the model to cap-
ture underlying concepts.

More complex methods which address the problem of imbal-

| Label | Percent (%) |
Single carriageway 85
Dual carriageway 15
A road 48
B road 26
C road 21
Motorway 5
White signed 40
Green signed 34
Not Signed 21
Blue signed 5

Table 1: Label counts for the data.

ance include Synthetic Minority Oversampling TEchnique
(SMOTE) [3] and active learning [9]. In SMOTE, synthetic
examples are generated along the hyper-planes between pos-
itive examples and their k-nearest neighbours. This reduces
bias introduced through replication, minimising model over-
fitting. However, this method does increase the variance of
positive examples while over-generalizing them.

Active learning aims to maximise accuracy with minimal
training data. This is achieved by the learning algorithm
querying an information source for the labels of selectively
picked instances from a pool of unlabelled data. A base
classification algorithm is first trained on a subset of the full
training data. The instance which the base classifier is least
confident in classifying is then added to this subset, and a
new model is trained with it. This is repeated until a given
number of instances are added to the training subset. With
regard to addressing class imbalance, it is expected that the
majority class will be undersampled as instances that do not
contribute to the definition of the class boundary will not
be selected.

These class imbalance methods have been shown to be effec-
tive for binary classification problems, but do not transfer
to multi-class problems. In future work we will consider al-
ternative techniques for handling multi-class problems with
skewed distributions.

2.2 Dimensionality Reduction

Both attribute selection and principle components analysis
(PCA) were investigated for reducing the dimensionality of
the data. The information gain for dataset S and attribute

A is defined as:
|Sh|
H(S,
> g HEsY)

vevalues(A)

IG(S, A) = H(S) —

where S, is the partition of the data S defined by the value
v of attribute A, and H(S) is the entropy of set S. The
attributes with the 10 highest information gains are shown in
Table 2. The attributes most related to the class attribute in
all classifications are vehicle speed, SWA and gear position.
After these, the information gain is substantially lower.

Because of the large drop in information gain after the top
three attributes, these three attributes are the natural candi-
dates for selection. However, gear position is closely related



Attribute Road | Sign | Carriageway
Vehicle speed 0.520 | 0.519 0.193
Gear position 0.406 | 0.387 0.075
SWA 0.201 | 0.214 0.049
Lateral acceleration 0.067 | 0.066 0.009
SWA speed 0.059 | 0.062 0.017
Front-left suspension 0.039 | 0.043 0.011
Is brake pressed 0.038 | 0.039 0.008
Front-right suspension | 0.036 | 0.041 0.017
Rear-left suspension 0.033 | 0.035 0.014
Rear-right suspension | 0.031 | 0.033 0.009

Table 2: Information gain of top 10 attributes.

to vehicle speed, as different gears are required for different
speeds. Furthermore, gearboxes in different vehicles have
different ratios, and so gear position is not directly trans-
ferable between vehicles. Therefore, to produce models that
are as simple and transferable as possible, this attribute is
not considered. Initial tests with the J48 algorithm show
that the AUC is only marginally affected by omitting gear
position, decreasing by 0.03 in both the road and sign clas-
sifications and not at all for carriageway classification.

Using a number of correlated input attributes can reduce
the accuracy of the models learnt. Hence a frequently used
pre-processing step is to transform the instance space using a
linear transformation into a lower dimensional, uncorrelated
space. One such method is PCA, in which Eigen vectors of
the covariance matrix define the new projected dimensions
(called principal components). The corresponding Eigen val-
ues provide a measure of the extent to which the variance
within the data is captured within this dimension. In noisy
domains such as ours we would expect a large percentage
of the variance to be captured by a small number of dimen-
sions. Figure 1 shows that almost 80% of the variance in
our data is captured by the first five principal components.

2.3 Temporal summary of the data

As the data collected from the CAN bus is a temporal se-
quence, current measurements will be dependent upon past
measurements. This means consecutive readings from sen-
sors are likely to be very similar, especially given the rela-
tively high frequency of 20Hz. For example, a velocity read-
ing of 70kph at one instant means the sensor is unlikely to
read Okph in the next. Therefore, it makes sense to analyse
the data in time windows.

The data is first split into time windows of size §. Then,
each window is summarised through some transform. This
means, the instance I; at time t, becomes a summary of
instances I;_s.+. The true classification given to a window is
that of the instance I, i.e., the final instant in the window.
In this paper we consider the following summary methods:
Gaussian distribution (G), discrete Fourier transform (DFT)
and discrete wavelet transform (DWT).

Gaussian distribution

This method assumes that observed signals contain Gaus-
sian noise. It aims to estimate the signal’s true value through
its mean, p, and standard deviation, o. The instance I;_s.¢
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Figure 1: Variance (y-axis) of principle components
by number of features (x-axis).

becomes:

{Velocity(u)i—s:; Velocity(o)i—s.;
SWA()t—s:¢; SWA(0)¢—s:¢ }

Since each signal is represented by two values, the dimen-
sionality of the problem is doubled.

DFT
The DFT of a sequence x is defined as:

k_
[E3

|z|—1
DFT(z)y = Y xp-e 711"
n=0

where k = {0,...,|z| — 1} and DFT(x); are the complex
coefficients of the sinusoidal components of x. It is intuitive
to compute the magnitude of these components, producing
a power spectrum of component frequencies of the original
signal.

|[DFT(2)x| = \/real(DFT(2)1)? + imag(DFT (z))?

In practice it is not necessary to use all these coefficients,
as many after the first few have magnitudes of 0. In our
data sets we observed that the performance of the classi-
fication algorithm does not degrade much when using just
the first 5 coefficients. This can be seen in Figure 2, which
shows AUCs for the J48 classification algorithm estimated
using 10-fold cross validation using various numbers of co-
efficients. Therefore, for the classification problems the first
5 coefficients are chosen, producing the instance I;—_s.; of:

{|DFT(V€ZOCityt_5;t)1;5‘; |DFT(SWA1_5;,5)1;5‘}

DWT

A one level DWT is performed, producing a set of approx-
imation and detail coefficients. These coeflicients are com-
puted by passing the signal through low pass filter and high
pass filters, with impulse responses of g and h, respectively.
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Figure 2: The AUC for a J48 classifier (y-axis) vary-
ing the number of Fourier coefficients (x-axis).

Both are then sub-sampled by 2, producing two outputs,
half the length of the original signal.

Approximation = (z x g) | 2; Detail = (x xh) | 2

The Haar wavelet, [1,—1,0], is chosen for use in the trans-
form due to its simplicity. The high pass filter here sums
each pair of values in the sequence, whereas the low pass
filter takes their differences. This gives g = [1,1] and h =
[1,-1].

After performing the DWT on the time window, it is then
possible to perform a second temporal summary method,
such as the DFT, on both the approximation and detail co-
efficients. If the Gaussian method is to be used in conjunc-
tion with the DWT, the dimensionality of the dataset will be
increased by 4 times. We refer to these as wavelet-Gaussian
(DWT-G) and wavelet-Fourier (DWT-DFT) summaries re-
spectively.

2.4 Window size

We consider two windowing methods for various window
sizes, 0. First, we use a constant gap of 50 data points
(i.e. 2.5s) between the initial data points of the windows
that define consecutive instances. For § > 2.5s this means
that consecutive instances will overlap, and so we refer to
this method as Overlap. Second, we consider a gap between
the initial data points in consecutive windows of 24, which
we refer to as No Overlap. We evaluate these methods us-
ing the J48 classifier [13] with a Gaussian summary, With
Overlap we find that a window larger than 10s lowers the
success rate and corresponding AUC, as shown in Figure 3.
This is because the overlap causes consecutive instances to
be very similar, meaning that a randomized test set is likely
to contain similar instances to the training data. Because
of this, an evaluation bias is introduced, with evaluations
showing optimistic performance for models. The No Overlap
approach avoids this issue and has degrading performance
with § > 2.5s. In the remainder of this paper we use No
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Figure 3: The AUC for carriageway classification us-
ing J48 (y-axis) with varying window sizes in seconds
(x-axis) for the Overlap and No Overlap windowing
methods.

Overlap with 6 = 2.5s. Note that similar results are given
by the Fourier summary but we the omit results for space
reasons.

The steering wheel angle and vehicle speed signals are win-
dowed using the No Overlap method and summarized us-
ing the Gaussian, DFT, DWT-G and DWT-DFT transform
methods. A window size of § = 2.5s is used meaning that
a gap of 5s is introduced between the start of consecutive
windows. Processing the raw CAN bus data in this way
gives a dataset of 8618 instances which are used to build the
classification models.

3. EVALUATION RESULTS
3.1 Evaluation methodology

It is expected that data mining approaches can at least
equal the performance of a model created manually by an
expert using domain knowledge. We also hypothesise that
approaches to dealing with the class imbalance will improve
the performance of the models. Our aim is for the models
built to be transferable to different vehicles, environments,
weather conditions and roads.

Data from all of the 10 drives are combined, after individ-
ually undergoing the windowing process described above.
A 10-fold cross validation is then used to evaluate models.
When building the model on training data, a second 10-fold
cross validation is performed to find the best parameters
for the model, listed in Table 3. The optimal parameters
are those that produce the largest area under the ROC (re-
ceiver operator characteristic) curve (AUC) after the 10-fold
cross validation on the training data. These optimised pa-
rameters are then used when building the model on the full
training data. This method allows for an unbiased estimate
of model performance.

After this evaluation process is complete, a ROC curve and



Algorithm | Options Hidden States | AUC | Success rate
J48 Pruning parameters Carriageway 6 0.707 | 0.89+£.007
OR Number of discretization bins Road 5 0.568 | 0.544+.011
RIPPER Number of folds for error pruning and minimal Sign 5 0.587 | 0.592+.01
weight of instances within split
NB Kernel or supervised discretization Table 4: Number of hidden states, AUC, and 95%
ANN Learning rate and momentum confidence interval of success rate for HMMs.
HMM Number of hidden states
RF Number of trees, their depth and number of
features _ roads assigned the same class label we learnt different HMMs
Adaboost | Base classifier to use with between 2 and 6 hidden states. In the carriageway
Sampling | Amount of over or under sampling type classification, the most accurate HMM was that with

Table 3: Classification algorithms used and their pa-
rameters to be optimised during evaluation.

its subsequent AUC value are calculated. An alternative
metric for comparing classification algorithms is the success
rate i.e. the number of correct classifications. We provide
the 95% confidence interval on our estimate of success rate.

This evaluation process is performed using the WEKA ma-
chine learning environment [13] and the probabilistic mod-
elling toolkit (PMTK) for Matlab'. Numerous classification
algorithms are investigated, including decision trees (J48
which is the implementation of C4.5 in WEKA), Naive Bayes
(NB) and ANNs. In the case of ANNSs, initial experiments
suggested that the highest AUC values are produced with
one hidden layer, containing 5 nodes in the two class prob-
lem and 7 nodes in the four class problem. Two decision
rule algorithms are also investigated, the simple one rule
(OR) algorithm and the more complex Repeated Incremen-
tal Pruning to Produce Error Reduction (RIPPER) algo-
rithm (referred to as RIP in the results tables) [13]. In ad-
dition to these base classifiers two ensemble classifiers were
also investigated, namely Adaboost [2] and Random Forest
(RF) [13]. Base models used with the Adaboost ensemble
classifier in this paper are those introduced above and are
referred to by assigning the prefix A-.

We also investigate hidden Markov models (HMMs), which
are trained through unsupervised learning. The most likely
sequence of states to produce a sequence of observed values
can be computed through the Viterbi algorithm. In our
context, the hidden states relate to the road type and each
classification may be split across multiple states. As HMMs
model a sequence of states, the raw sequence of data from a
full drive is used rather than using a temporal summary of
the data. A leave one out strategy is used, where the HMM
is built with data from 9 of 10 the drives in the dataset, and
tested on the other. Again, the AUC and 95% confidence
interval of the success rate is calculated.

3.2 Results

CAN bus data consists of a set of observations collected
over time, that are influenced by the (unobserved) road type
that the vehicle is travelling on, and so it provides an ideal
application for HMMs. The parameters of the HMMs can
be learnt from the observed sequence for a given number
of hidden states. As there is heterogeneity within the set of

'PMTK — http://code.google.com/p/pmtk3

6 hidden states. For both the four class problems, road and
sign classification, a HMM with 5 hidden states performed
best. As the HMM takes a full dataset as an input sequence,
the temporal summary methods were not applied, and so
only results for the raw sequence are presented in Table 4.
As stated previously, it is unlikely that the road type will
change very rapidly. This fact is reflected in the transition
matrix produced by the training phase of the HMMSs, which
is always very diagonal. The probabilities of changing states
are also highest between A and B roads, or white and green
signed roads. This is most likely because of the similarity of
these roads in driving experience and style.

Clear differences between the three classification problems
can be seen in their success rate metrics. The carriageway
type problem, a two class problem, is much simpler than
the other four class problems. This leads to a success rate
difference of around 30% between the best classifiers for the
respective problems. The success rates for both the road
type and sign type problems are very similar however, which
reflects their similar definitions as explained previously.

Given the HMM results, we next consider whether super-
vised methods for learning can improve on the accuracy of
the models. Here the temporal summarization methods are
applied using a window size of § = 2.5s and the No Overlap
approach as these were optimal settings as shown in Fig-
ure 3. The first objective was to evaluate whether attribute
selection or feature extraction (PCA) would provide more
accurate models within this domain. Figure 4 shows the
results obtained using J48 as the number of principal com-
ponents used was increased from 1 to 5, with and without
using some method of handling the class imbalance. These
are compared with J48 models learnt using just the SWA
and Velocity attributes and Gaussian summarization. As
we can see, using 2 principal components results in a signif-
icantly better model than when using a subset of features.
However, when we use methods for handling the class imbal-
ance, the feature subset outperforms the models built using
principal components. Similar patterns were observed for
other learning algorithms and temporal summarization ap-
proaches. Due to lack of space we are unable to present all
these results here and hence focus on results obtained using
the feature subset selected.

Tables 5 and 6 show the results obtained for each of the tem-
poral summary and classification methods without consid-
ering the class imbalance. In all the classification problems,
Random Forest is the most successful in terms of both AUC
and success rate when the model has an evenly distributed
decision threshold. Also, in each of these a Gaussian sum-
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mary of the wavelet transform performs the best, albeit by a
very small amount. The ROC curves for Random Forest and
the DWT-G summary method for the carriageway, road and
sign classification problems are shown in Figures 5, 6 and 7
respectively. The Fourier transform of the data generally
performs the worst.

One surprising result in these experiments is the perfor-
mance of relatively simple methods. For example, OR per-
forms only slightly worse than the more complex decision
tree, J48, and better than the multilayer perceptron in many
experiments. Also, the Gaussian summary is almost as good
as the other, more complex transforms. This is reflected in
the rules and decision trees produced, which usually split
on vehicle speed first, classifying any instances under 25kph
as a single carriageway, and those over around 65kph as a
motorway (and therefore also as dual carriageway).

One reason for these simple models performing well is that
speeds on C roads are usually low, and they are all single
carriageways. Likewise motorways are all dual carriageways
and have higher speeds than other road types. The most
confusion in any model’s predictions are of A and B roads,
which is expected as they are most similar to drive on and
have similar speed limits. This can be seen in the confusion
matrices produced by testing and the ROC curves, which
show significantly worse performance for those classes. This
means that the SWA is used in the models to differentiate
between these. Similarly, in the sign classification problem,
most of the confusion is seen between the white and green
signed roads.

In order to address the class imbalance present in the data,
under-sampling, over-sampling, SMOTE and active learn-
ing were investigated. The same evaluation procedure is
used as before, with the amount of sampling as a parame-
ter to be optimised. Results for the classification algorithms
with highest AUCs are shown in Table 7. The Random
Forest algorithm performs best for each of under-, over- and

DFT G DWT-DFT | DWT-G

OR 0.684 | 0.703 0.698 0.721

NB 0.807 | 0.786 0.807 0.756

J48 0.727 | 0.732 0.732 0.736

RF 0.863 | 0.884 0.872 0.887

RIPPER 0.712 | 0.717 0.704 0.721

ANN 0.809 | 0.803 0.831 0.817

A-RIPPER | 0.836 | 0.859 0.832 0.847

(a)

DFT G DWT-DFT | DWT-G
OR 0.67 | 0.669 0.672 0.667
NB 0.67 | 0.685 0.668 0.639
J48 0.768 | 0.773 0.772 0.796
RF 0.807 | 0.817 0.812 0.824
ANN 0.752 | 0.741 0.76 0.749
RIPPER | 0.748 | 0.75 0.751 0.759
A-J48 0.779 | 0.795 0.779 0.799

(b)

DFT G DWT-DFT | DWT-G
OR 0.685 | 0.682 0.684 0.684
NB 0.712 | 0.699 0.66 0.621
J48 0.77 | 0.78 0.779 0.778
RF 0.811 | 0.818 0.814 0.822
RIPPER | 0.759 | 0.768 0.764 0.768
ANN 0.754 | 0.749 0.763 0.755
A-J48 0.789 | 0.796 0.786 0.791

(c)

Table 5: AUC for (a) carriageway, (b) road, and (c)
sign classification without sampling.
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Figure 5: ROC curve for Random Forest on car-
riageway classification. False positive rates are
shown on the x-axis, true positive rates on the y-
axis.



DFT G DWT-DFT DWT-G
OR 0.887+.007 | 0.887+.007 | 0.889£.007 | 0.889+.007
NB 0.406+£.01 | 0.453£.011 | 0.2644.009 | 0.267+£.009
J48 0.904=£.006 | 0.906%.006 | 0.906%.006 | 0.9074.006
RF 0.905+.006 | 0.91£.006 | 0.909£.006 | 0.911+.006
ANN 0.901+£.006 | 0.9084.006 | 0.903£.006 | 0.906+.006
RIP 0.894£.006 | 0.8894.007 | 0.895+.006 | 0.886+.007
A-RIP | 0.894+£.006 | 0.889+.007 | 0.895+.006 | 0.885+.007
(a)
DFT G DWT-DFT | DWT-G
OR 0.586+.01 | 0.5894.01 | 0.588+.01 | 0.586+.01
NB 0.428+.01 | 0.421+.01 | 0.353£.01 | 0.337+£.01
J48 0.63+.01 | 0.645+.01 | 0.641+.01 0.66+.01
RF 0.648+.01 | 0.6554.01 | 0.656+£.01 | 0.669+.01
ANN | 0.633£.01 | 0.639+.01 | 0.635%+.01 | 0.647+.01
RIP 0.585+.01 | 0.5784.01 | 0.597£.01 | 0.591+.01
A-J48 | 0.631+.01 | 0.6444+.01 | 0.634+.01 | 0.654+.01
(b)
DFT G DWT-DFT | DWT-G
OR 0.576£.01 | 0.575£.01 | 0.577+.01 | 0.576+£.01
NB 0.495+.011 | 0.447+.01 | 0.2884+.01 0.2£.008
J48 0.613+.01 | 0.613£.01 | 0.611+.01 | 0.617+.01
RF 0.629+£.01 | 0.633£.01 | 0.631£.01 | 0.639+.01
ANN 0.605+.01 | 0.619£.01 | 0.608+.01 | 0.618+.01
RIP 0.574+.01 | 0.568+.01 | 0.581%.01 | 0.572+.01
A-J48 | 0.62+.01 0.621+.01 0.62+.01 0.62+.01

()

Table 6: Success rate as a 95% confidence interval for
(a) carriageway, (b) road, and (c) sign classification
without sampling.
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Figure 6: ROC curve for Random Forest on road
classification.
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Figure 7: ROC curve for Random Forest on sign
classification.
DFT G DWT-DFT | DWT-G
Under-sample 0.856 | 0.883 0.868 0.880
Over-sample 0.849 | 0.881 0.863 0.882
SMOTE 0.848 | 0.879 0.858 0.881
Active learning | 0.825 | 0.841 0.831 0.836

Table 7: AUC for under-sampling, over-sampling,
SMOTE using Random Forest and active learning
using a J48 classifier on carriageway classification.

SMOTE sampling, with best AUCs of 0.883, 0.882 and 0.881
respectively. For active learning the only base classification
algorithm tested is J48, having a best AUC of 0.841.

Again in these results, it is clear the best pre-processing
techniques are the Gaussian or wavelet-Gaussian summaries,
with little difference between the two. Also, it is noteworthy
that the simpler sampling strategies perform better than the
more complex SMOTE and active learning, albeit again by
a small margin. Active learning performs worst, which may
be a result of its use of J48 as a base classification algorithm.
This may be improved upon if other learning algorithms are
used as base classifiers in the active learning process.

These approaches to dealing with class imbalance do not
improve upon the AUCs found when using Random Forest
without any sampling. However, for other models such as
J48 and OR, a substantial improvement is seen. For ex-
ample, the AUC for the J48 classifier without sampling and
the wavelet-Gaussian summary, is improved by 16% to 0.854
when SMOTE sampling is used. This value is much closer to
that achieved by the Random Forest algorithm, suggesting
the robustness of ensemble models to class imbalance.

3.3 Comparison with model based solution

A model-based solution has also been investigated previ-
ously by a Jaguar Land Rover employee for carriageway type
classification, the details of which cannot be disclosed due
to commercial confidentiality. As the model-based solution



does not require any training, data from each of the drives
are classified and evaluated, producing an AUC and success
rate. In order to compare with the results from the data
mining approach, we use the same leave one out strategy
as applied to HMMs to evaluate the Random Forest clas-
sifier. The mean AUC and 95% confidence intervals of the
success rates of these drives are then calculated for both the
model-based and data mining approaches.

The model-based solution has a mean AUC of 0.751, and a
success rate 95% confidence interval of 0.909 £ .001. The
Random Forest model improves substantially on this AUC,
scoring 0.867. The 95% confidence interval of the success
rate for the Random Forest classifier is 0.903 4 .001, which
is very similar to that of the model-based solution.

4. CONCLUSION

Several data mining and temporal analysis techniques have
been investigated for road type classification. UK roads are
given three different classifications, road type (A, B, C and
Motorway), signage (None, White, Green and Blue) and car-
riageway type (Single or Double). In each of these problems
the Random Forest algorithm performs best when used in
conjunction with a wavelet-Gaussian summary of the data.
This technique has AUCs of 0.824, 0.822 and 0.887 and suc-
cess rates of 0.669 £ .01, 0.639 £+ .01 and 0.911 £ .006 at a
95% confidence interval for the road type, signage and car-
riageway classifications respectively.

Approaches to dealing with class imbalance in the carriage-
way problem were investigated, namely under-sampling, over-
sampling, SMOTE and active learning. The AUC of 0.887
given by Random Forest on un-sampled data is not improved
upon by any of these techniques. However, the AUC of other
classification algorithms are substantially improved upon by
these techniques, by over 10% in general. The AUCs for
over-, under- and SMOTE sampling are very similar, with
under-sampling being the most successful by a very small
margin. All three of these methods have better performance
than that of active learning.

Models trained on data used in this paper have also been
tested on a small dataset recorded from a different vehicle.
This smaller dataset has road and carriageway labels, but
not sign type. First, Random Forest with Gaussian sum-
mary is used with the same evaluation procedure as previ-
ously to gain a benchmark. Second, the classification al-
gorithm is trained on the data used in this paper with the
parameters optimised. This built model is then tested on
the smaller dataset. The AUCs from these models drop
by a small amount for the carriageway classification, from
0.846 to 0.799. For the road classification a larger drop is
seen, from a benchmark of 0.896 to 0.813. This drop in per-
formance may be due to slight inconsistencies in labelling
the datasets (as they were done by different people) or some
other factor which was not controlled. This result does show
however that models built on data from one vehicle can be
used, to reasonably good effect, with other vehicles.

Further, this data mining technique is shown to be at least
as good as the manually created model-based solution. The
AUC of the data mining approach is shown to be signifi-
cantly higher than that of the model-based solution, with a

very similar success rate. This gives credence to data mining
being applied in this domain, over creating models by hand.

The techniques for class imbalance considered in this paper
are only suitable for two class problems, meaning that the
road and sign type problems have not been investigated with
regards to class imbalance. In future work we will investigate
methods for dealing with multi-class class imbalance, such
as Error-Correcting Output Coding (ECOC) [1] in which a
unique code is given to each class and a classifier is built to
predict each of the digits of the code. ECOC has been suc-
cessfully applied in other domains such as text classification.
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