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Abstract: We are interested the soil dwelling bacteria 
Streptomyces coelicolor because its cells grow end to end in a 
line. New branches have the potential to extend from any 
point along this line and the result is a network of branches 
and connections. This is a novel form of colonisation in the 
bacterial world and it is advantageous for spreading through 
an environment resourcefully. Networking protocols for 
communication technologies have similar pressures to be 
resourceful in terms of time, computing power, and energy. 
In this preliminary investigation we design a computer model 
of the biological system to understand its limitations and 
strategies for survival. The decentralised capacity for 
organisation of both the bacterial system and the model 
reflects well on the now-popular conventions for path finding 
and ad hoc network building in human technologies. The 
project will ultimately become a comparison of strategies 
between nature and the man-made. 
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1. Understanding Biological Systems 
 
Biological systems found in nature comprise of finely 
evolved strategies for competing for resources and 
regenerating. These strategies are a reflection of the 
information coded in the DNA of each individual organism, 
combined with the physical constraints of the environment. 
When we think of a system we are considering the behaviour 
of the whole as a product of all the individuals that make up 
that whole. Interpreting a system in a bottom-up fashion is 
key to a Systems Biology approach and aids a complete 
understanding by establishing what is happening at the lowest 
levels. There is a tendency that the lower the level of 
representation, the more simple the rules are to follow. 
Famous examples in the literature include computational 
modeling of swarming, shoaling, and flocking that you can 
find in social insects, fish, and birds respectively [15,16]. In 
each of these types of systems the processing required at the 
level of the individual is relatively simple. For example, each 
bird in a flock only needs to align itself with a few of its 
neighbours and respond to the usual environmental queues 
but the degree of organisation and coordination at the top-
most level is immense [15]. The alternative idea of a central 
leader conducting the group is far less feasible due the 
resultant complexity of the group behaviour being far greater 
than just the sum of its parts [1,2].  
 
The simple logic decisions that are made by the individuals in 
these systems lend themselves well to computational 
modeling not only because computers are intrinsically logic 
gates but also because they are iterative machines that can 
store and traverse through virtual representations of the 

individuals in a system. This is called agent based modeling. 
Parameters and variables are applied from the context of the 
individuals in a system and tuned in an attempt to simulate 
the observed collective patterns. This can lead to a robust 
form of modeling because small errors at the individual level 
are amplified in the overall behaviour. Most importantly, 
agent based modeling will help us to uncover some of the 
information hidden in the genetic make up of the organism in 
question in regards to what choice the individual makes 
under specific circumstances 
 
1.1 Streptomyces coelicolor 

 
Our preliminary studies take inspiration from a biological 
system simpler than birds or fish. Streptomyces coelicolor is 
a naturally occurring filamentous bacterium in soil that is a   
popular research choice for bacteriologists because of its 
ability to produce clinically useful antibiotics [6,7,8]. Most 
interesting to us is the bacteria's less than usual manner of 
dividing which is more reminiscent of filamentous fungi [11]. 
During the first growth phase of Streptomyces coelicolor, 
cells grow in a line with new cells being added at the 
apex[10]. Machinery associated with extending the cell wall 
is transported to the tip of the apical cell and hyphal cross 
walls are formed further down to complete the process of cell 
division [10]. This is in contrast to rod-shaped E.coli for 
example, that elongate by adding cell wall content to their 
lateral walls [12]. Although only the tips are actively 
dividing, a cell anywhere along the line can create a new tip 
by lateral branching [10]. This results in growth of a network 
that resembles the branching of a plant root system or the 
venation found in leaves. These branches however, called 
mycelia, are a single cell in width and thus transport through 
them is limited compared to multi-cellular systems. The 
second stage in the lifecycle of Streptomyces coelicolor is a 
cessation in lateral growth, giving rise to a period of 
skywards vertical growth of aerial mycelium. The apical cells 
of aerial mycelium become spores, capable of surviving and 
spawning a new colony [13]. 
 
1.2  Networking in Biological Systems 
 

The ability to network brings advantages to this species in an 
environment that is naturally patchy (soil) in regards to 
finding energy resources for colonisation because it can cover 
greater areas with relatively small cell counts. To be 
competitive a colony favours production of many cells, 
leading to production of many aerial mycelium, and 
ultimately many spores. This helps ensure the gene pool 
survives and spreads. In a barren local environment however, 
the colony cannot afford for tips to extend, new branches to 
emerge, and spores to be grown. On the other hand, 
extending more branches will increase the likelihood that 



more desirable environments will be encountered evetually. 
This is a considerable limitation against colonisation and we 
are interested in the strategies that Streptomyces has evolved 
to optimise its growth in an unpredictable environment.  
 
Networking as a method for optimisation is predominant in 
the human world too. This is particularly true in 
communication technologies such as peer-to-peer data 
transfer over the Internet, and ad hoc wireless networks 
between portable devices. In a similar fashion to the 
biological systems discussed, these mechanical systems are 
subject to their own limitations and strive to be efficient in 
regards to energy, cost, and time. Wireless transmissions are 
generally more effective over short distances. Over long 
distances they require unreasonable amounts of energy so, 
networks should favour multiple short hops between 2 
devices as opposed to a direct, but long link between them 
[14]. This resembles the high bifurcation incidence of the 
Streptomyces system in high nutrient areas, which are 
analogous to a high density of nodes in an ad-hoc system. 
Mobile nodes change their position frequently and the 
network structure that connects them has to be torn down and 
re-established in real time. Eventually we would like to 
exploit these parallels between the different systems to see 
how a Streptomyces-inspired protocol fares in a model of a 
communications network. 
 
Communication systems may also lend themselves well to a 
decentralised structure as seen in the biological systems that 
we have discussed. The nodes that are looking to form the 
connections are computers (in some form or another) and 
thus have a capacity to process information. Since the ability 
to form networks quickly and efficiently is favoured, sharing 
the processing among the nodes is advantageous. This is 
especially true if it means (as in the biological systems we 
discussed) that simplifying the process would simultaneously 
increase performance and complexity beyond what is easy for 
a central processor to do [5].  
 
This means that agent based modeling not only suits 
Biological systems but it can also be used for simulating 
communication networks. In this case, designs for a 
simulation can be literately applied to the technology itself to 
improve its performance. The classic example of a crossover 
between biological networking and networking in computer 
sciences is the series of ant colony optimisation models that 
have been successfully applied to routing data packets over a 
network. Ants have limited processing capacity (compared to 
birds or fish for example) but collectively they can 
accomplish tasks like building nests, and transporting food 
sources back to the nest along the shortest path [3]. There are 
clear evolutionary pressures for finding the shortest path 
between food sources and the ant nest and the strategies 
undertaken by each individual colony member have been 
discovered not least by representing the ants as objects in a 
computer program and putting lots of them together in a 
virtual environment[3,4]. This is effectively the same as we 
are doing with Streptomyces. 
 
2. Making a Computer Model of Streptomyces 

coelicolor 
 

This study is the first step towards developing an agent-based 
model of Streptomyces coelicolor during the first growth 
stage. The primary goal of the investigation is to establish its 
characteristics for growth in light of assumed physical and 
environmental limitations. This includes average trajectory of 
mycelium, frequency of bifurcation/branching, average angle 
of branching, distance between branches, life time of cells, 
capacity of mycelium to extend, capacity for resources to be 
transported between cells, and how these characteristics 
change over time and over variation in the environment. The 
secondary goal is to modify the model once it is optimised 
for survival to generate networks in a communications 
context as a comparison to human-formulated models. This 
report is preliminary however, and our short term goal for 
this study was simply to achieve a basic representation of the 
system and discuss our approach. 
 
The bacteria can be imaged growing from individual 
germinating spores on standard agar with time-lapse 
photography. Many of the attributes of the model will be 
based on simple observations of the true system growing over 
time under the microscope in agar mediums at a range of 
nutrient concentrations. There are also plans in the coming 
months to combine blocks of agar at different nutrient 
concentrations to create gradients to assess the bacteria’s 
chemotactic ability. For now, we have constructed a model 
based on the first set of observations of Streptomyces 
coelicolor growth on standard LB medium. Mycelium extend 
because the apical cell undergoes mitosis and splits into 2 
[10], thus the ‘individual’ in this context is a single bacterial 
cell. Java programming language was used to create an object 
representing just that, a bacterial cell, and an extended child 
object with extra functionality to represent a cell that is active 
(undergoing mitosis). Agents have a radius, an 
X(<1.0),Y(<1.0) coordinate, and the capacity to become 
active according to probability P. These features reflect a 
growing mycelium being viewed in a finite microscopic field 
that can extend a new branch from any cell in its lineage. 
 
Another observation we have made from imaging is that each 
spore spawns 2 (or more) mycelia that grow outwards from 
of opposite ends. Also, the tip’s trajectory is not straight but 
appears to be subject to noise. In recognition of this erratic 
trajectory, active agents are subject to a noise function in our 
current model. This assumption is based on the idea that tip 
extension through a tough medium like agar occurs by the 
turgor pressure that results from fresh cell wall matter being 
incorporated at the tip [9]. At this stage, it is not clear how a 
cell could easily change its direction and it is liable to opt for 
a low-energy straight-line course. Considering this difficulty 
to change direction, Streptomyces coelicolor may not rely on 
chemotaxis to ensure that it grows towards sustainable 
regions opting instead to rely on chance encounters of food 
by throwing out new branches when it can. Using our model, 
we will eventually be able to determine if chemotaxis is even 
necessary to help the species colonise more competitively.  
 
Each cell is connected to 2 other cells, one basally and one 
apically. The cytoplasm of these cells is connected as well so 
there is opportunity for transport of materials between cells 
[9]. This may not happen to the extent that cells can distribute 
their resources across the whole network as mycelia are a 
single cell’s width in thickness. Again we can use our model 



to eventually establish the effect of redistribution of resources 
and compare this with the real life system to provide clues 
about how much redistribution is occurring and whether it is 
a useful feature or not in regards to colonisation.  
 
Preliminary evidence suggests that branching frequency is 
higher when the medium is saturated with nutrients, apparent 
when we grew in an LB agar medium versus plain agar. We 
aim to measure and scale this response in the near future. 
This is probably the bacteria's primary option for exploiting 
resources considering it may not transport them far, or able to 
locate them by chemotaxis. If a tip's sole option is to grow in 
a straight line, it could pass through areas of high nutrients. 
The second-generation cells left behind can afford to produce 
a lineage of their own more than those that are further away 
from the food patch. These are soil dwelling bacteria and soil 
by nature is patchy/non continuous. From these preliminary 
imaging experiments, it also looks like spores come with 
sufficient energy to develop the beginnings of a colony 
without needing to take up nutrients from the environment. 
This maternal energy is dispersed relatively well so that cells 
anywhere in the lineage can become active. 
 
In these experiments we look at the effect of changing the P 
value of a model of single virtual spore placed in the centre 
of a uniform virtual environment beginning with 2 active 
agents extending outwards. The P value is the probability that 
each cell will become active at each time step. One time step 
is defined as the time it takes for an active agent to extend 
and leave a new agent in its wake. So every time step, each 
mycelium will grow by one cell. In these experiments we 
also assess the effect of having zones in the environment that 
represent nutrient dense zones where agents can better afford 
to divide and thus have a higher P value. These preliminary 
experiments will demonstrate how feasible it is to use agent 
based modeling to represent Streptomyces coelicolor by 
comparing simulation results with the first set of images we 
have taken. In the short term, the model will increase in 
relevance as more and more image data is collected. 
 
3. Findings 
 
The task ahead is to create a program that builds networks. 
The motivation for this line of research is a demand for 
efficient networking protocols: The performance of a 
network is entirely dependent on the structure of that 
network. When the environment remains relatively static for 
a moment in time, applying a network can allow quick access 
between one point in that environment and another, but apply 
the wrong network and the necessary connection between 
two points will be long and complicated, or not existent. We 
are looking for decentralized ways that are quick and 
undemanding in terms of processing, but take advantage of 
the many individual entities that make up particular systems. 
Finding parallels between man-made systems and biological 
systems enables us to apply strategies that have evolved to be 
optimal for the purpose.  
 
Currently, the virtual cells do not consume resources from the 
environment to obtain energy for growth. Therefore, there 
unlimited potential for an active cell to keep dividing but in 
all these tests they are restricted by timing. 
 

3.1 Surface Area Coverage as a function of Bifurcation 
 
Figure 1 demonstrates an obvious relationship between 
bifurcation rate and surface area coverage. The Java program 
was a given a module to visualize the distribution of agents. 
The red outline of a circle in each case marks the furthest 
point away from the central spore that at has been reached by 
an agent. This is to demonstrate the distance covered in 
relation to area covered and figure 3 represents these values 
as proportions. Each picture in figure one shows a separate 
simulation that has run a course of 500 time steps, the only 
difference in each experiment is that P changes. With a 
relatively low incidence of bifurcation, the cell count can 
rocket after enough time. This is evident in the image data 
too: Growth on agar can be viewed realistically for about 6-8 
hours after a spore first starts to grow. Beyond this point it is 
difficult to distinguish individual mycelia because they begin 
to climb over the top of each other as their total area exceeds 
the amount of corresponding surface area (figure 2).  
 

 

 
 

 
 
Figure 1 
Sample images from model output after 500 time steps with increasing P 
value. 
 
In figure 3 each progressive bar represents average surface 
area coverage over 20 runs, with the P value increasing by 
0.00004 per bar (starting with 0.0 on the far left side). The 



snap-shots from the 2 highest P values in figure 1 look like 
the colony has grown out from every angle as a tightly 
packed mass. This is reminiscent of most other colonising 
prokaryotes but we know that Streptomyces coelicolor 
achieves this effect with extensive one-dimensional 
branching. We may expect Streptomyces coelicolor therefore 
to be better at colonising patchy environments as it can 
spread far before generating much mass simply by lowering 
its frequency of bifurcation.  
 

 

 
Figure 2 
Stills of Streptomyces mycelia. These stills are from a time lapse. Note how 
early on the density resmbles the computer model at low bifurcation and 
several hours later it resembles the high bifurcation simulation (part A). Thus 
a relatively low bifurcation rate over a much longer relative period of time is 
equivalent to a high bifurcation rate in a short amount of time. This “spread 
out first and fill in later” strategy probably enables a quick and rough scan of 
the environment before committing to much growth 
 
The photographs in figure 2 show a time series of a single 
spore growth. They resemble the progressive surface area 
coverage of the computer simulations shown in figure 1 but 
the difference is that figure 1 is not a time series, it is 6 
separate simulations all at the end of their 500 time-step 
course. This suggests that Streptomyces grows over a longer 
time scale than the current model and has a bifurcation 
frequency to match the first half of simulations in figure 1. 
This theory may change in the future when we grow the 
bacteria under different conditions but future simulations 
may be better applied by increasing the time scale and 
keeping bifurcation rates lower. As evident in figure 2, high 

degrees of surface coverage still occur but not before the 
earliest generation of active agents have covered a lot more 
ground. In the interest of analyzing networks before they 
become too complicated and over-run, it may also be 
necessary to allow tips to grow outside the field of focus and 
disappear from the simulation. Especially since we cannot 
track every mycelium on agar over long time periods. 
 
The furthest distance traveled from the original spore was 
comparable in all simulation tests and independent of 
bifurcation rate. This feature is almost certainly more to do 
with the noise function, which has not been analysed at this 
stage. It is also notable that although the increase in 
bifurcation is linearly applied in figure 2, the increase in 
cellular area after 500 time steps does not appear linear. This 
is suggestive of a threshold, above which, P values may be 
associated with an 'exploit' mode suited to resourceful 
conditions and below which, may suit foraging modes suited 
to less desirable conditions. 
 

 
 
Figure 3 
See text for explanation. This chart shows the results from the experiment 
featured in figure 1.  
X axis = 0 – 400 % surface area covered by cells 
Y axis = Incrementing P values from 0 to 0.0004  
One bar = average over 20 replicates  
Observation: At high bifurcation rates cells take up more space than the area 
they have spread to and occupy multiple layers. 
 
3.2 Surface Area Coverage in a Patchy Environment 

 
Figure 4 shows what Streptomyces coelicolor might look like 
in a patchy environment. In part A and part B you can see the 
same circle outlines drawn in but only in part B do those 
circles apply a higher bifurcation rate to resident cells for 
comparison purposes. There is no capacity for cells to choose 
the angle for their bifurcation (which is a random function). 
Nor is there opportunity for the active cells to choose their 
trajectory (they go in a straight line subjected to noise). All 
patches featured in Part B through Part D apply a bifurcation 
rate to their resident cells that is 10 fold higher than the 
surrounding medium. Between Part A and Part B there is a 
clear affect to the growth pattern when the environment 
becomes patchy. There is an explosion of growth helping to 
define at least 3 of the surrounding patches. This effect is 
more significant when the patches are larger- allowing tips to 
remain in a patch for longer periods of time, as shown in part 
C. Part D features smaller patches again, but this time there 
are more of them in 2 layers surrounding the centre. The non-



patch bifurcation rate is low and many of the patches have 
been missed. Thanks to the second layer, the colony manages 
to encounter and exploit one patch before time is up. This 
undoubtedly increases the chances that some more of the 
patches will be encountered if the simulation was left to run 
for longer because there is an increased proportion of active 
agents travelling in new directions. This may compliment the 
strategy that we encountered in the previous section to ensure 
a good coverage of the surface area: Low bifurcation 
frequency means that cells on average will sit a round for 
longer before becoming active resulting in proportionally 
fewer extending mycelium in the short term but also ensuring 
that most cells retain their resources for entry into the second 
growth phase: production of a new generation of spores. If 
one of the few mycelia encounters a favorable patch, an 
explosion of new mycelia comes into existence at a higher 
rate from outside the patch and a host of new trajectories are 
set up. This increases the chance that new patches are 
encountered in areas that were missed out during the earlier 
stages of colonisation. And, the agents living in barren 
conditions can mostly be preserved by keeping their 
bifurcation rates low. This will become clearer after a series 
of experiments in the lab to determine the change in 
bifurctaion rate over increasingly desirable agar conditions. 
 

 
Figure 3: 
Part A shows an even distribution of patches around the central spore, 
without any effect on colony behaviour. Part B shows the same patch 
distribution as A, with any cell in the patching having a 10 fold higher 
likelihood of bifurcating. Part C and part D also demonstrates 10-fold 
patches: 4 large ones and 2 layers of small ones respectively 
 
 
4. Conclusions 
 
At this early stage we have created a computer model to 
represent a branching bacterial system to help us identify 
optimised strategies for exploiting its environment. The 
model tries to take into account the limitations of the true 
system, such as: very limited processing capabilities per 

individual. These single celled organisms have a short 
amount of DNA, and this is the extent of their decision-
making. On the other hand, Bacteria are renowned for the 
speed that they can evolve and with enough selective 
pressures they are liable to demonstrate some clever lessons. 
In this model we have assumed that the cells, in line with 
many other bacterial species, can take up resources from the 
environment. They respond with an increase or decrease in 
the likelihood of entering into repetitive mitosis. An accurate 
measure of this behaviour will follow further 
experimentation. Other limitations however, are not so easy 
to measure. For example, the amount of re-distribution that 
occurs across (laterally between cells in a mycelial line) a 
network is hard to determine. Re-distributing resources from 
areas of high nutrient value to lower nutrient value could 
prove useful, or may not be necessary at all in terms of 
achieving the highest possible spore count after the initial 
growth phase is over. Similarly, communication via chemical 
signaling between cells in a network is more feasible if there 
is transport occurring across the network, but again, may not 
be necessary for achieving the ultimate goal. The goal is, as 
with any biological organism, competitive success. This 
means as wide spread surface coverage as possible, and as 
much passing on of genetic make up as possible (highest 
spore count as possible). 
 
Another variable of the model that will have a strong 
influence on the pattern of growth and consequently the 
success of colonisation is the trajectory of the mycelia. 
Previously we stated that this is most likely to be a direct 
consequence of the growth medium providing resistance but 
increasing the noise function of the model had dramatic 
effects on the surface coverag. Increasing noise decreased the 
furthest distance achieved by any agent from the central 
spore after 500 time steps and inevitably increased the 
coverage of that zone. These results are not shown because it 
wasn’t considered as a variable that the organism has any 
control over but if it did have, it may use this ability to 
increase the time spent in a patch enabling it to lay down 
more cells, for example. For future tests, it will be interesting 
to see if we can fine tune the noise variable to increase the 
competitive success of the model. By using the model to find 
methods that work well for the system, or that help the model 
to mimic the real life system, we can indirectly suggest 
mechanisms that might have evolved in Streptomyces 
coelicolor but that are not easy to prove in the lab. This is one 
of the strengths of a Systems Biology approach to the task, 
one of inference. 
 
The next stage for the model is to find a way of ranking its 
success in the face of varying the different variables present 
in the system. The first step will be to represent the 
environmental resources more effectively. Currently an 
extending mycelium will continue dividing indefinitely, but 
an active cell needs the right materials if it is going to divide 
continuously, not least a source of carbon for energy. By 
incorporating at least one limiting factor for growth into the 
model, a colony’s success is immediately measured by how 
many time steps it can exist before it runs out of steam and 
ceases to grow. One thing we can’t do in the lab is create an 
identical environment of patches with each experiment. For 
the model however, the environment can remain static while 
the colony tries to grow under various conditions. These 



conditions include variable patch-related bifurcation 
frequencies, and the new variables discussed: patch-variable 
noise, and distance of resource sharing permitted. The next 
step is to include a statistics module into the program so that 
characteristics of the networks generated by the model and 
those in the images can be directly compared in a quantative 
fashion. This will be followed by a fine-tuning of the 
variables so that the model statistics mimic the averages 
calculated in real-life networks. Experimental work will be 
carried out alongside the model implementation to 
compliment the model and help identify certain truths. Future 
versions of the program, if needed, will look into higher and 
more accurate representations of Streptomyces coelicolor and 
its environment. 
 
Following these leads will help to uncover many attributes of 
Streptomyces coelicolor. With this information we can 
enhance our understanding of networking in nature and begin 
to apply it to other areas in both biology and computer 
science. 
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