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Abstract. Coordination is essential to the effective operation of multi-
agent systems. Convention emergence offers a low-cost and decentralised
method of ensuring compatible actions and behaviour, without requiring
the imposition of global rules. This is of particular importance in envi-
ronments with no centralised control or where agents belong to different,
possibly conflicting, parties. The timely emergence of robust conventions
can be facilitated and manipulated via the use of fixed strategy agents,
who attempt to influence others into adopting a particular strategy. Al-
though fixed strategy agents have previously been investigated, they have
not been considered in dynamic networks. In this paper, we explore the
emergence of conventions within a dynamic network, and examine the
effectiveness of fixed strategy agents in this context. Using established
placement heuristics we show how such agents can encourage conven-
tion emergence, and we examine the impact of the dynamic nature of
the network. We introduce a new heuristic, Life-Degree, to enable this
investigation. Finally, we consider the ability of fixed strategy agents to
manipulate already established conventions, and investigate the effec-
tiveness of placement heuristics in this domain.
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1 Introduction

Within multi-agent systems (MAS) cooperation and coordination of individu-
als’ actions and goals are required for efficient interaction. Incompatible actions
result in clashes that often incur a resource cost, such as time, to the participat-
ing agents. The predetermination of which actions clash is not always possible,
particularly for large action spaces and dynamic populations.

The emergence of conventions is often used to solve these problems. Conven-
tions represent socially-adopted expected behaviour amongst agents and thus
facilitate coordinated action choice without the dictation of rules. Convention
emergence has been shown to be possible in static networks with minimal re-
quirements, namely agent rationality and the ability to learn from previous inter-
actions [5, 25]. This adds little design overhead, and is of particular importance
in open MAS where agent modification is likely to be impractical or impossible.



Fixed strategy (FS) agents continue to choose the same action regardless of
its efficacy or the choices of others in the system. Their presence has been shown
to affect the direction and speed of convention emergence in static networks.
Small numbers of these agents are able to influence much larger populations [21],
especially when placed using appropriate heuristics [7,10]. Fixed strategy agents
can also be used to cause a system to abandon an already established convention
in favour of an alternative [13,15].

In many domains, the nature of the relationships between agents is not static.
Agents may leave the system, new agents can enter, and the links between agents
may change over time. These dynamic interaction topologies induce different
system characteristics than those found in static networks. Relatively little work
has studied the nature of convention emergence in these types of network.

This paper considers the emergence and manipulation of conventions within
dynamic topologies. We introduce a new heuristic, Life-Degree, to support
this investigation, which considers aspects of the dynamic nature of the sys-
tem when placing fixed strategy agents. We examine the importance of dynamic
topology characteristics by comparing the performance of Life-Degree against
previously used heuristics based on network metrics. We then consider the effi-
cacy of the various heuristics when fixed strategy agents are used to destabilise
or remove an established convention.

The remainder of this paper is organised as follows: Section 2 discusses the
related work on convention emergence, fixed strategy agents and dynamic topolo-
gies. Section 3 describes the model of convention emergence being used, as well
as the simulation model used to generate the topologies. Additionally this sec-
tion introduces the heuristics used to place fixed strategy agents. Our results are
shown in Section 4 and, finally, we present our conclusions in Section 5.

2 Related Work

A convention is a form of socially-accepted rule regarding agent behaviour and
choices. Conventions can be viewed as “an equilibrium everyone expects in in-
teractions that have more than one equilibrium” [26]. No explicit punishment
exists for going against a convention, nor is there any implicit benefit in the
action represented by the convention over other possible actions. Members of a
convention expect others to behave a certain way, and acting against the con-
vention increases the likelihood of incompatible action choices and the costs
associated with these. Conventions have been shown to emerge naturally from
local agent interactions [5,12,23,25] and enhance agent coordination by placing
social constraints on agents’ action choices [22].

Although the terms are often used interchangeably in the literature [17, 21],
in this paper we differentiate between conventions and norms. Norms typically
imply an obligation or prohibition on agents with regards to a specific action.
Failure to adhere to norms and exhibit the expected behaviour is often associ-
ated with punishments or sanctions [1, 3, 11, 19]. Alternatively, agents may be
explicitly rewarded for adherence to norms. Thus, norms generally require addi-



tional system or agent capabilities as well as incurring a system-level overhead
for punishment/reward. In this paper, we assume that agents do not have the ca-
pability to punish one another, nor can they observe defection in others. Instead,
we use conventions as a lightweight method of increasing coordination.

We make only minimal assumptions about agent architecture and behaviour;
we assume that agents are rational and that they have access to a (limited)
memory of previous interactions. Numerous studies have focused on convention
emergence with these assumptions [5,10,21,25] and have shown that they allow
rapid and robust convention emergence. Walker and Wooldridge [25] investigated
convention emergence whilst making few assumptions about agent capabilities.
In their model, agents select actions based on the observed choices of others, and
global convention emergence is shown to be possible.

Expanding on this, Sen and Airiau [21] investigated social learning for con-
vention emergence, where agents receive a payoff from their interactions which
informs their learning (via Q-Learning). They showed convention emergence can
occur when agents have no memory of interactions and only observe their own
rewards. However, their model is limited in that agents are able to interact with
any other member of the population rather than being situated in a network
topology. Additionally, the convention space considered is restricted to only two
possible actions. In more realistic settings larger convention spaces and more re-
strictive connecting network topologies are likely. The network topology agents
are situated in has been shown to have a significant effect on convention emer-
gence [4,5,12,24], affecting the speed with which emergence occurs. Recent work
has shown that a larger number of actions typically slows convergence [7,10,18].

The use of fixed strategy agents, who always choose the same action regard-
less of others’ choices, to influence convention emergence has also been explored.
Sen and Airiau [21] show that a small number of such agents can cause a popula-
tion to adopt the fixed strategy as a convention over other equally valid choices.
This indicates that small numbers of agents can affect much larger populations.

In Sen and Airiau’s model, due to the lack of connecting topology, all agents
are identical in terms of their ability to interact with others. However, in many
domains, agent interactions may be limited to neighbours in the network. As
such, some agents will have larger sets of potential interactions than others. In
the context of static topologies, Griffiths and Anand [10] establish that which
agents are selected and where they are in the topology is a key factor in their ef-
fectiveness as fixed strategy agents. They show that placement by simple metrics
such as degree offers better performance than random placement.

Franks et al. [6, 7] investigated fixed strategy agents where interactions are
constrained by a static network topology and agents are exposed to a large
convention space. They found that topology affects the number of fixed strategy
agents required to increase convergence speed. This also expanded on the work
of Griffiths and Anand [10] by investigating the effectiveness of placing by more
advanced metrics such as eigenvector centrality.

Few studies have focused on convention emergence in dynamic topologies,
with most work focusing on static networks. Savarimuthu et al. [20] consider the



related phenomenon of norm emergence in a dynamic topology. They show that
norms are able to emerge under a number of conditions, but their work differs
from ours due to the requirements placed on agents. The interaction model used
requires agents to maintain an internal norm as well as being able to query other
agents. We make minimal assumptions about agent internals or the information
available. Additionally, our work investigates the manipulation of convention
emergence, something not considered by Savarimuthu et al.

Mihaylov et al. [16] briefly consider convention emergence in dynamic topolo-
gies using the coordination game. However, their work focuses on a new proposed
method of learning, rather than on the emergence itself. In particular, they do
not consider fixed strategy agents, or the action that emerges as a convention.
In this paper, we consider both convention emergence in dynamic topologies and
the use of fixed strategy agents to understand the impact of network dynamics.

Relatively little work has considered destabilising established conventions,
with previous investigations of fixed strategy agents typically inserting them at
the beginning of interactions. We have previously [13,15] investigated using fixed
strategy agents in static topologies to cause members of the dominant convention
to change their adopted convention and hence destabilise it. We found that this
required substantially more fixed strategy agents than is needed to influence con-
ventions before emergence. This paper expands on this work to examine aspects
of dynamic networks when selecting fixed strategy agents for destabilisation. We
also expand on [14] and consider the general nature of convention emergence in
dynamic topologies, particularly without the use of fixed strategy agents, and
the effect of topology features on convention emergence time. Finally, we explore
the relationship between placement heuristics, number of fixed strategy agents
and the speed of convention emergence.

3 Convention Emergence Model

Our experimental setup consists of three main components, introduced below:
the network topology, the interaction regime used by agents and the heuristics
used for placing fixed strategy agents.

3.1 Dynamic Topology Generator

Similar to Savarimuthu et al. [20] we utilise a particle-based simulation, de-
veloped by González et al. [8, 9], to model dynamic network topologies with
characteristics comparable to those observed in real-world networks. Agents are
represented as colliding particles and the topology is modified by collisions cre-
ating links between the agents. A population of N agents, represented as a set of
particles with radius r, is placed within a 2D box with sides of length L. Initially,
all agents are distributed uniformly at random within the space and are assigned
a velocity of constant magnitude v0 and random direction.

Each timestep, agents move according to their velocity and detect collisions
with other agents. When two agents collide, an edge is added between them in the



network topology if one does not already exist. Both agents then move away in a
random direction with a speed proportional to their degree. Thus, higher degree
nodes have an increased probability of further collisions, which in turn further
increases their degree. In this way, the model exhibits preferential attachment,
a characteristic found in static scale-free networks [2]. Such networks are often
studied in the field of convention emergence [5, 7, 10, 18] due to characteristics
that are representative of real-world networks.

Additionally, all agents are assigned a Time-To-Live (TTL) when created.
This is drawn uniformly at random between zero and the maximum TTL, Tl.
After each timestep agents’ TTLs are decremented by one. When an agent’s
TTL = 0 the agent and all its edges are removed. A new agent is placed at
the same location within the simulation with the randomised initial properties
discussed above. In this manner, the topology is constantly changing.

Different topologies can be characterised by the value of Tl/T0 where T0 is
the characteristic time between collisions. This can be expressed as:

Tl
T0

=
2
√

2πrNv0Tl
L2

(1)

González et al. show that this value dictates key characteristics of the generated
topology, primarily the average degree and degree distribution.

The concept of a quasi-stationary state (QSS) is discussed by González et
al., such that a QSS emerges after a number of timesteps and is characterised by
macro-scale stability of network characteristics. Micro-scale characteristics, for
individual agents, remain in flux. In [8] it is shown that the QSS can be described
as any timestep, t, where t & 2Tl. Our approach here differs from Savarimuthu et
al. [20] as we consider agent interactions starting from t = 0 rather than waiting
for the QSS. This allows us to mimic scenarios where agents have been placed in
a new environment rather than only considering already established networks.

3.2 Interaction Regime

Agents within the system interact with one another and, learning from these
interactions, converge to a shared behaviour in the form of a convention. Agent
interactions occur during each timestep of the regime. In each timestep, every
agent chooses one of its neighbours in the network at random. These agents play
a round of the n-action pure coordination game. In this game, both agents are
given a choice from a set of n-actions, A. Agents do not know what their opponent
has chosen. The payoff that each agent receives depends on the combination of
the chosen actions: if both chose the same action they receive a positive payoff,
otherwise a negative payoff. Alternative payoff matrices and their effect on the
effectiveness of the intervention strategies are discussed in Section 4.4.

Each agent monitors their expected payoff for each action, based on the
previous payoffs they have received when choosing that action. We adopt the
approach of Villatoro et al. [24] in this regard by using a simplified form of
Q-Learning. For each action, a ∈ A, the agent maintains a Q-Value which is



updated by Qi(a) = (1 − α) × Qi−1(a) + α × payoff where α is a parameter
known as the learning rate and i represents the number of times a has been
chosen. All agents start with Q0(a) = 0,∀a ∈ A. To combat the issue of local
optima, we allow each agent, with probability pexplore to randomly select an
action. Otherwise, as each agent is rational, they will always select the action
with the highest Q-Value, selecting randomly between ties.

In the formulation proposed by Kittock [12], a convention is considered to
have emerged when a high proportion (90%) of non-fixed strategy agents, when
not exploring, would choose the same action. We adopt this definition of a con-
vention but modify it to better fit the dynamic nature of the network topol-
ogy. Instead of considering the entire population, we monitor adoption within
the largest connected component. This follows from the findings of Gonzalez et
al. [8] that in most simulations a giant cluster consisting of nearly all agents will
emerge. Agents not within this cluster are likely to be recently created agents
and, as such, should not be included in the adoption rate calculation as they
have not interacted. This is reinforced by our simulations which showed that
most agents not within the largest connected component had degree zero. Simi-
larly, 100% adoption is unlikely due to new agents joining.

The Kittock criteria sets a high threshold and measures nearly pervasive
conventions. If a convention does not emerge at this threshold there is often still a
highly dominant strategy in the system. By considering a different threshold and
defining these as conventions, we can examine the effectiveness of the heuristics
in situations not normally considered. This approach can be seen in Section 4.4.

Fixed strategy agents will be placed within the network to study the effect on
convention emergence. These agents will replace selected agents upon insertion,
keeping all of that agent’s edges. This can be justified in real-world scenarios as
persuading the agents to act in a desired manner via some reward mechanism.
Such agents will be assigned the same fixed strategy and their placement will
be determined heuristically as discussed below. If a fixed strategy agent’s TTL
should reach zero, a new agent will be selected using the same heuristic.

We consider two different scenarios: placing fixed strategy agents at the be-
ginning of a system’s life, to encourage and direct initial convention emergence,
and inserting fixed strategy agents once a convention has emerged to attempt to
change it. In the former case, the fixed strategy will be randomly chosen from
the available actions. In the latter, it will be randomly chosen from the avail-
able actions excluding the already established convention. Initial insertion will
occur once a connected component of size greater than N/2 has emerged. This
prevents convention emergence being declared prematurely for a non-giant clus-
ter. Additionally, placement heuristics which rely on network metrics (such as
degree) may select sub-optimal agents if used before a main cluster has emerged.

3.3 Placement Heuristics

Previous work has utilised placement heuristics to enhance the effect of fixed
strategy agents. Metrics such as degree, eigenvector centrality and betweenness
centrality have been used with greater efficacy than random placement [6,10]. In



this paper, we focus on degree-based placement. However, the dynamic nature of
the topology introduces a number of ways to apply it. All heuristics are calculated
with respect to the largest connected component.

Our initial heuristic, Static Degree, corresponds to the equivalent heuristic for
static networks. At the time of insertion, agents are chosen to be fixed strategy
agents in descending order of degree. This selection is static once chosen, only
being modified upon agent expiration as detailed above. This simplistic approach
is computationally cheap, a factor of importance in settings where gathering
or computing this information is expensive. However, this risks selected agents
potentially becoming sub-optimal choices as the simulation progresses. The static
nature of this heuristic means that if another agent acquires a larger degree it
will not be selected until one of the current agents expires. Depending on the
TTL of the current fixed strategy agents, this could be a substantial period.

To address this issue we propose another degree-based heuristic: Updating
Degree. This approach is sensitive to the dynamic nature of the topology and
reselects the fixed strategy agents each timestep, based on highest current degree.
Whilst this offers a solution to the potential sub-optimality of Static Degree it
suffers from two problems. Firstly, the ability to acquire this information each
timestep in a timely manner may be infeasible in many domains. Secondly, there
is the potential that the fixed strategy agents will not remain in a given location
long enough to influence the local area before being replaced.

The Static and Updating Degree heuristics do not fully consider the dynamic
network context. Whilst high degree agents are likely to be influential due to their
ability to interact with many others, additional dimensions may affect their ap-
plicability. Agents close to expiring may be less desirable than younger agents
as their expected number of interactions before replacement is lower. However,
the youngest agents, those newly created, cannot be guaranteed to become in-
fluential later on. Hence, the age of an agent adds an additional consideration.
We propose a new heuristic, Life-Degree, that allows exploration of the effect
of age in addition to degree on a fixed strategy agent’s efficacy.

In many settings it may be impossible to know an agent’s TTL. However,
we can estimate an agent’s remaining life. Given the upper bound, Tl, and the
uniformly distributed nature of TTL, the normalised expected remaining TTL,
ErTTL, for an agent n ∈ N is:

ErTTL(n) = 1− age(n)× 2

Tl
(2)

We can also calculate the normalised degree of a node within the largest con-
nected component as:

degnorm(n) =
deg(n)

maxn′∈LCC deg(n′)
(3)

The Life-Degree heuristic is then defined as:

Life-Degree(n) = ω × degnorm(n) + (1− ω)× ErTTL(n) (4)



In this, 0 ≤ ω ≤ 1 is a weight, determining the relative contributions of degree
and expected TTL.

Life-Degree allows combination of the relevant information, normalised
against theoretical maximums, in a manner that allows exploration of the im-
portance of both. Two variations of Life-Degree will be used, Static and Up-
dating, to compare against the heuristics discussed above.

4 Results and Discussion

In this section we present our findings on convention emergence in dynamic
topologies and consider the effect of agent age via our proposed heuristic, Life-
Degree. Unless otherwise mentioned, all experiments used 1000 agents, the
10-action coordination game and an exploration and Q-Learning rate of 0.25.
Results were averaged over 100 runs. A payoff of +4 for coordinated actions and
−1 for conflicting actions was used. This was found to rapidly emerge thorough
and robust conventions. Additional payoff schemes are considered in Section 4.4.

4.1 Characterising Topology

We initially consider convention emergence without external manipulation in
dynamic topologies. This gives insight into the impact of network dynamics
on convention emergence and provides a baseline. Additionally, it allows us to
quantify the point at which a stable convention will have emerged for later
experiments that focus on destabilisation.

The features of the dynamic topology can be manipulated by varying the
parameters of the network model, and are encapsulated in different values of
Tl/T0. González et al. [9] show that the features of the topology thus only depend
on the ratio Tl/T0 and the density, ρ ≡ N/L2. Additionally, they show that the
average degree is a non-linear function of Tl/T0 that depends on the chosen ρ.
As such, for all experiments we use a constant ρ = 0.625 (i.e. N = 1000, L = 40)
to allow meaningful comparisons of the Tl/T0 values.

Parameter settings were chosen that generated values of Tl/T0 between 0 and
20. These were rounded to the nearest integer to combine similar Tl/T0 values,
with each bucket containing 10 values. The average time taken, over 30 rounds,
for convention emergence to occur was measured on the generated topologies
and the average time over the bucketed values was then calculated. Values which
did not result in convention emergence after 20,000 timesteps were discounted
from the second average as they were unlikely to result in conventions emerging.
Only runs with Tl/T0 . 4 are affected by this. Simulations with a higher Tl/T0
exhibited convention emergence for all runs. With Tl/T0 . 4 as much as 80% of
the runs for a given simulation did not result in convergence. The transition is
notable and is discussed below.

It is clear that convention emergence is successful in the dynamic topology,
and for most values of Tl/T0 there is little variation in the average time for
convention emergence as shown in Figure 1. Values of Tl/T0 & 5 all have a
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convention emergence time of around t = 500 with little variation between runs.
However, values of Tl/T0 . 4 displayed significant variation and, in general,
much more time was required for convention emergence to occur if it occurred
at all. Higher values of Tl/T0 did not exhibit this.

At low Tl/T0 values the topology either did not generate a giant cluster or
agents were found to expire before meaningful convention emergence could oc-
cur. This follows from the parameter settings required to give a small Tl/T0 and
means that there is a lower threshold for the topology to experience convention
emergence. In particular, there is a minimum level of connectedness and lifes-
pan that must be present. Below this threshold the network will be partially
disconnected and not representative of real-world topologies. However, once this
is achieved the time required for convention emergence is mostly independent
of Tl/T0. As such, we select parameter settings that are used for all following
simulations that give Tl/T0 = 4.7 which was found to provide stable convention
emergence times. For completeness, additional Tl/T0 values in the range 20 to
200 were also examined. There was a slight decrease in the average time at higher
values, although the low variation remained. As the real-world networks exam-
ined by González et al. had Tl/T0 values around 5-6 these results were purely to
determine the impact of high Tl/T0 values, and have not been included.

4.2 Initial Intervention

Having established that convention emergence occurs in dynamic topologies, we
now examine the effect of fixed strategy agents. We start by considering the
scenario where fixed strategy agents are introduced early in a system’s lifespan
to manipulate convention emergence. As discussed in Section 3, this initial in-
sertion is delayed until a cluster of size greater than N/2 has emerged. This was



found empirically to always have occurred by t = 200. Fixed strategy agents are
inserted after this “burn-in” period has elapsed.

We begin by considering the initial heuristics discussed in Section 3: Static
Degree and Updating Degree. We also consider random placement of the fixed
strategy agents as a baseline. The fixed strategy agents were inserted into the
system at t = 200 and the simulation allowed to run for 5000 timesteps. Prior
simulations showed that conventions always emerged well before this time even
without the presence of fixed strategy agents. The number of fixed strategy
agents inserted into the system was varied from zero to twenty and the propor-
tion of simulations in which the fixed strategy emerged as the convention was
monitored. The results of this setting are shown in Figure 2.

As expected, given the size of the action space (10), when no fixed strat-
egy agents were inserted, the proportion of times the fixed strategy emerged as
the convention is approximately 0.1. With the introduction of only a few fixed
strategy agents placed at targeted locations we are able to readily manipulate
the emerged convention more than 50% of the time. The results also show that
even randomly placed fixed strategy agents are able make a large difference in
convention emergence. This corroborates the findings in previous work on static
networks [10, 21], although larger numbers of fixed strategy agents are needed
comparatively. As the number of inserted agents increases, the difference be-
tween the targeted heuristics and random placement becomes more pronounced.
The targeted heuristics are able to cause convention emergence in nearly 100%
of cases with only 12 agents whilst random placement requires 20.

Importantly, there is little difference between the two targeted heuristics.
Updating Degree slightly outperforms Static Degree although in most cases this
is not statistically significant (only 4 and 10 FS agents exhibited differences
at a 10% significance level with most showing a Z-Score less than 1.0). Given
this, and the additional complexity and resource requirements for calculating
the Updating Degree heuristic, Static Degree is likely sufficient in most cases.

Having established the efficacy of the traditional heuristics, we now examine
the effect of considering agent age using our new heuristic, Life-Degree. We
begin by examining Static Life-Degree, contrasting this to Static Degree. Var-
ious weightings of Life-Degree were considered and the results are presented
in Figure 3. The results of Static Degree have also been included for comparison.

When given equal weighting between expected life and degree (ω = 0.5),
Life-Degree performs markedly worse than Static Degree for nearly all num-
bers of fixed strategy agents. This is due to the fact that such a weighting is
heavily biased to much younger agents. The range of possible ages is larger than
that of degree and as such, even when normalised, age was found to be the
primary selector. A weighting of 0.7 in favour of degree exhibits the same per-
formance as Static Degree (within a 90% confidence interval). Further increasing
the weighting offers no further improvement in performance, with ω = 0.9 also
performing the same as Static Degree. Additional weightings of 0.95 and 0.99
were also considered and similarly offered no improvements.
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These results show that an agent’s connectivity, indicated by its degree, is
a much larger contributor to its ability to influence others than how long that
agent will remain in the system. The fact that considering age can only decrease
the effectiveness of the chosen agents indicates that agents’ short-term influence
is a larger factor in convention emergence than choosing long-term targets.

Life-Degree was also used in an updating manner, such that the set of
fixed strategy agents was recalculated each iteration. The results from this
and, for comparison, Updating Degree are shown in Figure 4. Similar to the
Static Life-Degree experiments, the performance of Updating Life-Degree
depends heavily on the value of ω being used. As before, giving equal weight-
ing to each factor results in poor performance, far below that of pure degree.
Increasing the weighting again enhances performance but only to that of Up-
dating Degree. This mirrors the results of Static Life-Degree and shows that,
regardless of the ability to continuously assess an agent’s remaining lifespan,
choosing agents with numerous connections is the most important factor. This
indicates that, even in the extreme case where an agent is expected to expire in
a few timesteps, on average equal performance can be achieved when selecting
them compared to selecting an agent who remains in the system much longer.

Static Life-Degree and Updating Life-Degree, like their pure degree
counterparts, have only slight differences in performance, with Updating Life-
Degree performing slightly better. At each weight, Updating Life-Degree
outperforms Static Life-Degree at a 10% significance level for several num-
bers of FS agents. This is most pronounced when ω = 0.9 where Updating
Life-Degree performs significantly better between 4-8 FS agents. However,
the constant information updates may make Updating Life-Degree untenable
in many domains. In domains where this information is readily available, we have
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shown that using up-to-date estimates of degree is sufficient to offer improved
outcomes from fixed strategy agent selection.

The results presented above show that it is possible to influence the direction
of convention emergence in dynamic topologies. Another commonly used metric
of the efficiency of fixed strategy agents is the effect they have on the speed of
convention emergence [7,10]. Figure 5 shows how time for convention emergence
varies for different numbers of fixed strategy agents using the heuristics. As is
to be expected, given the asymptotic behaviour exhibited above, consideration
of age, depending on weighting, causes either an increase in the average time
required or results in similar times to the equivalent pure degree heuristics.
Omitted from the graph for clarity, a value of ω = 0.5 requires more time for
convention emergence to occur for any number of fixed strategy agents. Values
higher than 0.7 perform similarly to 0.7 and hence have also been omitted.

The standard deviation of the convention emergence time also decreases
rapidly as the number of fixed strategy agents rises, from up to 100 with zero
agents to around 20 with 20 agents. The standard deviation of the results from
the Life-Degree simulations are equivalent to those of the pure degree heuris-
tics except for ω = 0.5 which exhibits much larger variance. Thus, consideration
of age has a negative effect both in establishing conventions as well as the time
it takes to do this. This indicates that, in all aspects, degree is the factor that
contributes most to how influential a given agent will be.

4.3 Late Intervention

We now look to the related use of fixed strategy agents in destabilising and
replacing an already established convention [13, 15]. This requires a convention
to already have emerged within the system. So that the results are representative
of the general case, we allow a convention to naturally emerge without the use
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of fixed strategy agents to encourage it. It was found that conventions always
emerged before timestep t = 1500 and, as such, insertion of fixed strategy agents
occurs at this time. This also means that the system will have entered the QSS.
The action of the fixed strategy is chosen uniformly at random from the actions
that exclude the established convention.

In common with the findings of Marchant et al. [13,15] for static networks, our
initial experiments showed a much larger number of fixed strategy agents was
required to affect the established convention compared to the number needed
when inserted into a system earlier. However, a relatively small set of fixed
strategy agents are still able to effect a change. In contrast to static networks, the
transition between no effect and guaranteed change occurs over a much smaller
range of fixed strategy agents. For nearly all heuristics (excluding random) there
is little or no effect at 40 fixed strategy agents (4% of the population), whilst 50
fixed strategy agents (5% of the population) results in the targeted convention
supplanting the established convention in almost 100% of cases. This narrow
window indicates that there is a critical number of fixed strategy agents that is
required to guarantee replacement of a convention in dynamic topologies.

Figure 6 shows the proportion of runs in which the convention represented
by the fixed strategy became established when using the static heuristics: Static
Life-Degree and Static Degree. In common with initial intervention, consid-
eration of age induces poorer performance here. With ω = 0.7, Life-Degree is
substantially outperformed by Static Degree for any non-trivial proportion, in
contrast to the case in initial intervention when such a weighting produced sim-
ilar performances. Even when increasing the weighting to 0.9, previously equiv-
alent to the performance of pure degree, Static Life-Degree is still slightly



outperformed by Static Degree though this is within the margin of error (only
46 FS agents produce significant differences at a 10% level). The performance of
higher weights asymptotically approached that of Static Degree.

Similar results are presented in Figure 7 for updating heuristics. The differ-
ence between Updating Life-Degree and Updating Degree in this scenario is
even more pronounced. A weighting of 0.7 is again substantially worse than the
pure degree heuristic with the higher weightings, 0.9 and 0.95, being of similar
quality to Updating Degree.

Of note, the difference in performance between static heuristics and updat-
ing heuristics is more pronounced here than in initial interventions; the updating
heuristics consistently require significantly fewer fixed strategy agents to effect a
change. This indicates that inclusion of up-to-date information of agent state is
more important when combating an existing convention and makes a larger con-
tribution compared to establishing a convention from a state of neutral agents.

These findings indicate that destabilisation of an existing convention is even
more sensitive to the consideration of agent longevity than initial convention
emergence. Indeed, the age or expected lifespan of an agent can be safely ignored
with no detrimental effects to the performance of the fixed strategy agents. This
strongly implies that the major factor in destabilising conventions is instead
choosing agents with high degree, regardless of how long that agent will last.
High degree is more effective at spreading influence than choosing a lower degree
agent with longer life. The difference between Static and Updating Degree, not
present in initial intervention, also supports this view; the importance of choosing
the current highest degree agents is far more pronounced.

4.4 Alternative Payoffs

We now turn our attention to the effect the payoff matrix has on intervention
effectiveness. In particular, we examine whether the positive and negative re-
wards the agents receive (and the symmetry or asymmetry of these) changes the
relationship or relative performance of the various placement heuristics.

This exploration uses 3 different payoff matrices: 4v-1 (positive reinforce-
ment), 1v-1 (neutral reinforcement) and 1v-4 (negative reinforcement) where
the first number represents the payoff for coordinated strategy choice, the sec-
ond the payoff for conflicting strategy choice. 4v-1 is the payoff structure that
has been used in all previous experiments and represents situations where co-
ordination is more beneficial than conflict is harmful, or where coordination is
more encouraged. For example, attempting to find a mutual radio channel over
which to communicate; whilst there is an expenditure of time for each failure, it
is not necessarily very harmful whilst correctly communicating is very beneficial.
This structure has been used in previous work [21] and has been shown to allow
rapid and thorough convention emergence. 1v-1 can instead represent situations
where there is symmetry between the benefit and harm, such as choosing which
side of a corridor to walk on; there are both minor inconveniences and minor
benefits but neither of a larger scale than the other. Finally, 1v-4 represents
situations where conflicting action choices could be very detrimental and should
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Fig. 8: A comparison of the effect of game payoff on the effectiveness of the standard
heuristics in encouraging initial convention emergence.

be discouraged rapidly. An example of this is which side of the road to drive on
(although this is often described using a symmetric payoff); the negative effects
of a crash are substantial.

As this paper is concerned with the effectiveness of strategies to either direct
or replace convention emergence, we primarily concern ourselves with the payoff
matrix that best enables conventions to emerge rapidly and thoroughly, so the
strategies can be studied. The 4v-1 payoff matrix performs best in this regard.
Indeed, the other payoff matrices nearly always fail to reach the Kittock criteria
of 90% for convention emergence, even when the simulation is run for 50000
timesteps. This is related to both the number of strategies available and the
payoff matrix. As the number of strategies increases, the average percentage of
agents adhering to the primary convention decreases and, with the alternative
payoff structures, falls below the 90% Kittock threshold for our strategy space
of 10. Whilst the positive reinforcement system teaches agents which choice is
best, the other payoff structures instead teach agents which choices are worst.
Due to the asymmetry of this, and the fact that coordination is not as heavily
rewarded, the level of coordination is lower.

However, although the 90% threshold of the Kittock criteria is not met, there
is in general still a singular strategy that dominates agent choice and if we reduce
the threshold to 80% we can view this as convention emergence. Lowering the
threshold of convention emergence enables us to compare the effectiveness of
the strategies under different payoff matrices whilst still considering situations
where the system is heavily dominated by a single strategy. All the results in
this subsection use the 80% threshold, with all other parameters kept as defined
at the beginning of this section.

Initial Intervention We begin by considering the payoff matrices as applied
to initial intervention. Using the same heuristics and weightings as before the
simulations were run with the three different payoff matrices and, using a thresh-
old of 80%, the proportion of runs in which the fixed strategy emerged above
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Fig. 9: A comparison of the effect of game payoff on the effectiveness of the advanced
heuristics in encouraging initial convention emergence.

this threshold was compared. Figure 8 shows the comparison when using the
standard heuristics. As this figure shows, the relative performance between the
random, static degree and updating degree placement strategies never changes.
However, the absolute performance of each of the heuristics increases in both 1v-
1 and 1v-4 with fewer FS agents needed to enact the same change. This is likely
due to it being easier for the system to overcome any partial convention that has
started to emerge by the time the FS agents are inserted (t = 200) as the reward
for perpetuating this emerging convention is lower and, in the case of 1v-4, the
negative payoff for conflicting with the FS agents is higher. Additionally, whilst
the other payoff structures may provide easier to manipulate systems, 4v-1 is
the only one of those examined that reached the Kittock criteria.

Figure 9 shows the comparison for both static and updating placement heuris-
tics. The findings in Figure 8 are also present here: the relative performance be-
tween the heuristics does not change as the payoff is altered but performance for
all heuristics increases. Additionally, the poor performance of the 0.5 weighting
of Life-Degree has a reduced penalty compared to the other weightings.
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Fig. 10: A comparison of the effect of game payoff on the effectiveness of the advanced
heuristics in encouraging replacement of an already established convention via late
intervention. Note the different x-axes between the original payoff structure and the
others.

Late Intervention Having examined the effect of the payoff matrix on initial
interventions we now investigate the effect on late interventions and destabilisa-
tion. For these experiments the threshold for both destabilisation and considering
a new convention to have replaced the old are both 80%. Figure 10 shows the
results for both static and updating heuristics. Of particular note is the differ-
ence in x-axis range between 4v-1 and the other payoffs: the former ranges from
40 to 50, the latter from 30 to 40.

Similar to the findings for initial intervention, the relative performances
amongst the heuristics are the same across the different payoff matrices. How-
ever the absolute performance, in the number of agents needed, is substantially
smaller for the latter payoff matrices. This provides additional evidence for the
hypothesis discussed above, that it is easier to get agents to switch away from
the established convention as the reward for continuing to use it is less compared
to switching to the introduced strategy. As with other aspects discussed in this



paper the effect is amplified in late interventions compared to similar effects
present in initial intervention.

Overall, changing the payoff matrix, either from positive asymmetry to neu-
tral symmetry or negative asymmetry caused no change on the relative effec-
tiveness of the various interventions. Degree placement still performs best in
both initial and late interventions and, depending on weighting, can offer large
improvements over the consideration of agent age. However, the absolute perfor-
mance change is interesting and future work will further explore this difference.

5 Discussion and Conclusions

Convention emergence is often used in multi-agent systems to encourage efficient
and coordinated action choice. It provides a mechanism through which such be-
haviour can naturally occur without requiring changes to, or assumptions about,
underlying agent capabilities. How best to facilitate robust convention emergence
in a timely manner is an area of ongoing research. Fixed strategy agents can be
used to speed up and direct emergence. In particular, placing small numbers
of fixed strategy agents at targeted locations within the network topology con-
necting agents has been shown to better facilitate convention emergence than
untargeted placement. The heuristics used to choose these locations often make
use of metrics derived from an agent’s location within the topology.

In this paper, we initially considered uninfluenced convention emergence in a
dynamic network, using the topology model proposed by González et al. [8,9]. We
showed that conventions emerge in a dynamic environment and that the average
time taken for this is largely independent of the parameter settings used in the
network model provided the value of Tl/T0 is above a threshold of approximately
4. Below this, the topology or agent lifespans are not conducive to any convention
emergence occurring at all. This indicates that there is a minimum connectedness
required in dynamic topologies for conventions to emerge.

We proposed a new placement heuristic, Life-Degree, that utilises informa-
tion unique to dynamic topologies in its decision making process, allowing us to
test the importance of that information. We contrasted this to the performance
of the traditionally used placement heuristics. We examined the scenario where
fixed strategy agents are introduced early in the life of the system to direct and
encourage faster convention emergence. We showed that, as in static networks,
targeted placement offers better performance than untargeted. A small number
of agents are able to influence a population much larger than themselves. We
established that, in domains where it is possible to change the fixed strategy
agents after selection, doing so offers small improvements in performance. In
both settings, the most important aspect of selected agents was found to be
their degree, ignoring their longevity. This both increased the probability of a
specific convention emerging as well as increasing the speed of that emergence.

Additionally, we considered the destabilisation of already established conven-
tions in dynamic networks. We found that destabilisation is more sensitive to
the inclusion of agent lifespan than when using fixed strategy agents to estab-



lish a convention at the beginning of simulation. Choosing locations that will
maximise an agent’s influence, regardless of how long they will remain, is the
most important aspect to consider when destabilising conventions in dynamic
networks. Future work will investigate this further and examine if other features
of dynamic networks offer beneficial information when selecting fixed strategy
agents. We showed that the updating heuristics cause more destabilisation than
the static heuristics and that this effect was much larger than the equivalent
difference when encouraging initial convention emergence.

Finally we explored the effect that different payoff schemes had on the effec-
tiveness of the heuristics. We showed that the ordering of performance was not
affected by the payoff scheme but that the overall effectiveness of all heuristics
is sensitive to the rewards the agents receive.

Overall, we have shown that convention emergence is possible in dynamic
topologies and that many characteristics have direct parallels in static networks.
We have shown that the degree of an agent is a major factor when choosing
them and can be used to cause rapid convention emergence and destabilisation.
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