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Abstract. Norms are a valuable mechanism for establishing coherent
cooperative behaviour in decentralised systems in which no central au-
thority exists. In this context, Axelrod’s seminal model of norm estab-
lishment in populations of self-interested individuals [2] is important in
providing insight into the mechanisms needed to support this. However,
Axelrod’s model suffers from significant limitations: it adopts an evolu-
tionary approach, and assumes that information is available to all agents
in the system. In particular, the model assumes that the private strate-
gies of individuals are available to others, and that agents are omniscient
in being aware of all norm violations and punishments. Because this is an
unreasonable expectation, the approach does not lend itself to modelling
real-world systems such as peer-to-peer networks. In response, this paper
proposes alternatives to Axelrod’s model, by replacing the evolutionary
approach, enabling agents to learn, and by restricting the metapunish-
ment of agents to only those where the original defection is perceived, in
order to be able to apply the model to real-world domains.

1 Introduction

In many application domains, engineers of distributed systems may choose, or be
required, to adopt an architecture in which there is no central authority and the
overall system consists solely of self-interested autonomous agents. The rationale
for doing so can range from efficiency reasons to privacy requirements. In order
for such systems to achieve their objectives, it may nevertheless be necessary
for the behaviour of the constituent agents to adhere to certain constraints, or
norms. In peer-to-peer file sharing networks, for example, we require (at least
a proportion of) peers to provide files in response to the requests of others,
while in wireless sensor networks nodes must share information with others for
the system to determine global properties of the environment. However, there is
typically a temptation in such settings for individuals to deviate from the desired
behaviour. For example, to save bandwidth peers may not provide files, and to
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conserve energy the nodes in a sensor network may not share information. It is
therefore desirable to minimise the temptation for agents to deviate from the
desired behaviour, and encourage the emergence of cooperative norms.

Norms have been studied by very many different researchers, over several dif-
ferent areas (for example, [6–8, 16, 18–20, 23]. Most notably, Axelrod’s seminal
investigation of norm establishment in populations of self-interested individu-
als [2] provides an analysis of the conditions in which norms can be established.
In his experiments, a population of agents repeatedly play a simple game, in
which agents make decisions about whether to comply with a desired norm of
cooperation and whether to punish those who are seen to violate this norm.
These decisions may result in certain penalties or rewards, with the strategies
of agents being determined through an evolutionary process, in which the more
successful strategies are reproduced. In this setting, Axelrod explored how the
emergence of norm compliant strategies can be encouraged.

Although Axelrod’s investigation is successful in establishing cooperative
norms, the model makes several assumptions that are unrealistic in real-world
settings. In particular, in many domains it is not possible to remove unsuccessful
agents and replicate those that are more successful, and there is no centralised
control that could oversee this process. Instead, we need a mechanism through
which individuals can learn to improve their strategies over time. If we enable in-
dividuals to compare themselves to others, and adopt more successful strategies,
then we can take a learning interpretation of the evolutionary mechanism [13],
without needing to remove and replicate individuals. However, this learning in-
terpretation requires that the private strategies of individuals are available for
observation by other agents, which is again an unreasonable assumption. Fur-
thermore, as has been shown elsewhere, Axelrod’s model is unable to sustain
cooperation over a large number of generations [10]. Axelrod’s approach, as dis-
cussed below, relies on agents being able to punish both those that defect and
those that fail to punish defection, yet this is unrealistic since it assumes omni-
science through agents being aware of all norm violations and punishments.

In this paper we investigate alternatives that allow us to make use of the
mechanisms resulting from Axelrod’s investigations, in more realistic settings.
Specifically, we first take a learning interpretation of evolution and describe an
alternative technique, strategy copying, which prevents norm collapse in the long
term. Second, we remove the assumption of omniscience and constrain the ability
of agents to punish according to the defections they have observed. Finally, to
obviate the need for information on the private strategies of others, we propose
a learning algorithm through which individuals improve their strategies based
on their experience.

The paper begins by reviewing Axelrod’s original norms game and metanorms
game, in which our work is situated. Then, in Section 3, we present our strategy
copying technique, and show how it performs in the original context and in
situations in which observation of defection is not guaranteed. In Section 4,
we describe a reinforcement learning algorithm designed to avoid the need for
access to the private strategies of others. Section 5, considers related work, before
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presenting our conclusions in Section 6, with a discussion of the significance of
our results.

2 Axelrod’s Model

2.1 The Norms Game

Axelrod’s norms game adopts an evolutionary approach in which successful
strategies multiply over generations, potentially leading to convergence on coop-
erative norms [2]. Each agent in the population has a number of opportunities
(o) in which it can choose to defect by violating a norm, and such behaviour has
a particular known probability of being observed, or seen (So). An agent i has
two decisions, or strategy dimensions, as follows. First, it must decide whether
to defect, determined by its boldness (Bi); and second, if it sees another agent
defect in a particular opportunity (with probability So) it must decide whether
to punish this defecting agent, determined by its vengefulness (Vi), which is the
probability of doing so. If So < Bi then i defects, receiving a temptation pay-
off, T = 3, while hurting all other agents with payoff H = −1. If a defector
is punished (P ), it receives an additional punishment payoff of P = −9, while
the punishing agent pays an enforcement cost, E = −2. The initial values of Bi

and Vi are chosen at random from a uniform distribution of a range of 8 values
between 0

7 and 7
7 .

Axelrod’s simulation had 20 agents, with each having four opportunities to
defect, and the chance of being seen for each drawn from a uniform distribution
between 0 and 1. After playing a full round (all four opportunities), scores for
each agent are calculated to produce a new generation, as follows. Agents that
score better or equal to the average population score plus one standard deviation
are reproduced twice in the new generation. Agents that score one standard
deviation or more under the average score are not reproduced, and all others are
reproduced once. Finally, a mutation operator is used to enable new strategies
to arise. Since Bi and Vi (which determine agent behaviour) take eight possible
values they can be represented by three bits, to which mutation is applied (by
flipping a bit) when an agent is reproduced, with a 1% chance.

In this model, cooperative norms are established when Vi is high and Bi is
low for all members of the population, so that defection is unlikely, and observed
defections are likely to be punished. In 100 generations, Axelrod found only
partial establishment of a norm against defection, so introduced an additional
mechanism to support norms in his metanorm model.

2.2 The Metanorms Game

The key idea underlying Axelrod’s metanorm mechanism is that some further
encouragement for enforcing a norm is needed. In the metanorms game, if an
agent sees a defection but does not punish it, this is itself considered as a form
of defection, and others in turn may observe this defection (with probability
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So) and apply a punishment to the non-enforcing agent. As before, the decision
to punish is based on vengefulness, and brings the defector (namely, the non-
punisher) a punishment cost of P ′ = −9 and the punisher an enforcement cost of
E′ = −2. Applying the simulation to the metanorms game gives runs with high
vengefulness and low boldness, which is exactly the kind of behaviour needed to
support the establishment of a norm against defection.

However, Axelrod’s analysis of results was limited. As has been shown sub-
sequently, allowing Axelrod’s metanorms game to run for an extended period
(1,000,000 generations) ultimately results in norm collapse [9]. As Mahmoud et
al. have shown [10], this norm collapse arises as a consequence of two aspects.
First, a sufficiently long run (compared to Axelrod’s limited run of 100 gen-
erations) provides the opportunity for a sequence of mutations to cause norm
collapse even after a norm has been established in the population. Second, such
mutation is magnified by the evolutionary manner of replication, generating a
new population of agents.

3 Strategy Copying

As indicated above, the evolutionary approach causes some problems in extended
runs, leading to norm collapse. In addition, for use in domains such as peer-
to-peer or wireless sensor networks, the agents themselves cannot be deleted
or replicated, but instead must modify their own behaviour. In this section,
therefore, we examine a simple alternative to Axelrod’s model in which an agent
that performs poorly in comparison to others in the population can learn new
strategies (in terms of vengefulness and boldness attributes) by adopting the
strategy of other, better performing agents, replacing the existing strategy with
a new one. Agents can achieve this in different ways: they can copy the strategy
of the agent with the highest score or they can copy the strategy of one of the
group of agents that perform best in the population.

3.1 Strategy Copying from a Single Agent

Intuitively, copying the strategy of the agent with the highest score appears to be
a promising approach. However, it leads to poor results in the long term because
it draws strategies from only one agent rather than a population of agents. This
makes the approach vulnerable to strategies that are only successful in a small
number of possible settings. Moreover, by failing to draw strategies from a variety
of agents, the strategies tend to converge prematurely. To illustrate, consider
a group of students taking an examination, with one of the students having
cheated. If the cheating student has not been seen, they may achieve the best
exam performance. However, if all other students copy this behaviour and cheat
in the next exam, there is a high possibility that they will be caught, and will thus
suffer from much worse results than if they had not cheated. This is supported
by the results shown in Figures 1 and 2, illustrating experiments with runs of
100 and 1,000,000 timesteps (where a timestep represents one round of agents



Overcoming Omniscience for Norm Emergence in Axelrod’s Model 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

V
e
n
ge
fu
ln
e
ss

Boldness

Each diamond represents the final average 
vengefulness and boldness of a single run

Fig. 1. Strategy copying from the best agent; 100 timesteps

having opportunities to defect and learning from the results, and is equivalent to
a generation in the evolutionary approach). Each point on the graph (shown as a
diamond to increase visibility) represents the average boldness and vengefulness
of the population at the end of a single simulation run.

In the short term, as can be seen from Figure 1, copying from the best agent
leads to norm establishment. However, in the long term the norm collapses, as
shown in Figure 2. This can be explained by the fact that an agent with low
vengefulness that does not punish a defector (and thus does not pay an enforce-
ment cost) but is also not metapunished, scores better than any other agent
with high vengefulness that does punish (and thus pays the enforcement cost).
As a result, other agents copy the low vengefulness of this agent so that low
vengefulness becomes prevalent in the population. In the same way, when low
vengefulness prevails in the population, an agent with high boldness defects,
gaining a temptation payoff, and hurting others without receiving punishment.
As a result, other agents copy the high boldness of this agent so that low venge-
fulness and high boldness are propagated through the population, leading to
norm collapse. This transition from high vengefulness to low vengefulness and
from low boldness to high boldness requires time to manifest, but the duration
of the period of time is not fixed.

3.2 Strategy Copying from a Group of Agents

Alternatively, and as we have suggested, we might seek to copy the strategy
of one in a group of high-performing agents. In this view, agents choose one
agent, at random, from the group of agents with scores above the average, and
copy its strategy. As previously, experiments of different durations (between 100
and 1,000,000 timesteps) were carried out; the results in Figure 3, for 1,000,000
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Fig. 2. Strategy copying from the best agent; 1,000,000 timesteps

timesteps, show that all runs ended with norm establishment in the long term,
indicating that this approach is effective in eliminating the problematic effect
of the replication method. This approach avoids norm collapse since it does not
limit itself to the best performing agent, and thus does not run the risk of only
adopting a strategy that performs well in a small number of settings.

3.3 Observation of Defection

As stated in Section 2, in Axelrod’s model, an agent Z is able to punish another
agent Y that does not punish a defector X, even though agent Z did not see the
defection of agent X. However, such metapunishment is not possible if the origi-
nal defection is not observed: guaranteed observation of the original defection is
an unreasonable expectation in real-world settings. In consequence, our model
needs adjustment so that metapunishment is only permitted if an agent observes
the original defection. However, because this observation constraint limits the
circumstances in which metapunishment is possible, its introduction corresponds
to removing the metapunishment component from part of the game. In Axelrod’s
original experiments, metapunishment was introduced as a means to stabilise an
established norm. In his setting, norms tend to collapse shortly after they are
established without metapunishment. In fact, this remains the case in our model
and our results confirm this.

More precisely, the observation constraint causes all runs to end in norm
collapse when simulations are run for 1,000,000 timesteps, as shown in Figure 4.
This is due to the fact that, as in the original model, runs initially stabilise on
high vengefulness and low boldness, and then mutation causes vengefulness to
reduce. If an agent Y with high vengefulness and low boldness changes through
mutation to give lower vengefulness, while boldness for all remains low, there
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Fig. 3. Strategy copying from a group of agents

is no defection and the mutated agent survives. In addition, if boldness then
mutates to become just a little higher for a different agent X, with average
vengefulness remaining high, X will still rarely defect because of relatively low
boldness.

If it does defect, however, and is seen by others, it receives a low score, unless
it is not punished, in which case the non-punishing agents may themselves be
punished because of the high vengefulness in the general population. Here, agent
Y may not punish X because of the low probability of being seen (which must be
below the low boldness level to have caused a defection) or because it has mutated
to have lower vengefulness. In the former case, Y will not be metapunished
for non-punishment (since there is a low probability of some other agent Z
having seen it), but in the latter case, Y might be metapunished if it is seen by
others. The likelihood of agent Y ’s non-punishment being seen requires first X ’s
defection being seen by Y, and then Y ’s non-punishment being seen by others.
Importantly, in this new model, agents that metapunish Y must themselves
see X ’s defection. Since this combination of requirements is rare, such mutants
survive for a longer duration, enabling their strategy to propagate through the
population, and causing vengefulness to decrease. In addition, if another such
event occurs, it will cause vengefulness to drop further until it reaches a very low
level. When the model runs over an extended period, such a sequence of events
is much more likely, and low vengefulness allows a mutant of higher boldness to
survive and spread among the whole population, which is the cause of the norm
collapse.
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Fig. 4. Strategy copying with observation of defection

4 Strategy Improvement

Once the observation constraint is introduced, strategy copying becomes inad-
equate. Furthermore, it requires that agents have access to the strategies and
decision outcomes of others in order to enable the copying mechanism. As we
have argued, in real-world settings such observations tend to be unrealistic. Re-
inforcement learning offers an alternative to Axelrod’s evolutionary approach to
improving performance of the society while keeping agent strategies and decision
outcomes private. There are many reinforcement techniques in the literature,
such as Q-learning [21], PHC and WOLF-PHC [4], which we use as inspiration
in developing a learning algorithm for strategy improvement in the metanorms
game.

4.1 Q-learning

Q-learning is a reinforcement learning technique that allows the learner to use
the (positive or negative) reward, gained from taking a certain action in a certain
state, in deciding which action to take in the future in the same state. Here, the
learner keeps track of a table of Q-values that record an action’s quality in a
particular state, and updates the corresponding Q-value for that state after each
action. The new value is a function of the old Q-value, the reward received,
and a learning rate, δ, and the action with the highest updated Q-value for the
current state is chosen. However, for us, Q-learning suffers from two drawbacks.
First, it considers an agent’s past decisions and corresponding rewards, which
are not relevant here; doing so would inhibit an agent’s ability to adapt to new
circumstances. Second, actions are precisely determined by the Q-value; there is
no probability of action, unlike Axelrod’s model.
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Bowling and Veloso [4] proposed policy hill climbing (PHC), an extension
of Q-learning that addresses this latter limitation. In PHC, each action has a
probability of execution in a certain state, determining whether to take the ac-
tion. Here, the probability of the action with the highest Q-value is increased
according to a learning rate δ, while the probabilities of all other actions are
decreased in a way that maintains the probability distribution, with each proba-
bility update occurring immediately after the action. In enhancing the algorithm,
a variable learning rate is introduced, which changes according to whether the
learner is winning or losing, inspired by the WOLF technique (win or learn fast).
This suggests two possible values for δ: a low one to be used while an agent is
performing well and a high one to be used while the agent is performing poorly.

However, in one round of Axelrod’s game, an agent can perform multiple
punishments (potentially one per defection and non-punishment observed), while
only having a small number of opportunities to defect (four in Axelrod’s config-
uration). Therefore, punishment and metapunishment actions would be consid-
ered much more frequently than defection, leading to disproportionate update
of probabilities of actions, with some converging more quickly than others. To
address this imbalance, we can restrict learning updates to occur only at the
end of each round, rather than after each individual action, so that boldness
and vengefulness are reconsidered once in each round and evolve at the same
speed. The aim here is to change the probability of action significantly when
losing, while changing it much less when winning, providing more opportunities
to adapt to good performance.

While basic Q-learning is not appropriate because of the lack of a probability
of taking action, PHC-WOLF suffers from a disproportionate update of prob-
abilities of action. Nevertheless, the use of the variable learning rate approach
in PHC-WOLF is valuable in providing a means of updating the boldness and
vengefulness values in determining which action to take. However, since agents
that perform well need not change strategy, we can consider only one learning
rate. The next section details our algorithm, inspired by this approach.

4.2 BV Learning

To address the concerns raised above, in this section, we introduce our BV
learning algorithm. This requires an understanding of the relevant agent actions
and their effect on boldness and vengefulness, as summarised in Table 1, which
outlines the different actions available to an agent and the consequences of each
on the agent’s score.

Now, since boldness is responsible for defecting, an agent that obtains a good
score as a result of defecting should increase its boldness, and an agent that finds
defection detrimental to its performance should decrease its boldness. Learning
suitable values for vengefulness is more complicated, since while it is responsible
for both punishment and metapunishment, these also cause enforcement costs
that decrease an agent’s score. Low vengefulness allows an agent to avoid paying
an enforcement cost, but can result in receiving metapunishment. Vengefulness
thus requires a consideration of all these aspects. This intuition is formalised as
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Table 1. Effects of decisions on score

Decision Effects

Defect Gain temptation payoff
Hurts all other agents
Potentially suffer punishment cost

Cooperate —

Punish Punisher pays enforcement cost
Defector pays punishment cost

Not punish Potentially suffer metapunishment
(incurring punishment cost)

Metapunish Punisher pays enforcement cost
Defector pays punishment cost

Not metapunish —

in Algorithm 1, as follows. (Note that we use subscripts to indicate the relevant
agent only when needed.)

First, in order to determine the unique effect of each individual action on
agent performance, note that we decompose the single combined total score
(TS ) of the original model into distinct components, each reflecting the effect
of different classes of actions. The defection-cooperation action brings about
a change only if an agent defects (Line 9): the agent’s score increases by a
temptation payoff, T (Line 10), but it hurts all others in the population, whose
scores decrease by H (line 12), where H is a negative number that is thus added
to the score. If an agent cooperates, no scores change. We can therefore use just
one distinct value to keep track of this score, referred to as the defection score
(DS ), and which determines whether to increase or decrease boldness.

Conversely, punishment and metapunishment both have two-sided conse-
quences: if an agent j sees agent i defect in one of its opportunities (o) to do
so, with probability So (Line 13), and decides to punish it (which it does with
probability Vj ; Line 14), i incurs a punishment cost, P , to its DS (Line 15),
while the punishing agent incurs an enforcement cost, E, to a different score, its
punishment score, PS (Line 16). Note that both P and E are negative values,
so they are added to the total when determining an overall value. As the name
suggests, PS captures the total score obtained by an agent as a result of punish-
ing another, and applies to both punishment and metapunishment (enforcement
costs). There is also a different change (resulting from potential subsequent re-
ceived metapunishment) if it decides not to punish (Line 17). If j does not punish
i, and another agent k sees this in the same way as previously (Line 19), and
decides to metapunish (Line 20), then k incurs an enforcement cost, E, to its PS,
and j incurs a punishment cost P to its no punishment score, NPS. (An agent’s
NPS is obtained from not punishing, and comprises the metapunishment cost
alone.)

In Axelrod’s original model, those agents that are one standard deviation or
more below the mean are eliminated and replaced in the subsequent population
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Algorithm 1 The Simulation Control Loop: simulation(T,H, P,E, γ, δ)

1. for each agent i do
2. {Initialising}
3. Bi = random() {Random generator that uses uniform distribution}
4. Vi = random() {Random generator that uses uniform distribution}
5. for each round do
6. for each agent i do
7. {Decision making}
8. for each opportunity to defect o do
9. if Bi > So then

10. DSi = DSi + T
11. for each agent j: j 6= i do
12. TSj = TSj +H
13. if see(j,i,So) then
14. if punish (j, i, Vj) then
15. DSi = DSi + P
16. PSj = PSj + E
17. else
18. for each agent k : k 6= i ∧ k 6= j do
19. if see(k,j,So) then
20. if punish (k, j, Vk) then
21. PSk = PSk + E
22. NPSj = NPSj + P
23. Temp = 0
24. for each agent i do
25. TSi = TSi + DSi + PSi + NPSi

26. Temp = Temp + TSi

27. AvgS = Temp/no agents
28. for each agent i do
29. {Learning}
30. if TSi < AvgS then {AvgS is the mean score of all agents}
31. if explore(γ) then
32. Bi = random()
33. Vi = random()
34. if DSi < 0 then
35. Bi = max(Bi − δ, 0)
36. else
37. Bi = min(Bi + δ, 1)
38. if PSi < NPSi then
39. Vi = max(Vi − δ, 0)
40. else
41. Vi = min(Vi + δ, 1)
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generation with new agents following the strategy captured by the boldness and
vengefulness values of those agents that are one standard deviation or more above
the mean. Thus, poorly performing agents are replaced by those that perform
much better. In contrast, in our model, we distinguish more simply between good
and poor performance, with only agents that score below the mean reconsidering
their strategy. Thus, for each agent, we combine the various component scores
into a total, TS and, if the agent is performing poorly (in relation to the average
score, AvgS in Line 30), we reconsider its boldness and vengefulness. Note that
this average score is established through the lines in the algorithm around 27.

Now, in order to ensure we allow a degree of exploration (similar to mutation
in the original model’s evolutionary approach, to provide comparability) and to
enable an agent to step out of the learning trend, here we adopt an exploration
rate, γ, which regulates adoption of random strategies from the available strate-
gies universe (Line 31). If the agent does not explore then, if defection is the
cause of a low score (Line 34), an agent decreases its boldness, and increases it
otherwise. Similarly, agents increase their vengefulness if they find that the effect
of not punishing is worse than the effect of punishing (Line 38), and decrease
vengefulness if the situation is reversed. As both PS and NPS represent the
result of two mutually exclusive actions, their difference for a particular agent
determines the change to be applied to vengefulness. For example, if PS > NPS,
then punishment has some value, and vengefulness should be increased.

Finally, given a decision on whether to modify an agent’s strategy, the degree
of the change, or learning rate (δ), must also be considered. Since vengefulness
and boldness have eight possible values from 0

7 to 7
7 , we adopt the conservative

approach of increasing or decreasing by one level at each point, corresponding
to a learning rate of δ = 1

7 . Thus, an agent with boldness of 5
7 and vengefulness

of 3
7 that decides to defect less and punish more will decrease its boldness to 4

7
and increase its vengefulness to 4

7 .

4.3 Evaluation

The algorithm is designed to mimic the behaviour of Axelrod’s evolutionary
approach as much as possible, while relaxing Axelrod’s unrealistic assumptions.
This allows us to replicate Axelrod’s results and investigate his approach in more
realistic problem domains. The analysis of a sample run reveals that agents with
low vengefulness and agents with high boldness start changing their strategies.
Here, agents with high boldness defect frequently, and are punished as a result,
leading to a very low DS, in turn causing these agents to decrease their bold-
ness. Agents with low vengefulness do not punish and are consequently frequently
metapunished; as a result, their PS is much better (lower in magnitude) than
their NPS, causing them to increase their vengefulness. The population eventu-
ally converges to comprise only agents with high vengefulness and low boldness.
While noise is still introduced via the exploration rate causing random strategy
adoption, the learning capability enables agents with such random strategies to
adapt quickly to the trend of the population.
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Fig. 5. Strategy improvement (with γ = 0.01)

As before, we also consider the problem of ensuring that an original defection
is observed in order to provide a metapunishment. Introducing this constraint
into our new algorithm, we ran experiments over different periods, with results
indicating that norm establishment is robust in all runs. An example run for
1,000,000 timesteps is shown in Figure 6. This is because agents that use this new
learning algorithm only change their strategy incrementally without wholesale
change at any single point. The effect of a mutant with low vengefulness is not
significant since, while the mutant might survive for a short period and cause
some agents to change their vengefulness, any such change will be slight. It thus
does not prevent such agents from detecting the mutant subsequently, in turn
causing the mutant to increase its vengefulness.

5 Related Work

In multi-agent systems, research on norm propagation can be divided into two
distinct approaches: top-down and bottom-up. In the top-down approach, a norm
is introduced through a certain authority, which is then responsible for the moni-
toring and enforcement of this norm. In the bottom-up approach, agents discover
and learn about the norm as a direct result of their interactions and, in most
cases, there is no central authority that can enforce such norms. The former ap-
proach has been studied and analysed by many (for example, [22, 1, 3]), and this
is not the focus of the work in this paper. In contrast, the bottom-up approach,
also known as norm emergence, has not received the same sort of attention and
this is just what this paper addresses.

Nevertheless, the basic notions underlying norm emergence, as understood in
this paper, have themselves also been recognised and considered previously. For
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Fig. 6. Strategy improvement with defection observation (with γ = 0.01)

example, like the work in this paper, Epstein [7] also used imitation techniques in
the context of norm emergence. In his model, agents must decide which side of a
road to drive on, where the decision of each agent is determined by observation of
which side of the road already has more agents driving on it, within a particular
area. In this respect, agents imitate what the majority of their neighbours are
doing.

Similarly, Savarimuthu et al. [15] also use imitation in their work, which
considers the ultimatum game in the context of providing advice to agents on
whether to change their norms in order to enhance performance. In the ulti-
matum game, two agents must decide how to share a certain amount of money
between them, starting with one agent offering a certain division of the money
to the other. If the second agent agrees, then the money is divided between the
agents according to the proposal, otherwise both agents gain nothing. Here, each
agent has a personal norm that defines its proposal strategy. In addition, agents
are able to request advice regarding their proposal strategy from only one agent,
the leader, which is believed to have the best performance in the requesting
agent’s neighbourhood. Moreover, agents are capable of accepting of refusing
the advice according to their autonomy level.

In relation to the learning aspects of our work, different forms of learning
have also been used by other researchers. For example, Walker et al. [20] used
a simple strategic update function in their model, based on Conte et al.’s [5]
work. In their model, agents wander around searching for food in order to gain
energy. However, since this movement causes them to lose energy, they need to
find as much food as they can, and incurring the least movement in doing so.
For this reason, agents follow different strategies, and change from one strategy
to another according to a majority rule, which instructs an agent to switch to



Overcoming Omniscience for Norm Emergence in Axelrod’s Model 15

another strategy if it finds that the other strategy is used by more agents that
its current strategy.

A more complex form of learning has been used by Mukherjee et al. [11,
17], who adopt Q-learning and some of its variants (WOLF-PHC and fictitious
play) to show the effect of learning on norm emergence. They experimented with
two different scenarios, first of homogeneous learning agents (where all agents
have the same learning algorithm), and second heterogeneous learning agents
(where agents can have different learning algorithms). Their results suggest that
norm emergence is achieved in both situations, but is slower in heterogeneous
environments.

In addition, some researchers (for example, [14, 19, 12]) have also considered
the effect of various types of interaction networks on the achievement and speed
of norm emergence, with results indicating that different types of networks give
different outcomes. Though this is an interesting and valuable area to consider,
it is outside the scope of this particular paper, so we say no more about it here.
Nevertheless, our approach, as reported in the previous sections, is consistent
with the broad approach taken by these previous effrorts in terms of analysing
the different factors that affect norm emergence. Indeed, the aim of our work is
to investigate the effects of metanorms on norm emergence, particularly when
metanorms are integrated in a model that reflects key characteristics of dis-
tributed systems.

6 Conclusion

In systems of self-interested autonomous agents we often need to establish co-
operative norms to ensure the desired functionality. Axelrod’s work on norm
emergence [2] gives valuable insight into the mechanisms and conditions in which
such norms may be established. However, there are two major limitations. First,
as Mahmoud et al. [10] have shown previously, and explained in detail, norms
collapse even in the metanorms game for extended runs. Second, the model suf-
fers from limitations relating to assumptions of omniscience. In response to this
latter point of concern, this paper has (i) investigated those aspects of Axelrod’s
investigation that are unreasonable in real-world domains, and (ii) proposed BV
learning as an alternative mechanism for norm establishment that avoids these
limitations.

More specifically, we replaced the evolutionary approach with a learning in-
terpretation in which, rather than remove and replicate agents, we allow them
to learn from others. Two techniques were considered: copying from a single
agent and copying from a group. The former suffers the same problems of long
term norm collapse associated with Axelrod’s approach [10] but, by avoiding
strategies that only perform well in restricted settings, the latter addresses the
problems and brings about norm establishment. In addition, we addressed Ax-
elrod’s assumption of omniscience, in which agents considering metapunishment
are not explicitly required to see the original defection. By doing so, however, the
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metapunishment activity in the population, for stabilising an established norm,
decreases and leads to norm collapse.

Since learning strategies from others (either individuals or groups) is unable
to establish norms for cooperation (and is, in addition, unrealistic since it as-
sumes that agent strategies are not private), we have developed an alternative,
BV learning, in which agents learn from their own experiences. Through this
approach we have shown that not only is it possible to avoid the unrealistic
assumption of knowledge of others’ strategies, but also that by enabling individ-
uals to incrementally change their strategies we can avoid norm collapse, even
with observation constraints on metapunishment.

In term of future work, our aim is to focus on applying the model to inter-
action networks in order to analyse how different network structures can impact
on the achievement of norm emergence. In particular, our current model is lim-
ited in that the algorithm relies on agents comparing their own score to the
average score of all other agents to determine if learning is warranted. This con-
strains our move towards turning Axelrod’s model into something more suitable
for real-world distributed systems and, in consequence, we aim to enable agents
to estimate their learning needs based on their own, individual, experience by
monitoring their past performance. Moreover, we also plan to investigate the
possibility of integrating dynamic punishments, rather than the current static
ones (that are fixed regardless of what has happened), by which agents can mod-
ify the punishments they impose on others according to available information
about the severity of violation, or according to whether the violating agent is a
repeat offender, and if so, how many times.
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