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Abstract. In order to establish a norm in a society of agents, metanorms
have previously been proposed as a means of ensuring not that norms are
complied with, but that they are enforced. Yet while experimental results
have shown that metanorms are effective in fully-connected environments
such as that used by Axelrod, there has been limited consideration of
such metanorm models with different but more realistic topological con-
figurations. In this paper, therefore, we consider the use of metanorms
in supporting norm establishment in lattices and small world networks.
Our results suggest that norm establishment is achievable in lattices and
small worlds.

1 Introduction

In peer-to-peer systems, agents share resources (hardware, software or informa-
tion) with others, but if there is no cost to access files nor any limit on the number
of files accessible, then there is no incentive to respond to requests nor, more gen-
erally, to establish cooperation in the system. Yet cooperation is needed: when
self-interested autonomous agents must exchange information without any cen-
tral control, non-compliance (due to selfish interests) can compromise the entire
system. The use of norms to provide a means of ensuring cooperative behaviour
has been proposed by many [3, 5, 6, 10, 13–15, 17] but, as shown by Axelrod [1],
norms alone may not lead to the desired outcomes. In consequence, metanorms
have been proposed as a means of ensuring not that norms are complied with,
but that they are enforced. While experiments have shown that metanorms are
effective in fully-connected environments as used by Axelrod, there has been
limited consideration of metanorms with different but more realistic topological
configurations, which fundamentally change the mechanisms required to estab-
lish cooperation.

Some work has already been undertaken on examining the impact of different
topologies on norm establishment. For example, Savarimuthu et al. [9] consider
the ultimatum game in the context of providing advice to agents on whether
to change their norms in order to enhance performance for random and scale-
free networks. Delgado et al. [4] study norm emergence in coordination games
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in scale-free networks, and Sen et al. [11] examine rings and scale-free networks
in a related context. Additionally, Villatoro et al. [14] explore norm emergence
with memory-based agents in lattices and scale-free networks.

While these efforts provide valuable and useful results, the context of appli-
cation has been limited, with only two agents involved in each encounter, rather
than a larger population of agents. This simplifies the problem when compared
with those in which the actions of multiple interacting agents can impact on
norm establishment. In particular, Axelrod’s seminal model [1] has provided the
foundation for several investigations into norm emergence, yet offers a very gen-
eral framework, comprising the use of norms and metanorms in populations of
agents where the overall behaviour determines whether a norm is established.
In this paper we extend Axelrod’s model to address the context of different
topological configurations.

The paper begins with an outline of Axelrod’s metanorms game, adjusted
to suit the purposes of this paper, and augmented with a learning mechanism.
Section 3 then considers the problems that arise from the use of different topolo-
gies, and Sections 4 and 5 describe in detail the impact of applying the model
in lattices and small worlds.

2 The Metanorms Game

Our model aims to simulate a realistic distributed system in which a community
of self-interested agents is encouraged, without being instructed to do so by a cen-
tral authority, to adhere to a behavioural constraint, or norm, that benefits the
community but not the individual agent adhering to the norm. This simulation
provides an experimental setting that enables us to test under what conditions
a situation arises in which the norm governs the behaviour of individual agents.

2.1 Axelrod’s Model

Inspired by Axelrod’s model [1], our simulation focusses only on the essential
features of the problem. In the simulation, the agents play a game iteratively; in
each iteration, they make a number of binary decisions. First, each agent decides
whether to comply with the norm or to defect. Defection brings a reward for the
defecting agent, and a penalty to all other agents, but each defector risks being
observed by the other agents and punished as a result. These other agents thus
decide whether to punish agents that were observed defecting, with a low penalty
for the punisher and a high penalty for the punished agent. Agents that do not
punish those observed defecting risk being observed themselves, and potentially
incur metapunishment. Thus, finally, each agent decides whether to metapunish
agents observed to spare defecting agents. Again, metapunishment comes at a
high penalty for the punished agent and a low penalty for the punisher.

The behaviour of agents in each round of the game is random, but governed
by three variables: the probability of being seen S, boldness B, and vengefulness
V . Each round agents are given a fixed number of opportunities o to defect or
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Algorithm 1 The Simulation Control Loop: simulation(T,H, P,E, γ, δ)

1. for each round do
2. interact(T , H, P , E)
3. learn(γ, δ)

comply, each of which has a randomly selected probability of a defection being
seen. Boldness determines the probability that an agent defects, such that if
an agent’s boldness exceeds the probability of a defection being seen then the
agent defects. Vengefulness is the probability that an agent punishes or meta-
punishes another agent. Thus the boldness and vengefulness of an agent are said
to comprise that agent’s strategy. After several rounds of the game, each agent’s
rewards and penalties are tallied, and successful and unsuccessful strategies are
identified. By comparing themselves to other agents on this basis, the strategies
of poorly performing agents are revised such that features of successful strategies
are more likely to be retained than those of unsuccessful ones. We need not be
concerned with the details of the learning algorithm in this paper, beyond the
fact that boldness and vengefulness are simply revised upward or downward as
appropriate, in line with a specified learning rate. If most agents employ a strat-
egy of low boldness and high vengefulness, it can be argued that the norm has
become established in that community, because strategies that lead to defection
or to sparing defecting agents are unlikely and lead to high penalties.

2.2 Our Simulation Algorithm

Given Axelrod’s model as a starting point, we have previously developed
refinements of it that are better suited to real-world distributed systems, by not
requiring agents to have information on the private strategies of others, and by
allowing agents to improve performance, via a reinforcement learning technique.
Since this is not the focus of this paper, we will not provide a full explanation;
the full details of why and how are provided in a sister paper [8]. Nevertheless,
since these refinements are the starting point for our work here, in this section
we briefly review the presentation in [8] to set up subsequent sections.

First, in order to determine the unique effect of each individual action on
agent performance, each agent keeps track of four different utility values: the
defection score (DS) incurred by an agent who defects, the punishment score
(PS) incurred by an agent who punishes or metapunishes another (as a result of
an enforcement cost, and the no punishment score (NPS) incurred by an agent
who does not punish another when it should, and is consequently metapunished.
In addition these are combined into a total score (TS).

In this context, we can consider the algorithms used in our simulation, in
two phases, as represented in Algorithms 2 and 3, called by Algorithm 1. More
precisely, in Algorithm 2, each agent has various defection opportunities (o),
and defects if its boldness is greater than the probability of its defection being
seen. if an agent defects (Line 3), its DS increases by a temptation payoff, T
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Algorithm 2 interact(T , H, P , E)

1. for each agent i do
2. for each opportunity to defect o do
3. if Bi > So then
4. DSi = DSi + T
5. for each agent j : j 6= i do
6. TSj = TSj +H
7. if see(j,i,So) then
8. if punish (j, i, Vj) then
9. DSi = DSi + P

10. PSj = PSj + E
11. else
12. for each agent k : k 6= i ∧ k 6= j do
13. if see(k,j,So) then
14. if punish (k, j, Vj) then
15. PSk = PSk + E
16. NPSj = NPSj + P

(Line 4), but it hurts all others in the population, whose scores decrease by
H (line 6), where H is a negative number that is thus added to the score. If
an agent cooperates, no scores change. DS thus determines whether an agent
should increase or decrease boldness in relation to its utility.

However, each hurt agent can in turn observe the defection and react to
it with punishment that is probabilistic to its vengefulness. Punishment and
metapunishment both have two-sided consequences: if an agent j sees agent i
defect in one of its opportunities (o) to do so, with probability So (Line 7),
and decides to punish it (which it does with probability Vj ; Line 8), i incurs
a punishment cost, P , to its DS (Line 9), while the punishing agent incurs an
enforcement cost, E, to its PS (Line 10). Note that both P and E are negative
values, so they are added to the total when determining an overall value. If j
does not punish i, and another agent k sees this in the same way as previously
(Line 13), and decides to metapunish (Line 14), then k incurs an enforcement
cost, E, to its PS, and j incurs a punishment cost P to its NPS.

In the learning phase, in Algorithm 3, and as mentioned above, each agent
uses the various scores to determine how to improve its actions in the future.
At the beginning of the learning procedure, the agent calculates its total score
by combining all the other scores. In order to ensure a degree of exploration
(similar to mutation in the original model’s evolutionary approach, to provide
comparability), we adopt an exploration rate, γ, which regulates adoption of
random strategies from the available strategies universe (Line 8).

If the agent does not explore, then if defection is the cause of a low score
(Line 12), an agent decreases its boldness, and increases it otherwise. Similarly,
agents increase their vengefulness if they find that the effect of not punishing
is worse than the effect of punishing (Line 22), and decrease vengefulness if the
situation is reversed. As both PS and NPS represent the result of two mutually
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Algorithm 3 learn(γ, δ)

1. Temp = 0
2. for each agent i do
3. TSi = TSi + DSi + PSi + NPSi

4. Temp = Temp + TSi

5. AvgS = Temp/no agents
6. for each agent i do
7. if TSi < AvgS then
8. if explore(γ) then
9. Bi = random()

10. Vi = random()
11. else
12. if DSi < 0 then
13. if Bi − δ < 0 then
14. Bi = 0
15. else
16. Bi = Bi − δ
17. else
18. if Bi + δ > 1 then
19. Bi = 1
20. else
21. Bi = Bi + δ
22. if PSi < NPSi then
23. if Vi − δ < 0 then
24. Vi = 0
25. else
26. Vi = Vi − δ
27. else
28. if Vi + δ > 1 then
29. Vi = 1
30. else
31. Vi = Vi + δ

exclusive actions, their difference for a particular agent determines the change
to be applied to vengefulness. For example, if PS > NPS, then punishment has
some value, and vengefulness should be increased. As indicated previously, this
is covered in more detail in [8], but we will provide no further details here.

3 Imposing Topologies on Metanorms

Axelrod’s model is interesting and valuable in examining how norms can be
established in a population of agents. Using our simulation model, we are able
to match Axelrod’s results (and in fact improve on them, since Axelrod’s model
fails for extended runs of the simulation, as demonstrated by [7]). In a fully
connected network (in which each agent is connected to every other agent),
matching Axelrod’s initial configuration, we get the results shown in Figure 1,
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Fig. 1. Strategy improvement

and detailed in [8].This provides a valuable illustration of the value of norms
and the use of metanorms to avoid norm collapse in a system in which there is
no central control, but Axelrod’s model omits consideration of some important
aspects. In particular, in real-world computational domains, such as peer-to-peer
and wireless sensor networks, the network of agents is not fully connected, with
agents tending to interact with a small subset of others on a regular basis, yet it
is only through such interactions that defection can be observed and punishment
administered. Note that we restrict ourselves here to computational abstractions
that apply to such environments rather than to physical or human networks.

Thus, while Axelrod’s model assumes a fully connected network, an unlikely
and unreasonable assumption, other network topologies must instead be consid-
ered, reflecting different potential configurations of agents, in which agents are
connected only to a subset of other agents, their neighbours. This constraint on
connectivity between agents implies some adjustments to Axelrod’s model, as
follows.

First, in Axelrod’s model it is assumed that an agent’s defection penalises all
other agents in the population. The introduction of a topology enables us to re-
strict the penalty to only those agents with which the defector interacts. Second,
in Axelrod’s model, agents are assumed to be able to observe the entire popula-
tion. By introducing a topology, we employ a more realistic model in which an
agent can only observe those agents with which it interacts. Third, punishment
requires observation of misbehaviour. In Axelrod’s model, this requirement is im-
plicit as it makes no meaningful distinction. However, by introducing constraints
on observation and rendering the model more realistic, a further refinement is
required: an agent can only punish a defector if the agent can observe the de-
fector. In addition, an agent can only metapunish an agent that fails to punish
a defector if it can observe both the defector and the agent that fails to punish
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(a) NB Size 1

 

(b) NB Size 2

 

(c) NB Size 3

Fig. 2. Examples of lattice topologies

the defector. Finally, in order to enhance an agent’s individual performance, it
compares itself to others in the population before deciding whether to modify
strategy. However, since agents can only observe their neighbours, these are the
only agents they are able to learn from.

In consequence, the algorithms presented above are no longer adequate, and
need to be changed as follows. First, in Algorithm 2, Line 5 needs to consider
only agent i’s neighbours rather than all of the agents in the population, and
Line 12 needs to consider only agent j’s neighbours. Then in Algorithm 3, the
average score in Line 3, AvgS should instead refer to the average score of the
neighbourhood (that is, those agents to which agent i is connected. In this way,
and with these simple modifications, our algorithms now address the needs of
different topological structures.

In what follows, we consider these modifications to the basic model in the
context of different kinds of topologies, in particular small world models and
scale-free networks. However, to start, we introduce lattices, since they provide
the foundation on which small-worlds are based.

4 Metanorms in Lattices

A lattice (typically a simple ring structure) is perhaps the simplest network
topology we consider, in particular, because it is also used as a base for more
interesting and valuable topologies. In a (one-dimensional) lattice with neigh-
bourhood size n, agents are situated on a ring, with each agent connected to its
neighbours n or fewer hops (lattice spacings) away, so that each agent is connect
to exactly 2n other agents. Thus, in a lattice topology with n = 1, each agent
has two neighbours and the network forms a ring as shown in Figure 2(a). In a
lattice topology with n = 3, each agent is connected to 6 neighbours, as shown
in Figure 2(c).
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Fig. 3. Smaller neighbourhoods in lattices
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4.1 Neighbourhood Size

It is clear that, depending on the neighbourhood size, lattices may be more
or less connected. Those with larger neighbourhood sizes are more similar to
Axelrod’s fully connected model; our hypothesis is that as the neighbourhood
size increases, the greater connections between agents enable punishment and
metapunishment to become more effective in reducing boldness and increasing
vengefulness. In order to investigate this hypothesis, we ran several experiments.

In our first set of experiments, we used 51 agents (so we have an even number,
plus one, to account for the 2n neighbours plus our original agent), and varied
the neighbourhood size between the least connected lattice (the ring topology)
and the most connected lattice (n = 25). Each experiment involved 10 separate
runs, with each run comprising 1,000 timesteps. for a particular neighbourhood
size.

For the least connected lattice (n of 1), no norm is established, as runs ended
in both relatively low boldness and relatively low vengefulness (see Figure 3(a)).
In this case, though agents rarely defect, they also rarely punish a defection.
This constitutes an unstable situation in which defecting could be a rewarding
behaviour for agents as it is relatively unlikely to be penalised. However, increas-
ing the neighbourhood size slightly to 3 (Figure 3(b)) has a noticeable impact
on the results, as the boldness of the population drops almost to 0, which means
that agents do not defect. While the level of vengefulness increases, it is still not
at a level that can be considered to correspond to norm emergence, since agents
might still not punish a defection without being metapunished for not doing so.

In addition, increasing the neighbourhood size to 13 has the same effect on
boldness and a stronger effect on vengefulness (see Figure 4(a)), as vengeful-
ness increases further, and almost to its maximum, of 1, when the neighbour-
hood size of 19 is used (see Figure 4(b)). These results suggest that increasing
neighbourhood size strengthens norm emergence, by virtue of agents being more
willing to punish norm violators. In seeking to provide more detail for analy-
sis, the results of all runs were averaged, and shown on the graph in Figure 5,
with neighbourhood size plotted against boldness and vengefulness. This shows
that a neighbourhood size as small as 2 is enough to maintain boldness near
0, indicating that agents do not defect except when they explore as a result of
sometimes adopting random strategies (introduced for comparability with Axel-
rod’s model). Conversely, increasing the neighbourhood size has a major impact
on vengefulness, until the neighbourhood size reaches around 15 (at which point
an agent is connected to half the population) when it brings only very minor
change. This is because, in a poorly connected environment, agents that do not
punish defection can more easily escape metapunishment than in a more con-
nected environment.

As we hypothesised, increasing neighbourhood size brings a corresponding
effect on the strategy of agents (in terms of boldness and vengefulness). Only
the most poorly connected lattices have moderate levels of boldness, with venge-
fulness increasing monotonically over a longer period before it stabilises at a level
consistent with norm establishment. The connections between agents give rise
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Fig. 4. Larger neighbourhoods in lattices
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to this behaviour, with an increase in connections providing more opportunities
for agents to respond to defectors appropriately.

4.2 Population Size

Now, if we increase the population size while keeping the neighbourhood size
static, we decrease the relative number of connections among the overall popu-
lation. This suggests that convergence to norm establishment should decrease, in
line with the results obtained above. In the second set of experiments, therefore,
the neighbourhood size was fixed and the population size varied between 51 and
1,001 agents. However, the results obtained, shown in Figure 6 for a neighbour-
hood size of 3 (though other values gave similar results), are not as expected,
and suggest that increasing the population size has no effect on the rate of norm
emergence, as all runs for all sizes of population end almost with the same level
of boldness and vengefulness.

These results suggest that norm emergence in a community of agents that
interact in a lattice is not affected by total population size but by neighbourhood
size. By increasing the number of neighbours, norm establishment becomes more
likely, irrespective of the size of the population. In other words, the likelihood of
norm establishment is governed by the total amount of punishment that could
potentially be brought upon a defector or an agent failing to punish a defector,
which may be termed the potential peer pressure of a lattice. This is because such
lattices essentially comprise multiple overlapping localities in which agents are
highly connected: via punishments, the agents in these localities impose a strong
influence on their neighbours. Increasing the population size simply increases
the number of such overlapping regions.
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5 Metanorms in Small Worlds

While lattices are regular structures, as opposed to random structures, Watts and
Strogatz noted that many biological, technological and social networks lie some-
where between the two: neither completely regular nor completely random [16].
They instead proposed small world networks as a variation of lattices in which
agents are connected to others n or fewer hops (on the ring) away, but with some
of the connections replaced by connections to other randomly selected nodes in
the network, in line with some specific rewiring probability (RP ).

Thus, while lattices essentially create overlapping localities of well connected
agents (since agents are connected to 2n agents immediately surrounding them),
the effect of small worlds is to break these connections. Though the number of
connections does not change, the locality effect does, since there may no longer
be localities of well connected agents, but instead agents with some connections
to their local neighbours, and some connections to others elsewhere in the net-
work. As these local regions break down, the strong influence of an agent’s local
neighbours, causing compliance with norms, should also break down because of
the more sparse connections.

To verify this hypothesis, we investigated the impact of the rewiring prob-
ability by running the model with different values, in populations of 51 agents,
for different neighbourhood sizes of 3 and 5. The results of the experiment with
a neighbourhood size of 3 are shown in Figure 8, which indicates that increas-
ing the RP decreases the final average vengefulness in the population. With a
neighbourhood size of 5 the results are similar (not shown).

This is because, as a result of rewiring, agents no longer affect just their
locality, but now affect agents that are much further away, consequently requiring
establishment of the norm in multiple localities. For example, in the case of
neighbourhood size of 3, it is clear that not only is the norm not established,
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(a) RP = 0.1
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Fig. 7. Examples of small worlds
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but as the RP rises above small values, the trend moves further away from
establishment, since the connections of agents are increasingly rewired, giving
a locality effect similar to lattices with a neighbourhood size of 2 (discussed
in Section 4.1). In addition, rewiring to other agents further away brings the
need to establish the norm in all those localities to which an agent is connected,
making it much more difficult.

In term of boldness, it is clear from the results that the RP of small worlds
does not impact on the level of defection in the population since, independently,
boldness remains very low, indicating that agents are very unlikely to defect.
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5.1 Neighbourhood Size and Rewiring

As discussed in Section 4.1, increasing neighbourhood size causes an increase in
vengefulness in lattices. In seeking to understand the impact in small worlds,
we repeated the lattice experiments in this new context, for different values of
the RP. Results for a rewiring probability of 0.4 are shown in Figure 9 (with
results for other values of the RP being similar in trend), again showing that
neighbourhood size increases vengefulness. However, note that, in comparison to
lattices, vengefulness in small worlds is lower for the same neighbourhood size.
This is because the agents must now respond to defections in different regions
of the network, where there is less influence on behaviour, and thus potentially
incurring greater enforcement costs.
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5.2 Population Size and Rewiring Probabilities

Population has been shown to have no effect on norm establishment in lattices
due to the potential peer pressure arising from the multiple overlapping localities.
However, since these concentrated local regions of connected agents are weakened
in small worlds, we repeated the previous experiments to determine the effect
with RPs of 0.2, 0.4, 0.6, 0.8 and 1.0, and n of 5. The results indicate that
boldness is not affected by the changes of the population size as it is always
close to zero (not shown), but vengefulness decreases as the RP increases. More
specifically, when the RP is 0.2, increasing the population size has little effect, as
shown in Figure 10. However, for the other RP values, increasing the population
size decreases vengefulness. Again, this is due to rewiring breaking down the
strong locality effect, and this is magnified with increasing population sizes,
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since there is a greater opportunity for connections to other localities, causing
a greater cost for agents seeking to bring about norm establishment in all these
localities at once.
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6 Related Work

There has been much work that focusses on the issue of norm emergence in
societies of interacting agents. However, most of this concentrates on analysing
norm emergence over fully-connected networks [2, 12, 13, 15], and it was only
relatively recently that attention shifted towards the effect of the structure of
these societies. In this section, we review that part of the literature that does
address these concerns.

In a particular effort, Delgado et al. [4] study the emergence of coordination
in scale-free networks. Their study involves an interaction model of a multi-agent
system, by which they try to analyse how fast coordination can spread among
agents. Coordination here is represented through agents being in the same state,
which is achieved when 90% of the agents do so. The framework they use is rather
simple, however: an agent makes a choice between two different actions and they
receive a positive payoff if they both choose the same action, or a negative payoff
if their actions are different. Agents record the outcome of taking each of the
two actions and pick the action with the better outcome for next interaction.
The results of the work demonstrate that coordination can indeed be achieved
over scale-free networks, but in a rather restricted setting.

Similarly, Sen et al. [11] use a game to investigate norm emergence over lat-
tices and scale-free networks. In particular, they analyse the effect of increasing
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the number of actions available to agents, as well as the effect, on the speed of
norm emergence, of increasing the number of agents in both scale-free networks
and lattices. Their results suggest that both increasing the number of actions
and increasing the number of agents causes a delay to the norm emergence in
the population over a scale-free network. Similarly, norm emergence in lattices is
much slower when agents have a larger set of actions to choose from, or when the
number of agents in the population is increased. Overall, their analysis shows
that, for a small set of actions, it is faster for a norm to spread in a ring than
in other topologies, followed by fully connected structures, and then scale-free
networks. In contrast, for a large set of actions, it turns out that this is much
faster in scale-free networks than in rings and fully connected structures.

As we have suggested, the models used in these previous pieces of work are
relatively unsophisticated, with only two agents involved in an interaction, and
reward values remaining fixed and not changing during the game. In response,
Villatoro et al. [14] adopted the same concept of two-agent interactions, but
introduced the notion of the reward of an action being determined through the
use of the memory of agents, thus adding some dynamism to the model. Here,
the reward of a certain action is determined by whether the action represents the
majority action in both agents’ memories, and the reward is proportional to the
number of occurrences of this majority action in the their memories. However, it
is not clear from where these rewards derive nor who applies them, as agents only
have access to their memory. With regard to interaction networks, their work
illustrates that increasing the neighbourhood size of a lattice accelerates norm
emergence.In contrast, in the case of scale-free networks, norms do not emerge
using the basic model. This is because of the development of sub-conventions
that are persistent and hard to break, and which prevent the whole population
from converging towards a single convention. A solution to this problem was
found by giving hub agents (those with the majority of connections to others)
more influence on the reward function.

Savarimuthu et al. [9] analyse the effect of advice on norm emergence over
random and scale-free networks. For this reason, they use the ultimatum game
in which two agents must decide how to share a certain amount of money. One
agent offers a particular division of the money to the other and, if the second
agent agrees, then the money is divided between the two agents according to
this proposal. If the second agent does not agree, both agents gain nothing.
Here, each agent has a personal norm that defines its proposal strategy and, in
addition, agents are able to request advice about their proposal strategy from a
leader agent that is believed to have the best performance in the neighbourhood.
However, agents are capable of accepting or refusing the advice according to their
autonomy level. The results obtained in this work show that norm emergence
increases in speed over both random and scale-free networks with an increase in
the average degree of connectivity.

Our work is rather different to these previous efforts in that we have investi-
gated a more sophisticated model. In addition, we are not restricted to only two
agents, and consider arbitrary numbers of them, since any agent’s actions can be
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observed by all of its neighbours. These neighbours can in turn react by choosing
to punish or to avoid doing so, potentially generating further metapunishments
by other observing agents. Finally, sanctions applied in our case are dependent
on the decisions of all agents that observe a violation, thus making them change
with the number of agents involved.

7 Conclusions

In this paper, we have investigated mechanisms that encourage norms to emerge
in communities of self-interested agents, without interference of a central or out-
side authority, under the realistic constraint that agents can only influence one
another if they regularly interact. Based on Axelrod’s seminal work, our model’s
substantial novel extension examines the impact of different types of topologies
of interaction on norm emergence. Our results show that in circumstances in
which each agent regularly interacts with a small number of other agents, as in
lattices and small worlds, Axelrod’s mechanisms to encourage norm emergence
remain largely effective. More precisely, it is very effective for lattices, but its
effectiveness varies with the rewiring probability in small worlds. Moreover, we
have demonstrated that, given fixed penalties, for lattices, the effectiveness of
Axelrod’s approach only depends on the number of neighbours of each agent,
not on the total population size. For small worlds, increasing the population size
with a high rewiring probability decreases vengefulness, constraining norm emer-
gence significantly. Thus, topology must be considered: in the case of a lattice
or a small world, Axelrod’s proposed approach will be effective for sufficiently
large neighbourhood sizes.
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