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QoS (quality of service) properties play an important role in distinguishing between functionally-equivalent

services and accommodating the different expectations of users. However, the subjective nature of some properties

and the dynamic and unreliable nature of service environments may result in cases where the quality values

advertised by the service provider are either missing or untrustworthy. To tackle this, a number of QoS estimation

approaches have been proposed, utilising the observation history available on a service to predict its performance.

Although the context underlying such previous observations (and corresponding to both user and service related

factors) could provide an important source of information for the QoS estimation process, it has only been utilised to

a limited extent by existing approaches. In response, we propose a context-aware quality learning model, realised

via a learning-enabled service agent, exploiting the contextual characteristics of the domain in order to provide

more personalised, accurate and relevant quality estimations for the situation at hand. The experiments conducted

demonstrate the effectiveness of the proposed approach, showing promising results (in terms of prediction accuracy)

in different types of changing service environments.
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1. INTRODUCTION

Service-oriented computing (SOC) is a suitable paradigm for low-cost, time-

effective application development in heterogenous environments, permitting a flex-

ible approach to building complex distributed applications via the integration of

loosely-coupled computational entities, offered as services by external providers.

Web services are a commonly adopted implementation of SOC services, which can

be advertised, located, and composed over the web using standards like WSDL,

UDDI and BPEL, respectively.

Services advertised by different providers can overlap in their functional capa-

bilities, but offer varying quality of service (QoS) levels. Such QoS properties, thus,

play an essential role in differentiating between functionally equivalent services and

accommodating different user needs. However, in open and heterogenous service

settings, the QoS information available by service providers might be missing or

untrustworthy for several reasons, either intentional or unintentional. Specifically,

service providers, being autonomous and self-interested, may choose not to fulfil

their quality promises (e.g. announce false capabilities to attract more customers).

Even with cooperative providers, the quality estimates of services could still fre-

quently change due to other factors (e.g. network and hardware problems, changes

in the service implementation, etc). Moreover, in many domains, it might be difficult

(or simply not possible) for the provider to guarantee specific values for a quality

property, because of its subjective nature or dependency on user-related factors.

Consequently, a number of efforts focus on learning more accurate estimation
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of service quality values, based on the data available regarding the service’s past

performance (Aschoff and Zisman, 2011; Amin et al., 2012; Barakat et al., 2014).

Trust and reputation learning mechanisms have also been considered for the purpose

of assessing service quality attributes (Maximilien and Singh, 2005; Xu et al., 2007;

Malik and Bouguettaya, 2009). Many models exist in which reputation is derived

from direct experience of clients with the service and third party recommendations,

with numerical or probabilistic representations for reputation (Teacy et al., 2005,

2012; Sabater-Mir and Sierra, 2001; Huynh et al., 2006). Such learning approaches,

however, rely on data recency to account for potential changes in the service’s be-

haviour (with respect to the QoS properties). That is, newer service observations

are favoured, while older ones are eventually forgotten, without accounting for the

circumstances under which the observations were collected. As a result, these ap-

proaches neglect important evidence for detecting the occurrence of a change (es-

sential to ensure that only relevant data is captured in the learning process), and

ignore situations where old observations may become relevant again (i.e. when a

previously encountered service behaviour reappears). Moreover, the observations

upon which the quality learning is based are usually assumed to be objective, and

thus the predictions produced do not account for a user’s particular situation.

In response, we propose enriching service observations with contextual informa-

tion, and exploiting such information during QoS learning 1. By context, we refer to

any conditions and circumstances that may affect the perception of a quality value

by a service user, which could be either related to the user itself (user context) or

1A preliminary version of this work appears as a short paper in the 2015 International Conference on Service-Oriented

Computing.
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related to the service (service context). In particular, our main contributions can be

summarised as follows:

• Exploiting user contextual clues to provide personalised quality value assessments

that are more tailored towards the client’s situation/needs;

• Accounting for service-related circumstances under which past service interac-

tions took place to better assess which of these past interactions are relevant to

consider for the quality assessment at hand. In particular, we exploit service con-

textual clues to judge to what degrees the situations of past service provisions

match a new situation, thus achieving better adaptivity in the face of changing

service behaviour;

• Allowing older interactions, collected under circumstances comparable to current

circumstances, to be predictors of the current service behaviour. This provides

supplementary information to recent interactions, especially valuable in the case

where the latter are not yet sufficient to make accurate quality predictions.

The rest of the paper is organised as follows. A motivating scenario is presented

in Section 2, followed by an elaboration on how context can be recorded in Sec-

tion 3. Our formal context model is presented in Section 4. Sections 5 and 6 present

the context-aware QoS learning model and the experimental results, respectively.

Finally, related work and conclusion are discussed in Sections 7 and 8, respectively.

2. MOTIVATING SCENARIO

In this section, we present a number of examples illustrating the importance and

benefits of context awareness when assessing the quality characteristics of services.
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The examples in this motivating scenario are based on the electronic marketplace for

food services (Barakat et al., 2014), developed in the context of the DIET4Elders 2

project. The marketplace provides a rich pool of information enabling the selection

of reliable and nutritionally enriched food services for users (older adults in particu-

lar), meeting their dietary constraints and different food preferences.

2.1. Importance for Capturing Relevant Evidence

User Context. Consider a scenario in which a user wants to order a meal for

dinner. For this purpose, she contacts a food-specialised broker to search for a suit-

able meal. The broker has access to information about a pool of meal delivery

services that are offered by various food providers (which are registered with the

broker). The information includes the meal options available, along with their var-

ious characteristics, which are either indicated directly by the provider (e.g. the

price and ingredients of a meal), or derived by the broker from previously collected

observations on the meals (e.g. utilising past user ratings to assess a meal’s taste,

smell, texture, presentation, delivery time, etc.) for the reasons stated in Section 1.

Assume that the user has no preference towards any particular ingredient, but

suffers from chewing and swallowing problems, and therefore requires the meal to be

of tender texture. She is also interested in a fast meal delivery (less than 40 minutes

from the time of order).

Given a candidate meal option (denoted as service s1), the broker thus needs to

assess its corresponding texture and delivery time in order to determine its suitability

for the user. Suppose for simplicity that the previous observations on service s1 are

2http://www.diet4elders.eu/en
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as depicted in Table 1 and Table 2, for texture and delivery time, respectively, and

that these observations are collected within the same timespan (i.e. t1 ' t2 ' t3).

Since the perception of food texture could be affected by the presence of chewing

and swallowing difficulties, the rating of user 1, which shares similar dysphagia con-

ditions with the current user, should have the highest impact on texture assessment

at hand, despite the availability of two other ratings. Similarly, for delivery time

(normally affected by the user’s location), the reviews indicated by user 1 and user

3 should be regarded as the most relevant for the current user (who also lives in an

urban location), while the contribution of that of user 2 should be minimal. That is,

service s1 should be considered satisfactory for the current user in terms of delivery

time despite the rating of user 2 (which is irrelevant for the current situation). Note

that ignoring the user’s context and simply calculating the average of all past obser-

vations would yield an estimated delivery time of 60 minutes, unsatisfactory for the

user.

[Table 1 about here.]

[Table 2 about here.]

Service Context. Now consider a similar food ordering scenario where a user is

interested in a meal that is highly rated in terms of taste (e.g. at least a 4-star rating).

Again, the broker here needs to assess the taste property of each candidate meal

option. Assume one such option is service s2, with the past user ratings available

for this service being depicted in Table 3. Given the mostly good rating history

for service s2, it may be considered suitable for the current user. However, when

analysing its provision context, it could be noted that the service exhibited a change
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in recipe after time step t20, occurring, for instance, due to a change in the head chef,

or the temporary unavailability of some ingredients (e.g. some ingredients might

not be available at winter time). Such a change could affect many aspects of the

meal, including taste, making previous user observations under the old recipe less (or

no longer) relevant under the new one. Hence, service s2 should not be considered

satisfactory for the current user (due to being assigned low ratings after the recipe

change).

[Table 3 about here.]

2.2. Importance for Tackling Limited Evidence

Assume that, based on another user’s preferences, the broker needs to assess the

taste of service s2 at time step t61, and that this service has switched again to recipe 1

at time step t60. Given this, the recency of experiences of this service under recipe 1

is not sufficient to guide the broker’s assessment. However, the broker could exploit

the observation history available for service s2 prior to time step t21 under similar

recipe (see Table 3) for this purpose. That is, window [t1, t20] of the ratings on taste

available for service s2 is a useful source of information for the current assessment

of taste for this service.

[Figure 1 about here.]

3. CONTEXT DERIVATION FROM PROVENANCE DATA

User-related circumstances can be collected either directly from users and their

respective requests, or via utilising an appropriate monitoring platform. For example,
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in the context of DIET4Elders project, an ambient assisted living infrastructure is

proposed to collect various data about the user’s context (Taweel et al., 2014, 2016).

Providers are the obvious source of service-related circumstances data as it is a

record of how they provided a service. The PROV standard (W3C, 2013), published

by W3C as a standard for interoperable provenance, provides a suitable solution

for recording information on various contextual circumstances underlying a service

provision. A PROV document describes in a queryable form the causes and effects

within a particular past process of a system (such as agents interacting, the execution

of a program, or enactment of a physical world process), as a directed graph with

annotations. A visualisation of such a graph, showing PROV’s key elements, is

shown in Figure 1. In summary, an activity is something that has taken place, making

use of or generating entities, which could be data, physical or other things. Agents

are parties that were responsible for (associated with) activities taking place, and

one agent may have been acting on behalf of another in this responsibility. Activ-

ities, entities and agents (graph nodes) may be annotated with key-value attributes

describing features that the elements had. The contents of a provenance graph can be

collated from data recorded by a set of independent agents, and data can be queried

using a standard mean, e.g. by SPARQL3 queries. An example provenance graph

illustrating the user and service related contextual circumstances presented in our

motivating scenario is depicted in Figure 2.

[Figure 2 about here.]

Methods and guidelines for incorporating provenance capture into applications

3http://www.w3.org/TR/sparql11-overview/
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have been developed (Miles et al., 2011; Curcin et al., 2014). These set out how

to determine what items of data and records of activities, and causal relationships

between them, should be captured at what point and through applying which patterns

to adapt the application design and implementation. This is not a trivial topic, as it

exposes issues such as how to appropriately capture sensitive data in provenance,

how to expose what occurs in legacy components that cannot be adapted, how to

capture provenance in anticipation of future questions not yet identified, and so on.

However, the grounding principles have been solidly investigated and articulated by

this work.

Moreover, incentivisation mechanisms have also been investigated to encourage

providers to undergo such changes in their processes and release the provenance data

needed. Further elaboration on such incentives can be found in Barakat et al. (2016).

4. CONTEXT MODEL

The quality characteristics offered by a service at a particular moment are not

necessarily fixed (as usually assumed by existing quality models of services), but

may be dependent on the user situation (user context) under which the service pro-

vision happens. For example, as illustrated in the scenario above, such situational

information may include the user’s location, the user’s medical condition, etc. Fur-

thermore, over time, a service may experience a drift in its behaviour caused by

changes in service-related circumstances (service context), which could be either

periodic (e.g. a change in a food service’s recipe with season) or non-periodic (e.g.

a rare event such as a sudden server crash). These service-side changes may lead to
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a corresponding drift in the perception of service characteristics by users. Figure 3

illustrates such dependency of quality characteristics on contextual features, consid-

ering for simplicity: one quality attribute q of a service with two possible outcomes

v1
q and v2

q ; two user-related contextual attributes c1
u and c2

u; and one service-related

contextual attribute cs, with value v1
s at time step t1 and value v2

s at time step t2.

[Figure 3 about here.]

4.1. Ontological Dimension

Defining and representing contextual knowledge (both user context and service

context) is fundamental for facilitating the reasoning about and utilisation of this

knowledge. This can be achieved via the use of ontologies, which have proven to

be effective in establishing standard models, taxonomies, vocabularies and domain

terminology (Stephan et al., 2007). Ontologies describing relevant contextual infor-

mation are domain dependent, and can be defined by domain experts. For example,

a semantic knowledge base is developed in the context of the DIET4Elders project,

capturing extensive dietary information of both users and food services (Taweel

et al., 2014; Barakat et al., 2014; Taweel et al., 2016). With regards to users, this

information includes personal information, clinical information (details of health

problems that are likely to affect food intake and perception, e.g. poor dentition,

problems with digestion, etc.), and dietary information (details of texture modifi-

cation prescriptions, allergies, intolerances, religious and cultural exclusions, etc.).

With regards to food providers and their services, the information captures various

aspects including full description of offered meal variants, recipes, respective nutri-

ents, types of delivery, geographical coverage, etc. This semantic knowledge base
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provides a rich source of contextual features (of both users and providers) that are

relevant, for instance, in the domain of our motivating scenario.

We make no assumptions in our model about any specific ontological knowledge

used, and leave this to the application domain. Instead, we focus on the formal

representation of the contextual features, so that our model is kept generic and

applicable to a wide range of domains.

4.2. Formal Model

Knowledge of context information that is relevant for the provision of a service

can be formally modelled as a tuple (Q,Cu, Cs, ctxu, ctxs, dom), detailed below.

Q is the set of the quality of service attributes of the service. These attributes

can be generic, such as price and response time, or domain-dependent, representing

specific features and metrics of a particular domain, such as the taste and presentation

of a food service. For example, Q = {price, response time, taste, presentation, ...}.

Cu and Cs are the sets of attributes characterising a user’s context and the ser-

vice’s context, respectively, and which are expected to affect the quality values

delivered by the service. These attributes are shared among similar types of services,

and can be identified by domain experts. Note that our approach does not assume

perfect knowledge of contextual attributes, but rather utilises what is available for

the purpose of improving the QoS prediction process.

ctxu : Q → 2C
u is a quality attribute’s user context function, which maps each

quality attribute q ∈ Q to the set of user-related context attributes that may affect

its values, such that cu ∈ ctxu(q) indicates that context attribute cu could have an

impact on the perception of quality attribute q by the user. For example, according
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to the scenario of Section 2, ctxu(texture) = {chewing and swallowing condition},

and ctxu(delivery time) = {location}. Note that ctxu(q) = ∅ if the service delivers

fixed value for attribute q at a particular moment regardless of the context of the user

invoking the service (e.g. ctxu(price) = ∅).

ctxs : Q → 2C
s is a quality attribute’s service context function, which maps

each quality attribute q ∈ Q to the set of service-related context attributes that may

affect its values, such that cs ∈ ctxs(q) indicates that context attribute cs could

have an impact on the behaviour of the service so that the same user may observe

different values of attribute q under different values of cs. For example, according to

the scenario of Section 2, ctxs(taste) = {food recipe}.

Finally, dom : Q∪Cu ∪Cs → 2AV is an attribute domain function, which maps

each attribute (quality or contextual) to its corresponding domain (the possible values

of this attribute), where AV is the set of all possible attribute values (the union of

the domains of all attributes). Generally, an attribute (quality or contextual) could be

either categorical or numeric (which in turn could be either discrete or continuous).

In this paper, however, we assume that dom(a) refers to the discretised domain of

attribute a. While for categorical and discrete attributes, dom(a) corresponds to the

original value space of a, for continuous attributes, dom(a) is obtained via applying

an appropriate discretisation algorithm on the original value space (a simple example

is dividing the original value space into a number of equal ranges, with values v ∈

dom(a) corresponding to the respective range representatives).
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5. CONTEXT-AWARE QOS LEARNING

In our approach, the QoS characteristics of a service are assessed via a learning-

enabled agent associated with the service. This agent (which, for example, could

be acting on behalf of the service provider or the broker with which the service

is registered) exploits a contextually-enriched history of past interactions with the

service in order to expose personalised and dynamism-aware QoS information to

potential clients. The modelling and learning details of such an agent are presented

next.

5.1. Service Observation

For each quality attribute q ∈ Q, the agent receives a stream of service obser-

vations, each reporting the outcome encountered for q in a previous interaction with

the service, along with the contextual circumstances surrounding this interaction.

Formally, a service observation is denoted as (vq, ~vu, ~vs), where: vq ∈ dom(q) is the

value observed for q; ~vu = (v1
u, ..., v

m
u ) is the vector of observed values for user-side

contextual attributes (c1
u, ..., c

m
u ) ∈ ctxu(q)

m; and ~vs = (v1
s , ..., v

k
s ) is the vector of

observed values for service-side contextual attributes (c1
s, ..., c

k
s) ∈ ctxs(q)k.

5.2. Agent Configuration

The main idea behind our approach is that, for a particular quality attribute, the

agent maintains a set of learned value models, each corresponding to a different

behaviour of the service with respect to this attribute (as outlined before, a service

may behave differently as a result of changes in its circumstances, i.e. changes in the

service-side context). When previously-encountered service circumstances reoccur,
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older observations of the service collected under such circumstances become rele-

vant again, and the agent can reuse the respective historical value models (learned

from these observations) to make future quality value predictions. Such reuse of pre-

viously learned value models facilitates a faster adaptation to a behavioural change

of the service (as opposed to re-learning the behaviour from new interactions), and

consequently improves the accuracy of quality predictions (see Section 6).

Based on this, the configuration of a service agent, for each quality attribute

q ∈ Q, at a particular time step t ∈ T , is a tuple (Ω, wt), where: Ω is the model

library of the agent at time step t, containing the set of value models learned for

the quality attribute; and wt : Ω → [0, 1] is the value model weighting function

at time step t, assigning to each model ω ∈ Ω, a weighting factor that reflects its

contribution for predicting the attribute’s value at time step t. In particular, weights

wt are utilised to combine the outputs of models ω ∈ Ω, via a weighted average, to

produce the final output (value prediction) for the quality attribute at time step t.

5.2.1. Value Model. Each model ω ∈ Ω is of the form q : ψ ← M . Here,

q ∈ Q is the quality attribute the value of which the model is trying to predict.

Precondition ψ identifies the service-side contextual circumstances under which the

model is valid. Specifically, ψ is a logical formula in disjunctive normal form (DNF)

restricting the values of contextual attributes cs ∈ ctxs(q). Each literal in this formula

is of the form cval(cs) ∈ V , with function cval(cs) denoting the value of context

attribute cs ∈ ctxs(q), and V ⊂ dom(cs) is a set of values (V 6= ∅).

Body M is the actual value model, enabling personalised predictions for quality

attribute q under condition ψ. In particular, given the different user-side contextual
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attributes affecting quality attribute q, (c1
u, ..., c

m
u ) ∈ ctxu(q)

m, value model M

corresponds to the underlying function qval between the values of these attributes,

{~vu} = {(v1
u, ..., v

m
u ) | v1

u ∈ dom(c1
u), ..., v

m
u ∈ dom(cmu )}, and the corresponding

value of q. That is, qval(vq, ~vu) ∈ [0, 1] is probability of observing value vq for

attribute q given user’s contextual values ~vu, such that
∑

vq∈dom(q)

qval(vq, ~vu) = 1.

Both the precondition ψ and the body M of a model ω are not static, and may

evolve over time as the agent’s learning progresses. For the former, this occurs

as more information regarding the relationship between service-side contextual at-

tributes and service behavioural changes becomes available, while the later is up-

dated to increase the accuracy of function qval with more incoming data. Note that

we do not restrict our approach to any specific algorithm for learning function qval

(for which several alternatives exist in the literature), and henceforth simply refer

to such a value classification algorithm as classifyq,u. However, we will give an

example implementation, utilising a Naı̈ve Bayesian classifier, in Section 6.1.

[Figure 4 about here.]

5.2.2. Handling Quality Attribute Dependencies. In some cases, the value of a

quality attribute might also be dependent on the values of other quality attributes.

For example, a better taste and a better presentation of a meal might require a longer

preparation time, and thus a slower delivery. To incorporate such dependencies,

chaining of prediction models can be applied, where the value predicted for one

quality attribute is used as an addition input to the prediction model of another at-

tribute. Clearly, such chaining would entail that the quality value prediction function

qval takes extra input. For example, consider the directed acyclic graph of Figure 4
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capturing dependencies among four quality attributes, where edge (qi, qj) indicates

that the value of attribute qj is dependent on that of attribute qi. Denote the predicted

value for a quality attribute qi by vqi , and assume (for simplicity of notation) that the

user context vector ~vu is similar for all quality attributes. The chain of predictions can

thus be conducted according to the topological order q1, q2, q3, q4, with the inputs

of function qval being given as qval(vq1 , ~vu), qval(vq2 , ~vu, vq1), qval(vq3 , ~vu, vq1),

and qval(vq4 , ~vu, vq2 , vq3), respectively. We do not consider the issue of dependency

further, and in the rest of the paper we refer to function qval as solely a function of

~vu, i.e. qval(vq, ~vu).

5.3. Agent Learning Algorithm

As the agent receives new service observations regarding a quality attribute, it

adjusts its respective configuration as detailed in the following sections.

5.3.1. Model Weight Adjustment. Inspired by q-learning (Bowling and Veloso,

2001), the adjustment of value model weights wt, for each prediction round, is

performed as follows. Given a new service observation at time step t, (vq, ~vu, ~vs),

and the current agent configuration (Ωt−1, wtt−1), the agent assesses the similarities

between immediate service-side circumstances ψimd (the conjunction of observed

values ~vs), and the contextual preconditions ψt−1 of each model ω ∈ Ωt−1, with such

similarities being denoted as sim(ψimd, ψt−1) (see Definition 1 of Section 5.3.3).

Based on this, the currently maintained model weightswtt−1 are improved according

to a learning rate δwt to reflect these immediate similarities, as:

∀ω ∈ Ωt−1, wtt(ω) = (1− δwt)wtt−1(ω) + δwtsim(ψimd, ψt−1) (1)
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Here, the choice of the learning factor δwt governs the adaptivity property of the

weights. Specifically, as δwt tends to unity, the weight estimation function becomes

a greedy function, removing the impact of all previous similarities with the service’s

contextual circumstances up to step t − 1, and accounting only for the latest ob-

servation (which facilitates a faster reaction to a change). In contrast, lowering the

value of δwt decreases responsiveness to new contextual data, resulting in a slower

adaptation to a change (but improves robustness to noise).

5.3.2. Model Library Adjustment. Following the adjustment of model weights,

the agent decides on whether a new model need to be added to the library by distin-

guishing the following two cases.

Case 1. There exists at least one model in the library with circumstances suffi-

ciently similar to recent circumstances, i.e. ∃ω ∈ Ωt−1, wtt(ω) ≥ thrsh (where

thrsh is a predefined threshold). In this case, no significant behavioural drift is

assumed, and observation (vq, ~vu) is simply used to update the body M of the model

with the highest weight wtt (with the rest of the model library being unchanged):

M t = classifyq,u(M
t−1, (vq, ~vu)), where classifyq,u is the classification algorithm

per value model (as outlined in Section 5.2).

Case 2. There is no model in the library with circumstances sufficiently similar

to recent circumstances, i.e. ∀ω ∈ Ωt−1, wtt(ω) < thrsh. In this case, the agent

suspects a significant change in service behaviour, and sets up a new model ωn for

the attribute, which is added to the model library of the agent: Ωt = Ωt−1 ∪ {ωn}.

The contextual precondition ψn of this model is the conjunction of values ~vs, its

body Mn is built incrementally from the new incoming observations starting from
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the current observation (vq, ~vu), while its weight wt(ωn) is set to 1 (due to exactly

matching current circumstances).

After the new model ωn is stabilised (i.e. after stabilitySize incoming observa-

tions under similar circumstances), it is compared against the other existing mod-

els in the agent’s library to verify whether it is actually reflecting a new service

behaviour for the attribute (see Section 5.3.4 for details of such comparison). If a

similar model ωsim exists in the library, model ωn is discarded (i.e. removed from the

library) to eliminate redundancy, while the contextual precondition ψsim of model

ωsim is generalised to subsume condition ψn (see Definition 2 of Section 5.3.3).

Note that, whilst the redundant model is discarded, the data reflected in this model

(the observations used to build this model) can be used to further adjust the body of

model ωsim (if the latter is not stabilised).

Details of contextual operations and model similarity calculation are presented

next. Note that one could argue that service-side context could also be included

as additional input for function qval. Yet, service-side context tends to be fixed

over longer periods, during which it does not have any prediction ability. Hence,

its inclusion as input into the value model’s learning function would only increase

the problem dimensionality, creating unnecessary noise (Gomes et al., 2011).

5.3.3. Contextual Operations. We define the following operations on contex-

tual conditions (which correspond to restrictions on service-side contextual circum-

stances, represented in DNF).

Definition 1. Contextual Similarity, sim(ψ1, ψ2)

Consider two contextual conditions ψ1 and ψ2 in DNF. The similarity between these
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conditions, sim(ψ1, ψ1), is estimated as follows:

sim(ψ1, ψ1) = max
cls1∈clauses(ψ1)
cls2∈clauses(ψ2)

clsSim(cls1, cls2)

where clauses(ψ) are the conjunctive clauses of condition ψ, and clsSim(cls1, cls2)

is the similarity between two conjunctive clauses, given as:

clsSim(cls1, cls2) = 1− dist( ~cls1, ~cls2)

Here, dist( ~cls1, ~cls2) ∈ [0, 1] is a distance measure between value vectors ~cls1 and

~cls2, corresponding to conjunctive clauses cls1 and cls2, respectively. An example

implementation of such a distance measure is presented in Section 6.4.

Definition 2. Generalisation Operator, ∪DNF

Consider two contextual conditions ψ1 and ψ2 in DNF. The generalisation of con-

dition ψ1, ψg1 , so that it subsumes condition ψ2, i.e. ψg1 = ψ1 ∪DNF ψ2, is given as

follows:

clauses(ψg1) = clauses(ψ1) ∪ clauses(ψ2)

where clauses(ψ) are the conjunctive clauses of condition ψ.

5.3.4. Model Similarity. For the purpose of comparing two value models, ω and

ω′, of quality attribute q, we utilise the conceptual equivalence measure proposed

by Yang et al. (2006). In particular, the equivalence degree between ω and ω′ corre-

sponds to the sum of the similarity scores between these models over a window

of stabilitySize records of user-side contextual samples {~vu}. For each record,

the similarity score between ω and ω′ is set to 1 if both models predict the same

output for attribute q given the record’s value vector ~vu as input; otherwise, the
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similarity score is set to −1. If the overall estimated equivalence degree (devided

by stabilitySize) is above a pre-defined threshold, models ω and ω′ are considered

similar.

Note that, when comparing a new model ωn to other historical models in the

agent’s library, if several historical models are found equivalent to model ωn, the

one with the highest equivalence degree is chosen.

6. EXPERIMENTS AND RESULTS

In this section, we present an empirical evaluation of the proposed QoS learning

framework, focusing on its performance in terms of producing accurate quality value

predictions for services in dynamic and user-dependent settings. For simplicity, we

only show the results from the perspective of one service and one quality attribute

(other attributes and services exhibit similar trends).

An experiment run consists of a number of learning episodes (or cycles) of the

service agent. Each of such cycles involves the following three steps. (1) Observe:

the service delivers particular value vq for quality attribute q under user’s context

~vu and service’s context ~vs, which is observed by the service agent. (2) Learn: the

service agent utilises this new service observation (vq, ~vu, ~vs) to update its current

configuration (as discussed in Section 5.3). (3) Predict: the agent uses the adjusted

configuration to predict the expected quality value for the next user (i.e. under next

user’s context ~vu′). In particular, the value predicted for the attribute is the one with

the maximum expected probability, where the expected probability qvalE(vq, ~vu
′) of

a quality value vq under user’s context ~vu′ is a wighted mean of the probabilities
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produced by each model ωi ∈ Ω, as follows:

qvalE(vq, ~vu
′) =

∑
ωi∈Ω

wt(ωi)× qvalωi(vq, ~vu
′)∑

ωi∈Ω wt(ωi)
(2)

The actually perceived quality value by this user is observed by the service agent in

the next learning episode.

All the results are averaged over 100 runs. Throughout the experiments, pa-

rameters stabilitySize and the model similarity threshold are set to 15 and 0.5,

respectively.

Further details regarding the experimental setup are presented in Sections 6.1 to

6.4, followed by experimental results (Sections 6.5 and 6.6).

6.1. Value Model Implementation

For the purpose of implementing the body M of each model ω ∈ Ω, we use the

Naı̈ve Bayesian classifier, a statistical classifier based on the Bayes’s theorem (Wid-

mer, 1997). In particular, given a quality attribute q and a corresponding observed

user’s context sample ~vu = (v1
u, ..., v

m
u ), the probability of attribute q taking on value

vq given evidence ~vu is the the posterior probability p(vq|~vu), computed as follows:

p(vq|~vu) =
p(vq)× p(~vu|vq)

p(~vu)
(3)

Here: p(vq) is the prior probability of value vq; p(~vu) is the prior probability of

sample ~vu (this is the same for all the values of q and thus could be omitted);

and p(~vu|vq) is the posterior probability of sample ~vu conditioned on value vq. To

simplify the computation cost of p(~vu|vq), independence is usually assumed among
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the attributes of the sample, leading to:

p(~vu, vq) =
m∏
i=1

p(viu|vq)

The estimation of probabilities p(vq) and p(viu|vq) can be easily achieved via main-

taining corresponding value counts (without the need to store sample records). The

incremental learning function, classifyq,u, thus corresponds to the update of these

counts after each new service observation (vq, ~vu).

Naı̈ve Bayesian classifier is both computationally and memory efficient, making

it suitable for the purpose of quality value prediction (which is conducted at run time,

while the service is in operation).

6.2. Simulation Framework

We conduct our experiments on a synthetic dataset, allowing us to control the

quality values and their changes, thus facilitating evaluation under different settings.

In particular, the generation of service quality data in our simulation is based on

the data generation framework proposed by Narasimhamurthy and Kuncheva (2007)

for classification problems, as detailed in Section 6.2.1. Given the space of possible

user context {~vu}, and the space of possible values {vq} for a quality attribute q, the

behaviour of a service with respect to attribute q (which we interchangeably refer

to as the data generation source for q) is characterised by posterior probabilities

p(vq|~vu), which in turn are determined by prior probabilities p(vq) and conditional

probabilities p(~vu|vq) (see Equation 3).

6.2.1. Change Model. As stated earlier, a service’s behaviour for an attribute q

may experience changes over time. In our simulation, such changes correspond to
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changes in the data generation source for q, i.e. changes in p(vq) and/or p(~vu|vq).

Generally, drifts may follow various patterns. A drift might occur abruptly, by sud-

denly switching from one data generation source to another at some time step.

Examples of such a drift include a significant degradation in a service’s availability

due to an unexpected network problem, or modification of service characteristics

due to an implementation change. Alternatively, a drift may happen gradually, with

data generation exhibiting smaller differences over a longer time period. Examples

of such a drift include a slow deterioration of a hardware service performance. Two

types of gradual drift can be distinguished. The first type is when a data generation

source disappears gradually while another one takes over, i.e. only a few data points

are initially generated from the latter source, before it takes over eventually. Another

type of gradual drift, which we refer to as incremental drift (Gama et al., 2014), is

when there are consecutive intermediary sources between the initial and final data

generation sources, i.e. there is a distinct data generation source at each time step t,

with the source at time step t differing only slightly from that at time step t− 1.

To simulate such drift patterns, a number of data generation sources are assumed

S1, S2, ..., Sn. Each source Si has a particular influence infl(Si, t) at time step t.

Based on this, data at time step t is generated according to the following probabili-

ties:

p(vq) =
n∑
i=1

infl(Si, t) ∗ pi(vq)

p(~vu|vq) =
n∑
i=1

infl(Si, t) ∗ pi(~vu|vq)

where pi(vq) and pi(~vu|vq) are the prior and conditional probabilities associated with

source Si.
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For abrupt and incremental changes, only one source is active at a particular time,

while a mixture of sources may be applied in the case of gradual changes. For exam-

ple, given two generation sources S1 and S2, an abrupt (or incremental) change from

S1 to S2 would correspond to changing the influence vector 〈infl(S1, t), infl(S2, t)〉

from 〈1, 0〉 to 〈0, 1〉, whilst a respective gradual change would correspond to gradual

influence changes, examples of which are:

〈1, 0〉 → ...→ 〈0.75, 0.25〉 → ...→ 〈0.25, 0.75〉 → ...→ 〈0, 1〉

6.2.2. Service Execution Model. The dataset generated in our simulation is in-

spired by STAGGER concepts (Schlimmer and Granger, 1986; Widmer, 1997), but

is adapted to suit our example food provision scenario, considering food taste as

the quality attribute under prediction (other attributes, such as delivery time, can be

represented similarly, but are not considered in the simulation).

Food taste can be influenced by a number of factors, examples of which include:

• Age: taste discrimination tends to decrease with age, with taste thresholds for

sweetness, saltiness, and sourness in the elderly being different from those in the

young.

• Health Condition: a number of diseases may affect taste sensitivity, including

obesity, anorexia, etc.

• Culture: cultural influences may lead to differences in food habits, with individuals

from a particular country favouring particular traditions of food preparation.

Based on this, we assume the following in our simulation:

• five possible outcomes for quality attribute taste, dom(taste) = {1, 2, 3, 4, 5},

corresponding to the number of stars assigned by the user;
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• three user-side context attributes, Age, HealthCondition, and Culture, affecting

taste, ~vu = 〈Age,HealthCondition, Culture〉, each with three possible values,

dom(Age) = {age1, age2, age3}

dom(HealthCondition) = {cnd1, cnd2, cnd3}

dom(Culture) = {cul1, cul2, cul3}

• one service-side context attribute, Recipe, also with three possible values,

dom(Recipe) = {recipe1, recipe2, recipe3}

• and finally three different service behaviours regarding attribute Taste, as defined

in Figure 5. Each behaviour corresponds to a distinct data generating source, as

characterised in Figure 6.

[Figure 5 about here.]

[Figure 6 about here.]

The above sources are adopted for the purpose of simulating abrupt and gradual

changes. Now, to facilitate the simulation of incremental changes, we assume that

the distributions of input features (user contextual features) per each class label, i.e.

conditional distributions p(ciu|vq), are Gaussian, with their respective means being

denoted as µ(ciu, vq) (the mean corresponding to the distribution of feature ciu for

class label vq). All possible outcomes are assigned equal prior probabilities, p(vq),

in this case. Distribution means are initiated at the beginning of the simulation, and

slightly repositioned at each time step (with a change step δu) to simulate slowly

changing data generation sources:

µt(c
i
u, vq) = µt−1(ciu, vq) + δu
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For all change types, a service-related context attribute is assumed to follow a

normal distribution, with its mean being repositioned either abruptly (with a mag-

netite of change ∆s) at each change point in the case of abrupt changes, or slowly

(with a magnetite of change δs = ∆s

|T | ) at each time step in the case of incremental

and gradual changes, with T being the set of all time steps (or learning episodes).

6.3. Evaluation Strategies and Measure

Throughout the evaluation, we refer to the following quality value learning strate-

gies. Strategy MML, our proposed multi-model learning approach. Strategy SSL, a

simple summary-based learning approach, which predicts the quality value vq with

the highest prior probability, p(vq), based on all the observations so far and ignor-

ing the user’s context. Finally, strategy SWL w, a sliding window based learning

approach, a well known way in the literature of adapting to potential changes in

incoming data (Gama et al., 2014). It utilises the Naı̈ve Bayesian classifier presented

in Section 6.1 as its main model, but maintains a fixed window of the latest w

observations, based upon which the model is updated at each time step (this strategy

accounts for the user’s context, but ignores the service’s context). By SWL all, we

refer to accounting for all the data observed so far.

The performance of each learning strategy is evaluated by assessing its prediction

accuracy at each time step, calculated as the success rate (i.e. number of successful predictions
total number of predictions )

over the last o observations (o is set to 20 in our experiments).
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6.4. Distance Measure

In the simulation, we consider one service-related contextual attribute cs, with

the distance, dist, between two values of this attribute, v1
s and v2

s , being estimated as

follows:

dist(v1
s , v

2
s) =


|v1s−v2s |
CDT

, if |v1
s − v2

s | <= CDT

1, otherwise

Here, CDT is the context dissimilarity threshold, beyond which the two values are

considered totally dissimilar, i.e. the observations of service behaviour collected

under one of these values are no longer relevant under the other.

Based on this distance measure, the classifier weight threshold, thrsh (see Sec-

tion 5.3.2), which triggers building a new classifier when the weights associated with

existing classifiers fail to meet this threshold, can be expressed as follows:

thrsh = 1− NCT

CDT

Here, NCT (s.t. NCT ≤ CDT ) is the new classifier distance threshold, denoting

the maximum distance allowed between current and a previous service-related con-

text, before the need for initiating a new classifier. Note that, when CDT > NCT ,

an older classifier may still carry some weight on the current prediction, even after

a new one is initiated. Further analysis of the effect of different values of CDT and

NCT is provided in the following sections.

6.5. Results in Static Environment

Our goal here is to study the importance of user context awareness for producing

more accurate quality value predictions (tailored towards the user’s particular situ-
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ation). For this purpose, we assume a static service behaviour regarding attribute q

(e.g. the service always conforms to behaviour 2), and compare our learning strategy,

MML, against the simple summary one, SSL. To simulate situations of imperfect

user’s contextual knowledge, we run our approach at different levels of noise, η%

(i.e. the true value of attribute q in a service observation is replaced with a randomly

generated one from its domain according to probability η%).

The results in Figure 7 demonstrate that MML achieves an accuracy of over 80%

(at 0% noise) after only 30 cycles, as opposed to SSL where the accuracy fluctuates

around 50% for the entire run. It is also evident that even with high noise levels (e.g.

30% noise), MML still leads to significant improvements over SSL, indicating the

importance of accounting for contextual evidence, even if imperfect.

[Figure 7 about here.]

6.6. Results in Dynamic Environment

The goal here is to study the adaptivity of the proposed approach in dynamic

environments, where the behaviour of the service changes over time. Different types

of dynamic environments are analysed next.

6.6.1. Incremental Changes. Figure 8 shows the results of the considered strate-

gies in the case of incremental changes, where the means of data distributions rep-

resenting user and service contextual features are slightly repositioned at each time

step.

[Figure 8 about here.]

As expected, the performance of SWL all deteriorates with time as older ob-
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servations become less relevant. Here, better prediction accuracy is obtained when

the outdated data is gradually forgotten, favouring more recent observations, with

SWL 100 achieving good results. With appropriate settings of parameters CDT and

NCT , the proposed multi-model strategy is also able to gradually discount the effect

of older irrelevant data, managing to approximate the performance of SWL 100 when

CDT = 0.2×∆s, NCT = 0.1×∆s, where ∆s is the overall magnitude of change

for the service-side context attribute within a run.

[Figure 9 about here.]

[Figure 10 about here.]

Figures 9 and 10 further analyse the effect of different settings for parameters

CDT and NCT in this case. In Figure 9, parameter NCT is fixed at 0.1 × ∆s,

resulting in 0.1 of the total samples contributing to each individual classifier, while

varying parameter CDT . Here, setting CDT to higher values expands the window

of past samples that could have an effect on the current prediction. In other words,

whilst the most recent classifier still carries the highest weight, more past classifiers

would be allowed to also contribute towards the prediction at hand (see Figure 11),

intensifying the effect of irrelevant data and thus reducing accuracy. On the other

hand, when CDT = NCT , only a single classifier (the most recent one) is active at

any time step. Although this reduces the effect of the less relevant data captured by

the older classifiers, it suffers from accuracy drops at classifier change points, until

the new classifier is stabilised, due to the lack of sufficient samples. A smoother

transition, and thus better accuracy, is obtained when the older classifier is allowed

to contribute towards the prediction, but with lower weight, while the new classifier
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is being build, which is achieved via setting CDT to 0.2 × ∆s (i.e. two classifiers

are active at each time step as outlined in Figure 11).

[Figure 11 about here.]

Now, in Figure 10, CDT is always set to 0.3×∆s, while parameter NCT is the

one varied. Here, the maximum number of past samples that may contribute towards

the prediction remains the same, but depending on the value of NCT , such samples

are either broken down into smaller chunks (i.e. larger number of classifiers) for

lower values of NCT , or larger chunks (i.e. smaller number of classifiers) for higher

values of NCT , in ascending order of importance. In particular, according to our

model, the importance of a classifier is governed by the contextual characteristics of

its initial samples (the similarity between these characteristics and the current con-

text). As a result, when classifiers are larger (for higher values ofNCT , e.g.NCT =

0.3×∆s), a newly built classifier carries a much higher weight than the older ones.

This leads to accuracy drops each time a new classifier is initiated, followed by

a boost in performance after the new classifier is stabilised, before the accuracy

starts dropping again as the window of samples reflected by the classifier increases

capturing older irrelevant samples. In contrast, when classifiers are smaller (for lower

values ofNCT , e.g.NCT = 0.1×∆s), the older classifier still holds a considerable

importance when the new one is built, resulting in a smoother transition, but lower

accuracy peaks due to the higher impact of older samples. Furthermore, as can be

seen, values as low as NCT = 0.03 × ∆s leads to a considerable reduction in

accuracy due to relying on a large number of unstable classifiers built on insufficient

number of samples.
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[Figure 12 about here.]

6.6.2. Gradual Changes. Figure 12 shows the results of the considered strate-

gies in the case of gradual changes, where a data source gradually disappears to be

replaced by another source each 500 time steps, following sequence S1−S2−S3 (see

Figure 6 for the definition of sources Si). We obtain similar observations to the case

of incremental changes in terms of ranking between strategies, i.e. better results are

achieved when older data is gradually forgotten. Note, however, that we encounter

here an increase in the performance of all classifiers between time steps 300 and

700. This is due to the pattern of changes followed, where data source 2 remains the

source dominating (infl(S2, t) > 0.5) for this entire period, which is longer than

the domination period of the other sources, resulting in a milder change within this

period.

6.6.3. Abrupt Changes. Finally, we compare the performance of the adaptation

strategies in the case of abrupt changes, where a data source suddenly changes to

another source following the behaviour sequence S1−S2−S3−S1−S2−S3, with

each particular behaviour being fixed for 300 episodes.

[Figure 13 about here.]

Figure 13 shows the results in the case of encountered new behaviour (i.e. the

case of changes during the first 900 episodes). As can be seen, SWL all suffers from

poor performance, especially after a change occurrence, where the learned model

mostly reflects irrelevant observations. It is also evident that, in fixed windowing

strategies, increasing the window size results in a slower reactivity to a change
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since older irrelevant observations take longer to be forgotten. Smaller windows,

on the other hand, achieve faster adaptation, but affect the prediction accuracy due

to depending on insufficient number of observations. In contrast, via accounting

for service-side contextual clues (with appropriate settings of parameters CDT and

NCT ), MML is able to detect a drift occurrence, and utilise this to capture only

relevant observations for learning the new behaviour (i.e. acting similarly to a dy-

namically adjusting window), thus outperforming other strategies.

In order for MML to be able to detect a drift occurrence in this case, param-

eter NCT should be set to a value NCT ≤ ∆s (where ∆s is the magnetite of

service-related context change between behaviours). Moreover, since the change is

abrupt, data preceding the change point is no longer relevant and should be forgotten

abruptly, which can be achieved by setting parameter CDT to: NCT ≤ CDT ≤

∆s, allowing only one classifier to be active at any moment. As the value of CDT

increases beyond ∆s, so does the weight of the older, no longer relevant classifier,

resulting in the degradation of prediction accuracy as illustrated in Figure 14.

[Figure 14 about here.]

[Figure 15 about here.]

As for the case of encountered recurring behaviour (i.e. the case of changes dur-

ing the second 900 episodes), and unlike the other strategies, MML always maintains

high accuracy (see Figure 15), eliminating the period of performance degradation

after a change point due to reusing an already existing stable model (built from old,

but relevant again, observations).

[Figure 16 about here.]
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[Figure 17 about here.]

6.6.4. Effect of Noise. The effect of imperfect (e.g. incomplete) service-side

context knowledge on the performance of MML is studied in Figure 16, where

context attribute cs is subjected to various levels of noise η%, in an abruptly chang-

ing environment (other changing environments exhibit similar trends). Clearly, the

presence of noise has a negative impact on accuracy. Here, the choice of classifier

weight learning factor δwt plays a role in robustness to noise, with lower values of

δwt (i.e. slower learning), e.g. δwt = 0.1, achieving better results due to decreasing

responsiveness to noisy data, as shown in Figure 17 where the context attribute is

subjected to 30% noise.

7. RELATED WORK

The QoS properties of services are important criteria upon which services are

discovered, selected, and composed into complex applications (Zeng et al., 2004;

Barakat et al., 2011; Yan and Chen, 2015). Accurate estimation of such properties,

typically from prior observations of service behaviour, has thus received much at-

tention.

7.1. QoS Prediction

Many approaches have been proposed in the context of QoS prediction. For

example, Aschoff and Zisman (2011) model the response time of a service as a

random variable, changing as a result of various factors related to the network and

system resources (e.g. request queuing time). The exponentially weighted moving



TOWARDS PERSONALISED AND ADAPTIVE QOS ASSESSMENTS VIA CONTEXT AWARENESS 33

average is utilised for estimating the expected value of this variable at a particular

time step, according to historical data. Similarly, time series modelling based on

ARIMA (AutoRegressive Integrated Moving Average) has been proposed by Amin

et al. (2012) for the purpose of QoS forecasting. Barakat et al. (2014) provide proba-

bilistic, multi-valued quality estimations for services via applying an online learning

algorithm that is inspired by Policy Hill-Climbing, based on past user ratings.

Trust and reputation mechanisms have also been considered for the purpose of

accurate quality predictions. Trust is defined as an assessment of the likelihood that

an individual or organisation will cooperate and fulfil its commitments (Gambetta,

1988). Reputation is complementary to trust, and can be viewed as the public percep-

tion of the trustworthiness of a given entity (Jøsang et al., 2007). In a service-oriented

system individuals and organisations rely on providers to successfully execute ser-

vices with an appropriate quality in order to fulfil their own goals, and such reliance

implies a degree of risk, as success depends in part upon a third party. Trust and

reputation provide an effective way of assessing and managing this risk with respect

to the quality attributes of interest. In particular, prior to an interaction with a service,

an assessment of its overall trustworthiness (Xu et al., 2007; Malik and Bouguettaya,

2009) or the trustworthiness of each of its QoS dimensions (Maximilien and Singh,

2005) is undertaken, in order to avoid selecting unreliable services that may not

honour their promises. Typically, such an assessment is performed by producing

reputation scores for the service based on the feedback collected from its users.

Many computation models of trust and reputation have also been developed and

applied in a variety of other settings including Grid computing and P2P systems, and

more generally in multi-agent systems. See (Griffiths and Chao, 2010; Jøsang et al.,
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2007; Sabater and Sierra, 2005) for extensive reviews of the main approaches. Most

established trust models, such as ReGreT (Sabater-Mir and Sierra, 2001; Sabater,

2004), FIRE (Huynh et al., 2006), TRAVOS (Teacy et al., 2005) and HABIT (Teacy

et al., 2012) use a combination of direct experience and third party experiences as

the base for assessing trust and reputation, and use numerical or probabilistic repre-

sentations for trust (Wang and Singh, 2007). TRAVOS (Teacy et al., 2005) takes a

probabilistic approach to assessing trust, with the outcomes of interactions recorded

as binary variables from which the expected value of success of future interactions

is estimated using a beta probability density function. HABIT (Teacy et al., 2012)

also uses a probabilistic approach, creating Bayesian network to support reasoning

about reputation. ReGreT (Sabater-Mir and Sierra, 2001; Sabater, 2004) assesses

reputation on three aspects: (i) an individual dimension from direct experience, (ii)

a social dimension using knowledge of others’ experiences and the social structure,

and (iii) an ontological dimension that accounts for the different aspects that inform

reputation (e.g. delivery, price, quality). FIRE (Huynh et al., 2006) builds on ReGreT

through the addition of role-based trust, and certified reputation based on third-party

references (Huynh et al., 2006).

7.2. Context Awareness in QoS Prediction

7.2.1. Time as Context. Time is the most commonly accounted for context in

QoS prediction approaches. In particular, most above approaches mainly rely on

the time of service observation to determine the relevance of this observation for the

situation at hand. That is, observations in the distant past are considered less relevant

than more recent ones. This is achieved by simply discarding older observations
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(e.g. Teacy et al. (2005, 2012)), by weighting observations based on their recency

(e.g. Huynh et al. (2006); Maximilien and Singh (2005); Xu et al. (2007)), or by

introducing a learning factor determining the rate at which past data is forgotten

(e.g. Barakat et al. (2014)).

These efforts rely on favouring recent observations to handle changes in the

service’s behaviour, without accounting for the context under which these obser-

vations were collected, thus neglecting important evidence for assessing observation

relevance. In contrast, our approach guides its reasoning by such contextual clues

in order to achieve more effective adaptation. Hence, it is capable of detecting the

behaviour change, as well as reusing old observations in the case of re-appearing

behaviour, unlike these efforts.

Moreover, such approaches usually do not function well if there is a lack of past

evidence, such as where new providers or services are introduced to the system or

where a service under consideration has had little recent use (Burnett et al., 2011).

The approach proposed in this paper uses context records that could provide a rich

source of information on which to base trust and reputation assessment, enabling

a richer level of reasoning regarding reputation via considering the context of the

previous interactions.

7.2.2. Implicit Context Awareness. To facilitate personalised QoS information

for users, a number of approaches utilise collaborative filtering for the purpose of

quality value prediction (Shao et al., 2007; Zheng et al., 2009, 2011). In particular,

the missing QoS values for a given user are predicted based on the past respective
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ratings of other similar users, with the similarity between two users being determined

according to their ratings for the services they commonly invoked previously.

To address the scalability issue underlying accessing the entire database of user-

service information in such collaborative filtering approaches, Yu and Huang (2016)

propose dividing the group of users into a number of sub-groups based on the user’s

location. Such division is based on the assumption that the location of a user is likely

to affect their perception of a number of QoS information (e.g. response time). This

allows seeking user-service data within smaller clusters, thus improving scalability.

A similar location-aware collaborative filtering approach is utilised by Tang et al.

(2012), seeking the data of users within physical proximity to the target user.

Although collaborative filtering approaches capture the user’s context implicitly,

they usually suffer from the data sparsity problem where a user’s service invocation

history is either lacking or insufficient to make similarity conclusions. In contrast,

our approach explicitly exploits available user’s contextual knowledge, which al-

lows deriving personalised quality assessments for the user even in the absence of

previous interactions between this user and any service.

7.2.3. Explicit Context Awareness. Some approaches have also considered cap-

turing context information explicitly. Like us, Lin et al. (2012) explicitly incorpo-

rate the user’s contextual attributes as input for the quality value prediction process

(which is based on the average of past data). Yet, they do not account for changes in

the service’s behaviour that are associated with service-side context. A user context

aware approach (without service context awareness) is simulated in our experiments

via strategies SWL w.
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In the context of assessing a provider’s reputation, Miles and Griffiths (2015b,a)

utilise knowledge of the circumstances under which a service provision occurred.

Specifically, this knowledge is used to scale the ratings available for the provider,

assigning higher weights to those collected under circumstances comparable to the

current settings. Similarly, Barakat et al. (2015) incorporate delegation information

underlying a composite service provision to provide more accurate reputation as-

sessment of the composite service provider. These approaches, however, ignore the

user’s context and thus, unlike the proposed approach, do not provide personalised

predictions, nor consider the issue of subjectivity.

8. CONCLUSION

This paper presented a context-aware QoS learning approach for personalised

and adaptive quality value estimations. The learning is conducted via a service agent,

which maintains a pool of quality prediction models; each characterising a par-

ticular service behaviour, and providing (under this behaviour) personalised value

predictions for users. Experimental results demonstrate that the proposed approach

achieves high accuracy in different types of changing environments, and a faster

adaptation to a change when compared to the commonly adopted time-based learn-

ing.

Future work involves exploring hierarchical structures for context information,

as well as investigating how the predictive models of other similar services (possibly

maintained by other agents) could be exploited by the service agent to enhance qual-
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ity predictions for a newly available service (i.e. in the absence of prior interaction

history with the service).
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FIGURE 2. PROV graph illustrating the contextual circumstances presented in the
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FIGURE 4. Example Dependency Graph among Quality Attributes
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(1) behaviour1. under recipe 1:

ranking of taste =

{
1 star under age1 ∧ cnd1

2 star otherwise

(2) behaviour2. under recipe 2:

ranking of taste =

{
1 star under cnd2 ∨ cul2
3 star otherwise

(3) behaviour3. under recipe 3:

ranking of taste =

{
4 star under age2 ∨ age3
5 star otherwise

FIGURE 5. Definition of service behaviour regarding quality attribute taste
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(1) Behaviour 1 (associated with Source S1)
p1(1 star) = 3/27, p2(2 star) = 24/27, p3(3 star) = 0, p4(4 star) = 0, p5(5 star) = 0

p1( ~vu|1 star) =

{
1/3, if ~vu = 〈age1, cnd1, ∗〉
0, otherwise

p1( ~vu|2 star) =

{
0, if ~vu = 〈age1, cnd1, ∗〉
1/24, otherwise

(2) Behaviour 2 (associated with Source S2)
p2(1 star) = 15/27, p2(2 star) = 0, p2(3 star) = 12/27, p2(4 star) = 0, p2(5 star) = 0

p2( ~vu|1 star) =

{
1/15, if ~vu = 〈∗, cnd2, ∗〉 ∨ 〈∗, ∗, cul2〉
0, otherwise

p2( ~vu|3 star) =

{
0, if ~vu = 〈∗, cnd2, ∗〉 ∨ 〈∗, ∗, cul2〉
1/12, otherwise

(3) Behaviour 3 (associated with Source S3)
p3(1 star) = 0, p3(2 star) = 0, p3(3 star) = 0, p3(4 star) = 18/27, p3(5 star) = 9/27

p3( ~vu|4 star) =

{
1/18, if ~vu = 〈age2, ∗, ∗〉 ∨ 〈age3, ∗, ∗〉
0, otherwise

p3( ~vu|5 star) =

{
0, if ~vu = 〈age2, ∗, ∗〉 ∨ 〈age3, ∗, ∗〉
1/9, otherwise

FIGURE 6. Data generation sources corresponding to the behaviours of Figure 5
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TABLE 1. Past user ratings on service s1 regarding meal texture

User Rating Time Step User’s Context

User 1 Hard t1 dysphagic

User 2 Soft t2 no chewing or swallowing difficulties

User 3 Soft t3 no chewing or swallowing difficulties



60 COMPUTATIONAL INTELLIGENCE

TABLE 2. Past user ratings on service s1 regarding delivery time

User Rating Time Step User’s Context

User 1 30 minutes t1 in an urban location

User 2 2 hours t2 in a rural location

User 3 30 minutes t3 in an urban location
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TABLE 3. Past user ratings on service s2 regarding meal taste

Rating Time Step Service’s Context

5 stars t1 Recipe 1

5 stars t2 Recipe 1

...

5 stars t20 Recipe 1

1 star t21 Recipe 2

1 star t22 Recipe 2

1 star t23 Recipe 2


