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Abstract

Automatic feature selection aims to select the features with highest performance when
used in a classifier. One popular measure for estimating feature relevancy and redundancy
is Mutual Information (MI), although it is biased toward features with multiple values.
Permutation methods have been successfully applied in normalizing for numerous biases
including that of MI; however they are computationally expensive and complete redundancy
computation is infeasible. In this paper, we introduce a measure that can be used to
approximate all m? redundancies between m features, while performing only m permutation
methods for their relevancies. We then show using simulated data that this permutation
redundancy measure holds similar properties to normalized MI and apply it in selecting
features from example datasets using minimal Redundancy Maximal Relevancy (mRMR).

1. Introduction

Feature selection aims to select features that provide the highest performance when used in
models and is an integral part of the machine learning and data mining processes (Kohavi
and John, 1997; Guyon and Elisseeff, 2003). Relying on human experts to select good
features is often sub-optimal because of human error or personal biases, and so efforts have
been made to automate the feature selection process. One popular filter for feature selection
is minimal Redundancy Maximal Relevance (mnRMR) (Peng et al., 2005), although several
other filter methods exist (e.g. (Li et al., 2008; Chen, 2011)). In many implementations
these selection methods use Mutual Information (MI) as a measure of both relevancy and
redundancy (Herman et al., 2013), although it is biased towards features with multiple
values (Jensen and Cohen, 2000). One way to reduce this bias is to normalize MI by
entropy, as in Symmetric Uncertainty (SU) (Witten and Frank, 2011; Taylor et al., 2012),
but this is imperfect since it does not account for other potential biases in the data or feature
selection process. An alternative approach is to use permutation methods to normalize for
biases (Good, 2000; Altmann et al., 2010), but they are computationally very expensive
and a complete redundancy analysis between all features is infeasible. In this paper, we
introduce a measure based on permutation methods that can be used to approximate all m?
normalized redundancies while performing only m permutation methods for the relevancies,
where m is the number of input features.
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2. Background

The permutation method is a statistical test that can be used to assign a significance to a
correlation between two variables such as M I(x,y), or to normalize it for biases (Good, 2000;
Hapfelmeier and Ulm, 2013). It operates by computing the correlation statistic for several
different permutations (1000 in this paper) of the variables. Permuting either variable gives
the same permutation distribution, and it is computationally more efficient to permute the
class labels when computing relevancies rather than each individual feature.

The significance, or p-value, is the proportion of the permutation distribution that is at
least as large as M I(x,y). Rather than compute a p-value, Wang et al. (2009) assume that
the distribution is normally distributed and use the standard score of M1(x,y),

MI(z,y) —{y' € V(y): MI(x,y')},
v ev(y): MI(z,y')}s

where U(y) is the set of computed permutations of y, and p and o represent the mean and
standard deviation. Radivojac et al. (2004), use Zys to rank features with p-values below a
threshold. The other features are ranked by their p-value and below those ranked by Z;;.

A popular filter for feature selection introduced by Peng et al. (2005) is mRMR. In
general, mRMR aims to maximize the difference or ratio between the mean relevancy,
Rel(-), and redundancy, Red(-), of selected features (Herman et al., 2013). In this paper we
use a forward greedy search to select the feature that satisfies,

1

xi,x;€SU{x}

Znv(x,y) = ; (1)

where X = {xo,21,...,2,} is the complete set of input features, y is the target variable,
and S C X is the set of currently selected features. Where both Rel(-) and Red(-) is given
by MI, it is referred to as MImRM R in this paper.

3. A redundant permutation feature selector

Using Zys1 as a measure of both relevancy and redundancy in mRMR is prohibitive for even
small feature sets, and has a worst case of m + m? permutation methods when computing
a full ranking. Therefore, we propose a redundancy metric that is calculated directly from
the permutation distributions produced in computing the relevancies, requiring exactly
m permutation methods to compute all redundancies. Specifically, we suggest that the
similarity of the relevancy permutation distributions be used to estimate redundancy.

If two binary features, x1 and x, are mutually redundant and M1 (x1,x2) =~ 1, then we
can say that their relevancies are similar; M I(z1,y) ~ MI(x2,y) for any target y. A corol-
lary of this is that dissimilar relevancies, M I(x1,y) % MI(xz2,y), imply that the features are
not redundant; MI(z1,2z2) % 1. Unfortunately, similar relevancies, MI(x1,y) =~ MI(z2,y),
do not guarantee that the features are redundant, and there may be unrelated features
with similar relevancies. Knowledge of relevancies does, however, provide some insight into
the feature redundancy relationship. For instance, if the two relevancies, M1(z1,y) and
M1 (x5,y), are similar then the features are more likely to be redundant than if the relevan-
cies are very different. Furthermore, if it is known that the features have similar relevancies
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with many different targets, the likelihood of their redundancy is increased. This is the
basis of the proposed permutation redundancy measure.

The permutation redundancy measure is computed by performing the permutation
method for several features simultaneously, permuting only the target at each iteration.
For a given permutation, y’, the permutation correlations, M1(x;,y") are recorded for all
features x; € X. Imagine that for all computed permutations of y, ¥(y), the permutation
correlations for features z1 and x4 are similar, i.e. MI(x1,y’) =~ MI(z2,y")Vy' € ¥U(y). In
this case it is reasonable to conclude that z1 and zo are related and redundant features. If
they were not related, some proportion of the permutation correlations would be dissimilar.

Permutation distributions are not directly comparable by a measure such as mean abso-
lute difference, because the permutation correlations share the same bias found in MI and
increase with the dimensionality of a feature. Instead, to successfully compare distributions
of different ranges, we use Pearson’s Correlation Coefficient,

PCyi(z1,22,y) = POC(MI(z1,y'), MI(z2,y') : Vy' € U(y)). (3)

Simulated data is used to show the relationship between MI, Zy;; and PCjs;. The data
is simulated by generating a uniform binary string of 100 independent samples which is
taken to be the target, y. A total of 125 features are then generated by copying this target
and changing their sample values randomly to decrease their relationship with y and their
cardinalities to increase their entropy and bias their MI with other features. The features
are separated into five sets of 25, each of which has a different percentage of the sample
values altered. Specifically, the percentages of changed samples are 5%, 10%, 20%, 30%,
40%; producing features varying in levels of relevancy and redundancy. Each set of 25
features with the same number of value changes is split once more into 5 sub-sets. In the
first subset, the features are kept the same and remain binary. In the second, each of the
feature values are divided uniformly at random into two, creating features of cardinality 4.
The third subset has each of the feature values divided into three, while the fourth and fifth
subsets have features of cardinality 8 and 10 respectively. This creates a simulated dataset
with 5 features for each value change and value split combination, totalling 125 features.

The scatter plots in Figure 1 show that PCj,r is highly related to Zus;, but not to
MI. This provides evidence that the PC)ys; redundancy measure does not exhibit the bias
in MI, which is rectified by Zp;;. Therefore, using this measure may be beneficial to
redundant feature selection with the permutation method, as it can be used as a surrogate for
permutation normalized MI so that m? permutation methods do not have to be performed.

Finally, Zp;7, and its surrogate PCyr, can be used in a feature selection filter such as
mRMR. Specifically, Zy;; can be used as a measure of feature relevancy (in place of Rel(-)
in Equation 2), and PCjr as a measure of redundancy (in place of Red(-) in Equation 2).
This approach assigns more importance to relevancy than redundancy, however, as the
range of Zysr is much larger than PCjs;. Rather than use a weighting parameter for the
relevancy and redundancy (Vinh et al., 2010) and to consider them of equal importance,
they can be normalized between 0 and 1 at each selection step. After this normalization
the most relevant feature that is not yet selected will have a relevancy score of 1, and the
least redundant unselected feature will have a redundancy score of 0. This feature selection
filter is referred to as PmRM R in this paper.
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Figure 1: Scatter plots of MI (a) and Zy;; (b) against PCjyy. Lighter red points indicate
higher density regions. The correlations of the measures are shown in braces.

4. Evaluation

To evaluate the MImRM R and PmRM R feature selection methods, we used the Arrhyth-
mia, Chess, Congress, Credit, Fertility, Madelon, Musk 1, Parkinsons, Promoters, Soybean
(small), Soybean (large), Spambase, Splice, TR11, TR12, TR21, TR23, Vehicles, Wine,
and Yeast that are available in the UCI' and Tuned IT? repositories.  These datasets
were chosen because of their range in size and features, as well as their use in previous
feature selection literature (Herman et al., 2013). All samples with missing values were first
removed from the dataset, before numeric or real valued features were discretized using the
minimum descriptive length method (Fayyad and Irani, 1993). At this point, features with
only one discrete value were discarded as they contain no information. This is so features
can be generated from existing ones, while changing their sample values to worsen their
predictive performance and increasing their dimensionality to bias MI.

From each dataset, 5 new datasets were generated by copying original features and
increasing their dimensionalities. In all cases, before increasing the dimensionality of a
feature, 5% of the values were changed to worsen their predictive abilities. The target
variable was not copied or altered in any of the new datasets. The 5 datasets, referred
to as {1}, {1,2}, {1,2,3}, {1,2,3,4}, and {1,2,3,4,5}, had different numbers of features
added to the original ones with different numbers of splits in their values. Dataset {1} had
double the number of features as the original, and the values of each added feature were
split once to double its dimensionality. All of the features present in {1} were also in {1, 2},
with one extra copy of the original features having two splits in their values to triple their
dimensionalities. In each of the subsequent datasets an extra copy was added on top of
the previous, with one extra split in values applied. In the fourth, fifth and sixth datasets
therefore, there were four, five, and six times as many features as in the original dataset,
with dimensionalities multiplied by four, five and six respectively.

For each of the datasets a random subset validation procedure with ten train-test it-
erations was performed. In each iteration 50% of the samples were taken uniformly at

1. http://archive.ics.uci.edu/ml, 2. http://tunedit.org/repo/Data/
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Figure 2: Mean AUCs over ten evaluations with between one and twenty features from Musk
1 (a) and TR 11 (b) datasets and using Random Forest and SVM respectively.

random as training data, from which features were ranked using forward selection with
both MImRMR and PmRMR. To consider relevancy and redundancy of equal impor-
tance and for a fair comparison, the relevancies and redundancies in both MImRM R and
PmRM R were normalized between 0 and 1, before choosing each feature. Twenty classifiers
were then built with increasing numbers of features (between one and twenty) taken from
the top of these rankings. The classification algorithms used were Nalve Bayes, Decision
Tree, Random Forest, and Support Vector Machine (SVM), which are all available in the
WEKA (Witten and Frank, 2011) library. The remaining 50% of the samples in each itera-
tion were used as testing data to produce a performance measure in the form of a weighted
Area Under the ROC (Receiver Operating Characteristic) Curve (AUC). Finally, because
features were ranked using the same training samples for both ranking methods, the AUC
performances produced during each testing iteration can be compared directly.

For illustration, the mean AUC performances over the ten iterations of the TR 21 and
Musk 1 datasets, using the Random Forest and SVM classifiers respectively are shown in
Figure 2. The plots are representative of using other classifiers with different datasets, and
show that AUC decreases as more features with higher dimensionalities present. It also
shows that performance decreases less when features are selected using PmRM R than with
MImRMR. In some cases, and mainly with the Decision tree classifier, where AUCs for
the original features were close to 1, the mean AUC performance was affected less by the
added features than when the AUC for the original dataset was small.

Table 1 shows the number of times features selected by M ImRM R outperformed those
selected by PmRM R, and vice versa, for each classifier over the 4000 train-test iterations.
These results show that MImRMR outperformed PmRM R slightly more often for all
classifiers with the original datasets. As more copied features are injected into the datasets
with more value splits, PmRM R tends to outperform MImRM R more often. This trend is
the same for all four classifiers, but is most clear with Random Forest. In other experiments
we also added features with different amounts of sample value changes, but did not find
this to significantly affect the performance of either feature ranking method.
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Original {1} {1,2} {1,2,3} | {1,2,3,4} | {1,2,3,4,5}
Classifier MI P MI P MI P |MI P MI P MI P
Naive Bayes 1805 986 | 1533 1771] 1348 2160 1446 2181| 1278 2333| 1429 2208
Decision Tree 1222 1178| 1103 1653 1062 1818 900 2087 876  2133| 1090 1963
Random Forest 1774 1292 | 1346 2193| 1220 2532 1175 2687 1198 2673| 1221 2677
SVM 1546 1035| 1418 1778| 1334 2035| 1311 2183| 1216 2301| 1356 2259
Total 6347 4491 | 5400 7395 4964 8545 4832 9138| 4568 9440 5096 9107

Table 1: Number of times features selected by M ImRM R (MI) outperformed those selected
by PmRMR (P), and vice versa, for each classifier over all train-test iterations.

{1} {1,2} {1,2,3) | {1,2,3,4} | {1,2,3,4,5}
Dataset MI P ‘ MI P ‘ MI P ‘ MI P ‘ MI P
Datasets where better 3 15 1 17 1 16 2 16 1 17
Total features 684 848 ‘ 636 838 ‘ 609 814 ‘ 616 825 ‘ 614 819

Table 2: Number of original features ranked by in top five by MImRMR (MI) and
PmRMR (P) over all train-test iterations.

A good feature ranking method should rank the original features higher than the injected
ones, as randomizing values in the copies means that they are worse predictors of the target.
The total number of times an original feature was ranked in the top five by MImRM R and
PmRM R for the datasets with extra features are shown in Table 2. Detailed results for each
dataset are omitted for space reasons, but the number of datasets where one outperformed
the other in this task are presented. Overall, as features were copied more and with more
splits, fewer original features were ranked in the top five by both MImRM R and PmRM R.
In the majority of cases, PmRM R outperformed MImRMR, and MImRMR was again
more affected by increasing the dimensionality of features than was PmRM R. One notable
case where MImRMR outperformed PmRMR is with the Congress dataset, which is
small and simple in structure. In fact, when the top ten or twenty features in the rankings
are considered, PmRM R outperforms MImRM R less often, with M ImRM R performing
better for several smaller datasets including Credit, Fertility, and Soybean (small).

5. Conclusion

This paper investigated redundant feature selection using permutation normalized correla-
tions. We showed with simulated data that permutation normalized MI can be estimated
accurately by comparing permutation distributions computed from a common target. A nor-
malized variant of mRMR was used to successfully select features from example datasets
with extra features to increase the difficulty of the selection problem. Our approach can
automatically select features and requires no parameters other than the number of permu-
tations — which should be as large as is computationally reasonable.

As future work we intend to investigate the relationship between the number of permuta-
tions used, and the performance of the features selected using the permutation redundancy
measure. We also intend to investigate different feature selection filters with the redundant
permutation measure, such as feature clustering (Li et al., 2008).
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