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Abstract. The Grid vision is to allow heterogeneous computational re-
sources to be shared and utilised globally. Grid users are able to submit
tasks to remote resources for execution. However, these resources may be
unreliable and there is a risk that submitted tasks may fail or cost more
than expected. The notion of trust is often used in agent-based systems
to manage such risk, and in this paper we apply trust to the problem of
resource selection in Grid computing. We propose a number of resource
selection algorithms based upon trust, and evaluate their effectiveness in
a simulated Grid.

1 Introduction

Distributed computer systems can be viewed as multi-agent systems in which
individual autonomous agents cooperate to achieve their objectives. It is through
cooperation that such agents function effectively, since they typically lack the
knowledge, capabilities or resources to achieve their objectives alone. Grid com-
puting can be viewed as a multi-agent system that allows users to discover, select
and use remote resources [15]. The process of a user submitting a task to a re-
source, and that resource performing the task, can be viewed as cooperation.
Both users and resources have control over their own behaviour, and are au-
tonomous agents having their own decision making mechanisms. By definition,
however, autonomous agents also control how they cooperate. In particular, such
agents determine for themselves when to initiate cooperation, when to offer it,
and when to rescind cooperative commitments. Consequently, when agents co-
operate, any one of them can cease cooperation at any time, (typically) causing
the whole interaction to fail. In a Grid environment autonomy manifests itself
through users and resources being able to change the nature of their cooperation,
or even ceasing to cooperate, at any time. For example, a resource may reduce
the priority of a user’s task causing it to overrun, or may cease processing one
user’s task in favour of another.

When entering into cooperation, agents enter into uncertain interactions in
which there is a risk of failure due to the decisions and actions of others. To func-
tion effectively agents must manage this risk, and the notion of trust can used to



provide a suitable mechanism. In this paper, we describe how trust can be used to
manage cooperative interactions in the context of Grid computing. In particular,
we provide a mechanism for user agents to use trust for resource selection, i.e.
choosing the most appropriate resource for a task. Although several researchers
have considered the problem of resource selection in a Grid environment from
the perspective of minimising cost [3, 16], relatively few have been concerned
with minimising task failure [1, 2]. Those that do consider failure tend to use
restrictive trust models, and often do not consider the cost of task execution3.

In the following section, we introduce the Grid context in more detail and
illustrate the problems that trust can address. In Section 3 we describe the no-
tion of trust, and the trust model that we use, and in Section 4 we describe how
trust can be compared using a strict, stratified, or windowed approach. The ap-
plication of trust to the resource selection problem is described in Section 5. Our
approach has been implemented in a simulated Grid, as described in Section 6,
and in Section 7 we give details of our results. Finally, in Section 8 we give our
conclusions and outline ongoing work.

2 Context: Grid Computing

Grid computing provides a mechanism for users to discover, select and utilise re-
mote resources. Although most existing Grids are fairly localised, the Grid vision
is to allow global resource sharing, where resources charge users for executing
their tasks. Resources are heterogeneous, geographically distributed and locally
controlled, and have specific individual capabilities in terms of their processor
architecture, network bandwidth etc. that are made available for an associated
cost. Grid resources may be unreliable and may erroneously fail to execute a
task, or circumstances may cause them to delay or drop execution of a remote
user’s task. An example of the former is where hardware or network problems
cause a task to fail. The latter case is illustrated by a resource dropping a task
submitted by one user, in favour of that submitted by a higher priority user. For
example, remote users’ tasks may be dropped in favour of local users, or tasks
submitted by low paying users may be dropped in favour of users who pay more.

When selecting a resource to submit a task to, a Grid user typically tries to
minimise the execution cost (possibly considering time in addition to financial
cost) and the risk of the task failing. These aims may conflict with each other,
since cheap resources may be unreliable and reliable resources may be expensive.
Therefore, a user must balance these criteria according to their own preferences.
Additionally, users should generally aim to use a broad selection of resources, to
avoid reliance on a narrow set. If a user interacts only with a small set of resources
that subsequently become unreliable, there will not be familiar alternatives to
submit tasks to, and alternatives must be source and familiarity rebuilt.

The factors that a user considers when selecting a resource depend both on
its individual decision making mechanism, and on the nature of its individual

3 There has been other work in minimising failure in Grid computing but not from a
Grid user’s perspective (e.g. [10]).
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Fig. 1. A single user’s perspective of the Grid as a multi-agent system.

Grid context. The context is important since it determines, among other things,
the significance of failure in terms of cost. In this paper, we assume that all of a
user’s tasks must be completed and that failure has an associated cost penalty.
Thus, if a resource fails to complete a task the user incurs a cost penalty (i.e. a
fine) and must find an alternative resource to submit the task to. The overall cost
of processing a task is therefore related to the risk of failure, since in addition
to the execution cost there is an implicit cost overhead for resubmission and an
explicit penalty for submitting tasks to an unreliable resource.

The Grid environment is illustrated in Fig. 1, where resources (which com-
prise a set of machines that in turn comprise a set of processing elements) are
shown as resource agents and human users are represented by user agents. Users
submit tasks to resources via their corresponding user agents. All of a user’s
interactions with resources are performed via its user agent which assists in
managing these interactions. In particular, the responsibility of selecting an ap-
propriate resource for a task is devolved to the user agent, which is configured
to reflect the user’s preferences (e.g. in balancing cost and risk). Our focus in
this paper is primarily concerned with using trust for resource selection and, al-
though cost is clearly relevant, we are not concerned with the details of specific
economic models of Grid computing. Therefore, we adopt a simple flat commod-
ity market model in which resources specify their service price and charge users
according to how much resource is consumed [3]. There are many alternative
market models, including tendering, auctions and negotiation. However, these
add complexity both in themselves, and in terms of how they effect trust. For
example, agents may build trust through a negotiation process, in addition to
via their task interactions. Consideration of these alternative market models is
beyond the scope of this paper, but is a potential area for future investigation.

3 Trust

The notion of trust is recognised as a means of assessing the potential risk in
interactions [5, 7, 12]. Trust represents an agent’s estimate of how likely another
agent is to fulfil its cooperative commitments. When considering uncertain inter-
actions, an agent can use its trust of potential cooperative partners to evaluate
the risk of failure. There are two main categories of trust: experience-based and
recommendation-based. In the former, an agent’s assessment of trust is purely
based on its own experiences, while in the latter trust is based on informa-



tion provided by other agents (possibly supplemented by individual experience).
Experience-based trust naturally fits the Grid context. Users interact with re-
sources and infer trust based on their experiences and, over time, improve their
trust models. Recommendation-based trust requires users to share information
about their experiences with a resource with other potential users of the resource.
Although this is certainly a potentially powerful mechanism, there are a number
of obstacles to its use. In particular, there is no intrinsic motivation for informa-
tion sharing. Indeed, if a user gives positive feedback about a resource this may
jeopardise possible future use, since others are more likely to use the resource
(reducing its availability). There are also general issues concerning the subjec-
tivity and context-specific nature of feedback. Other researchers are, however,
considering these problems to allow use of recommendation-based trust in the
Grid domain [9, 14]. Our work is orthogonal to this, and we envisage experience-
based and recommendation-based trust eventually complimenting each other to
provide a single trust mechanism. For the purposes of this paper, however, we
are solely concerned with experience-based trust.

3.1 Trust Framework

We base our model of trust on Gambetta’s theoretical work [7], Marsh’s formal-
ism [12], and the work of Griffiths [6, 8], and define the trust T in an agent α, to be
a real number in the interval between 0 and 1: Tα ∈ [0, 1]. The numbers merely
represent comparative values, and have no strong semantic meaning in them-
selves. Values approaching 0 represent complete distrust, and those approaching
1 represent complete blind trust. There is an inverse relationship between trust
and the perceived risk of an interaction: cooperating with a trusted agent has a
low perceived risk of failure, while there is a high risk associated with distrusted
agents. Trust values represent the view of an individual agent, subjectively based
on its experience, and are not directly comparable across agents.

Trust values are associated with a measure of confidence, and as an agent
gains experience its confidence increases. With no prior experience, trust takes
an initial value according to an agent’s disposition: optimistic or pessimistic.
Optimistic agents ascribe a high initial trust value to others (implying a low
perceived risk), and pessimists ascribe low values. This disposition also deter-
mines how trust is updated after interactions [13]. After successful interactions,
optimists increase their trust more than pessimists and, conversely, after un-
successful interactions pessimists decrease their trust more than optimists. An
agent’s disposition comprises: the initial trust, Tinitial, ascribed prior to inter-
acting and functions for updating trust after successful and unsuccessful inter-
actions, updatesuccess and updatefail respectively. These functions for updating
trust are simple heuristics, and there is no standard definition for them. Instead,
it is the responsibility of the system designer to choose an appropriate heuristic.
In this paper we use the following definitions for the update functions:

updatesuccess(T ) = T + ((1 − T ) × (ds × T ))

updatefail(T ) = T − ((1 − T ) × (df × T ))



where ds and df are weighting factors defined by the disposition4. Other defi-
nitions are possible, and there is no “correct” definition; empirical evaluation is
needed to determine appropriate functions for a given domain.

Over time trust values may become inaccurate and outdated if the experi-
ences that gave rise to them are no longer relevant. The environment may change,
and a resource that was reliable previously may no longer be so. To address this
problem, we apply a decay function to converge each trust value to Tinitial in the
lack of any subsequent experience. Thus, unless reinforced by recent cooperative
activity, the positive effect of successful interactions reduces over time, as does
the negative effect of failed interactions. The decay function is defined as:

decay(T ) = T − ((T − Tinitial)/dd)

where dd a decay rate defined by the agent’s disposition.
To improve its trust models an agent may also explore alternative resources

for low priority tasks. Agents typically only interact with others that are consid-
ered trustworthy. Thus, there tends to be a subset of resources that are interacted
with, and it is this subset for whom the agent will be confident about its trust
values. To reduce the risk of a reliable agent being outside this subset, agents
can periodically select resources from outside the set to verify its judgement is
correct and attempt to discover additional trusted resources5.

4 Numerical, Stratified and Windowed Trust

In our approach trust is modelled as a numerical value, however some researchers
note that using continuous numerical values can introduce ambiguity since the
semantics are hard to represent [1, 12]. The alternative approach is to divide
the trust continuum into a set of labelled strata. Abdul-Rahman and Hailes, for
example, take this approach, providing four distinct trust strata (“very trust-
worthy”, “trustworthy”, “untrustworthy”, and “very untrustworthy”) that they
argue provides a clear semantics for different trust values [1]. The advantage of
this approach is that “trustworthy” for one agent should correspond to “trust-
worthy” for another, avoiding the problem of defining the meaning of a numerical
value. However, these semantics are still subjective, and different agents may as-
cribe the same experiences to different strata; experiences that rate as highly
trustworthy for one agent may only rate as trustworthy for another. A further
problem with stratifying trust is a loss of sensitivity and accuracy, since compar-
isons become coarse grained with no way to distinguish between agents within
a stratum. For this reason Marsh rejects the use of strata in favour of numerical
values [12]. In our approach, to avoid loss of sensitivity and accuracy, we also

4 It is beyond the scope of this paper to discuss the impact of different dispositions,
however our experiments have obtained similar results to those presented in Section 7
with different dispositions.

5 This approach is analogous to the simulated annealing method for local search, where
potentially suboptimal options are considered to avoid local minima [11].



represent trust by numerical values. Furthermore, updating trust after interac-
tions is simple for numeric values, whilst those models that use stratification
gloss over how agents determine a trust strata from their experiences [1, 2].

The primary advantage of trust strata is that selection between resources is
simplified. In our model, suppose that a user must select between two resources
with trust values 0.5 and 0.50001. The user must either conclude that this dif-
ference is insignificant and the resources are equally trusted, or that there is a
real difference in trust and the latter resource is more trustworthy. The use of
strata avoids this problem, since there are no numerical values for consideration.
Ideally, a trust model would have the sensitivity and accuracy of a numerical
approach, combined with the ease of comparison from a stratified approach. To
this end, we propose two simple modifications to our trust model at the time of

trust comparisons: variable stratification and windowed trust.
In the former, trust values are translated into strata immediately before

comparison. The number of strata is variable, with fewer strata providing the
simplest but least precise comparison, while more strata reduces the comparison
advantage but retains precision. For example, Abdul-Rahman and Hailes’ strata
can be modelled by dividing the trust interval into the following equal parts: very
trustworthy: 0.75 <= T <= 1, trustworthy: 0.5 <= T < 0.75, untrustworthy:
0.25 <= T < 0.5, and very untrustworthy: 0 <= T < 0.25.

The disadvantage of stratifying trust is that an equal difference in values is
not significant within a stratum, but is when it lies across strata. For example,
using the above strata a difference of 0.1 is not significant for agents with trust
values 0.6 and 0.7 (i.e. both are “trustworthy”), but it is for agents with values of
0.7 and 0.8 (i.e. the former is “trustworthy” and the latter “very trustworthy”).

Our second modification is to use a variable size window when considering
trust values, such that values within the window are considered equal. This is
a similar to stratified trust, but avoids the problems across strata boundaries.
Windowed trust can be thought of as stratified trust with movable boundaries.
For example, if we use a window size, or trust distance, of 0.1, then agents with
trust values 0.6 and 0.7 are considered equal, as are agents with trust values of
0.7 and 0.8. However, the agent will still distinguish between trust values of 0.6
and 0.8. The trust distance is variable, and similarly to stratified trust, a larger
distance provides the simplest but least precise comparison, while smaller values
reduce the comparison advantages but retain precision.

5 Resource Selection

When selecting a resource a user must first consider whether the resource has
the required capabilities (e.g. processor architecture, network bandwidth etc.),
and second whether it is likely to complete the task successfully. The first of
these considerations is simple — either a resource has the required capabilities
or it does not. Those that do not can be rejected, otherwise factors such as
cost and reliability must be considered. These factors are more complex, since
they have varying degrees and may be based on uncertain information. Trust



enables an agent to consider these factors. A user is likely to prefer a resource
that generally completes tasks on time and rarely fails, to one that frequently
fails. This is embodied by the trust ascribed to a resource. To select a resource
an agent should balance trustworthiness against cost. Selecting a resource in this
manner is a heuristic decision and there are several possible approaches. This
paper proposes six fundamental options, as introduced below.

5.1 Cost

The simplest approach to minimising execution cost is to select the resource that
has the lowest expected cost, based on its published cost-per-second. However,
this will only be successful if resources are honest and reliable. If a resource
takes longer than expected to process the task, or fails to execute it, then this
approach will not result in the lowest overall cost. If execution takes longer than
expected then the user will be charged for the additional processing time. Should
task execution fail then an alternative resource must be found, and the user will
be charged a penalty for failure. The problem is that the risk of resource failure
and unreliability is not considered when selecting a resource.

5.2 Strict Trust

To minimise the risk of failure, an agent can select the most trusted capable
resource (provided the agent is confident of its models6). If several resources are
equally highly trusted, then one is selected arbitrarily. For low priority tasks
the agent periodically selects an untrusted resource, by way of exploration as
described in Section 3. This approach ensures that the resource that is perceived
to be the lowest risk is selected. However, users are forced to distinguish between
resources even where the numerical difference is small. Since trust is solely based
on experience, small differences in the numerical value may not be sufficient to
make meaningful judgements. Although small differences may arise from genuine
differences in reliability, they may also arise from differences in the extent or
recency of experiences. Thus, there is a risk of overfitting by drawing conclusions
from trust values where differences arise from irrelevant artifacts of the data.

A further disadvantage to using strict trust is that it tends to lead to a very
narrow set of resources being used. Since users may select resources based on
small numerical differences, these small differences are reinforced by the resulting
interactions. Over time, an insignificant difference in trust can be magnified
significantly. For example, if resource R1 is trusted only slightly more than R2

then after a period of successful interactions the trust of R1 may be significantly
more than R2. Thus, in future interactions R1 is likely to remain more trusted
that R2 even if in reality there is no significant difference. This is problematic
since, as described in Section 2, a broad selection of resources should be used to
ensure resilience.

6 If the agent is not confident, it can do little more that choose arbitrarily to gain
experience. In the remainder of this section we assume such confidence.



5.3 Stratified Trust

To avoid the narrow resource usage that results from strict trust we can use
stratified trust at the comparison stage. The most trusted resource is selected,
according to the trust stratum that the numerical value lies in. Where several
resources are equally most trusted, one is selected arbitrarily. Again, where the
task is of low priority the agent periodically selects a resource that is not trusted
by way of exploration. This approach avoids the problem of overfitting small
numerical differences, but at the cost of a loss of precision. The number of strata
is variable, and the effect of strata size is discussed in Section 7.

5.4 Stratified Trust with Cost

Using stratified trust for resource selection minimises the risk of failure, and
avoids overfitting, however no consideration is given to the task execution cost.
Therefore, we propose a fourth selection method that initially uses stratified
trust, but then selects the cheapest of the most trusted resources, based on their
advertised cost-per-second. Thus, an agent first determines the capable resources,
then extracts the most trusted of these, and finally selects the cheapest.

The choice of strata size is crucial to the effectiveness of this approach. If
too few strata are used, an agent is unable to distinguish between resources
according to reliability; if too many strata are used there is likely to be a single
most-trusted resource leaving no opportunity to distinguish based on cost. The
number of strata effectively determines the emphasis given to reliability versus
cost — more strata emphasises reliability and reduces the influence of cost, and
visa versa. Again, the effect of different strata sizes is discussed in Section 7.

5.5 Windowed Trust

Stratified trust avoids the overfitting associated with strict trust, however, as
noted in Section 4, it suffers from problems at strata boundaries. The alternative
is to use windowed trust, in which the most trusted resource is selected according
to the trust window that the numerical value lies in. Where several resources
are equally most trusted, one is selected arbitrarily. Again, agents periodically
select a resource that is not trusted, by way of exploration. This approach avoids
both the overfitting problem and the effects of strata boundaries. Similarly to
stratified trust, the trust distance (i.e. the window size) is variable, with a larger
distance giving higher precision, but at the risk of overfitting. Section 7 discusses
the effects of trust distance.

5.6 Windowed Trust with Cost

Our final selection approach combines windowed trust with cost. Similarly to
stratified trust with cost, a user first determines the capable resources, then
determines the most trusted of these according to windowed trust, and finally
selects the cheapest. Again, the size of trust distance is important, with smaller
distances emphasising reliability and reducing the influence of cost, and visa
versa. The effects of different trust distances are discussed in Section 7.



6 Experimental Scenario

The resource selection mechanisms described above have been explored using the
GridSim simulation toolkit [4]. This toolkit provides a feasible way to experiment
with such algorithms on a reasonably large-scale Grid of heterogeneous resources.
The overheads and resource requirements of investigating these algorithms in a
physical Grid are prohibitive, since significant access to Grid resources would
be required. Our future aim is to instantiate the most effective of our resource
selection mechanisms in a real Grid environment after validation via simulation.

In the GridSim toolkit, resources comprise a set of machines that in turn com-
prise a set of processing elements (PEs). Each resource has certain capabilities,
defined by its communication bandwidth and the configuration and processor
architecture of its PEs. At run-time resources have a variable load, due to tasks
being processed on behalf of users and due to background processing. Resource
load, at least in part, determines how long it takes to process a given task. In
GridSim each resource has an associated “calendar”, specified when configuring
a simulation, that defines how background load varies according to time of day
(i.e. peak and off-peak loads), day of the week and holidays etc. We have ex-
tended the GridSim toolkit to allow the simulation of unreliable resources, and in
our GridSim extension resources have an additional characteristic defining their
reliability in terms of a failure rate. Tasks are defined as Gridlets with attributes
defining their length, disk I/O operations, and the size of input and output files.
GridSim does not constrain the granularity of Gridlets, and in our simulations
we view a single job as comprising several Gridlets. Thus, a users can allocate
large jobs to several resources, by allocating the component Gridlets.

To test the validity of our approach, and the resource selection algorithms
described above, a series of experiments were performed. A range of user agents
with different dispositions (including varying values of ds, df and dd), from opti-
mistic to pessimistic, were used in a selection of Grid contexts, ranging from the
majority of resources being reliable, through a mixed set, to unreliable resources.
Each of the resource selection proposed algorithms was used, with varying num-
bers of trust strata (from 1 to 5000) and trust distances (from 0.0001 to 1). For
control purposes a random selection algorithm was also used, where user agents
simply submitted tasks to random resources. Various numbers of users and re-
sources were experimented with, however most of the results presented below
are for 30 resources and 10 users. Each user generates a random set of 500 tasks
to be completed with varying lengths, bandwidth requirements, and priorities.
For each configuration of the experimental domain we performed 10 runs, and
the results shown below represent the average values across those runs.

7 Results and Evaluation

In this section we present results obtained from using the resource selection algo-
rithms described above. We view these results as ‘proof-of-concept’, since empir-
ical experimentation is needed to determine appropriate trust update functions
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and disposition values for a specific domain. Initial results with alternative up-
date functions show broadly similar results to those given below. We are primar-
ily concerned with the failure rate, execution cost, and total cost (i.e. execution
cost plus any failure penalties) of the proposed strategies. We consider first the
stratified trust methods, and then the windowed trust methods, in both cases
investigating the impact of strata size and trust distance. Finally, we illustrate
the effect of Grid context in terms of the proportions of reliable and unreliable
resources, and identify the preferred proposed strategies in our simulated Grid.

7.1 Stratified Trust Approach

Fig. 2 shows the failure rate for the stratified trust and stratified trust with cost
resource selection methods for a varying number of strata. The failure rate rep-
resents the average number of failed Gridlets. In our experiments users generate
500 Gridlets that must be completed, and so are resubmitted in the event of fail-
ure. Thus the failure rate is equivalent to the average number of resubmissions
needed to complete all 500 Gridlets. These results represent the average of 10
runs in a “mixed” Grid resource environment, i.e. there is a mix of reliable and
unreliable resources7. Fig. 2 also shows the failure rate for the strict trust and
random selection methods. The failure rate for the cost based selection method
is not shown, since it is too high (an average of 987) to appear on the graph.
It can be seen immediately that the lowest failure rate is achieved for the strict
trust method and, with the exception of very low numbers of strata, the random
selection method gives the highest failure rate. It can also be seen that provided
at least 3 trust strata are used then both strata-based methods perform better

7 It should be noted that the effect of the number of strata is broadly the same
regardless of the mix of resources, as discussed later in this section.
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than a random selection (and significantly better than a cost-based approach).
In both strata-based approaches lower failure rates are achieved as more strata
are used. The simple strata-based approach tends to perform as well as the strict
trust approach for 10 or more strata, while the strata-based with cost approach
is consistently only around 10-15% worse than strict-trust for 20 or more strata
(the trace for both methods continues to be flat for 30-5000 strata, but for clarity
is omitted from the graph).

Recall from Section 5 that one significant disadvantage of using strict trust
for resource selection is that a narrow set of resources tends to be used. In
the experiments illustrated in Fig. 2, the strict trust approach led to a user
generally interacting with a single trusted resource. The strata-based approaches
led to a wider range of resources being used, where fewer strata gave a wider
set of resources (a single strata leads to all resources being used equally). At the
point where the failure rate for the strata-based approaches levels off (around 10
strata without cost and 20 with cost) then, as for strict trust, there is a single
trusted resource being used. However, before this point there is a wider set of
used resources, and so a higher resilience to change and a reduced likelihood of
negligible differences being interpreted as significant. Moreover, a wider range of
resources allows a user to allocate concurrent Gridlets to different resources.

The execution cost for the stratified trust methods is shown in Fig. 3, along
with the execution cost for the cost-based, strict trust and random selection
methods. It can be seen that a stratified trust with cost approach gives the least
cost, followed by a cost-based approach, and then the random, strict trust, and
stratified trust methods respectively. The reason that stratified trust with cost
gives a lower execution cost than a pure cost-based approach is that the execution
cost is the actual execution cost, and the reliable resources that are favoured by
the stratified trust with cost approach are those whose actual execution cost is
likely to be closer to their advertised cost.
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It can be seen from Figs. 2 and 3 that in general the stratified trust with cost
approach gives better results in terms of execution cost than the strict trust,
cost-based and random approaches. However, the stratified trust approach gives
a lower failure rate, but only by around 10-14%.

7.2 Windowed Trust Approach

Fig. 4 shows the failure rate for the windowed trust and windowed trust with cost
selection methods for varying trust distances. Again, results are averaged over
10 runs in “mixed” resource environment. It can be seen that the cost-based
approach produces the highest failure rate while a strict trust approach gives
the least. For a trust distance of less than 0.35 the windowed trust with cost
method gave a lower failure rate than a random approach, while windowed trust
was always better. The windowed trust approach gave significantly fewer failures
than windowed trust with cost, and for both approaches larger trust distances
increased failures. With a trust distance of 1, the windowed trust approach is
equivalent to random selection, and the windowed trust with cost approach is
equivalent to the cost-based approach.

Larger trust distances led to more resources being used. For a trust distance
of 1, windowed trust uses all resources and windowed trust with cost uses all
cheapest-cost resources. As trust distance is reduced, so is the set of used re-
sources, such that very small values (< 0.001) are equivalent to using strict-trust.

The execution cost for the windowed trust methods is shown in Fig. 5, along
with the execution cost for the cost-based, strict trust and random selection
methods. It can be seen that a cost-based approach gives the least cost, fol-
lowed by windowed trust with cost, random and strict trust. The windowed
trust method is the highest cost for a trust distance of less than 0.25, while for
larger window sizes it tends toward the cost of the random approach.
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From Figs. 4 and 5 it can be seen that for trust distance of less than 0.35
both windowed trust approaches give a lower failure rate than a random or cost-
based approach. The windowed trust with cost method gives a lower execution
cost than all alternatives except cost-based, while windowed trust gives a lower
failure rate than all except strict trust.

7.3 Resource Setting

The above results illustrate the characteristics of our proposed allocation meth-
ods. However, in order to select the most appropriate method for a given situation
must consider the nature of the available resources and the penalty imposed for
failure. To this end we consider three Grid environments, with differing resource
reliabilities. Suppose that there are six levels of reliability, defined as follows.

reliability failure rate
highly reliable (HR) 0 ≤ failure rate ≤ 3%
reliable (R) 3% < failure rate ≤ 10%
marginal unreliable (MU) 10% < failure rate ≤ 30%
unreliable (U) 30% < failure rate ≤ 60%
highly unreliable (HU) 60% < failure rate ≤ 90%
very highly unreliable (VHU) 90% < failure rate ≤ 100%

Using these definitions we define the following three sets of resources, accord-
ing to the proportions of reliable and unreliable resources present.

HR R MU U HU VHU
reliable 60% 20% 10% 4% 3% 3%
mixed 20% 20% 20% 20% 10% 10%

unreliable 5% 10% 30% 20% 20% 15%
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Fig. 6. Failure rate for different allocation methods in various resource sets (reliable,
mixed, and unreliable).

Using these resource sets, we have experimented with each allocation method
(for various strata sizes and trust distances) and obtained the average failure
rates, execution costs, and total costs. The failure penalty was set to a cost of
100. This value is arbitrary, and in a real-world scenario is likely to be variable.
However, it must be considered to determine total cost. Our aim in this section
is to illustrate our proposed mechanism, rather than to identify exact values for
agent disposition, strata size and trust distance. Empirical identification of these
values is needed for real-world deployment of our proposed mechanism.

Fig. 6 shows how the failure rate varies for selected allocation methods ac-
cording to resource set (reliable, mixed, and unreliable). In the figure, Sx and
SCx represent stratified trust and stratified trust with cost allocation methods
with x strata respectively. Similarly, Dx and DCx represent windowed trust and
windowed trust with cost with a trust distance of x. As expected, the failure rate
is least with reliable resources, rises in a mixed situation, and is highest where
resources are unreliable. Furthermore, as expected from the above discussions,
stratified trust and windowed trust have lower failure rates than stratified trust
with cost and windowed trust with cost, and increasing the number of strata or
decreasing the trust distance also reduces the failure rate.

Fig. 7 shows how the total execution cost varies according to resource set8.
Again, it can be seen that the total cost is smallest where resources are reliable,
rises in a mixed situation, and is highest when resources are unreliable. The total
cost is determined by both failure rate (in terms of penalties) and execution cost.
It can be seen that the lowest cost is obtained by the stratified trust with cost

8 Random and cost-based allocation methods are not included because the total cost
is too high. The strict trust method is not included since it is not practical due to
the narrow set of resources that are used (although in pure cost terms it performs
fairly well). Finally, note that the origin of the y-axis is non-zero.
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Fig. 7. Total execution cost for different allocation methods in various resource sets
(reliable, mixed, and unreliable).

and windowed trust with cost algorithms, but only for certain values of number
of strata and trust distances. In particular, the best results are obtained for
10-20 strata or trust distances of 0.01-0.02. Overall, for these values of strata
and trust distance there is little to choose between the two approaches; stratified
trust with cost is marginally better in a reliable resource context and windowed
trust with cost is marginally better in an unreliable context.

8 Conclusions

In a Grid environment resource selection is fundamental to minimising the cost
and failure rate that user incurs. We have shown how the notion of trust can
be leveraged to implement a suitable resource selection method that minimises
both cost and risk. In this paper we have presented several resource selection
algorithms based on alternative methods for trust comparison namely, strict,
stratified and windowed trust. We have demonstrated the use of these algorithms
in a Grid context. Our results show that the use of trust significantly reduces
the failure rate encountered by users when utilising Grid resources. Furthermore,
where cost is factored into resource selection the overall cost of performing a task
is reduced. We have shown that the most effective approaches are stratified trust
with cost and windowed trust with cost with moderate strata numbers and trust
distances (around 10-20 and 0.01-0.02 respectively). Both of these approaches
ensure that users interact with a much wider set of resources than would occur
with a strict trust approach, and so they are more resilient to environmental
change or incorrect information. Our ongoing work is concerned with investigat-
ing further approaches to combining trust and cost information, in particular
through the use of fuzzy logic, along with explicitly including the desire to max-
imise the number of resources used. Future work also includes the instantiation



in a real Grid environment of the most effective of our proposed mechanisms,
namely stratified trust with cost and windowed trust with cost. Finally, we also
intend to apply the trust framework and resource selection algorithms to a peer-
to-peer scenario.
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