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Abstract In complex open multi-agent systems (MAS), where there is no centralised con-
trol and individuals have equal authority, ensuring cooperative and coordinated behaviour
is challenging. Norms and conventions are useful means of supporting cooperation in an
emergent decentralised manner, however it takes time for effective norms and conventions to
emerge. Identifying influential individuals enables the targeted seeding of desirable norms
and conventions, which can reduce the establishment time and increase efficacy. Existing
research is limited with respect to considering (i) how to identify influential agents, (ii) the
extent to which network location imbues influence on an agent, and (iii) the extent to which
different network structures affect influence. In this paper, we propose a methodology for
learning a model for predicting the network value of an agent, in terms of the extent to which
it can influence the rest of the population. Applying our methodology, we show that exploit-
ing knowledge of the network structure can significantly increase the ability of individuals
to influence which convention emerges. We evaluate our methodology in the context of two
agent-interaction models, namely, the language coordination domain used by Salazar et al.
(AI Communications 23(4): 357–372, 2010) and a coordination game of the form used by
Sen and Airiau (in: Proceedings of the 20th International Joint Conference on Artificial Intel-
ligence, 2007) with heterogeneous agent learning mechanisms, and on a variety of synthetic
and real-world networks. We further show that (i) the models resulting from our methodol-
ogy are effective in predicting influential network locations, (ii) there are very few locations
that can be classified as influential in typical networks, (iii) four single metrics are robustly
indicative of influence across a range of network structures, and (iv) our methodology learns
which single metric or combined measure is the best predictor of influence in a given network.
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1 Introduction

Modern application domains for complex open multi-agent systems (MAS) are typically con-
strained by an underlying network connecting individual agents. A wide variety of research
has shown that these networks display rich structure that significantly influences the dynam-
ics of agent interactions and the flow of information (e.g. [8,11,36,41,45]). The structure
of a network can mean that some individual locations are significantly more important than
others, by virtue of being able to influence large proportions of a population, controlling the
flow of information through a network, or connecting disparate communities of individu-
als (as with the vital hub nodes in scale-free networks [30]). Determining the importance
of individual locations is thus a key research question in a variety of fields including com-
puter science, biology, chemistry, sociology and economics [5,22,32]. Such systems can be
viewed as complex systems, which exhibit cohesion and emergent properties as a result of
the interactions of individuals [2,34].

In this paper, we focus on location importance in terms of influence: the extent to which
an individual can manipulate the choices of the rest of a population due to its location. We
propose a novel methodology for learning a model for predicting the network value of an agent
requiring only (i) a way of estimating the effective influence an agent exerts on a population
and (ii) the ability to sample a portion of the network. Our methodology can be used online
and can be used to predict influence across a wide variety of domains. By online, we mean
that our methodology can be applied to active complex open MAS by learning from agent
interactions as they occur. As such, it is more generally applicable than typical mechanisms
formulated to solve the influence maximisation problem (see Sect. 2.1 for more details). This
paper extends work published in [12] through consideration of additional network sampling
methods, comparison with synthetic network topologies in addition to samples from real-
world networks, and application of the methodology to the coordination game in addition to
the language coordination game. We also investigate applying a prediction model learnt in
one domain to manipulating convention emergence in another domain, and explore verifying
the accuracy of the prediction models by comparing with predictions after a second iteration
of model building.

We apply three instantiations of our methodology: (i) determining which of fourteen
metrics of location are effective heuristics for influence, (ii) unsupervised learning of influence
using principal components analysis (PCA), and (iii) supervised learning of influence using
linear regression (LR) models. We evaluate our methodology on a variety of synthetic and
real-world networks, and show that four out of fourteen of our chosen metrics of location
effectively predict the influence of an agent’s location across a highly heterogeneous range
of networks. To evaluate our approach we use two common interaction models concerned
with convention emergence, namely Salazar et al. [40] language emergence domain and a
coordination game similar to that used by Sen and Airiau [42].

Conventions typically emerge through the “gradual accretion of precedence” [50], due
to the existence of feedback effects in which an agent’s choice in an interaction influences
the choices of agents in the future. Investigating influence using convention emergence thus
has two advantages: (i) it provides a natural measure of influence, since the actions of a
highly influential agent are more likely to be reproduced in the rest of the population than
those of a less influential agent, facilitating research into the impact of network structure on
influence, and (ii) it is a setting in which research into influence can be usefully applied to
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improve existing techniques. In this paper we also provide an in-depth discussion of network
sampling techniques and the overheads inherent in applying our methodology and calculating
each topological metric.

2 Background

2.1 Influence propagation

One of the earliest investigations into influence was contributed by Domingos and Richard-
son [6], who attempted to define the network value of an individual by modelling a market
as a Markov random field. More typically, influence has been investigated in the context
of the linear threshold and independent cascade models [22], in which nodes in a network,
which we view as agents, are considered to be either active or inactive, where active could
represent believing an idea or adopting a convention. An agent can switch from inactive
to active either based on how many of its neighbours are currently active, or by an active
agent targeting it for activation. In such models, researchers have investigated how to find
k individuals that maximise the number of agents eventually made active in the network.
This is known as the influence maximisation problem. While in general this problem is
NP-hard, approximate solutions using degree and distance centrality heuristics as predic-
tors of influence have shown good results. Watts has shown that high-degree individuals
are more likely to cause cascade effects [48], corroborating the assumption that degree is
a useful metric of influence. Kempe and Kleinberg [22] show that a greedy algorithm can
achieve results within a known bound (63 %) of the optimal while being computationally
tractable (although the approach is still computationally expensive). Chen et al. [5] propose
a computationally cheap alternative using a degree-discount heuristic, in which the nomi-
nal degree of an agent is discounted when one or more of its neighbours has already been
chosen.

The influence maximisation problem has been extensively investigated (e.g. [16,18]),
but the extent to which these results generalise to other open MAS domains is unknown.
Khrabrov and Cybenko’s [24] recent study concluded that in-degree did not in fact cor-
relate with user influence in the Twitter social network, placing empirical data at odds
with the success of degree as a heuristic in the work on influence maximisation. Although
this is an isolated disagreement with the idea of degree indicating influence, we hypoth-
esise that there are various facets of influence propagation that the influence maximi-
sation problem does not capture. Our methodology mitigates this by learning a statisti-
cal model for predicting the influence of an agent’s location from the available empirical
data.

Fagyal et al. [11] investigate the role of network structure in language change, and further
validate the assumption of the degree of a location being an important indicator of the influ-
ence of an agent at that location. They also conclude that peripheral agents play an important
role in keeping norms stable, demonstrating that network features other than degree deserve
investigation. Determining influential users in real-world social networks has been a popular
research topic due to the potential applications for marketing and PR [23]. Trusov et al. [44]
have attempted to tractably measure influence in real-world social networks using log-in
activity, and Hartline et al. [19] provide a useful example of how influence research can be
applied in the real world. Convention emergence is also related to the problem of multi agent
sensor fusion, where information is propagated and updated in a network of agents, some of
which are equipped with sensors. However, there are important differences since in sensor
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fusion there is typically only a subset of the agents that are equipped with sensors, and there
is a notion of a ‘correct’ value in the sense of the true value of the property being monitored.
Conversely, in convention emergence, as the members of the population interact they all have
an equal role in the creation and emergence of a convention, thus there is no equivalent of
a subset of sensor agents. Moreover, there is no notion of a ‘correct’ convention, since a
convention is simply that strategy which emerges through the interactions of the agents in
the population (and multiple conventions can co-exist).

We are aware of only a small number of contributions that explicitly investigate the role
of agent influence in realistic complex open MAS domains other than social media. Sen and
Airiau [42] investigate convention emergence with private interactions, and show that 4 agents
in a population of 3,000 can influence the population to adopt a given convention (from two
alternatives). Although they do not model an underlying connecting topology, their results
demonstrate the significant influence that small proportions of agents can have in complex
open MAS. Other investigations have also shown that a small number of individuals can
influence a population of agents [38,51].

2.2 Conventions

Conventions are considered to be social rules or standards of behaviour agreed upon by a
set of individuals [25,50]. Typically, a convention is considered to be established if 90 %
of a population adheres to it around 90 % of the time [25]. Conventions can increase levels
of coordination in MAS [20], and they are a powerful abstraction tool for modelling the
aggregate interactions of agents.

Conventions can be generated offline by system designers or dynamically emerge through
interactions. Generating conventions offline is difficult, due to limited knowledge of society
characteristics, time variance, and computational expense. Such conventions also lack robust-
ness to evolving populations and environments. As such, much research has concentrated on
generating conventions online (e.g. [35,40]), and this remains an open research problem.
Conventions in complex open MAS are characterised by uniform levels of agent authority,
lack of centralised institutions, and complex network structures restricting the interactions
between individuals. Such domains are particularly suited to techniques in which specific
agents are targeted or inserted to influence convention emergence.

Most models of convention emergence in MAS consider small convention spaces (i.e.
a small number of possible conventions). Sen [41] and Pujol et al. [39], for example, both
use models with only two potential conventions. An exception is the work of Salazar et
al. who explore convention emergence in a language coordination domain [40], contain-
ing 1010 possible conventions. Many real-world contexts have a large convention space,
and so in this paper we adopt the language coordination domain as one of the two interac-
tions models that we investigate. Franks et al. recently introduced the Influencer Agent (IA)
concept [13], in which a small proportion of agents are inserted with goals and strategies
chosen specifically to influence the population to adopt particular conventions. They demon-
strate that (i) IAs can significantly manipulate which convention emerges in a population,
even with a large convention space, and (ii) positioning IAs using topological information
can increase their efficacy. While there has been some work investigating the role of net-
work topology in convention emergence (e.g. [39]), to our knowledge previous work has
not attempted to use intrinsic network influence in MAS to manipulate convention emer-
gence, in terms of identifying the features of locations that indicate how influential an
agent at that location is, and inserting agents at appropriate locations to promote a particular
convention.
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3 Methodology for learning influence

In this section we present a general methodology for predicting the influence of an agent at
a given location within a network. We assume the existence of a measure of influence, to be
chosen depending on the domain, and a network G < V , E>, where V is a set of agents
and E is a set of edges that constrain the permitted communications and interactions between
agents. We also assume the ability to sample properties of locations within the network, and
either global knowledge of the network or (more practically) the ability to sample smaller
sub-networks around the locations in question.

Our methodology is as follows:

1. If necessary, sample a sub-graph Gs ⊂ G from the network around selected locations to
obtain a portion of the network of interest. In cases where the domain involves very large
populations, this may be required to allow practical application of the methodology.

2. Sample a representative set S ⊂ V of n locations within the network,1 where n << |V |,
and where representative implies sampling locations of both high and low influence.

3. Choose a measure of influence, and a model of influence propagation.
4. Compute the influence of an agent located at each of the locations in S, on the rest of the

population (e.g. by running multiple simulations of the influence model).
5. For each agent in V , calculate topological metrics that characterise the location of each

agent in terms of their position in the overall network topology. Details of the metrics we
consider in this paper are given in the following section.

6. Build a prediction model using the topological location metrics and the estimated influence
of agents placed at locations in S to predict which network locations are highly influential,
and use it to predict the influence of all agents in V . Our methodology is general, and any
appropriate machine learning technique can be used to build the prediction model in this
step.

Note that our methodology can also be performed online by making a small modification
to Step 4, as follows. Rather than running multiple simulations for each sampled location,
select a measure of influence that can be measured online (e.g. if investigating Twitter, one
might choose the number of re-tweets) and measure sufficient data for building the prediction
model.

The main computational expense in our methodology is the calculation of topological
metrics for all agents in V and, if used, the influence model simulations for each location
in S, which is O(|S||E |k), where k is the number of simulation cycles. Depending on the
size of S this can be significantly less than using the full network, which is O(|V ||E |k).
Additionally, Step 1 allows us to use a sample of the network to estimate influence, reducing
the computational expense of the methodology. We recognise that the expense of computing
location metrics is varied and might be high, and while we do not explicitly account for
this within the methodology, we discuss local and approximation algorithms for our selected
metrics in Sect. 4.

3.1 Selecting representative agent location samples

In order to effectively predict influence our methodology requires a sample of agents, S,
that reflects the range of influence and topological metrics in the network. If the influence
distribution is highly skewed then a random sample will not be representative (we discuss
this further in Sect. 7). Therefore, we propose selecting a sample (in Step 2) by stratifying

1 If step 1 is performed, then V ≡ Vs and E ≡ ES . To simplify presentation, we omit the subscript.
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Fig. 1 Degree distribution of an Enron-SNS network sample, where the dotted lines denote the boundaries
of each bin when applying our stratified sampling technique

agents using degree. Since degree is known to be indicative of influence [5], our hypothesis
is that this approach will give a more representative sample in terms of influence.

To obtain a stratified sample, we divide the network into bins, and sort the locations by
degree. In this paper we use 10 bins, with a threshold of |V |/10 locations per bin, where
|V | is the number of locations in the network. We add all locations of each degree into the
current bin, starting with the lowest degree locations, until the threshold is reached. If adding
all locations of a given degree pushes a bin over the threshold, we do not split the remainder
but add all locations of the same degree to the same bin. We then sample an equal number of
locations from each bin, until we have reached our required sample size, |S|. Note that given
the long tail of the degree distribution it is possible for this approach to result in the locations
being allocated to fewer than 10 bins if there are significantly more than |V |/10 locations in
the first bin of lowest degree locations (or indeed in subsequent bins). The distribution and
bin boundaries shown in Fig. 1 are an illustration of this occurring, in which the approach
results in 6 bins.

4 Topological metrics

In this section, we introduce the metrics that we hypothesise may aid in predicting agent
influence, and discuss their computational tractability.

4.1 Metrics

There are a wide variety of metrics that quantify the structural properties of a given location
in a network. Assuming a network, G < V , E>, and a given agent in the network located at
node vi ∈ V , we hypothesise that the following metrics may be implicated in determining
influence.2

2 Note that for simplicity of presentation, and for consistency with the notation typically used in network
analysis, we use vi to denote the agent that is located at node vi in the network.
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1. Degree centrality
If N (vi ) denotes the set of neighbours for the agent located at vi , then degree centrality
ki = |N (vi )|. Intuitively, the more agents that an individual can directly communicate
with, the more of the population that individual can directly influence.3 Degree centrality
is trivial to compute with local information.

2. Local clustering coefficient (LCC)
The LCC measures the extent to which the neighbours of vi are connected to each other.
If ei j ∈ E denotes an edge between vi and v j , where vi , v j ∈ V , then

LCC(vi ) = 2|e jk |
ki (ki − 1)

: v j , vk ∈ N (vi ), e jk ∈ E

Initially introduced by Watts and Strogatz [49], LCC is a useful measure of community
structure in a network. A individual at a location vi with a high LCC is likely to be able to
influence the local cluster in which it is embedded more effectively than individuals that
are external to the cluster, and choices by neighbours of vi are more likely to be reinforced
by vi in subsequent interactions.

3. Average neighbour degree (AND)
AND measures the average degree centrality of the neighbours of an agent. While a
given agent may not be intrinsically influential itself, communicating with a neighbouring
influential neighbour may allow further opportunities for manipulating a population. We
define AND as

AND(vi ) =
∑

v j ∈N (vi )
|N (v j )|

|N (vi )|
AND has not been investigated significantly. Li et al. [30] have introduced a metric
designed to measure the extent to which a network is scale-free, based on the joint degree
distribution (JDD), for which AND is an approximation [33], but we are not aware of other
contributions considering the connectivity of neighbours of an agent at a given location.

4. Edge embeddedness and overlap (EE/EO)
Edge embeddedness and overlap are two related measures that determine the extent to
which the endpoints of an edge are embedded within a cluster of nodes [8]. Edge embed-
dedness for edge ei j between agents located at nodes vi and v j is defined as

EE(ei j ) = |N (vi )
⋂

N (v j )|
Edge overlap is subsequently defined as

EO(ei j ) = EE(ei j )

|N (vi )
⋃

N (v j )|
Since these metrics are defined on a per-edge basis, we use three measures of each metric
for a given location:

(a) Average (AEE/AEO): The average embeddedness or overlap will be highest when an
agent is highly embedded within a local cluster, providing opportunities to influence
a small group of agents simultaneously.

(b) Highest (HEE/HEO): Taking the maximum embeddedness or overlap indicates
whether an agent has any edges highly embedded within a cluster, while allowing
for the agent itself to be connected to a wide variety of other agents or clusters.

3 An intuition effectively encapsulated by the aphorism “It’s not what you know, but who you know”.
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(c) Lowest (LEE/LEO): An edge with low embeddedness or overlap may connect dis-
parate clusters of agents, allowing the agents on each endpoint to influence across
disparate communities in a network.

5. Average shortest path length (ASPL)
Given a geodesic, or shortest, path between two locations vi , v j ∈ V , defined by a set of
edges Espl(vi , v j ) ∈ E , the ASPL for vi is given by

ASPL(vi ) =
∑

v j ∈V \vi
|Espl(vi , v j )|

|V | − 1

Assuming that an agent’s influence diminishes as the number of hops increases, an agent
with low ASPL may be able to indirectly influence a larger proportion of the population
than an agent with a correspondingly higher ASPL.

6. Betweenness centrality (BC)
Node centralities are a class of metrics that attempt to measure various facets of importance
of a nodes in a network. The BC of vi specifically measures the number of shortest paths
in a network that pass through vi . If σ jk is the set of shortest paths that exist from v j to
vk , and σ jk(vi ) is the set of shortest paths from v j to vk that pass through vi , then

BC(vi ) =
∑

vi ,v j ,vk∈V,vi ̸=v j ̸=vk

|σ jk(vi )|
|σ jk |

BC is a useful measure of how much information is likely to flow through location vi ,
given that communications are likely to be along shortest paths. As such, an agent with
high betweenness has the ability to manipulate the information flow in a network more
effectively than an agent with low betweenness.

7. Closeness centrality (CC)
Closeness centrality is a measure of how quickly information can spread from a given
agent. If S P L(vi , v j ) indicates the shortest path between vi and v j , then CC is calculated
as

CC(vi ) = 1∑
v j ∈V \vi

|SPL(vi , v j )|

Since the assumption of information transfer following shortest paths may not hold in all
domains, it may also be useful to calculate random walk centralities, which follow the
identical definitions as above but use random walks instead of shortest paths. However,
calculating these measures can be prohibitively expensive.

8. Eigenvector centrality (EC)
Initially proposed by Bonacich [3], EC is calculated using the eigenvector of the largest
eigenvalue given by the adjacency matrix representing the network in question. An agent is
central if it is connected to other agents that are central, and the measure takes into account
both direct and indirect connections between agents. Google’s PageRank algorithm is a
variant of EC, and this supports our intuition that EC may effectively estimate influence.
Each entry avi ,v j in the adjacency matrix A is 1 if ei j ∈ E and 0 otherwise. The EC of an
agent located at node vi is subsequently calculated as

EC(vi ) = 1
λ

∑

v j ∈N (vi )

avi ,v j × EC(v j ),

where λ is a constant.
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9. Hyperlink-induced topic search (HITS)
Initially introduced by Kleinberg [26], HITS attempts to measure hubs and authorities
in a network. The motivation behind Kleinberg’s work is that in any given WWW search
topic, there are a number of pages that contain authoritative information and a number
of pages that link to many authorities. As such, HITS is a recursive measure in which
hubs are nodes that connect to many authorities, and authorities are nodes that are pointed
to by many hubs. A page that ranks highly under this algorithm can be said to be more
influential. We incorporate this metric into our work to test this hypothesis. The algorithm
to calculate HITS is relatively complex in comparison to the other metrics discussed, so
we do not reproduce it here. It is fully described in [26].

In total, we evaluate 14 metrics for the extent to which they determine agent influence.
Broadly, each metric can be linked to influence as follows. EC, BC, CC, HITS, and ASPL all
measure the ability of an agent to manipulate information flow in a network. LCC, embed-
dedness, and overlap measure the extent to which an agent is part of a cluster of agents.
Highly clustered areas of networks have efficient internal information propagation, and an
agent that is very central to such a cluster is likely to be able to influence that cluster more
effectively. Degree centrality is a measure of how many agents a given individual is able
to directly influence, and AND is a measure of how many agents a given individual can
indirectly influence to a depth of 2.

4.2 Computational tractability

While a number of these metrics are highly tractable, some of them require either, or both, of
(i) global knowledge of the network, and (ii) significant computational resources. In typical
on-line analysis of MAS networks these properties are unlikely to be attainable. The following
discussion evaluates the computational costs and data requirements of each of our chosen
metrics.

Degree, LCC, edge embeddedness, edge overlap, and neighbour degrees are all easily
computable with local knowledge. The most significant concerns are the centrality mea-
sures, which have typically required both global knowledge of the network and significant
computational resources.

Edge betweenness is used in the Girvan and Newman (GN) algorithm for finding commu-
nity structure [17]. Edge betweenness is a measure of the number of shortest paths between all
nodes that contain a given edge, computable in O(mn) with global knowledge of a network
with n nodes and m edges. Gregory proposed a local measure, h-betweenness, which only
considers paths of maximum length h [17]. Computation subsequently involves a breadth-
first search (BFS) of depth h around the node in question, and then computing betweenness on
the BFS-sampled sub-graph. While Gregory provides strong results demonstrating the tech-
nique’s efficacy when substituted into the GN algorithm, there are no results on the actual
accuracy of the estimation. Marsden uses a similar technique [31], defining an egocentric BC
using the neighbours of a node, equivalent to 1-betweenness in Gregory’s measure. Marsden
found that the ranking of nodes given by egocentric betweenness and the traditional global
betweenness is very similar, but only evaluated fairly simple networks.

Andersen et al. [1] have demonstrated a technique for calculating the PageRank of a
node, which is a variant of EC (EC), using only local information. The technique requires
examination of O(e−1) nodes for a given error bound of e. Interestingly, Andersen et al. [1]
note the potential of PageRank for approximating influence in a network.

CC is computable in either O(n3) or O(nm +n2logn) (depending on the algorithm used)
given global knowledge, and faster for certain network classes. Eppstein and Wang [10] have
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Table 1 Correlation between estimated centrality using Gregory’s h-betweenness concept and actual centrality
for betweenness centrality (BC), and applying the technique to eigenvector centrality (EC) and closeness
centrality (CC), averaged over 15 networks for selected network sampling techniques (see Sect. 5 for more
details)

Sampling mech. BC EC CC

h = 2 h = 3 h = 2 h = 3 h = 2 h = 3

BFS 0.90 0.96 0.36 0.42 −0.37 0.41

SNS 0.75 0.93 0.14 0.36 −0.49 0.62

MHRW 0.02 0.02 0.50 0.61 −0.72 −0.74

MHDA 0.02 0.02 0.51 0.61 −0.73 −0.74

demonstrated a fast approximation algorithm for computing CC, but this still requires global
knowledge.

To our knowledge, there are no known local algorithms for HITS, but Gollapudi et al. [15]
have demonstrated a highly effective approximation algorithm for HITS-like ranking algo-
rithms that demonstrates considerable efficiency gains. The original proposal for HITS [26]
calls for determining an initial seed set of around 200 nodes (in the context of finding pages
on the World Wide Web), and then performing a limited snowball sampling (see Sect. 5)
around this set. HITS does not require global knowledge of the network, but still has highly
non-local information requirements.

We performed a series of tests for determining the accuracy of centrality estimation using
Gregory’s h-betweenness technique [17]. For each location, we calculated the actual cen-
trality measure and an estimation on the sub-graph induced by BFS around the location
depth-limited to h = {2, 3}. Table 1 presents the correlation between the estimation and
actual value. We used a selection of network sampling techniques to sample 15 networks
of size 1,000 from each of three real-world network datasets (see Sect. 5 for more details
on the sampling mechanisms and network datasets used in this paper). Note that Gregory’s
method was proposed only for betweenness-centrality, which shows the best correlations.
The other centrality measures are included for completeness, but show much poorer estima-
tion accuracy. For closeness centrality, this is by definition, since CC measures the inverse
of the sum of the shortest path length to all other locations, and with h = 2 the path length
is either 1 or 2 for all locations. The technique used for sampling the network clearly has a
significant impact on the efficacy of the estimation technique, implying that (i) estimating
network measures in this way is highly sensitive to the local topological structure, and (ii)
that each sampling technique reproduces unique subsets of the structural properties of the
full network.

Table 2 summarises the computational tractability of these metrics. For clarity, we have
categorised HITS as requiring global information, but note that it requires sampling of a
portion of the global network rather than the entire network itself. Thus, of the base metrics
that we consider in this paper, four are easily computable with local data and two have
approximations with local data, and therefore are practical for application in our methodology.
Of the remaining two, there is an approximation for HITS using non-local (but not strictly
global) data, and an approximation for closeness centrality that uses global data. As we discuss
in Sect. 7, of the four metrics that we identify as most universally indicative of influence,
two are computable with local information (degree and highest edge embeddedness), one has
an approximation with local information (EC), and the other (HITS) has an approximation
using sampling a portion of the global network.
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Table 2 Computational and information requirements for the calculation of each metric that we hypothesise
might predict the influence of an agent at a given location

Metric Local data Global data

Computable Approximatable Fast approx.

Degree !
Local clustering coefficient !
Edge embeddedness !
Edge overlap !
Average neighbour degree !
Betweenness centrality x !
Closeness centrality x x !
Eigenvector centrality x !
HITS x x !
We denote the existence of a suitable algorithm with ‘!’, ‘x’ means that no known algorithm exists, and the
blanks to the right of the table indicate that no algorithm is required (e.g. there is no need for an approximation
if the solution is fully computable efficiently)

5 Network sampling

In this section, we discuss common approaches to sampling networks from real-world
datasets. We analyse their efficacy in reproducing properties of the network being sampled,
and describe the properties of networks sampled using each technique from the datasets that
we use in this paper. We assume that agents are arranged according to some underlying
topology that restricts their communications and interactions, and in the subsequent sections
of this paper we will use such network samples to initialise the social relationships within
populations of agents for our experiments.

5.1 Network sampling techniques

A wide variety of synthetic network generators have been proposed, but tend to be poor
models of real-world networks [29,37]. To demonstrate the applicability of our methodol-
ogy, we require datasets representing networks found in real-world domains. Real-world
networks typically exhibit two limiting properties: (i) they can be very large, beyond any
size that is practically usable in a large number of simulations, and (ii) they contain a
wide variety of rich structural properties that cannot be reproduced by current synthetic
network generation algorithms (we demonstrate this in Sect. 7). We cannot typically expect
to use global knowledge of the network to determine influential agents in practical appli-
cations. As such, sampling a portion of the network is often a necessary step in our
methodology.

Careful consideration must therefore be given to the sampling technique. Ideally, we would
like the structural properties of the sampled sub-network to be as close as possible to the
network that it is sampled from, for important metrics such as clustering coefficient or aver-
age degree, and other significant metrics such as degree distribution or edge embeddedness
distribution.

There are a number of possible sampling techniques that can be used. Each starts at a
random location, and progressively adds locations to a seed set until a threshold is reached.
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1. Breadth-first search (BFS)
In each iteration of BFS, all the neighbours of seed set locations that are not already in
the seed set are added, until the threshold is reached.

2. Snowball-sampling (SNS)
SNS proceeds identically to BFS, except within each iteration, if adding all the new
neighbours to the seed set would push the set past the threshold, then neighbours are
chosen randomly from those available until the sample size threshold is reached.

3. Random-walk (RW)
A random walk adds one location at a time to the seed set, by following a random
traversal through the network from the start location. Each neighbour is chosen with
uniform probability.

4. Metropolis–Hastings random walk (MHRW)
MHRW is a random-walk with transition probabilities biased away from high-degree
locations, in an attempt to generate a uniform sampling (in terms of degree) of locations
from the network. It was initially investigated in this context by Gjoka et al. [14], who
demonstrated that MHRW produces a uniform sampling of locations from the full network
and effectively preserves the degree distribution, which is known to be a key component
in the study of complex networks.

5. Metropolis–Hastings random walk with delayed acceptance (MHDA)
MHDA is the same as MHRW but with a further modification of transition probabilities
to reduce the likelihood of re-visiting locations. Initially introduced by Lee et al. [28],
MHDA covers more of the network when sampling, increasing the estimation accuracy.

6. Albatross sampling
Introduced by Jin et al. [21], Albatross sampling is a random walk with modified transition
probabilities and a chance of randomly jumping to another location in the network, in
order to gain greater coverage and avoid problems associated with sampling networks
with multiple connected components.

BFS, SNS and RW are all known to be biased towards high-degree locations, distorting
the degree distribution and the structure of the sampled network away from that of the full
network [14]. However, BFS and SNS produce good coverage of the local area around the
start location, and so retain local structure. As such, they are subject to greater variation
between samples, but may be useful for ensuring that a wide variety of structural properties
are tested. MHRW, MHDA and Albatross have all been shown to converge towards the degree
distribution exhibited in the full network being sampled. However, Albatross sampling can
result in rather sparse and disconnected samples where the sample size is small compared to
the overall network size. Therefore, in the remainder of this paper we consider BFS, SNS,
MHRW and MHDA sampling techniques. Note that for all these sampling methods, there
are no guarantees about the reproduction of any other metrics or structural properties.

5.2 Technique efficacy

In order to evaluate the efficacy of each sampling technique, we sampled 15 graphs of 1,000
nodes per sampling technique for each of three real-world networks (for a total of 180
networks). In this paper, we use the following networks: (i) a peer connection network from
Gnutella (a P2P file-sharing platform), (ii) the Enron email dataset, and (iii) the arXiv general
relativity section collaboration network.4 The Enron and arXiv networks are both based on
human interactions, but are generated by very different processes: the Enron dataset represents

4 All taken from the Stanford large dataset collection, http://snap.stanford.edu/data/.
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Table 3 Important global metrics for network samples produced by applying each sampling technique to the
(a) Gnutella, (b) Enron, and (c) arXiv networks, averaged over 15 repeats

Sampling tech. Nodes Edges Avg. degree CC Diameter Centralization

(a)

None 62,586 147,892 4.726 0.005 Inf. 0.001

BFS 1009.2 (7.73) 1246 (95) 2.47 (0.18) 0.026 (0.005) 6.93 (0.80) 0.03 (0.004)

SNS 1000 (0) 1197.8 (54.5) 2.40 (0.11) 0.02 (0.008) 7.33 (0.98) 0.034 (0.008)

MHRW 1,000 (0) 1122.3 (13.1) 2.24 (0.03) 0.008 (0.004) 36.4 (4.4) 0.005 (0.001)

MHDA 1,000 (0) 1120.1 (10.8) 2.24 (0.02) 0.007 (0.003) 38.7 (3.22) 0.005 (0.001)

(b)

None 36,692 183,831 10.02 0.497 13 0.037

BFS 1,255 (291) 16,584 (6,242) 26.2 (6.5) 0.55 (0.04) 3.8 (0.8) 0.66 (0.2)

SNS 1,000 (0) 7,751 (3,760) 15.5 (7.5) 0.44 (0.13) 4.5 (0.92) 0.51 (0.31)

MHRW 1,000 (0) 4480 (443) 8.96 (0.89) 0.52 (0.03) 11 (1.41) 0.10 (0.02)

MHDA 1,000 (0) 4495 (255) 9.00 (0.51) 0.52 (0.02) 10.6 (1.04) 0.10 (0.02)

(c)

None 5,242 144,96 5.526 0.530 17 0.014

BFS 1,006 (2.93) 4,065 (512) 8.08 (1.02) 0.58 (0.01) 8.5 (0.79) 0.06 (0.01)

SNS 1,000 (0) 3,663 (405) 7.32 (0.81) 0.53 (0.04) 8.67 (1.18) 0.06 (0.01)

MHRW 1,000 (0) 3,561 (413) 7.12 (0.83) 0.57 (0.02) 14.3 (1.04) 0.05 (0.01)

MHDA 1,000 (0) 3,190 (394) 6.38 (0.79) 0.58 (0.02) 15.5 (1.41) 0.04 (0.01)

Standard deviation is in brackets

email communications, while arXiv is based on more formal links made through research
collaborations. Conversely, Gnutella is a computational network representing links in a P2P
system. Since these networks are generated by very different processes they display varied
structural properties, allowing us to evaluate our methodology on a range of structures. The
Gnutella and Enron networks are directed, but since MHRW and MHDA sampling explicitly
only consider undirected networks, we treat each network as undirected.

The structural properties of these networks can be characterised by the high-level metrics
shown in Table 3. The global clustering coefficient (GCC) is the average of the clustering
coefficients for each node. Diameter describes the longest shortest path-length between a
pair of nodes in the network. Centralization is a measure of how much heterogeneity exists
in a graph [7]: if we define the density of a network of size n as

Density = mean(k)

n − 1
,

where k denotes node degree, then we can define centralization as

Centralization = max(k)

n
− Density

Centralization indicates the extent of variation of node degree in the network, with a low
centralization indicating that most nodes have a similar connectivity, whereas high central-
ization implies a higher degree of structural variation throughout the network. While this
measure is mainly practically applied in biological studies, it is useful here as an indication
of the extent to which a mechanism has generated a uniform sample.
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(a) (b)

Fig. 2 Structure of an example network sample produced by (a) Snowball sampling (SNS) and (b) MHRW
sampling

From examination of the data in Table 3, we can see that no single technique produces
an ideal sample. As discussed above, BFS and SNS are known to be highly biased towards
high-degree nodes, but produce good coverage of localised areas in a network. The standard
deviation between individual samples is highest using these techniques, indicating a large
variation in structural properties between samples. The centralisation is also very high using
BFS and SNS, indicating that a much higher level of internal hetereogeneity is introduced
by using these sampling techniques. MHRW and MHDA tend to have the lowest standard
deviation between samples, and produce networks with metric values such as average degree,
clustering coefficient and centralisation much closer to the full network than SNS and BFS.
However, the diameter of the MHRW and MHDA samples is far higher than with SNS and
BFS, which we hypothesise is due to the random walk nature of these techniques covering
large areas of the network. Given that these sampled networks clearly no longer display
the small-world property, we cannot assert that many of the structural properties of the full
network are reproduced, beyond the node degree distribution.

There do not appear to be any consistent differences between SNS and BFS, beyond that
SNS tends to produce network samples with lower average degrees, perhaps indicating that
SNS is slightly less biased towards high degree nodes. However, SNS can often produce
distorted network structures depending on the initial node chosen. Figure 2a shows a SNS
network sample where the first node sampled has a very large degree, resulting in a star-shaped
sample with unrepresentative node degree distribution and clustering coefficient. Figure 2b
shows a MHRW sample of the same network, clearly showing a more homogeneous network
structure.
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Table 4 Important global metrics for networks produced by the Eppstein and Kleinberg network generators,
averaged over 15 repeats

Network Nodes Edges Avg. degree CC Diameter Centralization

Eppstein-5000 1,000 (0) 5,000 (0) 10 (0) 0.02 (0.00) 6 (0) 0.026 (0.00)

Eppstein-10000 1,000 (0) 10,000 (0) 20 (0) 0.035 (0.00) 6 (0) 0.04 (0.00)

Kleinberg-1c 1,000 (0) 2,991 (2.66) 0.98 (0.01) 0.001 (0.00) 7 (0) 0.004 (0.00)

Kleinberg-3c 1,000 (0) 4,899 (12.3) 9.78 (0.02) 0.03 (0.00) 5.2 (0.41) 0.01 (0.00)

Kleinberg-7c 1,000 (0) 8,629 (15.8) 17.2 (0.03) 0.05 (0.00) 4 (0) 0.012 (0.00)

Standard deviation is in brackets. For the Eppstein networks, the number annotation indicates the number of
edges. For the Kleinberg networks, the “−xc” annotation indicates the additional number of extra connections
x (a parameter to the algorithm) that was used to generate the network

If we are to claim that our methodology is effective in a general sense, we must be careful
to analyse agent populations that are situated upon as many network structures as possible.
We believe that the best approach is to use a portfolio of network samples derived using a
variety of sampling techniques. Using BFS or SNS allows us to apply our methodology on
samples that are more representative of localised areas of the full network, and the higher
variance between samples indicates a wider variety of structural properties will be analysed.
Given that there is little consistent difference between BFS and SNS, for simplicity in the
remainder of this paper we use SNS as a sampling method for retaining a representation of
local structure. Using MHRW or MHDA allows analysis of samples in which we can be sure
that the node degree distribution is closer to that of the full network, but we cannot make
any assertions about other properties. Given that the diameter is so much larger in network
samples produced using these techniques, it is likely that there are other as-yet undocumented
biases introduced.

Therefore we sample, from each of the Gnutella, Enron, and arXiv datasets, 5 network
samples using SNS, 5 network samples using MHRW, and 5 network samples using MHDA,
making a total of 45 networks with which to test our methodology. These network samples
are used to configure our simulations, such that the network topology determines the set of
neighbours for each individual agent in the population. We also initially include a number of
synthetic networks for comparison, as follows.

1. Scale-free networks generated using the Eppstein power-law generation algorithm [9].
We use two Eppstein power-law networks generated with 1,000 nodes, and 5,000 and
10,000 edges respectively.

2. Small-world networks generated using Kleinberg’s algorithm [27]. We generate Kleinberg
small-world networks of 1,000 nodes, with a clustering exponent of 1, and a maximum
of 1, 3 or 7 additional edges per node.

Comparing the properties of the real-world networks (Table 3) with the synthetic network
properties in Table 4 illustrates the significant differences between the real-world and syn-
thetic networks. This is best demonstrated by inspecting the clustering coefficient, which
is far higher in real-world networks. This is indicative of the structural differences between
these networks and the insufficiency of common network generation algorithms in modelling
real-world domains. The synthetic generation algorithms produce consistently structurally
similar graphs. For example, over 200 generated Eppstein power-law networks, using iden-
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tical configurations, the standard deviation for node degree is 0 and the standard deviation
for clustering coefficient is 0.001.

6 Experimental setup

To evaluate our methodology for learning influence, as described in Sect. 3, we use two
major models of convention emergence in complex open MAS, namely, Salazar et al. [40]
language coordination domain, and the coordination game (described, for example, in [42]).
In each experiment, we insert a single fixed-strategy IA [13] at a randomly chosen location,
and measure the extent to which the population converges on the strategy of the IA.

We apply our methodology as follows. From each of the Gnutella, Enron and arXiv net-
works described above, we sample 45 sub-networks of 1,000 nodes using the SNS, MHRW
and MHDA network sampling methods, and use these network samples to initialise a pop-
ulation of 1,000 agents (Step 1 of our methodology). We then sample 50 locations, using
either random or stratified-by-degree sampling (Step 2), and run our simulation 20 times for
each location, giving a total of 1,000 simulation runs per sub-network. We select an appro-
priate measure of influence for the interaction domain used (Step 3), as discussed later in
this section. After each simulation, we measure the extent to which the agent at this loca-
tion influenced the rest of the population, and calculate each of the fourteen topological
location metrics (introduced in Sect. 4) for that location (Step 4). We then calculate the topo-
logical location metrics for all agents in the population (Step 5). Finally, we use machine
learning techniques to build a prediction model using the topological location metrics to
estimate the influence of all agents in the population (Step 6). In this paper, our focus is
on the methodology itself and the identification of appropriate location metrics, and so we
build simple prediction models using PCA for unsupervised learning and LR for supervised
learning. To evaluate our approach, we then run new simulations using the location pre-
dicted as most influential by each model, and determine the extent to which influence has
increased.

We use the Java Universal Network/Graph Framework5 in our simulations and Cytoscape6

for off-line structural analysis of networks. Statistical analyses are performed using R7 and
Weka.8

6.1 Language coordination domain

The first domain that we use to learn agent influence is the language coordination domain
introduced by Salazar et al. [40], in which agents are associated with a lexicon that maps
words to concepts. We use Salazar et al. [40] parameter settings of 10 concepts and 10 words,
with 10 mappings per lexicon (giving a convention space of size 1010). Each timestep, three
phases are executed. First, each agent in turn communicates a single mapping from its lexicon
to a single randomly chosen neighbour. It is assumed that agents can determine whether the
recipient’s lexicon contains the same mapping, in which case the communication is successful,
otherwise it is unsuccessful. Second, each agent has a chance to propagate part of its lexicon
to all of its neighbours, along with the communicative efficacy of the lexicon, defined as the

5 http://jung.sourceforge.net/.
6 http://www.cytoscape.org/.
7 http://www.r-project.org/.
8 http://www.cs.waikato.ac.nz/ml/weka/.
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proportion of successful communications in the last 20 communications. Third, each agent
has a chance to update their internal lexicon based on the partial lexicons received from their
neighbours, using a two-point crossover. Agents use an elitist strategy, such that they update
their lexicon with the received mappings that have the highest communicative efficacy. It is
important to note that since agents only communicate a single mapping from the 10 in their
lexicon there is a significant level of partial observability in this domain. When updating their
mappings agents are subject to this partial observability, since they are only able to adopt the
single mapping that was communicated, with the remaining 9 mappings used by the sending
agent being unknown.

Over time a shared lexicon, a set of mappings from words to concepts, emerges. We
run each simulation for 50,000 timesteps, and each agent propagates their lexicon with a
probability of 0.01 and updates their lexicon with a probability of 0.01. By the end of a
typical simulation run 600–800 agents have adopted the dominant lexicon.

In this domain, we define an agent’s influence (Step 3 of our methodology) as the similarity
between its lexicon (L) and final dominant lexicon in the population (L ′) using Jaccard’s
similarity coefficient, J (L , L ′) = |L ∩ L ′|/|L ∪ L ′|, where a similarity of 1 implies that
agents use an identical lexicon, and 0 implies there are no mappings in common.

6.2 Coordination game domain

To corroborate our results in the language coordination domain, we use a model of con-
vention emergence loosely based on Sen and Airiau’s [42] private learning and Walker and
Wooldridge’s [46] model of convention emergence with local information, with modifica-
tions. Each timestep, every agent in turn engages in an interaction with a randomly chosen
neighbour, using a coordination game with ten possible action choices (see Table 5 for
the payoff structure). Since social imitation and information propagation are fundamental
processes in the emergence of conventions, we split strategy selection for each agent into
two mechanisms: (i) personal, based on the individual’s direct interaction history, and (ii)
social, based on the interactions an individual has observed. When selecting a strategy, agents
choose uniformly at random between personal and social choices.

In typical real-world complex open MAS, we can assume that agents will have a wide
variety of goals, architectures and internal algorithms. To model this heterogeneity, we use a
variety of strategy selection mechanisms. For personal experience, agents learn using either
a Q-learning algorithm [47] or WoLF-PHC [4]. When selecting a strategy based on social
experience, an agent learns using either Q-learning, WoLF-PHC, highest cumulative reward
(HCR) [43], or most recently observed (MR). At the start of the simulation, each agent
is initialised with a mechanism for personal and a mechanism for social choice chosen
uniformly at random, giving a total of 8 possible agent configurations. Agents explore in
10 % of interactions by selecting a strategy uniformly at random. This exploration introduces
a significant level of noise into our simulations, since 10 % of the time agents select actions

Table 5 Payoff structure for the
10-action coordination game,
showing the payoffs received by
agents for a given combination of
actions, where ai represents
action i , and x, y represents the
payoffs received by the row and
column players respectively

a0 a1 … a9

a0 4, 4 −1, −1 … −1, −1

a1 −1, −1 4, 4 … −1, −1

.

.

.
.
.
.

.

.

.
.
.
.

a9 −1, −1 −1, −1 … 4, 4
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randomly rather than according to their true strategy, which in turn provides noisy information
on which their interaction partner will learn.

The ideal goal is for the population to converge to a state in which every agent selects the
same strategy, resulting in population-wide coordination. In practice, we find that around 3 or
4 strategies persist as co-existing conventions, each having similar numbers of adherents. We
define a “win” as a simulation run in which the dominant strategy (i.e. the strategy or lexicon
with the highest number of adherents) is that used by the IA, and use the normalised number of
wins over 20 simulation repeats as our metric of influence (Step 3 of our methodology). Due
to the co-existence of conventions with similar adherence numbers, the exploration of agents,
and the higher possibility of a win being the result of chance, influence is harder to measure
accurately in this setting than in the language coordination domain. Since the classification of
whether an agent adheres to a convention relies on the agent’s interaction history, convention
memberships are volatile over time which introduces noise into the measure of whether an
agent has been influenced.

7 Results

We structure the results of evaluating our methodology as follows: initially, we focus on the
language coordination domain, and analyse the predictive power of each individual metric.
Subsequently, we analyse the results of learning influence prediction models, and demon-
strate that refining models learnt from the initial individual metrics can significantly improve
accuracy. We corroborate our results in the coordination game domain, investigate applying
models learnt in one domain to another domain, and finally use our results from both domains
to derive the properties of an ideal measure of influence.

7.1 Targeting IAs using individual metrics

Inspecting the extent to which individual metrics predict influence may allow us to refine
our models, and analysis of the correlations between each metric and influence reveals that
Degree, EC, HEE, and HITS all robustly correlate with influence over all networks. These
metrics are statistically significantly correlated in over 90 % of the networks (with correlations
ranging from 0.68 in the arXiv networks to 0.27 in the Enron networks), whereas the other
metrics statistically significantly correlate only in isolated networks (on average, in 48 %
of networks). Correlating with influence in isolated networks is likely to be due to unique
network structures, and these metrics are less likely to indicate influential agents in the general
case. This corroborates previous research on the link between degree and influence (e.g. [5]),
but to our knowledge this is the first time that EC, HEE and HITS have been shown to predict
influence.

Ranking agents by each of the four identified metrics results in significant overlap over
the top 5 agents—with 7.8 unique agents over the top 5 for each metric (a 0.39 proportion,
standard deviation 0.15), where disjoint sets would give 20 unique agents. While each metric
selects roughly similar sets as being the most influential, their relative rankings are unique.
Figure 3 plots normalised EC, HEE and HITS against degree, from which we can see the
correlations. Interestingly, HEE and HITS clearly bisect the population, which may be use-
ful for splitting a population into influential and non-influential agents, while EC has an
approximately linear relationship with degree.

Table 6 shows the average lexicon similarity and the number of wins for placing an IA at
the location that maximises each metric, where a win is defined as a simulation run in which
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Fig. 3 Correlation of HEE, EC, and HITS with node degree in an example arXiv-SNS network sample

the dominant lexicon in the population has at most 2 different mappings from the IA lexicon.
Results are averaged over each class of network sample. We see significant gains across all
four metrics, particularly in the arXiv and Enron networks. With random placement, an agent
is only able to successfully influence the population 2 times in 100, but placing by metric can
increase this to 60 times in 100. There is no consistency in which metric performs best across
network samples, and this is likely to be due to unique network structures in each class of
network.

The synthetic networks show very few gains in influence using targeted placement, and
very few of the metrics significantly correlate with influence for these networks. We believe
that the networks generated by current synthetic generation algorithms are too homogeneous
for any given location to gain significant influence over others, and our results demonstrate
that, since the potential for influence is so much lower, the synthetic networks used here
are poor models of networks found in the real world. Accordingly, we focus only on the
real-world network samples for the remainder of this paper.

7.2 Targeting IAs using learnt models

We subsequently apply our methodology by learning three models: (i) the principal compo-
nent (PC) that most correlates with influence, (ii) a LR model on all 14 metrics, and (iii) a
LR model on Degree, EC, HEE and HITS (4LR), which are the best 4 metrics as discussed
above. We consider 4LR in addition to a LR on all 14 metrics since we hypothesise that the
four best individual metrics contain sufficient information to have prediction performance
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Table 6 Average lexicon similarity and number of wins for placing a single fixed-strategy agent (IA) either
at a location maximising one of the chosen metrics or randomly in the language coordination domain

Network Average lexicon similarity Number of wins (normalised)

Degree HE EC HITS Random Degree HE EC HITS Random

arXiv-SNS 0.58 0.54 0.6 0.54 0.16 0.47 0.41 0.5 0.40 0.03

arXiv-MHRW 0.54 0.6 0.56 0.58 0.18 0.41 0.50 0.47 0.42 0.02

arXiv-MHDA 0.6 0.58 0.56 0.48 0.16 0.5 0.5 0.47 0.37 0.02

Enron-SNS 0.58 0.56 0.48 0.54 0.16 0.45 0.47 0.34 0.42 0.02

Enron-MHRW 0.62 0.48 0.55 0.63 0.16 0.55 0.41 0.44 0.56 0.02

Enron-MHDA 0.56 0.58 0.6 0.6 0.16 0.47 0.47 0.6 0.6 0.02

Gnutella-SNS 0.4 0.3 0.38 0.5 0.18 0.30 0.18 0.25 0.41 0.06

Gnutella-MHRW 0.22 0.18 0.2 0.38 0.16 0.08 0.05 0.06 0.21 0.02

Gnutella-MHDA 0.3 0.2 0.3 0.34 0.18 0.2 0.06 0.17 0.18 0.04

Eppstein-5000 0.35 0.40 0.17 0.265 0.19 0.4 0.33 0.05 0.1 0.1

Eppstein-10000 0.46 0.32 0.20 0.25 0.23 0.25 0.2 0.05 0.2 0.15

Kleinberg-CE1-1c 0.31 0.21 0.14 0.2 0.19 0.25 0.13 0.05 0.1 0.25

Kleinberg-CE1-3c 0.25 0.22 0.31 0.29 0.23 0.2 0.13 0.2 0.23 0.14

Kleinberg-CE1-7c 0.37 0.3 0.16 0.244 0.23 0.3 0.23 0.07 0.13 0.14

Kleinberg-CE10-1c 0.19 0.16 0.15 0.28 0.27 0.1 0.1 0.1 0.2 0.1

Kleinberg-CE10-3c 0.15 0.17 0.19 0.28 0.2 0.07 0.1 0.1 0.17 0.12

Kleinberg-CE10-7c 0.44 0.17 0.25 0.26 0.29 0.37 0.17 0.17 0.1 0.12

The best performing placement strategies are in bold. In the Kleinberg networks, the “CE” annotation indicates
the clustering exponent (a parameter of the algorithm) used to generate the network

that is comparable or approaching that obtained with the full LR, while having reduced com-
putational overhead. We consider two sampling approaches for selecting a representative set
of locations (i.e. Step 2 of our methodology): random and stratified location sampling (as
described in Sect. 3).

We trained our model as follows. For each combination of sampling technique (i.e. SNS,
MHRW and MHDA) and network (i.e. arXiv, Enron, Gnutella), there are five network sam-
ples, from which 50 locations are selected for IA placement either randomly or using stratifi-
cation. We use a cross-fold validation approach by dividing the data on how influential each
location is in each network sample into four network samples for training, and one network
sample for testing, for each possible combination of the five networks in each configuration.
Once trained, we measured the correlation between the predicted influence and measured
influence for the test data (to gain an estimation of the accuracy of our technique). Finally,
we train the model on all available data for a network sample, and use it to predict which
locations might be most influential. We evaluate this prediction by running simulations with
an IA at the location predicted as maximising influence.

Table 7 shows the average correlations between predicted influence and actual influence for
the test data, demonstrating that models learnt on randomly sampled locations are particularly
poor at predicting influence. Learning on stratified data shows high correlations, indicating
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Table 7 Correlation of each
learnt model with measured
influence in the language
coordination game, using
separate training and test data,
over each class of network
sample and learnt on both
random and stratified sampling

Entries shown in bold indicate
the highest correlation for that
network sample

Network Random Stratified

PC LR 4LR PC LR 4LR

arXiv-SNS −0.08 0.164 0.19 0.71 0.91 0.90

arXiv-MHRW 0.018 0.10 0.11 0.67 0.93 0.92

arXiv-MHDA −0.03 0.34 0.08 0.75 0.88 0.86

Enron-SNS −0.03 0.16 0.13 0.69 0.80 0.85

Enron-MHRW −0.10 0.17 0.21 0.71 0.88 0.87

Enron-MHDA 0.08 0.06 −0.03 0.73 0.90 0.89

Gnutella-SNS −0.01 0.03 −0.10 0.33 0.67 0.58

Gnutella-MHRW 0.02 − − 0.44 0.75 0.65

Gnutella-MHDA 0.09 −0.15 0.06 0.36 0.73 0.52

Fig. 4 Predicted influence for each agent in an example SNS sample from the arXiv network

higher quality models. This corroborates our hypothesis that there are relatively few locations
of influence in a network, with the majority having similar and low influence. Consequently,
a random sample is unlikely to select many high influence locations, which reduces the
quality of learnt prediction models. A random sample is therefore not representative in terms
of influence, and so the stratified sampling approach should be used. Figure 4 plots the
predicted influence in an arXiv-SNS network sample using the LR model on a stratified
sample, and we can clearly see that less than 10 % of the locations account for almost all
the influence. The Gnutella-MHRW network sample does not fit a linear regression model
using randomly sampled data, since the majority of locations are zero-valued for many of
the metrics. This occurs for locations of very low degree, and is an extreme example of the
effect discussed above.

To evaluate the efficacy of each prediction model, we place an IA at the location pre-
dicted as most influential by each model, and repeat the simulations. Table 8 shows the
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Table 8 Average lexicon similarity and normalised number of wins when placing an IA at a location chosen
by the predictive models in the language coordination domain

Network Average lexicon similarity Number of wins (normalised)

PC LR 4LR Random PC LR 4LR Random

arXiv-SNS 0.44 0.42 0.58 0.16 0.34 0.30 0.50 0.03

arXiv-MHRW 0.5 0.32 0.62 0.18 0.42 0.20 0.55 0.02

arXiv-MHDA 0.34 0.38 0.6 0.16 0.22 0.27 0.50 0.02

Enron-SNS 0.62 0.32 0.68 0.16 0.56 0 0.62 0.02

Enron-MHRW 0.2 0.5 0.58 0.16 0.30 0.36 0.53 0.02

Enron-MHDA 0.34 0.16 0.52 0.16 0.21 0.06 0.43 0.02

Gnutella-SNS 0.18 0.46 0.36 0.18 0.03 0.37 0.24 0.06

Gnutella-MHRW 0.4 0.4 0.24 0.16 0.27 0.29 0.10 0.02

Gnutella-MHDA 0.38 0.36 0.36 0.18 0.25 0.24 0.22 0.04

The best performing placement strategies are shown in bold

average lexicon similarity and normalised number of wins using models learnt on strati-
fied location sampling. We have omitted results for models learnt using random location
sampling, since they are less effective: across all networks, the average lexicon distance
is 0.35 (standard deviation 0.1) and the average proportion of wins is 0.2 (standard devi-
ation 0.12). Locations selected as influential by the models learnt from random loca-
tion sampling exhibit less than half the influence of those selected by either individual
metric or the models learnt from stratified sampling, indicating that random sampling
of locations does not give a sufficient range of influential locations to learn accurate
models.

Targeting IAs using locations predicted as influential by learnt models based on stratified
data results in significant gains in influence. In the arXiv, Enron and Gnutella-SNS network
samples, these increases are roughly equal to that gained through placing by single metric
over random placement. In the arXiv and Enron network samples, the best performing model
is 4LR, indicating that the other metrics are unlikely to contribute significantly to influence
prediction. We believe that 4LR is learning which metric is best to place by, given the results
in Table 6, since the results from placing by 4LR are roughly equivalent to placing by the
best performing metric (out of the four) for each network sample. In Gnutella, 4LR is always
outperformed by PC or LR, indicating that metrics other than Degree, EC, HEE and HITS
are indicative of influence in these networks. Moreover, the linear combination of metrics
in each of these network samples outperforms placement by single metrics. The Gnutella
network samples show a reduced potential for influence compared to the samples from the
Enron and arXiv networks, and exhibit lower edge counts, average degree, and clustering
coefficients, and higher diameters. All these properties reduce the ability of an agent to exert
influence, and may provide an indication of the likely efficacy of our methodology prior to
application.

Our results suggest that if computational expense is an issue, targeting by Degree (or EC,
HEE or HITS) will yield significant gains in influence, but if computational expense is less
important, then applying our methodology results in further gains. If our methodology is
applied using online measurements of influence (i.e. not requiring repeated simulations), the
computational cost is significantly reduced.
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7.3 Targeting IAs in the coordination game

The results given above suggest that agents can attain significant gains in influence by exploit-
ing knowledge of the topological structure connecting agents. However, we have so far only
considered results for the language coordination domain, and to demonstrate generality it
is necessary to test the extent to which agents can gain influence from targeting placement
according to a prediction model based on topological characteristics in another agent inter-
action regime. Accordingly, in this section we present results from targeting IAs within the
coordination game described in Sect. 6.2. We initially target locations predicted as influ-
ential by each of the four single metrics previously identified in Sect. 7.1. We build new
prediction models with data generated from running coordination game simulations for the
same (stratified by degree) location sets as those used in Sect. 7.2. This allows us to directly
compare the quality of models learnt using different agent interaction processes and met-
rics of influence. In contrast, in Sect. 7.4 we use the actual prediction models learnt in
the language coordination domain (Sect. 7.2) to predict influence in the coordination game
domain, and vice versa, to determine the extent to which these models predict influence across
domains.

Table 9 shows the results from placing a single IA at the location determined by maximising
each single metric identified in Sect. 7.1. We can see roughly similar trends, in that the arXiv
and Enron network samples see significant gains in influence while the Gnutella samples
exhibit relatively small gains. The gains in influence are not as large as in the language
coordination domain and this is likely to be because the combination of multiple co-existing
conventions with similar numbers of adherents, agent exploration, and reduced size of the
convention space result in a domain in which influencing the population is more difficult. It
may also be that the scope for influence, as imbued purely by network structure, is reduced in
this domain simply due to its inherent mechanisms. Nonetheless, there is still clearly potential
for targeting individual locations for gains in influence.

Table 10 shows the normalised number of wins attained by applying the influence learning
methodology in the coordination game domain. While increases in influence are clearly evi-
dent, with similar trends as those observed in the language coordination domain, the scale of
influence gain is reduced, and is smaller than the gain obtained when placing by single metrics
compared to random placement. As discussed above, there are a number of reasons for this

Table 9 Normalised number of
wins when placing an IA at a
location selected by maximising
each of the four single metrics
identified in Sect. 7.1 in the
coordination game

The best performing metrics are
highlighted in bold

Network Number of wins (normalised)

Degree HEE EC HITS Random

arXiv-SNS 0.43 0.33 0.41 0.40 0.11

arXiv-MHRW 0.39 0.35 0.40 0.36 0.10

arXiv-MHDA 0.43 0.42 0.38 0.33 0.09

Enron-SNS 0.38 0.40 0.33 0.38 0.10

Enron-MHRW 0.45 0.39 0.37 0.47 0.10

Enron-MHDA 0.42 0.38 0.48 0.48 0.09

Gnutella-SNS 0.28 0.23 0.23 0.35 0.09

Gnutella-MHRW 0.18 0.12 0.15 0.18 0.12

Gnutella-MHDA 0.12 0.23 0.25 0.18 0.08
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Table 10 Normalised number of
wins when placing an IA at a
location chosen by the predictive
models using the coordination
game

The best performing placement
strategies are shown in bold

Network Number of wins (normalised)

PC LR 4LR Random

arXiv-SNS 0.13 0.16 0.25 0.11

arXiv-MHRW 0.18 0.14 0.26 0.10

arXiv-MHDA 0.17 0.12 0.22 0.09

Enron-SNS 0.10 0.13 0.23 0.10

Enron-MHRW 0.12 0.10 0.24 0.10

Enron-MHDA 0.11 0.14 0.23 0.09

Gnutella-SNS 0.13 0.17 0.15 0.09

Gnutella-MHRW 0.23 0.19 0.15 0.12

Gnutella-MHDA 0.19 0.16 0.13 0.08

(including agent exploration which introduces a significant level of noise, smaller convention
space and increased probability of similarly sized co-existing conventions). Accordingly, the
variance in IA efficacy is much higher between identically configured runs, and there is more
noise in the data learnt by the methodology. The predictions of influence are consequently
less likely to be accurate.

Furthermore, there are only ten discrete strategies in the coordination game domain,
and switching strategies can involve non-trivial costs. In particular, given that a number
of conventions co-exist with similar membership sizes, an agent being influenced to a
given strategy can directly result in subsequent costs if that agent interacts with a neigh-
bour adhering to a different convention. In the language coordination domain, the conven-
tion space is quasi-continuous and switching convention is less likely to incur costs (con-
sider that if an agent alters one mapping in a lexicon, that mapping may not be used in
a communication for some time). This leads to two effects: (i) agents are less likely to
incur costs as a result of altering convention in the language coordination domain, lead-
ing to increased likelihood of being successfully influenced (as opposed to being influ-
enced, incurring a cost and switching to another strategy), and (ii) in the coordination
game domain the methodology has to learn on the number of absolute wins, rather than
the more fine grained measure of lexicon distance. As a result of the second issue, the learn-
ing algorithms have less detailed data on which to learn, further reducing the efficacy of the
methodology.

7.4 Using learnt models in other domains

A major component of our hypothesis regarding the poorer results in the coordination game
domain is that the data available is less suitable for accurate learning. To test this, we per-
formed two sets of experiments. Firstly, we re-ran simulations in the coordination game
domain, but placed IAs at the position predicted as most influential by the models learnt using
data from the language coordination domain, which had resulted in models that appeared to
predict more influential locations. Secondly, we ran simulations in the language coordination
domain, with IAs placed at locations predicted as most influential by the models learnt using
data from the coordination game domain.
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Table 11 Normalised number of
wins gained by placing an IA at a
location chosen by the predictive
models learnt on the language
coordination data, using the
coordination game

The best performing placement
strategies are shown in bold

Network Number of wins (normalised)

PC LR 4LR Random

arXiv-SNS 0.3 0.21 0.37 0.11

arXiv-MHRW 0.16 0.19 0.35 0.10

arXiv-MHDA 0.16 0.15 0.30 0.09

Enron-SNS 0.40 0.14 0.76 0.10

Enron-MHRW 0.28 0.45 0.26 0.10

Enron-MHDA 0.15 0.15 0.55 0.09

Gnutella-SNS 0.11 0.1 0.36 0.09

Gnutella-MHRW 0.19 0.13 0.19 0.12

Gnutella-MHDA 0.19 0.21 0.20 0.08

Table 11 plots the normalised number of wins attained in the first set of experiments (i.e.
running simulations in the coordination game domain with models learnt on data from the
language coordination domain). We can clearly see that using these models does result in
gains in influence, despite using a model learnt on data from a different domain. This suggests
that (i) the models learn intrinsic influence relating to the network structure itself, rather than
as a result of the specific behavioural patterns exhibited by agents situated on the network,
and (ii) that, to some extent, these models can be used to predict influence even when the
behaviour of agents in the targeted domain is significantly different to that used to generate
the data from which the model is built. Note that there is far higher variation in the results,
especially with respect to the Enron network samples. We believe this to be a result of the
coordination game domain itself having far higher variation in the outcomes of individual
simulation runs. The Gnutella network samples display inconsistent behaviour in terms of
which learnt models are best, and the learnt models appear to have fairly similar predictive
power in this context.

Table 12 shows the normalised number of wins and average lexicon similarity for IAs in
the language coordination domain targeted using models learnt on data from the coordination
game domain (i.e. our second set of experiments). The trends here are much the same as shown
in Table 8, which plots the results from IAs in the language coordination domain targeted
using models learnt on data from the same domain. The average gain in lexicon similarity
is statistically indistinguishable whether IAs are targeted using models learnt on language
coordination domain data or coordination game domain data.

When using the coordination game domain, using predictive models trained on data gath-
ered in different agent-interaction models appears to incur a cost in terms of IA efficacy.
When using the language coordination domain, models trained on data from different agent-
interaction models are as effective as models trained on data from the same agent-interaction
model as that being tested. The mechanism behind this discrepancy is unclear. There may be
some property of an agent-interaction model that imparts greater generality to the predictive
models learnt on their data, or features of a particular domain, such as a richer relationship
between conventions, may make it more amenable to influence. In future work, we will extend
these experiments to a wider set of agent-interaction models to determine to what extent, in
general, predictive models can be translated between domains.

Overall, we can conclude that learnt models for predicting influence from topological
metrics, for the large part, do translate between the different interaction domains considered
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Table 12 Average lexicon similarity and normalised number of wins when placing an IA, in the language
coordination domain, at a location chosen by predictive models learnt on data from the coordination game
domain

Network Average lexicon similarity Number of wins (normalised)

PC LR 4LR Random PC LR 4LR Random

arXiv-SNS 0.46 0.46 0.52 0.16 0.36 0.33 0.42 0.03

arXiv-MHRW 0.52 0.32 0.68 0.18 0.41 0.18 0.59 0.02

arXiv-MHRWDA 0.50 0.32 0.61 0.16 0.41 0.19 0.53 0.02

Enron-SNS 0.64 0.63 0.51 0.16 0.46 0.5 0.51 0.02

Enron-MHRW 0.48 0.52 0.38 0.16 0.36 0.44 0.27 0.02

Enron-MHRWDA 0.14 0.24 0.6 0.16 0.0 0.08 0.51 0.02

Gnutella-SNS 0.16 0.4 0.36 0.18 0.02 0.29 0.25 0.06

Gnutella-MHRW 0.42 0.36 0.26 0.16 0.3 0.25 0.15 0.02

Gnutella-MHRWDA 0.4 0.34 0.2 0.18 0.24 0.24 0.07 0.04

The best performing placement strategies are shown in bold

in this paper. If a target domain does not have easily definable on-line influence metrics or
off-line agent models, it may therefore be possible to use a simple interaction domain, such
as the language coordination setting, to generate data on which to apply our methodology
and still retain significant efficacy.

7.5 Prediction comparison

One way to verify the accuracy of the predictive models is to use the data from simulations
with topologically-targeted IAs to train new models and determine if they predict the same
locations. We generated two sets of predictive models: (i) those learnt on data using the
language coordination domain and the original 50 locations selected using stratified selection,
and (ii) the same dataset as in (i), but with the additional data from 30 repeats of the language
coordination domain with an IA placed at the location predicted as most influential by the
model from (i). If the models disagree, then the new data from the targeted IA has altered
the model sufficiently to change which location is predicted as most influential, suggesting
that the original model was not accurate. Conversely, if they agree, then this suggests that
the original model was a reasonably good model for predicting influence.

Table 13 shows the proportion of network samples for which the most influential predicted
location is the same between the two sets of models. Encouragingly, there is agreement
between the models for the majority of network samples. The majority of inaccurate models
come from the PC predictions, which tend to perform weakest overall. These results suggest
that the LR and 4LR models are particularly accurate even given small initial data sets.
Table 14 shows the average number of locations predicted by both models as being in the top
5 most influential locations in a network (i.e. a value of 5.0 indicates that both models predict
exactly the same 5 locations as being most influential). Interestingly, there are a number
of network samples for which the two sets of models predict entirely disjoint top 5 sets,
indicating a significant inaccuracy in the original models. It is also interesting to note that the
majority of these cases occur with the Enron network samples. Nonetheless, the vast majority
still display very similar top 5 predictions, adding to our confidence in the accuracy of the
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Table 13 Table showing, for
each class of networks and model
type, the proportion of networks
for which the same location was
predicted as most influential by
(i) a model learnt on results from
50 locations selected by stratified
sampling and (ii) a model learnt
on the same results as (i) plus
results from placing a single IA at
the location predicted as most
influential by (i)

If both models predict the same
location, then this strengthens the
evidence supporting the accuracy
of the first model

Network Predictive model

PC LR 4LR

arXiv-SNS 0.0 1.0 0.6

arXiv-MHRW 0.6 1.0 1.0

arXiv-MHRWDA 0.0 0.0 1.0

Enron-SNS 1.0 0.0 0.0

Enron-MHRW 0.0 1.0 1.0

Enron-MHRWDA 0.0 0.8 0.8

Gnutella-SNS 0.0 1.0 1.0

Gnutella-MHRW 1.0 1.0 1.0

Gnutella-MHRWDA 0.0 1.0 0.6

Table 14 Table showing, for
each class of networks and model
type, the number of locations that
are predicted as being among the
top 5 most influential by both (i)
a model learnt on results from 50
locations selected by stratified
sampling and (ii) a model learnt
on the same results as (i) plus
results from placing a single IA at
the location predicted as most
influential by (i)

Network Predictive model

PC LR 4LR

arXiv-SNS 1.6 5.0 3.6

arXiv-MHRW 3.0 5.0 4.8

arXiv-MHRWDA 0.0 4.4 5.0

Enron-SNS 5.0 0.0 0.0

Enron-MHRW 0.0 5.0 4.2

Enron-MHRWDA 0.0 3.0 4.4

Gnutella-SNS 0.6 5.0 4.6

Gnutella-MHRW 5.0 5.0 4.8

Gnutella-MHRWDA 0.2 5.0 3.6

original models. Note that in practise, as a model is used to manipulate convention emergence
in a given population, observations of the effectiveness of the locations chosen could be fed
into subsequent iterations of refining the model. In cases where our methodology is applied
in an online manner, this gives opportunity for tuning the parameters.

7.6 Deriving the properties of an ideal influence metric

The results described above demonstrate the importance of choosing an appropriate metric
of influence. The interaction domains evaluated in this paper both show similar gains in
influence for placement by single metrics but differing gains in influence using learnt models.
As discussed above, a major component of this disparity is due to the influence metric in
the coordination game (i.e. the number of exact “wins”) containing less information about
the effect of the IA. We can subsequently hypothesise the properties that an ideal influence
metric would exhibit, as follows.

1. Continuous: An ideal influence metric measures the extent of an agent’s influence, and
not simply whether it has influenced the majority of the population.
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2. Proportional: An ideal influence metric maps linearly to the influence that an agent has
exerted.

3. Ease of measurement: An ideal influence metric is easily measured. Both of the metrics
for influence described in this paper are measurable only with access to data for repeated
simulations, however in some cases influence metrics may be easily measurable online
(e.g. the number of re-tweets on Twitter).

4. Signal to noise ratio: The influence metric in the coordination game is subject to much
higher variance than the metric in the language coordination domain since (i) agents
explore, and (ii) the smaller convention space implies that there is a higher probability of
a win being the result of chance. An ideal metric should be particularly robust to noise
and have a low variance in order to increase the accuracy of the learnt models.

8 Conclusions and further work

In this paper, we have proposed a methodology for learning the influence of agents accord-
ing to their location in a network. We evaluated our methodology using two representative
domains of convention emergence on both synthetic networks and networks sampled using a
variety of techniques from three real-world datasets. We corroborate results in the literature
that degree is highly indicative of influence, and show that EC, highest edge embeddedness,
and HITS are also linked to influence. When placed at locations selected through applica-
tion of our methodology, agents gain significant influence compared to random placement.
In the arXiv and Enron network samples, the 4LR model, learnt on just degree, EC, HEE,
and HITS, gives gains in influence equivalent to targeting by the individual metric (of those
four) that best predicts influence in that network sample. This indicates that the LR model
learns which metric most predicts influence in that network sample. In the Gnutella network
samples, the learnt models typically outperform single metric placement, and, in general,
supervised learning using LR almost always outperforms unsupervised learning using PCA.

The models learnt on the arXiv and Enron network samples and on the Gnutella network
samples are significantly different, indicating that the structural characteristics that imbue
influence are, to some extent, unique to each class of network samples (and, potentially, to each
individual network sample). The Gnutella network samples demonstrate that (i) using single
metric heuristics does not guarantee optimal influence, and (ii) different network structures
exhibit significantly varied ranges of potential influence. We believe that the important global
network metrics (such as average degree, clustering coefficient, or diameter) may indicate
the potential for maximising influence in a given network, and we intend to explore this
in future work, along with other agent interaction domains to ensure that our methodology
generalises.

While our results suggest that our proposed methodology is effective at predicting influen-
tial nodes, we acknowledge a number of limitations with our work. Firstly, in real-world appli-
cations of our work, network topologies are likely to change over time as agents freely join
or leave the population. As currently formulated, our methodology cannot handle dynamic
network topologies when generating prediction models. If the mechanisms that generate par-
ticular topological structures in a domain persist over time, it may be that prediction models
learnt on a snapshot of the network remain accurate even as the network itself changes,
allowing a model to be built once and applied repeatedly. Conversely, if the characteristics
of a particular topology that imbue influence change over time, it would be necessary to
re-apply our methodology repeatedly to generate new models. Various approaches could
reduce the expense of such re-applications, and it may be possible to continuously gather
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data in real-time on a system and consequently use a constantly updated and refined model.
Unfortunately, our results so far do not indicate which of these scenarios is more likely, and
this requires further research. Secondly, the calculation of metrics of topological location can
be quite expensive. While the metrics predicted as influential here are largely either trivially
computable or have approximations, there may be network structures outside of those that
we have tested in which more computationally expensive metrics are better predictors of
influence.

As discussed in Sect. 5, the differences in important topological metrics between different
datasets is far greater than the differences in metrics in network samples taken from a single
dataset. This implies that each network, and the sub-networks sampled from them, have
unique structures that can be characterised by structural analysis. In future work, it may
be useful to determine if different classes of network with similar influence characteristics
exist (as appears to be the case between sub-networks sampled from the Enron and arXiv
datasets), and learn influence models for each class to be applied as necessary. This would
remove, in many cases, the need to apply our full methodology repeatedly. Future work will
also include investigation of dynamic network topologies, in which the social relationships
between agents changes over time.
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