
The BOSS Online Submission
and Assessment System

MIKE JOY, NATHAN GRIFFITHS, and RUSSELL BOYATT

University of Warwick

Computer programming lends itself to automated assessment. With appropriate software tools,

program correctness can be measured, along with an indication of quality according to a set of

metrics. Furthermore, the regularity of program code allows plagiarism detection to be an integral

part of the tools that support assessment. In this paper, we describe a submission and assess-

ment system, called BOSS, that supports coursework assessment through collecting submissions,

performing automatic tests for correctness and quality, checking for plagiarism, and providing an

interface for marking and delivering feedback. We describe how automated assessment is incor-

porated into BOSS such that it supports, rather than constrains, assessment. The pedagogic and

administrative issues that are affected by the assessment process are also discussed.

Categories and Subject Descriptors: K.3.1 [Computers and Education]: Computer Uses in Edu-

cation—Computer Managed Instruction

General Terms: Algorithms, Languages

Additional Key Words and Phrases: Online submission, programming languages, automated

assessment

1. INTRODUCTION

The number of students enrolling in degree courses in UK universities has
increased substantially over the past few years, leading to large class sizes and
increased student–staff ratios. A specific problem arising from this concerns the
substantial resources required to manage the assessment of practical exercises,
so that students receive accurate and timely feedback, which will benefit their
progress.

Automation of the assessment process is a potential solution, facilitated
by the ubiquity of Internet access and the relative affordability of comput-
ing equipment. There has been a rapid expansion of tools, both commercial
(such as WebCT [WebCT 2004] and Questionmark Perception [Questionmark
2004]) and within the academic community (for example, the CASTLE Toolkit
at the University of Leicester [Leicester University 2004] and TRIADS at Derby

Authors’ address: Department of Computer Science, University of Warwick, Coventry, CV4 7AL,

United Kingdom; email: {M.S.Joy,N.E.Griffiths,R.Boyatt}@warwick.ac.uk.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515

Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2005 ACM 1531-4278/05/0600-0001 $5.00

ACM Journal on Educational Resources in Computing, Vol. 5, No. 3, September 2005. Article 2.

2 • M. Joy et al.

University [CIAD 2004]). Most such products include assignment submission
and automated assessment as part of the software functionality and deal
effectively with assessments, which can be formulated as simple questions (such
as “multiple-choice” or “text entry”). This is appropriate for “shallow” or “sur-
face” learning, where knowledge and comprehension are being tested, at the
lower levels of Bloom’s Taxonomy [Bloom and Krathwohl 1956].

Computer programming is a creative skill, requiring “deep” learning, and
one which the student must practice in order to master. Existing generic tools
do not address such skills, and although there is substantial literature defining
best practice for the use of such tools [Bull and McKenna 2001], it has been ar-
gued that simple questions cannot be used to measure deep learning [Entwistle
2001].

Computer programs are, in principle, ideal subjects for automated assess-
ment. Not only can the correctness of a program be measured, but also its
quality, by the application of metrics. Furthermore, due to the regularity of
program code, techniques for plagiarism detection can be easily incorporated
into the automated process. A system is needed to support academics in the
assessment of student submissions through collecting submissions, performing
automatic tests on them, checking for plagiarism, and providing an interface
for marking and delivering feedback.

The “BOSS” Online Submission System has been developed over a number of
years, as a tool to facilitate the online submission and subsequent processing of
programming assignments [Luck and Joy 1999; BOSS 2004]. In this paper, we
discuss the recent development of BOSS as a Web-based tool, which supports
the whole of the assessment process, based on the application of engineering
principles to the automation of the process, together with a pedagogical founda-
tion, which does not constrain the teacher to present or deliver their assessment
material in any given style. We cover new support for software metrics and for
unit testing, which allows for a rigorous software engineering-based approach,
together with the incorporation of novel technologies for supporting the complex
administrative components of the process.

2. AUTOMATIC ASSESSMENT

There is no single correct approach to the problem of assessing programming
assignments. Different practitioners may adopt different strategies, depending
on the specific aims and objectives of the course they are teaching and on their
own style and preferences.

BOSS is a tool for the assessment of programming assignments, which sup-
ports a variety of assessment styles and strategies and provides maximum
support to both teachers and students. Within this framework, the teacher has
access to automatic tools to assist in the assessment process, which can be used
as much (or as little) as the teacher deems appropriate.

2.1 The Assessment Process

The process of marking a programming assignment includes three principle
components, as illustrated in Figure 1.

ACM Journal on Educational Resources in Computing, Vol. 5, No. 3, September 2005.

The BOSS Online Submission and Assessment System • 3

Fig. 1. The assessment process.

The first component, correctness, relates to the extent to which a program’s
functionality matches that of its specification. The second, which we refer to
as style, describes those attributes of a program that a student’s submission is
expected to display, but which are unlikely to be explicit in the program specifi-
cation, and allow for a limited amount of interpretation. The final component,
authenticity, covers administrative tasks including verification of the student’s
identity and checks for plagiarism.

These components are conceptual rather than definitive. There are categories
for marking, which can be included in the program specification, or can be
regarded as stylistic. For example, the performance characteristics of a program
may be formally specified and can thus be checked for correctness, but may
alternatively be considered as optional (but desirable) program attributes.

2.2 Support Assessment, Not Constrain

Our original motivation was for a tool, which would support computer program-
ming modules, but it was also clear that an effective tool would—with minor
adjustments—also be supportive of other types of material. The package, there-
fore, separates the purely administrative operations (the online submission
functionality and data management) from the programming-specific features
(automatic testing and marking of students’ programs).

2.3 Pedagogic Foundation

There appears to be no agreed set of criteria, which measure a “good” program,
and different academics and software practitioners stress different aspects of
the process. However, we can identify the following as criteria which are com-
monly applied:

� Comments in code. Best practice dictates that programs should be well docu-
mented within the code itself, in order to ensure that the program is under-
standable and maintainable by third parties (and, indeed, the programmer
themselves in the case of large projects).

ACM Journal on Educational Resources in Computing, Vol. 5, No. 3, September 2005.

4 • M. Joy et al.

� Code style. Best practice also dictates that programs should have a clear
layout, with meaningful choices of identifiers and method names. Again,
students’ programs should have a code style appropriate to the assessment
task. In general, programs should be clear to read, although programs writ-
ten for specific applications, such as those designed to take up minimal disk
space and have minimal memory overhead, may trade clarity for efficiency.

� Correctness of code. Programs should be correct, both through adhering to
the syntax and semantics of the language used, and by having the required
functionality.

� Code structure. There are typically many alternative ways of writing a pro-
gram for a particular task. Students should make use of appropriate language
constructs in their code and should structure their code into appropriate mod-
ules or classes.

� Code testing. Programs should be rigorously and methodically tested using a
suitable testing regime.

� Use of external libraries. Many programming languages have external li-
braries of functions for achieving particular tasks. Students should, where
permitted, make effective use of these libraries.

� Documentation. Programs should have supporting design, user, and system
documentation.

� Choice and efficiency of algorithm. There are typically many alternative meth-
ods to program a solution to a particular task. Programs should use appro-
priate and efficient algorithms.

� Efficiency of code. The implementation of the chosen algorithm should be
efficient and appropriate language constructs should be used.

These are broadly specified attributes and not necessarily straightforward
to define. Not all are applicable to all programs and stylistic criteria, in par-
ticular, are subject to individual preference and interpretation. It is, therefore,
important to incorporate tools to support criteria, which can be automatically
measured (such as test harnesses to evaluate program correctness), leaving
others in the hands of the teacher, and providing tools to aid the academic
judgement where possible.

2.4 Automatic Testing

Code correctness is a marking criterion which is often perceived by students as
of primary importance (“Does my program work?”), in contrast to the arguably
more subtle requirements for stylistic or algorithmic detail. It is also fundamen-
tal to the software engineering process—an incorrect program is seldom useful.

Correctness may be defined by specifying the expected output of a program
(or part of a program) for a given input. Precisely how the input and output
should be described is dependent on the type of program and may take the
form of text or data files, or of data values within the program itself. BOSS
evaluates correctness by the application of automatic tests and two paradigms
are currently employed, although the software is structured to allow the incor-
poration of further testing paradigms in the future.

ACM Journal on Educational Resources in Computing, Vol. 5, No. 3, September 2005.

The BOSS Online Submission and Assessment System • 5

The first paradigm defines input and output as data files and a test is con-
structed by specifying the content of the expected output file (or files) for given
input data files. A script (such as a UNIX shell script) may be incorporated to
postprocess the output generated after a test. Although this is a simple “black-
box” technique, which is common for test harnesses and is used in other systems
such as CourseMarker [Higgins et al. 2003]. It has the advantage that (almost)
any automatic test can be specified in this manner. Furthermore, if the data files
are assumed to be text, then each test can be described clearly and concisely
and, hence, made accessible to students.

The second approach (which only applies when Java is the language used)
uses JUnit tests [Lane 2004]. In this case, input and output are specified as
Java objects and a test is constructed by specifying a method to be run, taking
the input object as argument and returning the expected output object. This
paradigm has the advantage of compatibility with development environments,
which support JUnit testing and consistency with both classical and agile de-
velopment methodologies.

Since the automatic tests will run code written by students, there is a dan-
ger that a student’s program may (accidentally or otherwise) perform an unsafe
operation, potentially damaging the system on which the test is run. The test
harness used by BOSS protects the system against unsafe or malicious code,
using a variety of security techniques. BOSS delivers these paradigms of test-
ing in two modes. The first mode is available to students at submission time
to enable them to gain immediate feedback (and allow them to resubmit in the
light of this feedback, if they wish). The second mode is postsubmission and
allows the course manager to run a batch job of tests after the final submission
deadline. This second mode is typically linked to marking categories and cre-
ates the starting point for the marking process. The availability of automatic
tests both to students and securely to staff, allows their use either as a for-
mative resource, or for summative evaluation purposes, or as a combination of
both.

2.5 Automatic Measurement

Assessing a program requires an evaluation of some, or all, of the attributes
described earlier in this section. Many of these are subjective and cannot easily
be assessed automatically. For example, how well a student has structured and
commented their software, or whether they have used appropriate language
constructs is better assessed manually by a human marker. We can, however,
perform a limited automated assessment of a program to aid the marker in
this process. BOSS provides a set of simple program metrics, such as number
of comments, percentage of methods declared abstract, etc., which can support
the marker in assessing the subjective attributes of a program. The software is
extensible and inclusion of other metrics is straightforward.

2.6 Submission and Authentication

A primary administrative function of BOSS is the online collection and stor-
age of work submitted by students. This part of the process requires security

ACM Journal on Educational Resources in Computing, Vol. 5, No. 3, September 2005.

6 • M. Joy et al.

features, including the following.

� The identity of a student using the software is verified.
� Integrity of files submitted by a student are assured.
� Transmission of data between student and the system, and the data stored

on the system, is protected from unauthorised access.
� Appropriate audit trails are in place so that all parts of the process can be

checked.

Source code plagiarism has become a serious problem. Assessed assignments
in larger modules may consist of hundreds of submissions, which makes manual
comparison, for evidence of plagiarism, of all possible assignment combinations
impracticable. BOSS incorporates novel plagiarism detection software [Joy and
Luck 1999; White and Joy 2005], which compares submissions automatically to
seek for evidence of plagiarism and, if evidence is found, to present the offending
submissions to the teacher for manual comparison.

2.7 Administrative Support

An important, but essential, part of the process is its incorporation into the
wider institutional processes. Tasks such as the provision of accurate lists of
students are central to the smooth operation of software such as BOSS. This has
been facilitated by the incorporation of the new “Coresoft” database schema [Joy
et al. 2002], which provides an abstract view of the software, and which allows
the import of data from, and export to, other databases and data repositories,
with minimal software development.

The online marking process is simplified as much as possible, minimizing the
number of key strokes required. Dialogs contain all the information required
by the teacher, containing the results of any automatic tests applied, access to
the original source code, and (where appropriate) the metrics applied to the
submissions.

These features allow the teacher to concentrate on the assessment without
the necessity of significant time spent on peripheral administration.

Marks are assigned to a student’s work during the marking and moderation
processes. However, it is desirable for students to receive an explanatory re-
sult rather than just a number. Therefore, we allow markers to attach written
feedback to each submission. After the marking and moderation procedures
have been completed, the module manager may publish the results of the as-
signment. Students’ results are dispatched to them through email, consisting
of their final moderated mark and any comments that have been attached by
the markers. Since there is a delay between the students submitting their work
and the final marks being published, it is important to verify that each student
receives appropriate feedback. By choosing to return marks and feedback us-
ing email, there is a high degree of confidence that each student will receive
and read their feedback and it is for this reason that email, rather than a web
solution, is adopted.

ACM Journal on Educational Resources in Computing, Vol. 5, No. 3, September 2005.

The BOSS Online Submission and Assessment System • 7

2.8 Platform Independence

The authors’ department, in common with many Computer Science depart-
ments, has adopted widespread use of Linux and UNIX operating systems,
whereas the University provides Windows-based solutions to students. It was,
therefore, a necessity that BOSS be platform-independent. Java was chosen to
form the basis of a complete rewrite of the system, not only because it would
run on all major operating systems, but because its object-oriented paradigm,
together with a wide selection of supported APIs, were seen to be supportive of
rapid and accurate coding.

Two possible solutions to platform independence were considered. The first
would involve Java clients and servers (so that BOSS would become an applica-
tion which would run on student/staff computers) and the second a web-based
solution accessible through web browsers. Since there are compelling argu-
ments in favor of each solution, both have been implemented and are currently
supported.

3. USER VIEW

Two strategic decisions were taken relating to the architecture of BOSS. First,
there should be an overall model for the structure of an assignment, which
we refer to as the component model, which is designed to support arbitrarily
complex rubrics that might accompany an assessed piece of work. Second, the
users of the system (students, module managers, administrators, markers, and
moderators) should have clearly defined roles.

The software uses a client–server architecture with separate clients for stu-
dents and for authorized staff (for security reasons). Each client is provided
both as a secure web client and as a stand-alone application, so maximizing the
flexibility of the system in terms of a user’s working environment. There are,
consequently, two distinct views of the software, according to whether the user
is a student or a member of staff.

3.1 Component Model

Assessments take a wide variety of forms, including single tasks (such as essays)
or potentially complex entities (such as examinations). It is not uncommon to
encounter a rubric such as, “Attempt question 1, question 2, any three questions
from section B, and one question from section C.”

The data model used by BOSS, i.e., the component model, is intended to sup-
port arbitrarily complex assessment structures. The model is simple, straight-
forward to store in a relational database, and able to cope with any rubric.

A complex assignment (in terms of choices and paths through the tasks to
be completed) may be desirable as a component of an adaptive and individual-
ized learning and teaching strategy. Our purpose in introducing the component
model is to free the teacher from restrictions on the structure of an assessment,
allowing a complex assessment model to be deployed.

The component model is a description of the structure of an assessed piece
of work. It is intended to cover all possible assignments given to students,

ACM Journal on Educational Resources in Computing, Vol. 5, No. 3, September 2005.

8 • M. Joy et al.

including continuously assessed work, examinations, and tests. The component
model is based on the following four fundamental notions.

� A problem is a single task (such as a multiple-choice question, or an essay)
which is not divisible into subproblems and has a maximum mark as an
attribute.

� A multicomponent is a triple (C, AC, MC), where C is a nonempty set {c1,
c2, . . . , cn} of components, AC is an integer in the range 0, . . . , |C|, and MC is
an integer in the range 0, . . . , 100. AC represents the number of components
a student is expected to attempt. MC is the maximum mark for the whole
multicomponent. If AC = 0, then a student is expected to attempt all subcom-
ponents. The maximum marks for the subcomponents are used to determine
the relative weightings of those components.

� A component is either a problem or a multicomponent.
� An assessment is a multicomponent.

The component model is perhaps best demonstrated with an example. Sup-
pose that an assessment has the rubric, “Attempt question 1, question 2, any
three questions from the five in section B, and one question from the three in
section C. Question 1 is worth 20 marks, question 2 is worth 30 marks, section
B is worth 30 marks, and section C is worth 20.” Using the obvious shorthand,
the assessment decomposes as shown in the following tabulation:

Component Type Attributes

A multicomponent ({Q1,Q2,SB,SC},0,100)

Q1 problem 20

Q2 problem 30

SB multicomponent ({B1,B2,B3,B4,B5},3,30)

SC multicomponent ({C1,C2,C3},1,20)

B1 problem 10

B2 problem 10

B3 problem 10

B4 problem 10

B5 problem 10

C1 problem 20

C2 problem 20

C3 problem 20

The intention is that, where the sum of the “maximum marks” of the com-
ponents within a multicomponent is different to the maximum mark of the
multicomponent itself, appropriate scaling will take place.

The model will also handle unusual cases. For example, if the rubric for an
exam (with maximum mark 50) is “Attempt any two out of the following three
questions”, and the three questions have been coded with different maximum
marks (say 20, 30, and 40, respectively), then the components would be as
follows:

Component Type Attributes

Exam multicomponent ({Q1,Q2,Q3},2,50)

Q1 problem 20

Q2 problem 30

Q3 problem 40

ACM Journal on Educational Resources in Computing, Vol. 5, No. 3, September 2005.

The BOSS Online Submission and Assessment System • 9

Fig. 2. Student dialogue screenshot.

If a student obtains marks m1, m3 from problems Q1 and Q3, respectively,
then their total mark is then calculated as: ([m1 + m2]/[20 + 40])∗50

3.2 Student View

The BOSS software permits students to perform two principle tasks:

(1) Students submit their (programming) assignments online (a typical dialog
is illustrated in Figure 2;

(2) students are able to run automatic tests on their programs prior to submis-
sion (and afterward if they wish to resubmit within the prescribed deadline).

ACM Journal on Educational Resources in Computing, Vol. 5, No. 3, September 2005.

10 • M. Joy et al.

3.3 Staff View

The BOSS software permits staff to perform five principle tasks.

1. Automatic tests can be run on the set of student submissions and as part of
the marking process. These tests may be a superset of those that a student
can run, or they may be separate. For example, students may be given a
(small) set of automatic tests to run on their programs prior to submission,
for the purposes of ensuring that they have met minimum requirements for
the assignments. Further tests available to staff alone might then be used
to assess how well each student has met the full set of requirements.

2. Plagiarism detection software assists in the identification of potential intra-
corpal source-code plagiarism.

3. Submissions can be marked online by viewing the results of the automatic
tests, running the submitted program, and viewing the submitted source
code.

4. Staff authorized by the module organizer can moderate the marks given to
students’ work by other markers.

5. Feedback can be given on each submission and BOSS collates the feedback
from the set of markers of a given submission and provides a mechanism for
communicating this back to the student.

In order to deliver these tasks in a manner which ensures data privacy (staff
can only perform appropriate tasks) and allows for multiple marking of an item
of work to be performed “blind,” there are four staff roles, as follows.

� Administrator. The administrator may create modules and allocate man-
agers to individual modules. This role is not a “super user” one and the ad-
ministrator’s view of the data is strictly limited.

� Manager. Each module is allocated one (or more) managers, who can edit all
properties of that module, including assignment details, marking criteria,
and allocation of markers and moderators. An example of the manager’s
view of the system is illustrated in Figure 3.

� Marker. Each problem contained within an assignment is allocated one or
more markers by the module manager. Each marker is allocated submissions
to mark, and will mark online according to the marking criteria authored
by the manager. An example of a marker’s view of BOSS is illustrated in
Figure 4. Weightings of individual marking categories, and the identity of
the student, are hidden from the marker in order to ensure fairness and
transparency of the marking process.

The markers have the opportunity to write feedback on the work marked
and it is expected that the manager will issue the markers with guidance as
to what type of feedback is appropriate for that particular problem.

� Moderator. Once a problem has been marked by all markers allocated to it, a
moderator is required to review the marks awarded and the feedback given. If
multiple markers have been allocated to each student, the moderator’s view
will contain all the marks awarded, and a “suggested” moderated mark for
each marking category, which the moderator is free to alter. The weightings

ACM Journal on Educational Resources in Computing, Vol. 5, No. 3, September 2005.

The BOSS Online Submission and Assessment System • 11

Fig. 3. Manager dialogue screenshot.

for the individual marking criteria are available to the moderator, but the
student’s identity is not. Only when a student’s work has been moderated
are the final results available to the manager.

The ideal model, if resources are available, is for each piece of work to be
double marked, moderated by a third person, who may or may not be the mod-
ule manager. However single marking is permitted by BOSS, in which case
the role of moderator becomes one of checking the consistency and accuracy
of the marker.

4. ARCHITECTURE

An overview of the system architecture can be seen in Figure 5, showing its
primary components. There are four data repositories (represented by grey
rounded boxes), which store marks, information about students and their sub-
missions, results of automated tests, the results of plagiarism detection, and
other necessary data.

Staff and student servers provide appropriate functions and data access to
staff and students, respectively. Both the staff and student servers have a web-
based interface and a standalone Java application interface. The web inter-
faces communicate with the other system components via a secure web-server
using SSL. The staff interface also provides access to the plagiarism detection
software (called Sherlock) which analyses the stored submissions and stores
various metrics for assessment by teaching staff [Joy and Luck 1999; White
and Joy 2005]. An “automatic test server” is responsible for performing tests

ACM Journal on Educational Resources in Computing, Vol. 5, No. 3, September 2005.

12 • M. Joy et al.

Fig. 4. Marker dialogue screenshot.

Fig. 5. The BOSS architecture.

ACM Journal on Educational Resources in Computing, Vol. 5, No. 3, September 2005.

The BOSS Online Submission and Assessment System • 13

on students’ submissions and storing the results (or passing feedback to the
student if the test is being run prior to submission).

A client–server architecture using RMI (Remote Method Invocation) for data
transport forms the basis of the current system. At an early stage in the devel-
opment of the Java code, we decided that any maintainable and robust solution
required a modular approach. Both CORBA and RMI were considered, the lat-
ter chosen because of its Java base and consequent ease of coding. The use of
Applets was ruled out, since correct functioning of Applet-based clients is de-
pendent on the browser support for Java and the power of the client machine.
Not only do some proprietary browsers not support Java fully (and this has
been the subject of litigation both in the US and the EU), but at the time of
the decision students’ personal machines were unable to run complex Applets
acceptably fast.

4.1 Client–Server

The BOSS system consists of three servers: student server, staff server, and the
testing (or slave) server. These are actually three separate Java processes that
are usually run on the same machine but can, if so desired, execute on three
physically separate machines. The primary function of the student server is to
authenticate students and receive their coursework submission for appropriate
storage and logging. In addition, the student server is capable of communication
with the testing server if the automatic code tests are available to the student
before they make their final submission. The staff server, to which access is
only permitted to fully authenticated members of staff, provides testing, mark-
ing and moderation functionality to the client software. The testing server is
not directly accessible—the staff and student servers communicate with it to
request the automatic testing of student submissions.

Each server executes as a process without administrative (superuser) priv-
ileges to prevent the compromise of the entire machine should one server be
maliciously attacked and compromised, an event which has not yet happened
in the lifetime of the project. Filesystem and database privileges are carefully
allocated for each server.

The BOSS system currently offers two clients, the web-based and Java ap-
plication clients, of which further details can found in Section 4.5. The devel-
opment of two separate interfaces has been possible because of careful design
of the client–server interface. Where possible, we have placed functionality in
the servers to allow clients to be kept “lightweight,” and also to prevent large
amounts of sensitive student data from being transmitted data over the net-
work unnecessarily.

4.2 Automatic Test Server

In addition to the student and staff servers, the third part of the BOSS sys-
tem, namely the test server, is used to run submissions through a series of
fully automatic tests. The testing system is functionally separate from the core
BOSS system allowing some flexibility in the deployment of a testing system
which may, depending on the scale of automatic testing required by the institu-
tion, involve separate computing hardware. Transfer of submissions from the

ACM Journal on Educational Resources in Computing, Vol. 5, No. 3, September 2005.

14 • M. Joy et al.

student and staff servers to the testing server is encrypted to prevent malicious
modification or theft of a submission.

BOSS offers automatic testing functionality in two modes: submission-based
and batch-based. The first is available to students at submission time. The
course manager can make available tests that give immediate feedback to stu-
dents. These tests can be used as a simple check of the submission and can help
prevent erroneous submissions. Furthermore, based on the feedback given to
them, students can revise their submissions if they discover that they have
not met the requirements (assuming that the final deadline has not passed).
The majority of the automatic testing is performed in the second mode and
can not be seen or executed by a student. These postsubmission tests are typi-
cally executed by the course manager as a batch job after the final submission
deadline. We can construct more elaborate and thorough tests at this stage as
there is no requirement for immediate feedback to a student. The results of
these postsubmission tests can be linked to marking categories, which assess
the correctness of a submission, freeing the marker to spend a greater amount
of effort assessing the style of the submission.

Both of the testing paradigms introduced in Section 2 are available in both
the submission-based and batch-based testing modes. The first paradigm de-
fines input and output as data files and checks a student’s submission against
the expected output. Although this is a simple mechanism, it is also very pow-
erful and allows a course manager to model the strict input and output require-
ments that are often present in real-world software engineering tasks. JUnit
tests form the basis of the second BOSS testing paradigm (available only for
Java submissions). This form of test consists of testing for the equality of two
method calls given a specified input. More specifically, suppose that a Java pro-
gramming assignment can be specified by: the input CI , the output CO , and a
method m with signature CO m(CI). Then a test can be defined by: an object
OI , an instance of class CI , and an object OO , an instance of class CO , such that
m(OI) returns OO . A student’s implementation of method m can then be tested
by checking m(OI).equals(OO). Of course, we may need to override equals()
to achieve the desired result. Unlike the first paradigm, this does not allow for
the I/O presentation to be specified and testing may require a combination of
both techniques.

In both modes, to prevent overloading the testing server close to a submission
deadline, we limit the number of concurrent tests. Consequently some students
at the submission stage may have to wait several moments for a test result. We
see this as an acceptable compromise to prevent overstretching available testing
resources. All tests are executed inside a sandbox able to limit the amount of
available CPU time and memory and with strictly controlled set of permissions
to prevent malicious submissions compromising the host system. There have
been no known compromises of the testing system.

4.3 Databases

Central to a data-bound application, such as BOSS is the storage and manage-
ment of the data. In addition to storage of submitted assignments, as archives on

ACM Journal on Educational Resources in Computing, Vol. 5, No. 3, September 2005.

The BOSS Online Submission and Assessment System • 15

secure backed-up file systems, an SQL database is used for other data, such as
times of submissions, basic student identity information, and marks awarded.
The initial deployment of a proprietary database was found to be unsuccessful
(because of the repeated requirement of systems staff to manage the database)
and open-source databases such as MySQL, MSQL and PostgreSQL have since
been used. Differences between the dialects of SQL used are a continual source
of frustration, although the latest versions of MySQL and PostgreSQL allow
interchangeability with minimal intervention, assisted by the use of JDBC to
connect with the Java servers.

In order to facilitate the import of data from external sources (such as the
University’s Student Record System), an “institution-independent” database
schema, called CoreSoft, was developed [Joy et al. 2002]. The aim of CoreSoft
was to present the minimum data required for BOSS (and other related ap-
plications requiring similar data) in a format that would be compact, and use
appropriately normalized tables with easy to remember names. The translation
of data from external databases to the CoreSoft schema (and vice versa) is—at
least in principle—a straightforward task.

This incorporation of Coresoft into a large software package such as BOSS
demonstrates that it is an effective tool for providing an interface between
the external academic data requirements of the package and the data supply
capabilities of the host institution.

4.4 Plagiarism Detection

The department’s plagiarism detection software, known as “Sherlock” [Joy and
Luck 1999], has been developed in parallel with BOSS and, until 2002, was
a separate tool. Sherlock reports on a collection of documents and reports in-
stances of pairs (or larger clusters) of documents that contain similarities. Ini-
tially written for use with Pascal (and now Java) programs, Sherlock has been
extended to operate on free-text data files. Both its source code and free-text fa-
cilities compare well, both in terms of accuracy and of ease of use, with other pla-
giarism detection tools such as CopyCatch [CFL Software Development 2004].

4.5 HCI

The development of both web-based and application clients is motivated by two
main factors. First, students demand a simple to use product to submit their
work, both from the campus and when working at home, suggesting a web client
as being appropriate. Figure 6 shows screenshot of a dialog from the web-based
client for students.

Second, staff who are marking assignments for large classes desire an inter-
face, which is quick to use and minimizes the number of key strokes. This type
of interface is simpler to code as an application and, when used on a machine
directly connected to the campus network, avoids the delays inherent in the
web-based solution. Screenshots of the application interface are presented in
Figures 3 and 4 above.

Both interfaces have been coded to take account of appropriate “good prac-
tice” [Shneiderman 1998]. For example, the web interfaces are structured as

ACM Journal on Educational Resources in Computing, Vol. 5, No. 3, September 2005.

16 • M. Joy et al.

Fig. 6. Web client screenshot.

collections of relatively small individual pages with many navigation aids and
shortcuts, and are appropriate for remote access to the server where the con-
nection may be slow or unreliable. The application interfaces maximize the
amount of relevant information available on each screen, to enable the user to
navigate through the dialogs and complete their task, and is appropriate for
the local high-speed connections normally available to staff. Both student and
staff clients have been coded with both types of interface and evaluation of the
usage patterns is ongoing.

5. EVALUATION AND DISCUSSION

The development of BOSS is ongoing, driven by the evolving demands of aca-
demics and of the technologies that can be applied. In the academic year 2004–
05, an opportunity was taken to evaluate BOSS [Heng et al. 2005], and we
present a “snapshot” of its current use, and discuss issues which will affect the
directions in which the software will change.

ACM Journal on Educational Resources in Computing, Vol. 5, No. 3, September 2005.

The BOSS Online Submission and Assessment System • 17

Our evaluation is restricted to its use at the University of Warwick, since—
BOSS being an open source product—we do not have accurate information as
to which other institutions have deployed BOSS, and what local changes they
have made to the software.

5.1 Methodology

We employed a combination of techniques in order to gain information to assist
us. These included:

� an analysis of end of module questionnaires;
� interviews with staff who have been involved in the BOSS marking or man-

agement process;
� interviews with a representative group of students; and
� an analysis of the contents of the database used by BOSS.

We summarize our findings in three main parts. First, we present a technical
evaluation of the software and provide evidence which indicates that the soft-
ware is now stable, and that remaining issues relate principally to the lesser-
used dialogs within the staff clients. Second, we discuss the usability of the
software. Finally, we consider the pedagogy of BOSS and argue that its original
objective of being a “pedagogically neutral” tool has been achieved.

5.2 Technical Evaluation

As evidence of the stable nature of BOSS, we describe how the major design
decisions that have influenced its development have led to improved reliability
and security. We describe how BOSS was used in the academic year 2004–05,
outline the outstanding issues, and explain why they do not pose significant
obstacles to general use.

Dividing functionality between separate servers has provided technical and
organizational benefits. It has helped ensure that problems with the marking or
testing systems do not directly affect the submission of coursework.The student
server and client have also, restricted access and limited functionality to help
reduce the risk of a security breach.

The large user base has allowed us to quickly identify and resolve any prob-
lems with the software. In 2004–05, the performance of BOSS can be summa-
rized:

� over 5500 coursework submissions received electronically;
� no major outages, or downtimes impacting submission deadlines; and,
� no (known) security breaches.

BOSS allows students to resubmit their work multiple times. The admin-
istrative burden of doing this with paper submissions would be substantial,
but with BOSS this is easy. For example, in one of the first year programming
modules, 42% of students resubmitted their work, yet it required no further
effort from the course manager. The number of resubmissions per student is
presented in the graph in Figure 7.

ACM Journal on Educational Resources in Computing, Vol. 5, No. 3, September 2005.

18 • M. Joy et al.

Fig. 7. Number of resubmissions for the “Programming Laboratory” module.

There are some outstanding issues with the BOSS system, specifically with
the staff client, which relate to the functionality of the software—staff have
differing opinions as to what extensions (if any) should be made to the client.
Although these issues are important, they do not impinge upon upon the ability
to accept student submissions and store them accurately and securely, nor do
they affect the accuracy and stability of the test server.

5.3 Usability Evaluation

Ease of use is important for a tool such as BOSS, which receives heavy usage,
and for which mistakes during the processing of data can have very serious
consequences.

We report on our evaluation of the usability of the system, from the per-
spectives of its different users, as evidenced from a series of semistructured
interviews, from which all the quotes in this section are taken. The interface
is also heuristically evaluated against a list of guidelines and design principles
[Nielsen 2005; MIT Usability Group 2005].

This work has been used to design a new web interface for BOSS, which
addresses the issues the evaluation has highlighted [Heng et al. 2005]. This
has been implemented for the student web client and will be implemented for
the staff web client when resources permit.

5.3.1 Student Client. All interviewed student users indicated that they
had no problems learning to use the student client. Some students explained
that a reason for this is their prior experience using other web applications.

ACM Journal on Educational Resources in Computing, Vol. 5, No. 3, September 2005.

The BOSS Online Submission and Assessment System • 19

Students commented that “it looks nice,” and, compared to the previous in-
terface (2002), that the new interface “looks nicer and more friendly.” One com-
mented that “I prefer clean design, the less graphics the better,” and noted that
the web interface is “light-weight and quick.”

Minor user interface issues were identified. For example, pages of the client
are often long and one of the markers noted that “it looks OK on a large
screen, not on a laptop.” Users with a screen resolution lower than 1280 × 1024
need to scroll when using some of the dialogs, with the consequent increase in
excise.

A specific issue raised was the lack of immediate feedback when students
submit an assignment. Instead of generating a confirmation page on the browser
indicating the receipt of a student’s assignment immediately after a submission
is made, an email is sent to the student’s registered email address. The receipt
of emails by the students is sometimes delayed and some students mentioned
that they usually make two or more attempts to submit the same assignment
“just in case” the BOSS server did not receive the first one.

5.3.2 Staff Client. The result of heuristic evaluation relates the informa-
tion presentation of the staff client interface to the web site structure. The ex-
isting client uses a depth-emphasizing site structure rather than a balanced
combination of depth and breadth-emphasizing. The advantage of using a
depth-emphasizing site structure is that it expands the size of the site indefi-
nitely by storing information in many levels of the site. Information is revealed
gradually and other task buttons can be found in different levels when users
click through the pages. However, since a depth-emphasizing site structure
lacks linear navigation, many facilities are located in different levels of the site
hierarchy, without immediate access for the users. Therefore, this approach
may not be ideal when adopted by a software package with many features and
functionalities targeted at different group of users.

The staff client received more focused feedback from the staff users. Almost
all staff users demonstrated their need to look at the information presented
on the interface before deciding on the sequence of actions that need to be
performed by the system. They considered that the interface is more geared
toward executing actions rather than informing them about the state of the
modules and the submissions they are managing. Consequently, some of the
staff users considered that BOSS is complicated to use.

Heuristic evaluation and interviews also suggested that although BOSS On-
line has achieved an overall consistency in look and feel by the use of stylesheets,
some details have been neglected in the design. For example, the naming and
the position of the buttons, which have the same meaning in the interface, are
not always consistent.

Information gathered from the developers and the system designers show
that both the student and the staff interfaces have been implemented pragmat-
ically. BOSS was designed-based in order to satisfy the need of the Department
of Computer Science to facilitate the submission and the marking process of
student assignments. Development over the years has been incremental and
new features have been added to BOSS based on users’ requirements while

ACM Journal on Educational Resources in Computing, Vol. 5, No. 3, September 2005.

20 • M. Joy et al.

retaining the existing functionalities. The views of these two classes of user
support a claim that the software effectively fulfills its purpose.

5.4 Pedagogic Evaluation

BOSS is intended to be “pedagogically neutral.” We provide an environment in
which a secure online submission platform can be used with existing tools, or
alternatively the extra assessment utilities in BOSS can be used in conjunction
with them to offer increased functionality [Luck and Joy 1999].

In order to evaluate BOSS against this objective, we identify two sources of
evidence. First of all, we examine its patterns of use to test the hypothesis that
the tool is indeed used with a variety of existing tools. Second, we consider the
comments made by interviewed staff, who have used the system which relate
to its educational value.

5.4.1 Patterns of Use. The Department of Computer Science does not pre-
scribe how an individual academic should manage his/her own modules and
each academic is free to use BOSS as much or as little as they desire. An analy-
sis of the patterns of use over the fifteen modules, which used BOSS, highlights
the different individual approaches taken to the adoption of the software.

Seven of the modules used the system as a collection mechanism only, allow-
ing the assessment process to be supported by other tools, such as spreadsheets.
The reasons for not using the assessment features include:

� assignments are essay-based (two modules);
� assignments relate to formal methods and do not require coding (one module);
� assignments take the form of group projects, which contain added adminis-

trative complexity not appropriate for BOSS (one module);
� assignments require students to code, but the nature of the programming

paradigm (for example, declarative) requires tests to be performed on stu-
dents’ code, which is not easily modeled as “expected output for given input”
(three modules).

One further (essay-based) module used BOSS for collection and the plagia-
rism detection software only.

Of the remaining seven modules, which did use the majority of the soft-
ware features, all involved students programming using procedural or object-
oriented languages, as illustrated in Table I, which identifies

� whether the automatic tests were used,
� whether the plagiarism detection software was used,
� whether the marking process was conducted online within BOSS,
� the type of code which the module was delivering.

5.4.2 Plagiarism Detection. The assessment process involves ensuring
that students are marked on their own work and prevention and detection
of plagiarism is, therefore, an important part of the process. All staff who used
the plagiarism detection software commented that it was effective and, in each

ACM Journal on Educational Resources in Computing, Vol. 5, No. 3, September 2005.

The BOSS Online Submission and Assessment System • 21

Table I. Programming Modules Using BOSS

Year of Automatic Plagiarism Online

study tests? detection? marking? Code type

1 no yes no simple C++

1 no yes no simple Java

1 yes no yes simple Java

1 yes yes yes simple UNIX Shell and Perl

1 yes yes no intermediate Java

2 no yes no Prolog

2 yes yes yes advanced Java

module, disciplinary action was taken on a number of students as a result.
Use of the plagiarism detection software as a regular part of the assessment
process, and its associated visibility to students, has resulted in effective deter-
rence, and although plagiarism has not been eliminated, instances of it have
been reduced on large programming modules to typically less than 5% [Joy and
Luck 1999; White and Joy 2005].

The one module, which did not use the plagiarism detection component, of-
fered introductory Java programming for science students (principally math-
ematicians and physicists). The teaching style adopted involved the students
being presented with “templates,” which shielded them from the complexities
of the object-oriented paradigm and enabled them to concentrate on writing
and editing relatively small amounts of procedural code appropriate to their
disciplines. The use of automatic plagiarism detection software is not effective
on data where the amount of individually contributed code is small.

5.4.3 Automatic Testing. For four of the seven module assessments, it was
appropriate to use the automatic test harness together with the on-line marking
dialog (these were first- and second-year modules using Java or UNIX Shell
code). The final three modules were supported by alternative assessment and
management regimes. The staff involved in each of these modules were skilled
in alternative software products and wished to use facilities which would be
inappropriate to include in BOSS. For example, one academic remarked:

A spreadsheet is very flexible, you can sort it in many ways, do lots of things

on it, colour it, and so on. You can highlight it, give private comments, com-

ments for yourself, . . . do layout, create graphs

The pedagogic effectiveness of BOSS is that of the educational paradigm it
is used to support. The simplest nontrivial use of BOSS—and one of the orig-
inal motivations for its creation—is the incorporation of black-box automatic
tests into the assessment process for programming modules. Conversations
with module leaders suggest that the time necessary to devise and deploy a set
of automatic tests is typically 1 or 2 hours and that the time taken to mark a
single student’s submission may be as low as a couple of minutes; this is strong
evidence that the approach is administratively effective. All the staff who used
the software for its automatic tests and the online marking agreed that the
black-box paradigm worked successfully, although setting up those tests was
regarded as complex. This is, in part, a usability issue, but is also a comment

ACM Journal on Educational Resources in Computing, Vol. 5, No. 3, September 2005.

22 • M. Joy et al.

on the inherent difficulty of writing a correct test harness together with a clear
and comprehensible specification that will enable students to understand what
they are required to code.

Incorporation of program metrics into the software is recent and has not
yet been fully incorporated into any academic’s marking scheme. Similarly,
although JUnit unit tests have been included in the system functionality, the
technology has not yet been taken up in any module at Warwick.

Automatic testing paradigms are not magic bullets. JUnit tests require tech-
nical skill to code and are language-specific. Input versus expected output tests,
when interpreted as text files, invites difficulties due to misspellings, control
characters and whitespace, which can confuse superficially simple comparisons.

The student view has been generally very positive and comments at the end
of module questionnaires indicate that it is regarded as an efficient and con-
venient system to use. A specific comment often made by students is that the
automatic testing is “too fussy.” In an environment where we encourage stu-
dents to take a formal engineering-based approach to software development, it
seems appropriate that a tool such as BOSS is precise and this student view
might be interpreted positively. However, there are drawbacks to such an engi-
neering approach and the following students’ views about the use of automatic
tests are not unusual:

Automatic tests are unfair against those who have tried and only just failed

to reach the required outcome.

Didn’t like the auto tests—too picky with spaces, etc.

The number of tests, and their place in the marking scheme, is another focus
of discussion. It is neither feasible nor desirable to provide a complete testing
suite for use by students while they are learning the basics of programming,
since the number of tests would be prohibitive, and communicating the results
to students correspondingly problematic. However, it may be desirable to allow
students access to some automatic tests to assist them in their program devel-
opment. It may also be desirable to reserve some tests for the marking process
in order to encourage students to think through the specification thoroughly.
This is a strategy which is difficult to justify to students:

I don’t understand why there are more tests on the assignment. Can you

give us all tests when you give us assignments. Then we can know what you

want us to do.

More detailed staff feedback (via interviews) suggests that the functional-
ity of such a system supports colleagues’ requirements, but identify the client
dialogs as being over complex.

Our claim of “pedagogic neutrality” is further supported by the use of BOSS
as a vehicle for innovative pedagogic approaches. For example, the software has
successfully been extended to provide a package to support peer assessment
[Sitthiworachart and Joy 2004].

ACM Journal on Educational Resources in Computing, Vol. 5, No. 3, September 2005.

The BOSS Online Submission and Assessment System • 23

5.5 Future Directions

Any initiative that is dependent on technology is also at risk from changes in
technology and it would be unwise to speculate what those changes will be.
However, the paradigm used by BOSS appears to support a variety of modules
successfully, and significant changes are not currently envisaged. The under-
lying technology will be upgraded as and when suitable new technologies and
standards are in place.

The software has been made available as open source under the GNU Gen-
eral Public License [Free Software Foundation 2004]. There are three primary
reasons for taking the open-source route.

� The development of BOSS is not commercially viable, given the level of com-
mitment that would be needed to support, maintain, and continue develop-
ment of the software.

� Making the software open source encourages take-up by other institutions
and the subsequent community support and development that naturally fol-
low.

� Placing the source code of the system in the public domain enables other
institutions not only to use the system, but to customize and extend it without
any license restrictions (and hopefully feed back their extensions to the user
community).

5.6 Other Issues

In order for a system, such as BOSS, to be used effectively, it must interact
with institution processes efficiently and accurately. Several issues have arisen
during the deployment of BOSS that may well apply to many other institutions.

The quality of data received from the SRS (Student Record System) is
sometimes poor. For example, delays in updating student data centrally of-
ten preclude the automatic generation of accurate lists of students registered
for a given module. The schema used by the SRS is required for genera-
tion of accurate statistical data for government agencies, in addition to the
more general central management functions. The type of statistics required af-
fect the table structure of the database (for example, separate module codes
are used for students repeating a module, which is often required if they
do not pass the module at first attempt) and cause the import of data into
BOSS, through the generic CoreSoft database schema, to be more difficult than
expected.

The separation of the BOSS marking process into the three phases of mark,
moderate, and finalize is not the paradigm of choice for all academics, some of
whom interleave the processes. Flexibility in the mode of use is an adjustment
to the functionality of BOSS that is currently being incorporated.

BOSS has been conceived as a tool targeted at a single task, namely, the
management of online programming assignments. It is not intended to provide
a suite of learning material, and contains no functionality to support students’
learning other than that which directly arises from the activity of assessment.
The support for learning provided by BOSS is encapsulated by the process of a

ACM Journal on Educational Resources in Computing, Vol. 5, No. 3, September 2005.

24 • M. Joy et al.

student getting feedback from automatic tests prior to submission, followed by
feedback from markers after submission. Thus, the learning benefits to students
of using BOSS are similar to other assessment methods and are primarily
dependent on the academic design of the assessment (or preferably a sequence
of both formative and summative assessments) and the quality of feedback
given by markers.

It is interesting to compare the BOSS approach with that of CourseMarker
[Higgins et al. 2003], formerly named Ceilidh, a tool developed at the University
of Nottingham, which allows both formative and summative assessment. The
formative approach, which can be taken in CourseMarker, is to allow students
to present solutions to programming problems multiple times. Each solution
is then marked against a “template” and against a variety of metrics, allowing
the student to improve their solution prior to final submission by assimilating
the frequent feedback presented by CourseMarker. This was an approach that
we chose not to follow, since we wished BOSS to focus on the process of on-
line submission and measuring the correctness of students’ code, rather than
become a tool with a broader support for formative assessment. The Course-
Marker approach prescribes a style of programming that, it might be argued, is
not always appropriate, and we decided that the formative functionality would
be inappropriate for BOSS. Our emphasis is on providing a tool to assist teach-
ing staff and encourage best practice in teaching programming rather than to
provide an online learning environment.

It should be noted that, although our primary aim is to support the teach-
ing of programming, BOSS is also useful as a submission and marking tool for
other types of assessment, such as essays. For example, an automatic “essay
style checker” could be seamlessly plugged into BOSS to support the assessment
of an essay-based module. BOSS provides an effective means for the collection
of submissions, since students can submit using computers across the campus
or from home via the web interface. The Sherlock plagiarism tool allows teach-
ing staff to detect intracorpal plagiarism in the essays submitted by students
[White and Joy 2005]. BOSS can also be used as a repository for a marker (or
group of markers) to store feedback on each submission. At the end of the mark-
ing process, this feedback can be collated and moderated for each submission
and then returned to the student.

5.7 Historical Notes

The initial software package was developed in the mid-1990s, when many termi-
nals were still text-only, students would normally interact with the University
computer systems from on-campus, and remote communication with central
UNIX servers was necessarily text-based. The technology initially deployed
was an application with a text interface, which ran on a central UNIX server.
Coding was in ANSI C, and designed in as reusable and modular a fashion
as the language would easily allow. Security was achieved by means of stan-
dard UNIX file permissions and judicious use of the “setUID” mechanism. The
Snefru [Merkle 1990] hash algorithm was used to sign each submission and
ensure the integrity of submitted data.

ACM Journal on Educational Resources in Computing, Vol. 5, No. 3, September 2005.

The BOSS Online Submission and Assessment System • 25

This solution was successful, but the rapid advent of higher-quality ter-
minals with graphic capability suggested that an improved user interface
was desirable. Not only would staff productivity increase with a “point and
click” interface, but student perception of the software would improve, since it
would appear more “up to date.” The immediate solution was to add a front-
end coded in Tcl/Tk, which was relatively easy to implement because of the
modular structure of the underlying code [Luck and Joy 1999]. While this
solution was effective, it exposed a fundamental weakness in the choice of
technology, namely, that the scalability was poor. For example, the modular
constructs of Tcl/Tk are few and primitive, and the Tcl/Tk scripting language
is weakly typed. It was felt that the software was not amenable to signifi-
cant development in its current state and a permanent solution was sought.
A detailed description of the system at that time has been reported elsewhere
[Luck and Joy 1999].

The use of simple UNIX utilities, such as diff, have been used to perform
the comparison between actual and expected program output since the first ver-
sion of the software. However, despite the apparent ease of writing tests, care
must be taken to ensure that the tests and the specification (as presented to
the students) are consistent. The incorporation of JUnit tests is a recent addi-
tion to the software and relies on the use of Java as the language being taught.
Furthermore, the approach taken must be “object-oriented” and it should be
noted that many teachers choose to adopt a procedural approach to the intro-
ductory teaching of Java [Yau and Joy 2004; Burton and Bruhn 2003].

6. RELATED WORK

A variety of other tools have been created, which address some of the issues
motivating BOSS. We briefly review these in this section.

Other methods used to collect students’ work online include email [Dawson-
Howe 1995] and requiring students to store their work in a specified folder
[Isaacson and Scott 1989; Ghosh et al. 2002].

Tools and techniques to assist in the automatic testing of programs include
the use of shell scripts [Isaacson and Scott 1989], copying submitted files to the
teacher’s filespace [Reek 1989], and transferring ownership of submitted files to
the teacher [MacPherson 1997]. Since students’ programs may exploit loopholes
in the system (either accidentally or deliberately), automatic testing is often
performed in a restricted environment designed to minimize the possibility of
damage to the system [Cheang et al. 2003; Hurst 1996].

The Online Assessment System (OAS) [Bancroft et al. 2003] supports online
assignment submission together with a web-based interface for online mark-
ing. OAS interfaces with an institution student database (FITSIS), and uses a
custom application F 2M 2 to facilitate the online marking process.

The Online Judge [Cheang et al. 2003] provides a straightforward testing
harness where tests are defined in terms of whether (string) output from stu-
dents’ programs matches expected output. Plagiarism detection software is in-
cluded, but there is no additional functionality.

CourseMarker [Higgins et al. 2003] provides a web-based client–server ar-
chitecture which supports online submission, automated assessment, and a

ACM Journal on Educational Resources in Computing, Vol. 5, No. 3, September 2005.

26 • M. Joy et al.

rich marking interface. A fundamental difference between CourseMarker and
BOSS is the paradigm for interacting with a student. BOSS is conceived as a
summative assessment tool and, although it supports feedback for students,
its primary function is to assist in the process of accurate assessment. Course-
Marker also supports the formative aspects of assessment, allowing students to
have their program graded at frequent intervals prior to submission. In order
for this to be feasible, the profile of the program is constrained by measuring
its attributes and its functionality in order to arrive at a grading. It can be ar-
gued that this can constrain the student by penalizing an unusual (but correct)
solution.

Automatic assessment tools for specific languages have been developed, such
as Scheme [Saikkonen et al. 2003] and the use of Knuth’s Literate Programming
paradigm [Knuth 1984] has also been used to allow automatic annotation of
students’ programs [Hurst 1996].

Canup and Shackleford [Canup and Shackleford 1998] have developed soft-
ware for automatic submission, but which does not support automatic testing of
programs. Blumenstein et al.[2004] have been developing a generic assessment
and marking engine, which can be configured for multiple languages.

7. CONCLUSION

The use of BOSS over a period of years has demonstrated the effectiveness of
a focused tool, which addresses the requirements of assessing students’ pro-
gramming skills. The inclusion of a generic database schema and plagiarism
detection software, together with a platform-independent client-server archi-
tecture, provide a foundation adaptable to changes both in technologies and in
pedagogic requirements.

The BOSS system is a modular and extensible tool that has significantly
aided student assessment in the authors’ Computer Science department. Aca-
demics have the flexibility to use BOSS simply as a collection mechanism or
as a complete automated assessment suite. BOSS is focused on supporting the
process of assessment; it contains no functionality to support student learn-
ing other than that which directly arises from the activity of assessment. This
has been demonstrated, in practice, by its successful use in a range of modules
within the authors’ department. Academics are free to use their own judgment
about how the system can be best used to support students’ learning in the
context of a particular module. BOSS has proved itself to be successful tool,
that supports the assessment process, but does not artificially constrain it.

REFERENCES

BANCROFT, P., HYND, J., SANTO, F. D., AND REYE, J. 2003. Web-based assignment submis-

sion and electronic marking. In HERDSA 2003. IEEE. Available: http://surveys.canterbury.

ac.nz/herdsa03/pdfsref/Y1007.pdf (accessed: 30 May, 2004).

BLOOM, B. S. AND KRATHWOHL, D. R. 1956. Taxonomy of Educational Objectives: The Classification
of Educational Goals. Handbook I: Cognitive Domain. Longman, London.

BLUMENSTEIN, M., GREEN, S., NGUYEN, A., AND MUTHUKKUMARASAMY, V. 2004. Game: A generic auto-

mated marking environment for programming assessment. In ITTC 2004. IEEE, 212–216.

BOSS. 2004. The BOSS online submission system. online. Available: http://boss.org.uk/ (accessed

19 December, 2004).

ACM Journal on Educational Resources in Computing, Vol. 5, No. 3, September 2005.

The BOSS Online Submission and Assessment System • 27

BULL, J. AND MCKENNA, C. 2001. Blueprint for Computer-Assisted Assessment. CAA Centre, Uni-

versity of Loughborough.

BURTON, P. AND BRUHN, R. 2003. Teaching programming in the OOP era. ACM SIGCSE Bulletin 35,

111–115.

CANUP, M. AND SHACKLEFORD, R. 1998. Using software to solve problems in large computing

courses. ACM SIGCSE Bulletin 30, 1, 135–139.

CFL SOFTWARE DEVELOPMENT. 2004. Copycatch gold. online. Available: http://www.copycatchgold.

com/ (accessed: 30 March, 2004).

CHEANG, B., KURNIA, A., LIM, A., AND OON, W.-C. 2003. On automated grading of programming

assignments in an academic institution. Computers and Education 41, 121–131.

CIAD. 2004. TRIADS. online. Available: http://www.derby.ac.uk/assess/ (accessed: 25 April,

2004)

DAWSON-HOWE, K. 1995. Automatic submission and administration of programming assignments.

ACM SIGCSE Bulletin 27, 4, 51–53.

ENTWISTLE, N. 2001. Promoting Deep Learning through Assessment and Teaching. AAHE,

Washington, DC.

FREE SOFTWARE FOUNDATION. 2004. GNU general public license. online. Available: http://www.gnu.

org/copyleft/gpl.html/ (accessed: 25 April, 2004).

GHOSH, M., VERMA, B., AND NGUYEN, A. 2002. An automatic assessment marking and plagiarism

detection. In ICITA 2002. IEEE.

HENG, P., JOY, M., BOYATT, R., AND GRIFFITHS, N. 2005. Evaluation of the BOSS online submission

and assessment system. Tech. Rep. CS-RR-415, Department of Computer Science, University of

Warwick Coventry, UK.

HIGGINS, C., HEGAZY, T., SYMEONIDIS, P., AND TSINTSIFAS, A. 2003. The CourseMarker CBA system:

Improvements over Ceilidh. Education and Information Technologies 8, 3, 287–304. Available:

http://www.cs.nott.ac.uk/CourseMarker/ (accessed: 30 March, 2004).

HURST, A. 1996. Literate programming as an aid to marking student assignments. In Proceed-
ings of the First Australasian Conference on Computer Science Education. ACM, New York.

280–286. Available: http://www.literateprogramming.com/lpin-assess.pdf (accessed: 30 March,

2004).

ISAACSON, P. AND SCOTT, T. 1989. Automating the execution of student programs. ACM SIGCSE
Bulletin 21, 2, 15–22.

JOY, M. AND LUCK, M. 1999. Plagiarism in programming assignments. IEEE Transactions on
Education 42, 2, 129–133.

JOY, M., GRIFFITHS, N., STOTT, M., HARLEY, J., WATTEBOT, C., AND HOLT, D. 2002. Coresoft: a framework

for student data. In Proceedings of the 3rd Annual Conference of the LTSN Centre for Information
and Computer Sciences. LTSN Centre for Information and Computer Sciences. 31–36.

KNUTH, D. 1984. Literate programming. The Computer Journal 27, 2, 97–111.

LANE, D. 2004. JUnit: The Definitive Guide. O’Reilly, Sebastopol, CA.

LEICESTER UNIVERSITY. 2004. The CASTLE toolkit. online. Available: http://www.le.ac.uk/castle/

(accessed: 25 April, 2004).

LUCK, M. AND JOY, M. 1999. A secure on-line submission system. Software—Practice and Experi-
ence 29, 8, 721–740.

MACPHERSON, P. 1997. A technique for student program submission in UNIX systems. ACM
SIGCSE Bulletin 29, 4, 54–56.

MERKLE, R. 1990. A fast software one way hash function. Journal of Cryptology 3, 1, 43–58.

MIT USABILITY GROUP. 2005. Usability guidelines. Online. Available: http://www.mit.edu/ist/

usability/usability-guidelines.html (accessed: 30 September, 2004).

NIELSEN, J. 2005. useit.com. Online. Available: http://www.useit.com/ (accessed: 30 September,

2004).

QUESTIONMARK. 2004. Questionmark Perception. online. Available: http://perception. question-

mark.com/ (accessed: 30 March, 2004).

REEK, K. 1989. The TRY system - or - how to avoid testing student programs. ACM SIGCSE
Bulletin 21, 1, 112–116.

SAIKKONEN, R., MALMI, L., AND KORHONEN, A. 2003. Fully automatic assessment of programming

exercises. In ITiCSE 2001. ACM, 133–136.

ACM Journal on Educational Resources in Computing, Vol. 5, No. 3, September 2005.

28 • M. Joy et al.

SHNEIDERMAN, B. 1998. Designing the User Interface, (3rd ed.). Addison-Wesley, Reading, MA.

SITTHIWORACHART, J. AND JOY, M. 2004. Effective peer assessment for learning computer program-

ming. In Proceedings of the 9th Annual Conference on the Innovation and Technology in Computer
Science Education (ITiCSE 2004). 122–126.

WEBCT. 2004. WebCT. online. Available: http://www.webct.com/ (accessed: 30 March, 2004).

WHITE, D. AND JOY, M. 2005. Sentence-based natural language plagiarism detection. ACM Jour-
nal of Educational Resources in Computing 4, 4, 1–20.

YAU, J. AND JOY, M. 2004. Introducing Java: A case for fundamentals-first. In EISTA 2004. 1861–

1865.

Received June 2004; revised December 2004 and April 2005; accepted April 2005

ACM Journal on Educational Resources in Computing, Vol. 5, No. 3, September 2005.

