
Annotating Cooperative Plans with Trusted Agents?

Nathan Griffiths1, Michael Luck2, and Mark d’Inverno3

1 Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK
nathan@dcs.warwick.ac.uk

2 Department of Electronics and Computer Science, University of Southampton, Southampton,
SO17 1BJ, UK mml@ecs.soton.ac.uk

3 Cavendish School of Computer Science, Westminster University, London, W1M 8JS, UK
dinverm@wmin.ac.uk

Abstract. Cooperation is the single most fundamental characteristic of multi-
agent systems, and much work has been done on studying the various aspects
involved, from general models of the overall structure of cooperation to detailed
analyses of specific components. In our work, we aim to do both — we provide
a general model and instantiate each stage in that model. We take the notions
of trust and motivation to be fundamental to engendering successful cooperation
between autonomous entities, and our model of cooperation accounts for the im-
portant roles played by these concepts. This paper focuses in particular on the
details of how, based on trust, an agent chooses and keeps track of which agents
it may use to assist in the performance of actions that make up a multi-agent plan,
and how that information can be used in actually soliciting the assistance.

1 Introduction

1.1 Cooperation

Cooperation underpins multi-agent systems in which individual agents must interact
for the overall system to function effectively. There has been much previous work in
examination of different aspects of cooperation and cooperative activity, but only rela-
tively little concerned with a detailed examination of the different stages involved in a
full appreciation of it. In this paper we introduce an overall model of cooperation that
is heavily dependent on the notion of trust as supplying the glue to support effective
interaction. Trust is an issue that is little considered in this respect, but is involved in,
and necessary for, the establishment of inter-agent cooperative relationships in dynamic
and open environments, and has an important role to play. It is used to identify potential
trusted partners for cooperation and to annotate plans with those partners so that the
plans may be executed with reference to those agents already included in the plan.

Our model can be seen as instantiating previous work in a more general effort by
Wooldridge and Jennings [15], and offering a detailed analysis of how cooperative plans
can be constructed. It is not intended to offer a sophisticated representation for trust it-
self and how it is modified and updated, rather to show how it can be used to support
? In Trust, Reputation, and Security: Theory and Practise, R. Falcone, S. Barber, L. Korba and

M. Singh (eds.), Lecture Notes in AI 2631, Springer-Verlag, 2003, to appear.



cooperative activity. We focus in particular on how trust can be used to guide the deci-
sions made in establishing cooperative interactions in open and dynamic environments.
Our overall aim is to account for why self-interested agents should enter into coopera-
tion given the inherent risks involved. In doing this we take a task-oriented view, in that
cooperation arises from the need to perform a particular task. In this section we describe
the basic outline of our model and introduce the fundamental aspects of it, before going
into the detail of cooperative plan annotation based on trust in the rest of the paper.

Adopting the BDI approach in which an individual agent comprises beliefs (about
itself, others and the environment), desires (in terms of the states it wants to achieve) and
intentions (as adopted plans for these desires) [2], a detailed model of agent behaviour
can be constructed. However, in line with the views of some that motivation is an extra
component needed in such models, we include explicit motivations, which embody the
high-level desires that guide behaviour, and at a fundamental level control an agent’s
reasoning cycle [10]. In this view, an agent responds to changes in its beliefs, resulting
from perception, by generating a set of goals4 according to its motivations and beliefs.
It then determines which goals to commit to according to the motivational value they
afford, and selects an appropriate plan to use (adopting it as an intention). Finally, an
agent selects a particular intention to pursue and acts toward its achievement, again
using motivational value as the guiding measure.

Cooperation amongst a group of agents is more than simultaneous actions and indi-
vidual intentions; agents need some form of commitment to the activity of cooperation
itself [1, 9] along with an appropriate set of conventions [14] specifying when and how
a commitment can be abandoned. Where a group forms appropriate commitments to
cooperate and adopts suitable conventions we say that they have formed a cooperative
intention. There are several distinct tasks surrounding the formation and execution of
a cooperative intention, which we introduce in this section. If an agent is faced with a
plan containing actions that require assistance, or actions that are beyond the extent of
its capabilities, it must seek assistance from others and form an appropriate cooperative
intention before that plan can be fully executed. This, in turn, gives rise to a second
situation in which cooperation arises, which is in response to another’s request for as-
sistance. In both cases cooperation arises from a particular agent wishing to adopt a
plan that contains actions it is unable to perform alone — in the first case the agent it-
self has the plan, while in second case it is another agent’s plan that leads to the request
for assistance. The notion of cooperation arising in response to a particular plan com-
plements the approach taken in many BDI-based systems of constructing plans from a
library of partial plans, rather than from first principles. Since we are adopting the BDI
approach, and are not assuming that agents have the ability to plan from first principles,
we take this view of cooperation arising in response to a particular plan, rather than
focusing upon forming a cooperative group and then addressing the task of construct-
ing a plan from scratch. Although we take this view, our approach does not preclude
planning from first principles; the impact of trust and motivational value are similar
in both approaches (a discussion of how these issues can be found in [5]). Note also

4 We use the term goal rather than desire in order to make clear the distinction between the
desire to bring about a specific situation (a goal) and a more general desire (a motivation). For
example, the motivation of thirst may lead to the goal of drinking a cup of coffee.



that provision is made for an agent to seek assistance if it does not have a suitable plan
for its goal, and our model supports the construction of suitable plans in a cooperative
manner. However, we are not concerned with group planning per se, and this paper is
orthogonal to work such as Grosz and Kraus’ model of SharedPlans [7], and although
the notions of trust and motivation are applicable to group planning, this is is beyond
the scope of our work. The entire process of setting up cooperation among agents can
be broken down into the stages of plan selection, intention adoption, and group action.

1.2 Plan Selection

An agent’s motivations give rise to certain goals that must be adopted as intentions, by
selecting an appropriate plan and forming a commitment to its execution. Now, the set
of applicable plans for a particular goal may include plans containing actions that are
beyond the agent’s capabilities, or joint or concurrent actions. We refer to such plans
as cooperative plans since they can only be executed through cooperation with others.
Note that an agent may also choose to cooperate for a non-cooperative plan, namely an
agent may be capable of performing all the actions contained in a plan, but may wish
not to. An agent may try to avoid performing a particular action as a result of an existing
goal or for efficiency and cost reasons. Our framework makes provision for cooperation
in such circumstances as described in Section 3, but it beyond the scope of this paper to
discuss in any detail the reasons why an agent may wish to establish cooperation for a
plan it is capable of executing itself, since this is highly dependant on the nature of that
agent’s knowledge.

If an agent selects a cooperative plan, it is electing to cooperate for the achievement
of its goal. In order to select between plans, where the execution of those plans may
require cooperation, an agent must consider the nature of the agents it may cooperate
with; it should consider both the likelihood of finding agents to assist in achieving its
goal and the likelihood that they will execute the plan successfully, i.e. their trustwor-
thiness. However, although the characteristics of others are considered at selection time,
the agent cannot decide which agents to seek assistance from since there may be a delay
between selecting a plan and actually acting toward it, thus any annotation may be pre-
mature. Additionally, there is a computational cost to annotating a plan, and since there
are typically several plans to choose between it is undesirable to annotate each to select
between them. Rather, a coarser approach to plan selection is taken which minimises
the computational cost. If there were a very small number of plans to choose from,
and the delay between selection and execution could be guaranteed to be small, then
it may be computationally cheaper for an agent to annotate its plans at selection time.
However, in general we cannot make such guarantees and so such pre-selection plan
annotation is not appropriate. Note also that the cost of annotation is proportional to the
number of plans, and since pre-selection plan annotation is only useful when there is a
small number of plans, the benefits are also (relatively) small. Ongoing work aims to
investigate whether an agent’s knowledge about the evolution of its environment can be
used to determine when to perform pre-selection plan annotation in a computationally
efficient manner.

Since an agent’s choice of plan determines whether it must cooperate to achieve its
goal, and cooperation involves a certain degree of risk, then to choose the plan involv-



ing cooperation requires there to be some inherent advantage to that cooperation. The
problem of plan selection amounts to choosing the best plan — the plan that is most
likely to be successful, with least cost in terms of time and resources, and the least risk.
When the plans involved do not involve other agents, standard plan selection criteria
(or planning heuristics) can be used to assess cost. However, when plans involve others,
an element of risk is introduced by the inherent uncertainty of interaction. In addition
to a measure of the cost of a plan, therefore, we need to assess the likelihood of find-
ing agents for actions required for successful plan execution; the likelihood that such
agents will agree to cooperate; and the likelihood that the agents concerned will fulfil
their commitments.

The notion of trust is recognised by several researchers as a means of assessing the
perceived risk in interactions [3, 11]. The risk of whether to cooperate and with whom,
may be determined by, among other things, the degree of confidence or trust in other
agents. Despite the notion of trust being commonplace in our everyday interactions,
there are few formal definitions. However, it is generally accepted that trust implies a
form of risk, and that entering into a trusting relationship is choosing to take an uncer-
tain path that can lead to either benefit or cost depending on the behaviour of others.
The perceived risk of cooperating with a particular agent is determined by that agent’s
reliability, honesty, veracity, etc., embodied by the notion of trust. As an agent interacts
with others it can ascribe trust values based on their previous behaviour, and over time
improve its model of trustworthiness. Thus, in a sense, trust provides a mechanism for
an individual agent to maintain its own view of the reputation of another. These values
can be used as a means of assessing the risk involved in cooperating with others. Since,
in general, agents do not necessarily have sufficient reasoning capabilities to assess the
various facets of others that determine their trustworthiness, such as their honesty and
veracity, a coarser mechanistic approach is taken.

Trust values are initially ascribed to others (and form part of its models of others)
according to an agent’s disposition: optimistic agents are likely to ascribe a high value,
while pessimists are likely to give a low value. This disposition also determines how
trust values are updated as a result of interactions with others [12]. After a successful
interaction optimists increase their trust more than pessimists, and conversely, after an
unsuccessful interaction pessimists decrease their trust more than optimists. The mag-
nitude of change in trust is a function of a variety of factors depending on the agent con-
cerned, including the current trust and the extent of the agent’s optimistic or pessimistic
disposition. However a simplistic approach, described in more detail in [5], is for an
agent’s disposition to be represented by two values, trustIncrease and trustDecrease,
which determine the proportion of current trust level to increase or decrease by respec-
tively according to whether an interaction was successful or not.

We have described in [6] a mechanism for assessing the contributions contained
in a plan in terms of the risk associated with the agents who are believed capable of
executing them. This assessment is combined with more traditional standard planning
heuristics (such as cost and plan length) to obtain a measure for selecting between plans
that balances these, often contradictory, desires to minimise both cost and risk. Using
this approach an agent’s choice about whether to cooperate or not is embodied by its
choice of plan.



1.3 Intention Adoption

After selecting a plan for its goal an agent must commit to its execution by forming
an intention. If the plan does not require assistance from others then it can simply be
adopted and action toward it can begin, otherwise the agent must solicit assistance from
selected agents toward its execution. We refer to the agent that selects a cooperative
plan, and attempts to gain assistance for its execution, as the initiating agent, or the
initiator. In order to gain assistance, the initiator must first determine which agents to
request assistance from, achieved by iterating through the steps of the plan, annotating
each contribution with the identifier of the agent that the initiator considers the best to
perform it, based on knowledge of their capabilities, and their believed reliability, etc.
as determined by the trust value ascribed to them. The assistance of these agents can
then be requested. On receiving a request for assistance, these agents inspect their own
motivations and intentions to decide whether or not to agree, and send an appropriate
response to the requesting agent; an agent’s motivations determine whether it wants to
cooperate, and its existing intentions determine whether it can cooperate (since inten-
tions must be consistent). If sufficient agents agree then a commitment in the form of
a cooperative intention can be established among them. However, if insufficient agents
agree then either the plan can be reannotated, or failure is conceded.

1.4 Group Action

Once a group of agents have formed a cooperative intention they can execute it — each
step of the plan in turn is either performed or elaborated according to whether it is an
action or a subgoal, respectively. On the successful completion of the cooperative in-
tention, the agents concerned dissolve their commitment and cooperation is finished.
Alternatively, if execution of the intention fails, the agent that first comes to believe this
informs the others in accordance with the conventions specified by the cooperative in-
tention, and again their commitments are dissolved. In both cases agents can update the
information they store about others to aid future decisions about cooperation, in partic-
ular the trust values ascribed to these agents are updated. For example, if cooperation
fails due to the behaviour of a particular agent, others may be more wary of cooperating
with that agent in future.

1.5 Cooperative Plan Annotation

These stages strongly relate to those contained in Wooldridge and Jennings’ formali-
sation of cooperative problem solving, namely: recognition of the potential for cooper-
ation, team formation, plan formation, and team action [15]. Their model is relatively
abstract and, as they recognise, is intended to provide a top-level specification for a sys-
tem, requiring more detail before it can be implemented. We view the work described
in this paper as providing an instantiation for some of the details that were previously
left abstract. Wooldridge and Jennings also recognise that although the stages in their
model are presented as being sequential, in practice they may not occur strictly in the or-
der they describe. Indeed, this is a significant difference between our model and theirs;
in our approach an individual agent selects a plan that requires cooperation, and then



seeks assistance, while in their approach an agent recognises the potential for coopera-
tion, seeks assistance, and then the agents as a group form a plan.

This difference arises from our alternative view of the potential for cooperation,
which in turn is a result of the nature of our agent architecture. They view the potential
for cooperation as being where an agent has a goal that it is unable to achieve in isola-
tion, or does not want to use the resources required to achieve it alone. Alternatively, in
our framework the recognition of the potential for cooperation is implicit in an agent’s
choice of how to achieve its goal — an agent simply selects a plan to achieve its goal,
which may or may not require cooperation to execute. Therefore, in our model an agent
seeks assistance after a plan has been selected rather than before, since unless an agent
knows how to achieve the goal it cannot consider what cooperation may result from that
goal5. This is important since we are specifically concerned with why an agent might
enter into cooperation.

In dynamic environments there is often a delay between between obtaining commit-
ments from others and using them in plan execution. In general, the longer this delay,
the more time there is for agents’ motivations to change, thereby increasing the risk of
failure. To address this, an initiating agent can choose between annotating a plan and
soliciting assistance as soon as the plan is selected (an immediate commitment strat-
egy), or waiting until execution time (a delayed commitment strategy). This is a choice
about when to annotate its plan and obtain commitments, rather than whether to do so.
Several factors are relevant in choosing between strategies, including the trust of oth-
ers, the degree of environmental dynamism, and the nature of the domain itself. The
degree of dynamism determines how likely others’ motivations are to change, since the
intensity of an agent’s motivations are determined in response to its perceptions of the
environment. The trustworthiness of others can can be used as an indication of the like-
lihood that their commitments will be fulfilled. Higher trust suggests a greater perceived
likelihood of fulfilling commitments. If other agents are generally distrusted, therefore,
obtaining commitments at plan selection time may be considered too expensive since
they are more likely to renege on them. However, due to space constraints we do not
describe how to make this choice here. Instead we simply note that this offers agents
considerable flexibility in establishing cooperative activity.

Having previously considered the plan selection stage in some detail [6], this paper
extends that, and is specifically concerned with intention adoption, focusing in partic-
ular on plan annotation. The next section introduces the notion of cooperative plans,
which require a number of agents to execute. After plan selection an agent must seek
assistance from others, beginning by annotating that plan with appropriate agents as de-
scribed in Section 3. In Section 4 we introduce a number of approaches for requesting
another’s assistance with respect to an annotated plan. Finally, Section 5 concludes this
paper.

5 It is, however, possible for an agent to seek assistance if it has no explicit plan for its goal by
using the plan containing just that goal as a plan step. However, due to space constraints we
do not consider the details here (a discussion can be found in [5]).



2 Cooperative Plans

For an agent situated in a multi-agent environment to take advantage of others, its plans
must include a means for it to interact with them. Cooperation may take the form of
performing an action on behalf of another, a group of agents performing a (joint) action
together, or a set of (concurrent) actions performed at the same time.

Our definitions of these actions build upon the notions of strong and weak paral-
lelism described by Kinny et al. by decomposing joint actions into the specific compo-
nent actions, or contributions, that comprise them [8]. This allows us to build a relatively
simple, yet expressive, formalisation in which to represent cooperative plans. Although
not as expressive as possible alternative approaches, such as directed graphs, the result-
ing plans are simpler to manipulate, and are sufficient for most situations. Moreover,
the general principles of plan annotation expressed in this paper, could be equally well
applied to an alternative representation of plans.

First, individual actions are those performed by an individual agent without the
need for assistance, and may be executed by the agent owning the plan in which it
is contained, or by another agent on its behalf. Now, in a cooperative domain, agents
need to track who performs each action in a plan, and so we represent each action as
a contribution, which is a tuple comprising the action and a globally unique identifier
corresponding to the agent that performs it. Using the Z notation, which is based on set-
theory and first order logic [13], we write this formally as follows. (A full treatment of
Z, together with explanations of its suitability for specification of agent systems and its
usefulness in moving from specification to implementation, is available elsewhere [4];
for reasons of brevity, however, we will not elaborate the use of Z further.)

Agent

agtId : AgentID

beliefs : PBelief

goals : P Goal

intentions : P Intention

motivations : PMotivation

capabilities : P Act
...

Contrb

act : Act

agtId : AgentID

act ∈ (agent agtId).capabilities

Second, joint actions are composite actions, made up of individual actions that must
be performed together by a group of agents. Each agent involved in executing a joint
action makes a simultaneous contribution to the joint action, corresponding to the com-
ponent action that it performs6. Note that the agents within any joint contribution must
be distinct.

6 For example, if agents α1 and α2 perform the joint action of lifting a table, then α1 must make
the contribution of lifting one end of the table simultaneously with α2 lifting the other.



JointAct

contrbs : P Contrb

#contrbs ≥ 2
∀ c1, c2 : contrbs | c1 6= c2 • c1.agtId 6= c2.agtId

Finally, concurrent actions are those that can be performed in parallel by different
agents, without the need for synchronisation (except at the beginning and end of a set of
concurrent actions). Concurrent actions can comprise both individual contributions and
joint actions that are to be performed simultaneously, denoted by singles and joints in
the schema ConcAct . As with joint actions, the action an agent performs as part of a
set of concurrent actions is its contribution7. Unlike joint actions there is no require-
ment for the agents involved in a concurrent action to be distinct, although in practise
they typically are (otherwise the components of the concurrent action must be executed
sequentially).

ConcAct

singles : P Contrb

joints : P JointAct

allcontrbs : P Contrb

#singles + #joints ≥ 2
allcontrbs = singles ∪

⋃
{j : joints • j .contrbs}

In common with the base BDI model, we take plans to be partial in that they are
incomplete, and contain subgoals in addition to actions [2]. Additionally, since plans
apply only to particular situations, they must also have a set of preconditions that define
when they are applicable. Thus, we define a plan as sequence of steps, where a step is
either an individual action, a joint action, a set of concurrent actions, or a subgoal.

PlanStep ::= Individual〈〈Contrb〉〉
| Joint〈〈JointAct〉〉
| Conc〈〈ConcAct〉〉
| Subgoal〈〈Goal〉〉

Plan

achieves : Goal

precon : P Belief

body : seq PlanStep

7 For example, if agents α1 and α2 each write a chapter for a book, and they perform their
actions in parallel, then α1 and α2 perform concurrent actions where each agent’s contribution
is the action of writing the appropriate chapter.



3 Plan Annotation Using Trust

Once an agent has selected a plan for its goal, that plan must be adopted as an intention,
if its execution does not require assistance (and the agent does not wish to execute a
non-cooperative plan in a cooperative manner). Alternatively, the agent must initiate the
process of forming a cooperative intention if others are required, or simply preferred,
for the plan’s execution. As described above, the first step in forming a cooperative
intention is to determine which agents would best perform the contributions in the plan.
Agents selected in this way are associated with a contribution by annotating it with the
identifiers of the agents, and each cooperative action in the plan must be annotated in
this way. Note that several agents may be able to perform the required contribution,
and more than one may be listed in the annotation. In this case, there is a degree of
redundancy to safeguard against the situation where some agents decline to cooperate,
which we call redundant annotation. Conversely, we refer to the annotation of each
contribution with just one agent as minimal annotation.

In pursuit of the desire to minimise the risk associated with electing to use a coop-
erative plan an agent uses its knowledge of others in selecting agents to cooperate with.
In particular an agent can use knowledge based on its previous experience of others, in
the form of the trust ascribed to them, in evaluating potentially cooperative partners. In
general, each action is annotated with the n most trusted agents, where n = 1 in mini-
mal annotation and n > 1 in redundant annotation. Note that if n > 1 and the number
of agents having the required capabilities is less than n (but more than 1) the agent must
simply annotate the plan with all those agents, rather than trying to find others with the
required capabilities in order to annotate the plan with n agents. If no agents are known
to have the required capabilities then plan annotation fails. Annotating with the n most
trust agents is the most general case. In practise, however, an agent may be able to factor
in other information about the agents being considered. In particular, based on previous
interactions, an agent may be able to estimate the motivational value a particular goal
and action may afford the requestee. Using this information agents that are known to
be likely to decline can be ‘filtered’ out, and the plan annotated with the n most trusted
of the remaining agents. In this paper, however, we are not concerned with attempting
to model others’ internal motivations, rather we are concerned with utilising trust in the
general case of plan annotation.

With redundant annotation, even if some of the chosen agents decline to cooperate,
cooperation may still be successful. For example, suppose that for each action three
agents are asked for assistance. If all three agents accept then the initiator can simply
enter into cooperation with the most trusted agent (since it is perceived to involve the
least risk). However, if two agents decline, then cooperation can still go ahead with
the third agent. In general the initiator will enter into cooperation with the most trusted
combination of agents from the redundant annotation that agree to cooperate. Unfor-
tunately, this redundancy comes at a price. Firstly, because the cost of communication
and processing the responses will be increased over minimal annotation where a single
agent might be asked for each action, in the ideal case of that agent accepting. Secondly,
constantly requesting assistance but then not entering into cooperation with the agents
that accede (for example because a more trusted agent agrees) might lead to others re-
ducing their trust of the initiator. Furthermore, using minimal annotation when some



actions need to be reassigned, may still have reduced communication cost, since there
may be fewer agents in total to send requests to. Note, however, that at a lower level re-
dundant annotation offers more scope for optimisation, for example through the use of
targeted broadcast messages (which may be cheaper than communicating with several
agents individually). Thus, it is not necessarily true to say that redundant annotation,
where n agents are asked for each action, is equivalent in communication cost to min-
imal annotation where the nth agent agrees, since it may be cheaper to send a single
broadcast than to send n individual messages.

3.1 Choice of Annotation Strategy

At this point, it is useful to introduce the notion of a closely coupled and loosely coupled
view of agent systems. Where we are concerned with the behaviour and performance
of a multi-agent system as a whole rather than with a specific individual in that system,
as in when designing a complete multi-agent system to perform a particular task, we
say that we are taking a closely coupled view. Conversely, where we are concerned with
maximising the performance of a particular agent, without concern for the effect on the
system as a whole, as with an agent designed to compete against others, such as an
auction agent, this is a loosely coupled view.

Now, in the closely coupled view, redundant annotation may have negative effects
on the group’s efficiency since there will obviously be some overhead involved in agents
agreeing to cooperate. In particular, an agent may be unnecessarily constrained while
committed to cooperating in this way (though perhaps not actually being needed), which
may have prevented it from doing something else beneficial to itself or the group as a
whole. Thus, although redundant annotation increases the likelihood of getting agree-
ment to cooperate without reassigning actions, it may be counter-productive overall in
this respect.

In the loosely coupled view, when concerned with maximising individual perfor-
mance without consideration of others, redundant annotation may not be successful
over a period of time. If an agent is asked for assistance and agrees to provide it, only
to be turned down later, its trust of the requesting agent will tend to decrease, since the
requester did not honour the request and may have cost the provider time and caused
it to constrain its actions unnecessarily. While the effect may be negligible in the short
term, over an extended period the decreased trust may cause the provider to decline to
cooperate. Thus, if at a later point there is only one agent with the appropriate capabil-
ities, that agent may refuse to cooperate because it does not trust the requester; it has
been inconvenienced too many times.

Ultimately, the best strategy in terms of redundant or minimal annotation is deter-
mined by both the domain itself and the overall perspective (of maximising system or
individual performance). Overarching these issues, however, is the importance to the
initiator of its goal, since if a goal is important, redundant annotation may be justified
despite any concern for the performance of the overall system. It is, therefore, desirable
for an agent to be able to choose between these strategies dynamically, according to
the current situation, and we consider both possibilities in the remainder of this paper.
In order to deal with this, we introduce the notion of a redundancy threshold to deter-
mine whether to use redundant annotation. If the motivational value of a goal is greater



than this threshold then redundant annotation is used. However, since the redundant
approach should only be used sparingly this threshold must be sufficiently high.

3.2 Annotating with Trusted Agents

Although this considers whether agents are trusted, it does not consider whether they
are distrusted i.e. are trusted below some minimum. If the only agents that are believed
to have the required capabilities are distrusted, then it may be better for the assignment
of agents to actions to fail, rather than enter into cooperation with a group of distrusted
agents, since they are considered likely to renege on their commitments. Agents that
are distrusted are not annotated to a plan; thus if all the agents capable of performing
a particular action are distrusted then plan annotation fails. An agent is trusted if and
only if the trust ascribed to it is above a minimal threshold. The minimal trust threshold
is part of an agent’s disposition, but is also affected in an inversely proportional manner
by the importance of the current goal. Thus, if an agent’s goal is sufficiently important
to it, we can model the situation where it is better to have tried to achieve it, and failed,
than to have not tried at all. The trust of an agent, along with its capabilities is embod-
ied in a model of that agent, formalised as follows. Note that each agent has its own
models, giving it an individual representation of others’ capabilities and trustworthi-
ness. Such agent models are private to each agent, and there are no explicit distributed
or centralised models. However, ongoing work is investigating how a group of agents
can share information from their private models to establish a shared notion of repu-
tation. A key factor in considering such mechanisms is determining the circumstances
in which such information sharing is appropriate; clearly for reputation to be a useful
notion it must be established with respect to trusted agents.

AgentModel

agtId : AgentID

trust : R

capabilities : P Act
...

For ease of specification we assume an injective function which maps each agent
identifier onto the corresponding agent.

agent : AgentID � Agent

This formalisation allows us to express complex trust relationships, and to express
the web of trust that links agents together. Our approach is simplified, however, in that
we do not consider situational trust where the trust associated with a particular agent
varies according to the current situation [11]. For example, while an agent may trust
another to extract product information from a database, it might not trust it to determine
which product represents the best value for money. Conceptually, situational trust is
a more powerful mechanism than general trust, however the computational overhead
involved in identifying and maintaining trust values for specific tasks can be prohibitive,
and so we do not use it here.



3.3 Individual Action Annotation

Recall that a contribution is defined to be an action, along with the identifier of the
agent that is to perform it. Where we are concerned with minimal annotation this is
sufficient to represent the agent annotated to a contribution. However, when we con-
sider redundant annotation, this is insufficient, since we need to associate a set of agent
identifiers with a particular action. Therefore, before we can give the function for anno-
tating a contribution we must introduce the notion of an annotated contribution, where
an action is annotated with a set of agents. Clearly, the action must be in the capabilities
of each of the associated agents, according to the corresponding agent model.

AnntdContrb

act : Act

agts : PAgentID

act ∈
⋂
{a : agts • (agent a).capabilities}

The annotation of a contribution is given below in the schema AnntContrb, in
which max and t represent the number of agents with which to annotate a contribution
and the minimum trust threshold, respectively. This function specifies that an individual
contribution is annotated with the max most trusted agents, provided their associated
trust values are greater than t 8.

anntContrb : Contrb → P AgentModel → Z → R → AnntdContrb

∀ c : Contrb; ms : PAgentModel ; max : Z; t : R; anntc : AnntdContrb •
anntContrb c ms max t = anntc ⇒

c.act = anntc.act ∧
#anntc.agts ≤ max ∧
(∀ agt : anntc.agts • ∃m : ms • m.agtId = agt ∧

c.act ∈ m.capabilities ∧
m.trust > t)

The predicate part of this schema states that:

1. the action of the annotated contribution is the same as that of the contribution,
2. there are at most max number of agents in the annotated contribution,
3. for every agent in the annotated contribution there is an associated agent model in

the original set of agent models, ms , from which we are choosing,
4. according to this model all annotated agents have capabilities which contain the

action of the original contributions, and
5. the trust value of the agent (in the corresponding model) is above the minimum

trust threshold t , supplied as a function parameter.

8 As noted earlier, this is the most general case, since an agent may be able to utilise its knowl-
edge of others (such as estimates of the motivational value of a goal to them) in annotation.
However, we do not consider such situations in this paper, focusing instead on the base case of
simply considering trust.



3.4 Simultaneous Action Annotation

The approach described above is only applicable for plans that do not contain joint
or concurrent actions. The main consideration in annotating a plan containing joint
or concurrent actions is that an agent must not be required to execute two or more
contributions simultaneously, since we assume that agents can only perform one action
at a given time. In minimal annotation this is simply achieved by not annotating an agent
to more than one (strictly) simultaneous contribution. Annotated joint and concurrent
actions can be constructed from annotated contributions, formalised below.

AnntdJointAct

anntcontrbs : PAnntdContrb

#anntcontrbs ≥ 2

AnntdConcAct

singles : P AnntdContrb

joints : P AnntdJointAct

allcontrbs : P AnntdContrb

#singles + #joints ≥ 2
allcontrbs = singles ∪

⋃
{j : joints • j .anntcontrbs}

A minimal annotation has only one agent associated with an action and, necessarily,
all the agents must be distinct. Note that for a concurrent action the only constraint is
that the component individual and joint actions are minimally annotated, since although
the components of a concurrent action are typically executed simultaneously, this is not
a formal requirement.

MinimalAnntdJointAct

AnntdJointAct

∀ c : anntcontrbs • #c.agts = 1
∀ c1, c2 : anntcontrbs | c1 6= c2 • c1.agts 6= c2.agts

MinimalAnntdConcAct

AnntdConcAct

∀ c : singles • #c.agts = 1

Redundant annotation, however, is more complex, because an agent might be anno-
tated to several simultaneous contributions, and its assistance requested for all of them.

Since an agent can only perform one action at a time, and its intentions must be
consistent, an agent asked to assist for several simultaneous contributions can only
agree to one of them at most (according to its motivations and intentions), otherwise
its intentions would become inconsistent. Redundant annotation of an agent to several
simultaneous contributions allows that agent to choose which contribution it performs.



Contribution Annotation
contrb1 α1, α2

contrb2 α1, α2

valid

Contribution Annotation
contrb1 α1, α2

contrb2 α1, α2

contrb3 α1, α2

invalid

Fig. 1. Valid and invalid joint action annotations

The key requirement when annotating the same agent to more than one simultaneous
contribution is that agreement is necessary for at most one of them. For example, a
joint action comprising two contributions each annotated with the same two agents is a
valid annotation, because either agent can perform either contribution. Alternatively, a
joint action comprising three contributions, each annotated with the same two agents, is
not a valid annotation, since even if both agents agree to perform a contribution, there
will be a third contribution for which no agent has agreed. (This is illustrated in Fig-
ure 1.) Where we are concerned with annotating concurrent actions it is possible for
an agent to be annotated to more than one thread of execution since synchronisation is
only required at the beginning and end of a concurrent action block, and all contribu-
tions do not necessarily have to be performed simultaneously (although doing so may
compromise efficiency). Formally, a valid annotation is one where it is possible to find a
minimal interpretation by selecting appropriate agents, such that the minimal interpre-
tation has the same actions as the valid one, and the agent associated with each action
in the minimal one is also one of the many associated agents with the same action in
the redundant one9.

validjointannotation : PAnntdJointAct

∀ a : AnntdJointAct • validjointannotation a ⇔
(∃m : MinimalAnntdJointAct •
({c : m.anntcontrbs • c.act} = {c : a.anntcontrbs • c.act}) ∧
(∀ c1 : m.anntcontrbs • (∃ c2 : a.anntcontrbs •

c1.act = c2.act ∧ c1.agts ⊂ c2.agts)))

Joint Actions In formalising the annotation of joint actions we rely on three auxiliary
functions10. Firstly, the function allValidAnntdJAs takes a joint action, a set of agent
models and a minimal trust threshold, and returns all possible valid (minimal) annota-
tions of that joint action, such that an agent is associated with a contribution if it can
perform it and is trusted above the minimal trust threshold.

allValidAnntdJAs : JointAct → PAgentModel → R → PAnntdJointAct

9 Since there is no requirement for the agents in a concurrent action to be distinct we do not
need to consider whether a redundant annotation of concurrent action is valid.

10 For reasons of space we only give the function signatures here.



Secondly, orderedAnntdJAs takes a set of possible annotations of a joint action
and orders them according to the combined trust of the agents involved.

orderedAnntdJAs : PAnntdJointAct → seq AnntdJointAct

Finally, combineJA takes a sequence of minimal annotations and combines them
into a single redundant annotation, such that each contribution in the redundant annota-
tion is annotated with a set of agents corresponding to those agents that are associated
with the same contribution in one of the minimal annotations.

combineJA : seq AnntdJointAct → AnntdJointAct

We can now formally describe the annotation of a joint action in the function
anntJointAct which takes a joint action, ja, a set of agent models, ms , the maximum
number of agents to annotate a contribution with, max , and a minimum trust threshold,
t , and returns an annotated joint action. The predicate part of this definition determines
all possible valid annotations, orders them according to trust, and then takes the head of
the sequence corresponding to the first max annotations from the front of the ordered
sequence. Finally, the head of the sequence is combined into a single annotated joint
action.

anntJointAct : JointAct → PAgentModel → Z → R → AnntdJointAct

∀ ja : JointAct ; ms : PAgentModel ; max : Z; t : R •
anntJointAct ja ms max t = combineJA ({i : Z | i ≤ max • i}�

(orderedAnntdJAs (allValidAnntdJAs ja ms t)))

Concurrent Actions In a similar manner, we make use of three auxiliary functions
in formalising the annotation of concurrent actions. First, the function allAnntdCAs

takes a concurrent action, a set of agent models and a minimal trust threshold, and
returns all possible annotations of the concurrent action, which associate an agent with
a contribution if it can perform it and is trusted above the minimal trust threshold.

allAnntdCAs : ConcAct → PAgentModel → R → PAnntdConcAct

Again, we make use of a function, orderedAnntdCAs , which takes a set of possible
annotations and orders them according to the combined trust of the agents involved.

orderedAnntdCAs : PAnntdConcAct → seq AnntdConcAct

Finally, we have a function combineCA which takes a sequence of annotations and
combines them into a single redundant annotation.

combineCA : seq AnntdConcAct → AnntdConcAct

Thus in a similar manner to joint actions the annotation of a concurrent action
is given in the function anntConcAct , whose parameters are a set of agent models,
the maximum number of agents to annotate a contribution with, and a minimum trust
threshold.



anntConcAct : ConcAct → PAgentModel → Z → R → AnntdConcAct

∀ ca : ConcAct ; ms : P AgentModel ; max : Z; t : R •
anntConcAct ca ms max t = combineCA ({i : Z | i ≤ max}�

orderedAnntdCAs (allAnntdCAs ca ms t))

3.5 Annotated Plans

The notion of an annotated plan is formalised below in the schema AnntdPlan, in
which all contributions are annotated with a set of agents. Each contribution is annotated
with a set, rather than the individual agent that will execute it since, at this stage, the
annotation represents the agents to request assistance from. Thus, to allow for redundant
annotation, a contribution is associated with a set of agents rather than an individual.
However, before a final cooperative intention can be formed, an agent must select one
agent for each contribution and modify the annotated plan accordingly.

APlanStep ::= AIndividual〈〈AnntdContrb〉〉
| AJoint〈〈AnntdJointAct〉〉
| AConc〈〈AnntdConcAct〉〉
| ASubgoal〈〈Goal〉〉

AnntdPlan

achieves : Goal

precon : P Belief

body : seq APlanStep

The function anntStep takes a plan step and applies the appropriate annotation
function according to whether the step is an individual, joint or concurrent action (unless
the step is a goal in which case it is not changed).

anntStep : PlanStep → P AgentModel → Z → R → APlanStep

∀ ps : PlanStep; ms : P AgentModel ; max : Z; t : R; aps : APlanStep •
anntStep ps ms max t = aps ⇔

(∃ c : Contrb • Individual(c) = ps ∧
aps = AIndividual(anntContrb c ms max t)) ∨

(∃ ja : JointAct • Joint(ja) = ps ∧
aps = AJoint(anntJointAct ja ms max t)) ∨

(∃ ca : ConcAct • Conc(ca) = ps ∧
aps = AConc(anntConcAct ca ms max t)) ∨

(∃ g : Goal • Subgoal(g) = ps ∧ aps = ASubgoal(g))

We can now formalise the annotation of a plan in the function anntPlan, which
takes a plan and annotates each of its steps according to the supplied parameters, re-
turning the corresponding annotated plan.



anntPlan : Plan → P AgentModel → Z → R → AnntdPlan

∀ p : Plan; ms : P AgentModel ; max : Z; t : R; ap : AnntdPlan •
anntPlan p ms max t = ap ⇔

p.achieves = ap.achieves ∧ p.precon = ap.precon ∧
(∀n : Z | n ≤ #p.body • ap.body n =

anntStep (p.body n) ms n t)

4 Soliciting Commitment

After deciding which agents to try to cooperate with (by annotating its plan), an agent
must request assistance from those agents. There are several options for the level of
information to include in a request for assistance. In particular an agent attempting to
initiate cooperation can communicate either:

1. the whole plan, but without annotations,
2. just the actions it wants the potential participant to perform,
3. the goal for which assistance is required, along with the actions it wishes the po-

tential participant to perform,
4. the whole plan, annotated only with the actions it wishes the potential participant

to perform, or
5. the whole annotated plan.

These options provide varying degrees of information to the receiver, and support
different objectives represented by the loosely coupled and closely coupled views, as
we discuss below.

– The first alternative of communicating the whole plan without annotations, does
not in general give sufficient information for the participant to make a decision
about whether or not to cooperate, since it does not specify which actions it should
perform. Without knowing which actions are requested of it, an agent cannot de-
termine whether they will conflict with its intentions, or their motivational value.
There are a small number of exceptional circumstances in which an agent could
make a decision; for example, if all actions in the plan and the goal it achieves are
of motivational value, and the agent has no other intentions, then it can decide to co-
operate. In general, however, this is not the case, and more information is required.
Thus, we reject the first alternative.

– Remember that there must be some motivational justification for an agent choosing
to perform a particular action, and although the overall goal must be of motivational
value (or it would not have merited committing to), the particular actions required to
achieve it might not be. For example, achieving the goal of getting a paper accepted
for a conference is likely to have motivational value, but the actions involved in
proof-reading and correcting are less likely to be valuable in themselves. Thus,
while the end may have motivational value, the means may not if considered out
of the context of the overall goal. In practice an agent’s motivations are typically
mitigated by the achievement of goals, rather than the performance of particular
actions, although there are exceptions. Thus, an agent is unlikely to gain assistance



for its goal if its request contains only the actions that it wishes to be performed, and
not the goal that they achieve (as in the second alternative above). The exception
to this is if the action is valued by the potential participant and the goal is not. For
example, if you gain value from performing the action of driving, and I wish you
to drive a getaway car in a robbery for me, then the negative motivational effect
of achieving the goal would outweigh the benefit obtained from driving (assuming
you are a law-abiding citizen). Thus, in this situation if I believe that the goal is of
zero or negative motivational value to you, then I might make my request giving
only the action for which assistance is sought.

– The third alternative requests assistance from the potential participant for a par-
ticular set of contributions, and toward a particular goal. This allows an agent to
consider both the motivational value of the actions it is requested to perform, and
the value it would gain if the overall goal is achieved.

– The fourth alternative also includes the complete plan, without the annotations re-
lated to other agents. This additional information can influence the potential partici-
pant’s decision about whether to cooperate. If the participant is informed of the plan
then it knows what other actions will be performed in the achievement of the goal.
If it has a goal or intention that some action in the plan is not performed (by any
agent), then it may refuse, even if it would otherwise have accepted based solely on
the goal and actions it is to perform (in situations such as the getaway car example
above).

– The final alternative includes both the plan, and the complete set of annotations; if
the participant is informed of the other annotations in the plan, it is given informa-
tion about which agents are likely to be involved in the cooperative interaction. If it
has a goal or intention of not cooperating with another of the annotated agents then
it may also refuse, even if would accept were its choice based only on the goal and
actions it is to perform. Note also that communicating redundant annotations makes
recipients aware of the redundancy and the potential unnecessary constraints this
may impose upon them. Thus, if the fifth alternative is used, the requesting agent
may process the annotations contained in the request to remove redundant annota-
tion of the potential participant11.

In our framework, therefore, an agent has considerable flexibility and can choose
from the latter four options. The choice about which of these approaches to use is a
macro level consideration determined by the loosely or closely coupled approach being
taken. We therefore simply assume that an agent uses one of them, without specify-
ing which, leaving the agent’s designer to select which is the most appropriate for the
domain concerned.

Since cooperative intention establishment may involve many rounds of requesting,
some agents may have already been asked for assistance for a previous action, in which
case it is possible that an agent may have already accepted a request. Here, some form
of commitment to perform the (previously requested) action will have been formed,
and if an agent has agreed to perform some action to which it is no longer annotated

11 It could be argued that all redundant annotations should be removed in case an agent infers
that if another is redundantly annotated, it may be treated similarly.



in the latest plan annotation, it must be informed that its commitment is unnecessary.
Similarly, if the agent has already agreed to perform the same action that it is currently
annotated to then there is no need to ask it again

If the action is part of a joint or concurrent action which is currently annotated with
a different group of agents, and the agent was informed of the original annotation, its
decision to cooperate may be affected by the composition of the group (in particular
its trust of the group members), and the agent must be informed of the changes. Each
round of plan annotation involves forming a nominal commitment and requesting as-
sistance. Therefore, if assistance has already been requested for a previous annotation
of the plan, a nominal commitment will exist toward the agents whose assistance was
requested. A new nominal commitment does not need to be formed; instead, the anno-
tation of agents to whom the commitment is made are updated. Those agents that are
not in the current annotation are removed from the commitment, since there is no need
to inform them if assistance is no longer required, and any newly annotated agents are
added. If no requests have previously been made for (a prior annotation of) the plan,
then a new nominal commitment is formed to the agents contained in the current anno-
tation. Consider the example of an agent requesting assistance, and forming a nominal
commitment toward, three agents, α1, α2, and α3. Now, suppose α3 declines and the
agent re-annotates its plan with agents α1, α2, and α4, such that the former two are
given the same tasks and α4 assigned to the task for which α3 declined. The initiator
must update its nominal commitment to be toward this new set of agents, i.e. it must
modify its commitment to α3 to be toward α4.

5 Conclusion

The problem of cooperation is complex, and comprises many distinct sub-problems, not
least of which is the need to consider who to ask for assistance, and who to assist. Find-
ing a cooperative plan to achieve a goal requires not just the selection of the plan based
on the capabilities and trustworthiness of the agents that may perform the actions within
it, but also a dynamic re-evaluation of these agents at the point at which it is executed.
In this paper, we have described a procedure for selecting which agents to cooperate
with by annotating a plan according to the capabilities and trustworthiness of others,
and providing the capability for redundant annotation so that dynamic re-allocation of
actions can take place. Importantly, this raises questions about what information to in-
clude in a request for cooperation in order to maximise the likelihood of success. This
paper has described the model for these processes, with the associated implementation
that has been constructed to demonstrate its validity being described elsewhere [5].

There are three particular areas of limitation of the work described in this paper that
form the focus for ongoing work. The most significant area is the need to investigate
a mechanism for introducing Marsh’s notion of situational trust in a computationally
practical manner [11]. As noted above, situational trust is a powerful mechanism that
can give an agent valuable information in reasoning about others, but the cost of main-
taining models of trust at a task specific level is prohibitively high. The primary problem
in introducing situational trust is the need to determine the reason why a particular co-
operative interaction failed. For an agent to maintain models of the trustworthiness of



others at a task specific level it is necessary to know which task caused cooperation to
fail and why. In some cases, where a particular agent is only responsible for performing
a single action, this can be inferred from the plan. However, in general, determining
the failure point requires agents to provide information about the failure. Our aim is
to develop a means for an agent to have access to the kind of information provided by
situational trust models, without the high cost of maintenance typically associated with
them.

The second area of ongoing work is to use estimates of the expected quality of
others’ actions in considering requesting their assistance. Our current model simply
uses knowledge about a particular agent being capable of a particular action, without
considering the quality of execution that may result. In human interactions there is often
a tradeoff between trust and the expected quality of the result. For example, one might
ask assistance of a less trusted (in terms of reliability, or speed of response etc.) but
highly knowledgeable expert rather than a highly trusted trainee. Similarly, when faced
with a choice between two equally trusted agents the rational choice is to choose the
one expected to result in the best quality outcome. Although related to situational trust,
utilising the notion of quality of capabilities provides an additional metric in evaluating
others. Indeed, this can be thought of as decomposing trust into various facets: trusting
an agent to do an action, trusting its competence, and trusting its timeliness of action.
Our ongoing work includes an investigation into the various dimensions along which
trust can be considered, with the aim of determining an appropriate set for enabling
cooperation in a computationally viable manner.

The final area of current work is concerned with enabling agents to share informa-
tion about the degree to which others are trusted. Where two or more strongly trusted
agents cooperate they may share information about the trust they ascribe to others. Such
information sharing allows agents to update their trust models in the light of others’ ex-
periences. Assuming agents are honest and have broadly the same aims (meaning that
they enter into the same kind of cooperative interactions) then this approach enables
agents to reduce the time take to obtain more accurate trust values of others. This is
particularly beneficial in the case where an agent obtains information about another
with whom it is yet to cooperate (recall that prior to interaction agents simply ascribe
a default value to others). We noted earlier that trust can be seen as an individual’s
view of another’s reputation. Similarly, the sharing of trust values in this manner can
be thought of as a group of agents considering another’s reputation in the view of the
group. Clearly, many more complex and robust approaches to modelling reputation are
possible, however it is our view that sharing trust in this manner can provide a compu-
tationally cheap mechanism for soliciting the opinions of others’ trustworthiness, from
trusted agents.

References

[1] M. E. Bratman. Shared cooperative activity. Philosophical Review, 101(2):327–341, Apr.
1992.

[2] M. E. Bratman, D. Israel, and M. Pollack. Plans and resource-bounded practical reasoning.
Computational Intelligence, 4:349–355, 1988.



[3] C. Castelfranchi and R. Falcone. Principles of trust for MAS: Cognitive anatomy, social im-
portance, and quantification. In Proceedings of the Third International Conference on Multi-
Agent Systems, pages 72–79, Paris, France, 1998.

[4] M. d’Inverno and M. Luck. Understanding Agent Systems. Springer-Verlag, 2001.
[5] N. Griffiths. Motivated Cooperation in Autonomous Agents. PhD thesis, University of War-

wick, 2000.
[6] N. Griffiths and M. Luck. Cooperative plan selection through trust. In F. J. Garijo and M. Bo-

man, editors, Multi-Agent System Engineering: Proceedings of the Ninth European Workshop
on Modelling Autonomous Agents in a Multi-Agent World. Springer, 1999.

[7] B. Grosz and S. Kraus. The evolution of SharedPlans. In A. Rao and M. Wooldridge,
editors, Foundations and Theories of Rational Agencies, pages 227–262. Kluwer Academic
Publishers, 1999.

[8] D. Kinny, M. Ljungberg, A. Rao, E. Sonenberg, G. Tidhar, and E. Werner. Planned team
activity. In Proceedings of the Forth European Workshop on Modelling Autonomous Agents
in a Multi-Agent World, pages 227–256, 1992.

[9] H. J. Levesque, P. R. Cohen, and J. H. T. Nunes. On acting together. In Proceedings of the
Eighth National Conference on Artificial Intelligence, pages 94–99, Boston, MA, 1990.

[10] M. Luck and M. d’Inverno. A formal framework for agency and autonomy. In Proceed-
ings of the First International Conference on Multi-Agent Systems, pages 254–260. AAAI
Press/The MIT Press, 1995.

[11] S. Marsh. Formalising Trust as a Computational Concept. PhD thesis, University of Stir-
ling, 1994.

[12] S. Marsh. Optimism and pessimism in trust. In Proceedings of the Ibero-American Confer-
ence on Artificial Intelligence (IBERAMIA ’94), 1994.

[13] J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, Hemel Hempstead, 2nd
edition, 1992.

[14] M. Wooldridge and N. R. Jennings. Formalizing the cooperative problem solving process.
In Proceedings of the Thirteenth International Workshop on Distributed Artificial Intelligence,
pages 403–417, Lake Quinhalt, WA, 1994.

[15] M. Wooldridge and N. R. Jennings. Cooperative problem-solving. Journal of Logic and
Computation, 9(4):563–592, 1999.


