
CORESOFT: A FRAMEWORK FOR STUDENT DATA
Mike Joy

Department of Computer Science
University of Warwick

Coventry CV4 7AL, UK
M.S.Joy@warwick.ac.uk

Jon Harley
IT Services

University of Warwick
Coventry CV4 7AL, UK

J.W.Harley@warwick.ac.uk

Nathan Griffiths
Department of Computer Science

University of Warwick
Coventry CV4 7AL, UK

N.E.Griffiths@warwick.ac.uk

Cathy Wattebot
Mathematics Institute
University of Warwick

Coventry CV4 7AL, UK
C.Wattebot@warwick.ac.uk

Mary Stott
IT Services

University of Warwick
Coventry CV4 7AL, UK

M.B.Stott@warwick.ac.uk

Derek Holt
Mathematics Institute
University of Warwick

Coventry CV4 7AL, UK
D.F.Holt@warwick.ac.uk

ABSTRACT
In this paper, we describe the Coresoft database,
which provides an open framework for the provision
of student data for software developed for teaching
support. Coresoft arose in response to various
University departments' practical need for student
data in order to enhance their teaching methods by
using computer-aided learning and assessment,
along with providing web-based resources. The
database contains data provided by the University's
central administration, and data provided locally by
academic and service departments, and addresses
the problems inherent in combining data from such
disparate sources. We finally describe the
applications that are now being developed using
CoreSoft to meet specific teaching needs.

Keywords
database schema, student records, coresoft, sql.

1. INTRODUCTION
University departments which host complex
computing activities (e.g. general research and
publishing, computational research, computer-
based teaching, assessment and management of
departmental resources) will have a variety of
hardware and software standards into which
database software must be integrated. To cater for
a wide range of computing platforms, software
vehicles such as Java [2] and standard Web
languages such as Perl [13] and PHP [3] are
preferred, and have facilitated the authoring of
software tools used in the management of university

courses. Many, if not most, of these tools will
process data about students, courses and modules,
and there is a requirement for accurate and timely
data to be available. However, provision of student
data has historically been managed by central
university administration who have, for very good
security and practical considerations, been reluctant
to facilitate its distribution. This can create
significant problems for individual departments in
obtaining such data, and in ensuring that it is kept
consistent with the centrally administered data
(especially for departments lacking internal
database skills). Although the work described in this
paper addresses such problems at Warwick, the
work is equally applicable to other universities
facing similar problems, and our aim has been to
ensure the work is as transferable as possible.
This paper documents an initiative at Warwick, the
Coresoft database, which aims to make student
data available to academics and department
administrators in a simple and consistent format
suitable for processing by locally written software
packages.

2. DEPARTMENT SOFTWARE
Many departments at Warwick have software written
in, and for the use of members of, the department.
The types of task for which they are used include:
• processing of student marks;
• management of student projects;
• management of seminar groups;
• examination grids;
• support of CAL software;
• support for admissions tutors;
• access to module registration data;
• mailing lists (both email and post);
• miscellaneous report generation;
• management of seminar groups.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific
permission.
3nd Annual Conference on the Teaching of Computing,
Loughborough University
© 2002 LTSN Centre for Information and Computer Sciences

2.1 Software Packages
At this point, it is useful to note that in common with
other institutions Warwick has a central IT Services
facility controlling IT resources across campus,
including the network and communications
infrastructure, management information systems,
student records, and general software provision for
both staff and students.
Additionally, individual departments (particularly the
science departments) provide their own specialised
software as appropriate.
We can identify a number of department packages
that use student data:
• the Boss Online Submission System (Computer

Science) [8];
• the ATAS Automated Assessment System

(Physics);
• the Azulis CAL software (Computer Science and

Physics) [6];
• student web portal (Law);
• general course management software

(Mathematics, Engineering, Physics);
• membership and facilities management

software (Sports Centre);
• course enrollment software (Academic Office).
Each of these has two data components:
• data provided by the central administration

through the IT Services (such as names, ID
numbers, addresses, and course and module
registrations);

• data added locally (such as student marks and
seminar group allocations).

These twin components give rise to two main
problems. Firstly, some mechanism for obtaining
and maintaining current data from the central
administration must be established. Secondly, a
schema is required to incorporate local
departmental data into that provided by the central
administration, in order to carry out local tasks, such
as those listed above.

2.2 Case Study
Whilst different departments have their own
preferences for the software they have adopted, the
experience of the Mathematics Institute is not
unusual, and illustrates the variety of technologies
which have been employed.
The old Mathematics database consists of an
evolved FileMaker Pro [4] database of more than
ten years' standing, hosted on MacOS [7], and an
Ingres [11] database on Solaris [9], linked together
via ODBC [12]. In the near future it is envisaged

creating Web interfaces to the Ingres database
written in PHP or Java.
FileMaker is well adapted for design and use of
forms, but is less flexible and less efficient than
Ingres in calculation or adaptation to changing
external input data from the centre. Both databases
are used for look-up and reporting, with the Ingres
database preferred for web interfacing and some
report programming.

3. CENTRAL PROVISION OF DATA
Student data is held by the central administration on
a proprietary student records system (SRS), and is
accessed by authorised staff in the various service
departments of the University, and also by some
departmental administrators and secretaries.
Interaction with the data is via a proprietary
"tabbing" interface, which is available only on a
subset of the Windows platforms. Direct access to
the database tables is only authorised to a small
number of IT Services personnel.

3.1 Database Structure
The tables which form the underlying database are
not designed to be read by untrained persons, and
have (for example) mnemonic names for both the
tables and their fields which are difficult to
remember. For example, the student table, called
SRS_STU, contains fields STU_HAEM and
STU_CAD1 representing "home email address" and
"correspondence address line 1" respectively.
Clearly, even for a database literate person the use
of such table names makes direct manipulation of
the database through SQL unnecessarily difficult.
Moreover, it complicates the process of developing
third party software for departmental needs, should
that software need to interact with the database
(through standard protocols such as ODBC or
JDBC).
Any database package implementation may involve
"misuse" (that is, populating fields with data other
than that intended), and the Warwick SRS is no
exception. The extent to which this is practised
varies, and only the IT Services' staff involved with
the SRS would be aware of its precise extent.
Export of data from the underlying database is thus
not a simple matter of copying the tables, since
some processing is required for it to be
comprehensible by an untrained person. Moreover,
most of the data held is not relevant for department
use, being either confidential (such as financial
data) or used for statistical purposes (such as
statistical returns to HEFCE), and it is appropriate to
filter out such data.

3.2 Export of Data
Data from the SRS can be exported to other
applications in one of three ways:
• through the menus provided by the SRS user

interface;
• by direct online access to the underlying

relational database;
• by offline access to the underlying database.
The first of these allows data to be exported in a
variety of formats, but cannot be automated to be
provided on a regular basis. Moreover, since
interaction with the database is through a fixed
interface, the type of data that can be extracted is
largely predetermined and there is no facility for the
execution of arbitrary queries, even where such
queries can be guaranteed non-destructive (for
example complex SELECT FROM x JOIN y
statements). The second would not be permitted for
security reasons. The third requires skilled
intervention by a member of IT Services' staff, but
can be automated.
Data is currently provided to the client departments
by the export of data in two ways (both examples of
offline access to the underlying database):
• CSV format in a text file, where this is

straightforward (such as the Sports Centre,
which requires little more than ID-Name pairs
for University members, together with their
status);

• through the use of Perl scripts which nightly
populate a client application's database from the
central database (this is the method used by the
Computer Science Department).

Neither of these is entirely satisfactory, since any
change in the data needed requires programming
by an IT Services' member of staff. The download of
data is further complicated by the differing
requirements of the departments which multiply the
number of downloads which must be coded by IT
staff.
Despite these differing requirements, however, the
type of data a particular department requires tends
to be broadly the same as the others. Part of the
objective of the Coresoft Project is to determine an
appropriate "superset" of requirements that meets
departments' individual needs while allowing IT staff
to code a single set of export scripts.

3.3 Departmental Variations
Some persons active under the Coresoft scheme
are not documented by the Central Administration,
since they are not members of the University, but
exist only in departmental data banks as Associates
and Visitors. Their details need to be available when

they act as tutors, assessors or postgraduate
students for instance. These members may be
peripatetic, provisional and temporary tutors or
visiting students or people at a visiting stage of a
likely appointment.
Additionally, University credit schemes can be
complicated. For example, although each module
has a "normal" credit value, this may vary
depending on:
• the year of study in which it is offered (a module

might perhaps be available to both 2nd and 3rd
year undergraduates);

• the course which it is delivered as a component
of;

• the year in which it is delivered (the credit value
may be changed either temporarily or
permanently);

• the "mode of assessment" of the student
choosing the option (for example, differing
proportions of credit coming from examination,
coursework and essay or project).

4. CHECKING COURSE REGULATIONS
This can be another very complex area in
departmental administration. The aim of giving
students freedom to choose subjects to suit their
abilities and objectives without compromising the
standard of degrees awarded can result in complex
regulations.
It is necessary to check both for accidental choice of
invalid module combinations and also for possible
mischievous registrations (for instance, for the same
module in successive years of study). Many of these
checks are performed by auxiliary software. The
exact details of these local conventions may not be
held centrally on the SRS database.

5. THE CORESOFT PROJECT
The aim of the Coresoft Project is to provide a
database, accessible to academics and to
departmental administrative staff, which would
• be partly populated by IT Services (data owned

by IT Services, managed centrally and provided
as "read-only");

• contain all data needed by academic
departments, both currently and in the
foreseeable future;

• be structured, and use naming conventions,
which would cause it to be easy to use by
database-literate (but otherwise untrained) staff.

This would have the following advantages:
• only one single database scheme would have to

be populated automatically by IT Services;

• the software written by the different departments
would in principle be portable to other
departments, reducing duplicated effort in
writing and maintaining the software.

It was also desirable that the structure of Coresoft
should be portable to other institutions, in order to
avoid duplication of effort.

5.1 Migrating to Coresoft
In order for the departmental packages to migrate to
Coresoft the main changes are in the structure of
the underlying database and in data entry
mechanisms. Reporting scripts and web interfaces
also have to be ported.
In the transition to the interdepartmental Coresoft
database, reproduction of the functionality of data
entry, reporting, data look-up, assessment
calculations and checking of course regulation has
to be very accurate, or else the whole administrative
process can be put at risk. Current systems have
developed in an evolutionary way, and perform
exactly the tasks required, even though the
mechanisms can be improved and updated.

5.2 Design Decisions
Table names and field names have been chosen to
match easy understanding of their meanings. For
example, table "member" contains information about
University members, with fields such as "id",
"first_forename", "family_name" and "email_alias".
Although database normalisation was desirable, this
has only been achieved to a limited extent; tables
with a high normal form are often not easy to use.
For example, there are instances of fields that
superficially seem calculable from other fields, but in
practice are not. A good example is that of a
person's initials - what are the initials of "Henry 5
d'Agin van de Court"? There is a trade-off between
including initials in the table representing a person
(and losing normalisation), and creating a separate
table populated only by "unusual" initials.
The concepts embodied in the data are generalised
sufficiently to be used in another institution. This is a
potential problem, and much discussion of the
actual meaning of concepts (such as "module",
"course" and "enrollment", for instance) took place.
The database would be in two conceptually
separate sections:
• Section A: read-only data provided centrally
• Section B: data provided in the departments

5.3 Implementation Decisions
The main deliverable of this project is a database
specification, which should be implementable by
any standard SQL database (or even a non-
standard database such as mSQL [14]). However,

most of the participants are using the MySQL [14]
database as the engine of choice. Although MySQL
is not a full implementation of the ANSI SQL
standard [1], it follows the standard more accurately
than many, and is sufficient for our purposes; it is
fast, and is also free. We have therefore provided
scripts for constructing the tables which have been
tested using MySQL. By keeping the database
structure simple the tables should be exportable to
other databases with minimal change (and indeed
have been tested with both PostGres and
SQLServer).
We have also provided a Java [2] package
containing "wrapper" classes and a JDBC [10]
interface to a MySQL database, and we expect in
due course to provide APIs in a variety of other
languages.

6. ISSUES
As we were putting together the Coresoft
specification, a number of interesting problems
needed to be solved.

6.1 Nomenclature
Prior to this exercise, the department software had a
fairly simple understanding of the concepts
underpinning their data. For example, the following
were regarded as fundamental:
• Course — a named degree/diploma programme

of study leading to an award.
• Module — a named unit of study within a

course.
However, the SRS database used a variety of terms
with different meanings. Those that related to our
initial understanding of "course" included:
• Route — a named programme of study (same

as course above);
• Course — an administratively useful grouping of

routes (e.g. all 3 year undergraduate Biology
routes leading to the degree of BSc);

• Programme — a programme of study
characterised by the name of the award (e.g.
BSc, PhD, MBA).

6.2 Data Types
In order for the database specification to be
portable, it is necessary for the data types to be
generic. This has some unexpected practical
consequences.
A String data type in SQL can either be of fixed
length (CHAR), or of variable length (VARCHAR). The
advantage of the former is storage efficiency if the
relevant field size is fixed, whereas if the field size
may vary then VARCHAR is necessary. Moreover,
fixed length strings enable a greater degree of

automatic type checking both by the database and
by the client software.
Whereas fields, such as ID-number, at Warwick are
of fixed length (7 digits), this constraint may be
different for other institutions. We were therefore
minded to make all string fields of variable length in
order to satisfy our portability criterion. However,
some SQL databases restrict the number of variable
length fields that a single database can contain.
The decision was therefore taken to use fixed length
strings where this was clearly appropriate at
Warwick, on the basis that this would maximise
portability within our institution, and export of
Coresoft to another institution would require minimal
editing.
At present there is no standardisation even at
institution level on lengths of names or lines of
addresses. The provision allowed in Coresoft is
generous and the task of adapting to possibly
limited space in reports or forms is left to the
interface software. We chose to follow the de facto
standards for such data and an address is stored as
four fields for the first lines of the address, plus one
for postal/ZIP code and one for country. Whilst not a
particularly elegant solution, it simplifies the import
of data.
There needs to be room for extension of the
Coresoft scheme for individual departments with
special requirements, and we expect this to emerge
as extra tables in due course. We do not envisage
significant changes to the current tables.
The inputs to Coresoft do not currently allow for
correct rendering of non-ASCII characters in data
(this is a feature of the SRS database and for the
time being will remain a feature of Coresoft).

6.3 Data Protection
The University is registered under the Data
Protection Act 1998 [5], and the data held by
Coresoft is covered by that registration.
Under the Act, students have a right of access to
their personal data held in Coresoft. This is an issue
which the participants are aware of.

7. ROLLOUT
The Coresoft database is in use. It already provides
the data for the BOSS online submission system
and for the Law School's student web portal, and
will shortly be deployed for the Academic Office's
software for managing course enrollment. Other
packages, such as the ATAS and Azulis CAL
package also use Coresoft through the APIs written
for BOSS. The Mathematics Institute is actively
evaluating the incorporation of Coresoft into its own
packages.

Working with "real" data is always a hazardous
exercise, and nightly downloads of data, and their
porting to the Coresoft schema have provided us
with a most interesting exercise, the result of which
is that this task is now principally debugged.
However, issues such as the inclusion and
management of incorrect and inconsistent data are
ongoing. We expect to be able to offer reliable
uploads of data to participating departments from
autumn 2002.

8. CONCLUSION
The participants at Warwick have agreed a
preliminary specification of Coresoft; this can be
viewed, together with a SQL creation script (tested
with MySQL), at:
www.dcs.warwick.ac.uk/coresoft

The Coresoft project is essentially a pragmatic
response to the database requirements of educators
in one University, and we believe it has fulfilled its
purpose, in that it has enabled University
departments to develop computer-aided and web-
based learning tools to enhance teaching.
Finally, the Coresoft project aimed to be applicable
to other institutions, and authors would be very
interested to know whether the model adopted is
indeed portable to other institutions.

9. ACKNOWLEDGEMENTS
Other staff involved in this project have included Lee
Earl, David Epstein, John Rawnsley and Jim
Robinson.

10. REFERENCES
[1] ANSI, Database Language SQL, ANSI X3.135-

1992 (1992).
[2] Arnold K. and Gosling J., The Java(tm)

Programming Language (Second Edition),
Addison-Wesley, Reading, MA (1998).
http://java.sun.com/

[3] Choi W., Kent A. Lea C., Prasad G. and Ullman
C., Beginning PHP4, Wrox Press, Birmingham
(2000). http://www.php.net/

[4] Hester N., FileMaker for Windows and
Macintosh (2nd Edition), Peachpit Press (2000).

[5] HMSO, Data Protection Act 1998, Stationary
Office, London (1998).

[6] Joy M.S. and Luck M., Effective Electronic
Marking for On-line Assessment, ACM SIGCSE
30(3), 134-138 (1998)

[7] Langer M., Mac OS 9, Peachpit Press (1999).
[8] Luck M. and Joy M.S., A Secure On-line

Submission System, Software — Practice and
Experience 29(8), 721-740 (1999).

[9] Mulligan J.P., Solaris 8, New Riders (2001).
http://www.sun.com/

[10] Reese G., Database Programming with JDBC
and Java, O'Reilly, (1997)

[11] Rothwell D., INGRES and Relational
Databases, McGraw-Hill (1991).

[12] Sanders R., Hands on ODBC 3.5 Developer's
Guide, McGraw-Hill (1998).

[13] Wall L., Christiansen T. and Orwant J.,
Programming Perl (3rd Edition), O'Reilly (2000).
http://www.perl.com/

[14] Yarger R.J., Reese G. and King T., MySQL and
mSQL, O'Reilly, (1999). http://www.mysql.com/

