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Abstract. In large populations of autonomous individuals, the propa-
gation of ideas, strategies or infections is determined by the composite
effect of interactions between individuals. The propagation of concepts
in a population is a form of influence spread and can be modelled as
a cascade from a set of initial individuals through the population. Un-
derstanding influence spread and information cascades has many appli-
cations, from informing epidemic control and viral marketing strategies
to understanding the emergence of conventions in multi-agent systems.
Existing work on influence spread has mainly considered single concepts,
or small numbers of blocking (exclusive) concepts. In this paper we focus
on non-blocking cascades, and propose a new model for characterising
concept interaction in an independent cascade. Furthermore, we propose
two heuristics, Concept Aware Single Discount and Expected Infected,
for identifying the individuals that will maximise the spread of a partic-
ular concept, and show that in the non-blocking multi-concept setting
our heuristics out-perform existing methods.

1 Introduction

When autonomous individuals interact, as part of a large population, the propa-
gation of ideas, strategies or infections throughout the population is determined
by the composite effect of interactions between individuals. Populations can be
viewed as complex systems, with net effects that are hard to predict or influence
despite being due to individual behaviour. The propagation of concepts, strate-
gies or infections is a form of influence spread and can be modelled as a cascade
from a set of initial individuals through the population.

Understanding how to limit or increase the spread of cascades through a
population provides valuable insight into how to influence populations towards
a particular state. Such insight has many applications, from informing epidemic
control and viral marketing strategies to understanding the emergence of conven-
tions in multi-agent systems. For example, characterising the spread of disease
aids in identifying groups of individuals who are at risk, enabling containment
efforts to be focused intelligently to help avoid wider spread. Understanding how
ideas and their adoption propagates can also be used to inform viral marketing
strategies, or calculate the network value of individuals in a population. In these
cases the key is being able to identify the set of individuals who can help to



spread an idea or product, or who can restrict future spreading (e.g. through
their vaccination).

Several models have been developed to simulate how influence spreads in a
network, and much attention has been focused on the influence maximisation
problem: finding a set of k nodes (individuals) whose activation will maximise
the spread of a particular concept. This problem has been shown to be NP-
hard, which has lead to the development of heuristics to approximate optimal
solutions. Many cascade models assume that cascades are blocking, in that a node
that has been infected/activated by an idea or concept cannot be activated by
any others. However, in many application domains individuals can hold multiple
opinions, adopt multiple strategies, or have multiple infections that interact with
each other and can further influence other individuals. The concepts held by
an individual will affect those that they are likely to adopt later, and those
that they are likely to propagate to others. This informs the idea of cascades
or concepts interacting, however, most existing work on influence spread has
considered single concepts, or small numbers of blocking (exclusive) concepts.

There has been relatively little consideration of cascades with multiple con-
cepts, and such work has made simplifying assumptions. For example in the
domain of epidemic spread Sanz et al. developed a model that allows two con-
cepts to interact. The concepts active on a node affect its ability to activate
other nodes, and so the spread of a concept is affected by the other concepts
within the network. Concept interaction could be applied in other cascade mod-
els, requiring re-evaluation of existing influence maximisation heuristics. There
is also the opportunity to develop heuristics that leverage concept interaction to
improve concept spread.

In this paper we focus on non-blocking cascades, and propose a new model
for characterising concept interaction in an independent cascade, specifically we
propose a modification to the independent cascade model of influence spread that
incorporates interacting cascades for an arbitrary number of concepts. Further-
more, we propose two heuristics, Concept Aware Single Discount and Expected
Infected, for identifying individuals that will maximise the spread of a given
concept, and show that in the non-blocking multi-concept setting our heuristics
out-perform existing methods.

2 Related Work

In many application areas it would be valuable to leverage influential nodes
within a population to maximise the spread of a concept throughout the popu-
lation. This is referred to as the influence maximisation problem where we aim
to pick a (minimal) set of nodes that would maximise the spread of informa-
tion through the population. Several influence propagation models have been
proposed in social network analysis literature [8, 14]. The target set of nodes is
activated at the start of influence propagation, and in subsequent cycles, neigh-
bours of active nodes are activated according some model of influence propaga-



tion. Such models can be classified into two types: those that use node-specific
thresholds and those based on interacting particle systems [14].

In the linear threshold model, discussed by Kempe et al. [14], a node is in-
fluenced by each of its neighbours to varying degrees, as defined by the edge
weights. Each node v has a threshold θv. When the sum of the weights of the ac-
tive neighbours of v exceeds θv, v becomes active. Methods have been proposed
for maximising influence spread within this model [7], but for now our focus is
the independent cascade model.

In the independent cascade model (ICM) [10], when a node v becomes ac-
tive it gets one chance to activate each of its inactive neighbours w, with some
probability pvw. Kempe et al. showed that a hill-climbing approach can be guar-
anteed to find a set of target nodes that has a performance slightly better than
63% of the optimal set [14]. One of the key issues with the greedy approach is
the need to estimate target set quality. Numerous heuristics have been proposed
to improve the speed of estimating the influence spread of a node [1, 6], but it
remains problematic in large networks. Building on the greedy approach, Chen
et al. proposed a degree discount heuristic that accounts for the existing activa-
tions in the network and attempts to reduce the impact of ‘double counting’ [6].
The degree discount heuristic has been shown to have similar effectiveness to
the greedy approaches, while remaining computationally tractable.

The problem of influence maximisation has been studied in many contexts.
For example in viral marketing, knowing the influential individuals in a network
facilitates designing effective marketing strategies. Early studies into influence
spread and maximisation focused on the network worth of users [8, 18]. Influ-
ence cascades have also been studied in relation to epidemic spread [16, 15, 20].
The two most commonly applied models when characterising epidemics are the
Susceptible Infected Susceptible (SIS) and Susceptible Infected Recovered (SIR)
models [9, 5]. These both take a probabilistic approach to the independent cas-
cade model, allowing nodes to become deactivated.

Many of these studies have used single cascade models. In many real-world
environments, there may be many concepts vying for the attention of an indi-
vidual. As such, the effect of multiple influence cascades within a single network
has been the focus of more recent work on influence spread [11, 12], with consid-
eration of competing cascades that model competing products [2], epidemics [13]
or general influence spread [3]. Existing work in this area, has typically assumed
that the cascades are blocking, meaning that nodes activated/infected by one
cascade cannot be activated/infected by another. Additionally, most existing
work assumes only two concepts, while in reality there could be many interact-
ing concepts. It is also often assumed that once activated a node remains active,
though there are exceptions to this [17].

Sanz et al. developed a multi-layer network model in which concepts may only
spread on a given layer but nodes can be activated by more than one concept
at a time. Other work on the spread of epidemics also limits their travel to a
single layer [19]. Existing research typically either assumes blocking concepts
on a network layer, or non-blocking concepts that are each limited to a single



layer [12]. There has been little consideration of non-blocking concepts in a single
layered network. Much of the work in epidemics focuses on the SIS model and
the survival thresholds of viruses, with little exploration of multiple concepts
interacting within other models [4].

3 Concept Interaction

To model concept interaction, we extend the work of Sanz et al. for two interact-
ing diseases [20]. To represent these interactions, two cases must be considered.
When attempting to infect a susceptible receiver, the infectiousness will change
if the receiver is infected with the other disease. Conversely, the infectiousness
of a disease is affected by the state of the infector spreading it. If the infector
has both diseases, their infectiousness will change. These attributes form the
basis of this model, which was originally intended for use with SIS and SIR cas-
cade models, with modification, we can extend the formulation for use with the
independent cascade model.

We must allow for both positive and negative relationships when concepts can
interact. If a concept c affects c′ in a positive way, we call it boosting, while if c is
inhibiting c′ then the effect is negative. How concepts spread in a given cascade
model will change the exact effect of boosting and inhibiting. In general, boosting
a concept makes it more likely to activate on a node and inhibiting makes it less
likely. These relationships can be asymmetric: a concept could boost another
concept that inhibits it and vice versa.

The relationship between two concepts, c and c′ is defined by two concept
interaction factor (CIF) functions, which describe the effect on the interaction of
the infector and receiver respectively. Concepts active on an infector will affect
each other’s spread from that node. We refer to this as the internal effect of the
infector on a given concept. The function CIFint(c, c

′) represents how concept
c′ affects c when an infector with both active attempts to spread c. For the
receiver, we consider the concepts it has active and the external concept that
attempts activation. The concepts already active on a node affect how willing
it is to adopt new concepts. The function CIFext(c, c

′) represents how concept
c′ affects the attempt by an infector to activate concept c on a receiver with c′

active. These functions are both bounded in the range of [-1,1]. If c′ inhibits c,
these functions will return a value below 0, while above 0 indicates a boosting
relationship. If c′ does not affect c the functions will return 0.

Since real-world environments may have more than 2 concepts we must eval-
uate the effect on the currently spreading concept of the infector’s internal en-
vironment and the receiver’s external environment. Two concept interaction en-
vironment functions characterise these effects, CIEint(Cn, c) and CIEext(Cn, c)
describe the internal and external environment respectively for a spreading con-
cept c and set of concepts active on node n, Cn.

The notion of concept interaction is independent of the cascade model con-
sidered. In this paper we focus on the independent cascade model [14], as it has
been the focus for much influence maximisation research, and extend it to ac-



count for multiple interacting concepts. In the standard independent cascade, an
infector has chance p of making a neighbour active. With multiple concepts this
probability is affected by the CIEint function of the infector and the CIEext

function of the receiver. When node n attempts to activate concept c on node
m, the probability of success in the interactive independent cascade becomes:

psc = pc ∗ (1 + CIEint(Cn, c) + CIEext(Cm, c))

Where pc is the baseline probability for that concept. CIEint and CIEext are
bounded to prevent unbalanced boosting compared to inhibiting. Boosting and
inhibiting should have similar impact, rather than one offering more significant
change. Therefore, we define the concept interaction environment functions as:

CIEint(Cn, c) = max(−1/2,min(1/2,
∑

c′∈Cn

CIFint(c, c
′)))

CIEext(Cn, c) = max(−1/2,min(1/2,
∑

c′∈Cn

CIFext(c, c
′)))

This means that psc can range between [0, pc ∗2]. Since we must consider each
node’s environment, this value will be calculated for each interaction.

Cascades proceed in rounds, with an initial set of active nodes for each con-
cept. Nodes can be in more than one initial set. Each node in the initial set for
a concept will attempt to active that concept on each neighbour that is inactive
for that concept. Each successfully activated neighbour will attempt to activate
its neighbours in the next round. Nodes make one attempt on each neighbour
for each concept they have active, and when no concept activates new nodes the
cascade ends. For simplicity in this paper, we adopt the assumption that nodes
will never deactivate a concept.

4 Heuristics for Node Selection

Several heuristics have been proposed for influence maximisation, as discussed in
Section 2. In this section we introduce the main existing heuristics and propose
two new methods: Concept Aware Single Discount and Expected Infected, which
aim to take advantage of concept interaction.

Degree based selection. Degree based selection is the simplest heuristic, and has
the advantage of only using attributes of the network, meaning that it is cheap
to compute. With the degree heuristic we simply select the k nodes with the
highest degree, an approach that has previously been shown to be effective [14].

Single Discount. When a node is added to the selection set, each of its neighbours
has a chance to be activated in the first subsequent round of a cascade. However,
if it is known that a node will become activated, adding it to the selection set
provides no additional value, since that node will be activated regardless of



whether it is added to the selection set. This is the motivation behind the single
discount heuristic. When a node n is placed into the selection set, the degree of all
neighbouring nodes is lowered by 1 to represent this reduced network value (i.e.
the number of potential activations they can create has reduced since n is already
known to be active). Selection using the single discount heuristic proceeds in
rounds, selecting the highest degree node and discounting its neighbours until
the desired selection size is reached [6].

Concept Aware Single Discount Heuristic. Introducing concept interaction into
the environment requires us to reconsider how concepts spread through a net-
work. Each node can now affect the reach of a targeted concept’s spread based
on the other concepts they have active. Node degree is typically a good indicator
of influence, however in a concept interactive environment, this is not always the
case. A node with many inhibiting concepts will be less desirable than a node
with many boosting concepts if they have the same degree. Similarly, if a node
has many neighbours who have active inhibiting concepts, its influence is likely
to be low.

We propose a new heuristic, Concept Aware Single Discount (CASD), that
weights the degree of a node based on its own concept environment and that of its
neighbours, with the aim of providing a more accurate value of node desirability.
Specifically, for CASD we define node utility as:

Uc(v) = CIEint(Cv, c) +
∑

n∈N(v)

1 + CIEext(Cn, c)

where N(v) is v’s set of neighbours. Since we are attempting to select nodes
that would help to maximise the spread of the targeted concept, the inter-
nal environment of a node is a good indicator of node value along with a its
weighted degree. The external environment of a neighbour of v affects the like-
lihood of v activating it. The aim of the heuristic is to target nodes with many
boosting neighbours and avoid those surrounded by inhibiting nodes. Therefore,
CIEext(Cn, c) is used to increase or decrease the contribution a neighbour makes
to the degree of a node. This allows for the concept environment of a node and
its neighbours to be considered when evaluating it’s worth to the selection set.

Selection proceeds in rounds, with the highest valued node selected each
round. When a node n is added to the seed set, neighbour v has its utility
updated accordingly:

Uc(v) = Uc(v) − (1 + CIEext(Cn, c))

In the same way as Single Discount, we remove the value contributed by the
neighbour as it can no longer be activated. Once all neighbours have been up-
dated, the next selection is made, until the required number of nodes is selected.

Degree Discount. Degree discount has been shown to be effective in approaching
the optimal solution with reasonable computational overheads [6]. It relies on



calculating the expected nodes gained from adding a given node to the selection
set. When a node is added, the expected gain of adding its neighbours is lowered.
Additionally, those neighbours now have a chance to be activated in the first
round of a cascade. The heuristic therefore weights the degree of a node based
on these factors, updating the value for any neighbours when a node is added to
the selection set. Nodes are initially ranked by degree, and when a node is added
to the seed set neighbours have their degree set to dv − 2tv − (dv − tv) ∗ tv ∗ p,
where dv is the original degree, tv is the number of neighbours in the seed set
and p is the probability of infection. This calculation is based on the expected
benefit of such nodes (details of its derivation can be found in [6]).

Expected Infected Heuristic. It is important to consider the environment of a
node and its neighbours when selecting nodes. The expected payoff from a node
will change if it is surrounded by inhibiting concepts compared to boosting ones.
Degree Discount is successful because it considers the expected number of acti-
vations for a node to decide its value. However, since it is intended for a single
cascade model, it requires updating to consider concept interaction. We propose
a new heuristic, Expected Infected, with the aim of accounting for these effects.

For each node, v, we consider the set of neighbours with chosen concept c
active, ANc(v). Each of these neighbours will have a chance to activate v, which
if successful removes any additional value v would have. The probability of v
having c activated by one of these neighbours, pa(c, v), is:

pa(c, v) =
∑

n∈ANc(v)

OPc(n, v)

The sum of the individual chances of each neighbour to activate concept c
on v, known as OPc(n, v), can be defined as:

OPc(n, v) = pc ∗ (1 + CIEint(Cn, c) + CIEext(Cv, c))

We can now determine the number of activations from N(v) that can be
expected as a result of activating v, as follows:

EAc(v) = 1 +
∑

n∈N(v)\ANc(v)

OPc(v, n)

In addition to v itself, for each non-active neighbour, we have a OPc(v, n)
chance to activate concept c. Summing the probabilities for each neighbour gives
the expected number of neighbours v will activate. However, the chance that v
will be activated by a neighbour must also be considered, and so the expected
utility for adding v, to the seed set is given by:

Uc(v) = (1 − pa(c, v)) ∗ EAc(v)

where 1−pa(c, v) is the chance of v not being activated. If activated anyway,
v will give no additional value. Accounting for this requires scaling EAc(v) by



Table 1: Experimental Parameters
Parameter Values

Graph Type Small-world, Scale-free

Graph Size (nodes) 1000, 5000

Boost Proportion 0, 0.1, 0.2, 0.3, 0.4

Inhibit Proportion 0, 0.1, 0.2, 0.3, 0.4

Initial set size 1%, 2.5% or 5% of graph size

Intervention set size 1%, 2.5%, 5%, 7.5% or 10% of graph size

Rounds before intervention 5, 10, 25

the probability that v does not get activated. Initially nodes have a value of
EAc(v), since there will be no active neighbours.

In each selection round, we add the node with the highest value for this
heuristic and update its neighbours accordingly, continuing until the selection
set is the desired size.

5 Experimental Approach

To evaluate the effectiveness of our proposed heuristics in the context of multiple
interacting concepts, we perform simulations using the interactive independent
cascade model introduced in Section 3. Each simulation has 10 concepts, with an
activation probability for any concept of 0.05. We use the heuristics introduced in
Section 4, along with random selection to provide a baseline for comparison. The
network topologies listed in Table 1 were used, since they exhibit characteristics
found in real-world social networks.

For each simulation, we determine the number of concepts boosted and inhib-
ited by a given concept by selecting from a Gaussian distribution, with a mean
of boost proportion ∗ 10 or inhibit proportion ∗ 10 respectively, and a standard
deviation of 2.5. This, with the proportions defined in Table 1, prevents concepts
being too similar and allows for more realistic environments. Though randomly
selected, the final number of concepts boosted or inhibited by a single concept
is restricted to be in the range [0, 5).

The initial set of nodes for each concept is selected uniformly at random, and
is the same for all concepts. The cascade proceeds for a fixed number of itera-
tions (a burn-in period) until an intervention occurs, during which the targeted
concept will activate an additional set of nodes selected using a chosen heuris-
tic. The burn-in period before intervention is necessary since the concept aware
heuristics require nodes to have concepts activated prior to selection. When se-
lecting, the initial value of a node incorporates discounts from active neighbours
as dictated by the chosen heuristic. This helps to compensate for heuristics that
assume no nodes are active at the start. Each heuristic is used for interventions
in 100 runs for each combination of parameters in Table 1.
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(a) Scale-free network of 1000 nodes
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(b) Small-world network of 1000 nodes

Fig. 1: Total activations against proportion of boosting concepts

6 Results

We initially compare the performance of each of the heuristics introduced above
for a range of parameter settings. Random selection performed significantly worse
than other heuristics in all cases, and while Degree was less effective than the
other heuristics it was by a much smaller margin. Therefore, for simplicity of
presentation, we do not consider Random further. Fig 1a shows the performance
of the heuristics as the proportion of boosting concepts increases. We can see that
Expected Infected performs best and out-performs our other proposed heuristic,
CASD, with results for other topologies and populations mirroring this result.
Therefore the remainder of our analysis focuses on comparing Expected Infected
to the best performing of the existing heuristics, namely Degree Discount.

Expected Infected consistently outperforms Degree Discount, although in
some situations the improvement is small. The difference in performance is larger
in small-world networks than in scale-free, as shown by Fig 1. As the proportion
of boosting concepts rises, all heuristics improve their total activations, demon-
strating the impact of concepts interacting. The advantage of Expected Infected
is stable for smaller populations, but is more varied in larger populations. It
seems then that other network aspects counteract the benefit of targeting boost-
ing concepts. For instance, in larger graphs encountering other concepts may be
rarer, making smaller populations more sensitive to concept interaction.

As their proportion within the network increases, targeting boosting concepts
becomes less effective. As Fig 2a shows, the performance difference between Ex-
pected Infected and Degree Discount decreases as boosting proportion increases.
This demonstrates that as boosting concepts become more numerous, targeting
them explicitly is less advantageous. The difference between performance declines
earlier in scale-free graphs, likely owing to their construction through preferen-
tial attachment resulting in a group of nodes with high degree. Both Expected
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Fig. 2: Difference in activations of Expected Infected (EI) and Degree Discount
(DD) against boosting and inhibiting proportions for 1000 and 5000 node graphs

Infected and Degree Discount will target nodes of high degree, such nodes will be
more capable of utilising nearby boosting concepts without explicitly targeting
them as the proportion of boosting concepts increases.

Conversely, as shown by Fig 2b, when the proportion of inhibiting concepts
increases, so does the performance of Expected Infected compared to Degree
Discount. As the number of inhibiting concepts increases it becomes harder to
avoid them by chance. In a heavily inhibiting environment, high degree nodes
have a higher chance to encounter inhibiting nodes and consequently have their
influence diminished. The effectiveness of Expected Infected appears to be in
avoiding inhibiting concepts, rather than in taking advantage of boosting ones.

The size of the initial and intervention sets also impacts performance as
shown by Fig 3. At the largest initial set size, either 50 for Fig 3a or 250 for Fig 3b,
performance improves as the intervention set size increases. In general, there is
a slight upward trend in performance as the size of the initial set increases. The
increased coverage results in concepts being more likely to interact, resulting
in the consideration of other concepts being more advantageous. Additionally,
as the initial and intervention sets increase in size, Degree Discount will find
it harder to avoid inhibiting concepts, again demonstrating the advantage of
avoiding them. It is possible that being able to target more boosting concepts is
a factor here, but Fig 2a suggests this contribution is likely to be minor.

A relationship also appears to exist between graph density and performance
Expected Infected, since as density increases Expected Infected performs better.
The denser a graph, the more edges each node has, and avoiding inhibiting
nodes by chance becomes unlikely as node degree increases, potentially impacting
performance. The effect of network properties will be a key focus in future work.

Overall the Expected Infected heuristic performs slightly, but consistently,
better then Degree Discount in a non-blocking multi-concept environment, and
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Fig. 3: Difference in activations of Expected Infected (EI) against Degree Dis-
count (DD) for different initial sets against intervention set size

out-performs all other heuristics considered. Further, one of the core reasons for
this performance seems to be in Expected Infected attempting to avoid inhibiting
environments and thus not having the chosen concept’s spread hindered.

7 Conclusion

The study of how ideas, strategies or concepts propagate through a network
has many applications. For example, simulations of disease and their infection
characteristics can help identify areas at risk of an epidemic that should be the
focus of containment and detecting the influential individuals in a social network
allows for the improvement and refining of marketing strategies. This paper
introduced an extension of the concept interaction model by Sanz et al. [20] to
allow for n concepts within the independent cascade. We also proposed two new
heuristics, including Expected Infected which made use of concept relationships
to find the expected value of activating a node. Expected Infected was found to
out-perform Degree Discount consistently in a concept interactive environment,
specifically the avoidance of inhibiting factors seems to provide most of this
advantage. Further work to quantify the effect of network properties on concept
interactions is needed, to give a better understanding of when best to utilise
concept interaction based heuristics. Observing how our results scale with the
increase of concepts within the network would also be of interest, to see if the
consideration of inhibiting concepts remains important.
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