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Abstract—The pervasive nature of location-aware hardware
has provided an unprecedented foundation for understanding
human behaviour. With a record of historic movement, in the
form of geospatial trajectories, extracting locations meaningful
to users is commonly performed as a basis for modelling a users’
interactions with their environment. Existing literature, however,
has scarcely considered the applicability of extracted locations,
typically focusing solely on the consequent knowledge acquisition
process employed, due to the difficulty of evaluating the output
of such unsupervised learning techniques. Towards the goal of
ensuring the representativeness of extracted locations, and using
location prediction as an example knowledge acquisition process,
this work provides a method of automated parameter selection
for both location extraction and prediction that ensures both
the applicability of the locations extracted and the utility of the
predictions performed. Specifically, we: (i) provide a metric for
the evaluation of both extracted locations and predictions that
characterises the goal of each of these tasks, (ii) frame the process
of parameter selection as that of mathematical optimisation
through the presented metric, and (iii) discuss characteristics of
the metric while demonstrating its applicability over real-world
data, location extraction algorithms and prediction techniques.

I. INTRODUCTION

With vast amounts of geospatial data readily available,
services are increasingly being built to leverage the latent
knowledge inherent in human mobility patterns. Understanding
human behaviour through data has great potential in improving
the quality and personalisation of services offered, making
for tailored solutions capable of understanding not only the
current needs and preferences of its users, but also their likely
future requirements. Many systems that focus on understanding
people from geospatial data make use of location extraction
techniques to identify locations that have meaning and im-
portance to the users, gaining insight not only into the types
of places that users spend their time, but also aiding in the
identification of the activities they perform and the people they
associate with. These extracted locations are often used as the
basis for the prediction of future movements of individuals,
the recommendation of places to visit, and the identification
of activities conducted.

While the extraction of locations meaningful to users pro-
vides a vital foundation for further analysis, existing literature
has scarcely considered the applicability of the locations ex-
tracted to the task at hand, instead focusing solely on the con-
sequent knowledge acquisition process employed. Although
evaluating locations extracted through unsupervised learning
techniques is challenging due to the lack of available ground

truth, the properties inherent in the locations have significant
impact on the results of further analysis. Selecting appropriate
parameters for location extraction is therefore of paramount
importance. However, the impact of altering parameters is
typically unknown, as methods of evaluating the applicability
of a set of locations to a particular task are lacking.

The work presented here aims to overcome this problem
by providing a method of parameter optimisation that selects
the most appropriate parameters for both location extraction
and the subsequent learning algorithm employed (e.g. location
prediction). The need for manual selection of parameters and
review of location properties is therefore removed, and the
robustness of any predications based on the locations is en-
sured, thereby increasing the utility afforded by such systems.
Specifically, we focus on the problem of location prediction as
a representative task and (i) provide a metric for the evaluation
of both extracted locations and predictions that characterises
the goal of each of these tasks, (ii) frame the process of pa-
rameter selection as that of mathematical optimisation through
the presented metric, and (iii) discuss characteristics of the
metric while demonstrating its applicability over real-world
data, location extraction algorithms and prediction techniques.

The remainder of this paper is structured as follows:
Section II discusses related work in the areas of location
extraction, prediction and parameter optimisation. Section III
introduces the proposed parameter optimisation procedure for
the task of location extraction and prediction. Section IV
presents the experimental methodology followed, and Sec-
tion V presents and discusses the results observed when
applying the methodology to real-world data. We discuss our
conclusions in Section VI.

II. RELATED WORK

This section discusses relevant existing literature for loca-
tion extraction, prediction and parameter optimisation.

A. Location Extraction

Location extraction can be performed using a single clus-
tering technique to extract areas of dense data points, however,
it is typically split into two distinct steps [2, 4, 20, 30]. The first
step, referred to as visit extraction or stay point detection, is
concerned with detecting periods of low mobility in geospatial
data, representing periods of time in which the individual
remained stationary. This process is typically conducted in



linear time. The second step, visit clustering, clusters these
periods, henceforth referred to as visits, into locations.

In support of visit extraction, methods have been proposed
to identify periods of missing data, where missing data is
expected to correlate with a user being indoors [3, 4]. Recent
work, however, has assumed a greater availability of data and
consequent removal of the requirement for visits to only occur
inside buildings. This work has focused on using time and
distance thresholds [2, 18, 20, 31, 32], where the user must
have remained for a specified period of time in an area no
larger than a provided radius.

While these algorithms do not assume that missing data
is synonymous with a visit, they all suffer from a lack of
resilience to noise, as a single erroneous point that falls
outside of the distance threshold causes the visit to be ended.
Based on the fact that the majority of location estimation
techniques are prone to noise, the STA extraction [7] and GVE
algorithms [26] have been proposed. Both algorithms monitor
the trend of motion of the user and employ techniques to ensure
resilience to noise. GVE, the Gradient-based Visit Extractor,
in contrast to STA extractor, performs visit extraction in such a
way that it does not impose a minimum bound on visit duration
and does not assume evenly spaced observations [26].

Once extracted, visits are grouped to form locations using
clustering techniques, such as k-means [4, 19]. The drawback
to this approach is the requirement for the number of clusters to
be known a priori, and so the use of density-based approaches
such as DBSCAN is more common [2, 6, 12, 20].

B. Location Prediction

Originally motivated by the problem of determining the
future location of an individual in a cellular network, location
prediction aims to identify which location a user will visit
next given their current location and transition history. Many
approaches have been applied to next location prediction,
including neural networks [1, 9], support vector machines
(SVMs) [28], and Markov models [4, 5, 14, 15]. These
techniques have considered locations modelled as cellular tow-
ers [1, 9, 14], rooms in a smart office building [22, 27] and lo-
cations extracted through clustering approaches [4, 5, 10, 15].
The locations can be used as nodes in Markov models of
transitions, and neural networks and SVMs can be used as
classifiers for locations.

C. Parameter Optimisation

While much research has been conducted into location
extraction and prediction, there has been little discussion of
the selection of appropriate parameters for these techniques,
with existing work using empirically determined parameters
to demonstrate results. An exception to this is Ashbrook
and Starner’s presented method of parameter selection, which
involves plotting graphs of the number of locations extracted
for different parameters and selecting an appropriate value by
manually observing a specific quality on the graph [3, 4].

Automated selection of parameters has, however, been
considered for a few select domains, specialised for each task
at hand. This includes optimising the parameters for support
vector machines using online Gaussian process models [13],

genetic algorithms [25] and heuristic-based approaches [23].
Also considered for parameter optimisation have been hidden
Markov models, using length modelling [33], and neural
networks, using genetic algorithms [11, 29].

Not focusing specifically on parameter selection, several
mathematical optimisation and search algorithms have been
presented that aim to locate an optimal or near-optimal solution
from an n-dimensional search space. One such example is
hill climbing, which begins at a random point in the search
space and repeatedly moves to adjacent states until it reaches
a maxima [24]. There is no guarantee, however, that such a
maxima would be global as hill climbing is prone to detecting
local maxima in non convex search spaces. Overcomming
this issue, heuristic-based approaches have been presented
including simulated annealing [8] and evolutionary approaches
such as genetic algorithms [24], and memetic algorithms [21].
These algorithms do not guarantee to find the global maxima,
but find an approximation of it given sufficient time to search.
In this paper we describe how simulated annealing can be
applied to the problem of parameter optimisation for location
extraction and prediction.

III. PARAMETER OPTIMISATION

Identifying an optimal, or near-optimal, set of parameters
for both location extraction and prediction can be performed
through mathematical optimisation techniques only once an
evaluative procedure or metric has been defined. It is through
such a metric that two sets of parameters can be compared to
identify the more desirable. The task of parameter optimisation
can therefore be split into two primary components; an eval-
uative metric that, when given two sets of parameters, is able
to quantifiably select the more desirable, and a mathematical
optimisation procedure that, when combined with the evalua-
tive metric, locates a near-optimal set of parameters in finite
time. The remainder of this section details the development
of the evaluative metric and the selection of an appropriate
mathematical optimisation procedure for this purpose.

A. Evaluation Metric

In order to evaluate the combined performance of location
extraction and prediction, it becomes important to understand
the true aims behind the process. For this work, we consider
the aim of location prediction to be that of identifying the
exact future location of an individual with as little uncertainty
as possible. Uncertainty in this context can be considered to
encompass both the size of locations and the accuracy of
predictions. Considering the example where extracted locations
cover vast regions, it is clear that predictive accuracy would be
fairly high as the task only requires the predictor to identify
which location, e.g. city, the user will be in at a given time.
Despite this high accuracy, the utility of the predictions would
be low in many systems due to the size of the locations used.
Conversely, if the locations extracted were particularly small
(e.g. room-size) then the complexity of the user’s behaviours
present would be higher and thus more difficult to accurately
predict, leading to lower predictive accuracy, but in cases
where the prediction were correct, the utility afforded would be
far greater. It is even conceivable that, when aiming to identify
the exact geographic region a user will visit, a prediction
for a small, close-by, location that is incorrect may offer



greater knowledge than a prediction for a vast location that
encompasses the correct region, as the former case, although
incorrect, identifies a position close to the correct one.

Evaluating both locations and predictions is difficult in
standard approaches because of the dependency relationship
between the two. The exact locations extracted will directly
impact on the ability for prediction to occur, and thus methods
of characterising the locations and predictions independently
cannot cater for this relationship. Therefore, the separate
stages of location extraction and prediction must be evaluated
together to get an honest representation of applicability to the
given task. Towards this end, and taking the goal of location
prediction to be that previously defined, the idea of aiming to
identify as close as possible the region on earth to be visited
by the user, we define error as follows.

Definition 1: The error of location extraction and predic-
tion is the distance between the centroid (i.e. the arithmetic
mean of all of its points) of the predicted location and the
centroid of the region actually visited by the user, represented
by the next visit in the data.

Intuitively, this definition of error favours small locations
with accurate predictions, as wherever the actual region visited
falls within such a location (i.e. an accurate prediction), the
distance between the region and the centre of the location
will be small. With large locations, which are undesirable for
location prediction, a correct prediction may still have a high
error if the distance between the location centroid and actual
visited region is vast. Similarly, for incorrect predictions (i.e.
inaccurate ones), a small predicted location situated near to the
correct region will give a low error as the distance between
the predicted location’s centroid and the actual visit made is
small.

Under such a definition of error, while small locations are
favoured, locations that are meaninglessly small (e.g. if every
data point were to be classed as its own location) are prevented
by the properties inherent in predictive systems. In order to
predict future movements of individuals, past behaviour is
analysed and patterns determined, but when considering such
an extreme case, each location would have a single transition
to another, unique, location and thus no repeating patterns
can exist. This property ensures that accurate predictions from
such training data are unachievable and therefore predictions
will be little better than random, producing a high average
error in the system. This ensures that the locations favoured
by Definition 1 are small, while still being meaningful. If the
error were defined to be the distance between the centroid of
the predicted location and the extracted location within which
the user’s next visit falls, a correct prediction would be given
an error of 0 regardless of the size of the location. By using
the distance between the centroids of the predicted location
and the actual visit, unless the location covers only this single
visit, the error will be non-zero even for a correct prediction,
with a magnitude dependent upon the location’s size.

The error of a given set of locations and given predictor, E,
can be calculated by using the mean absolute error metric, with
distances calculated by the haversine formula in kilometers,

formally:

E =
1

|P |
∑
l,v∈P

|dist(centroid(l), centroid(v))| (1)

where P is the set of all predictions, each prediction having
two parts: {l, v} ∈ P , l is the expected next location of the
user, and v is the actual visit that the user makes next. Mean
absolute error (MAE) is selected for its linear weighting of
errors. While mean squared error is also a common metric,
any large error would be weighted extremely highly and
overshadow the remaining data (e.g. if the user visited a
different city to the one predicted just once, even if all other
predictions were correct), which is undesirable in this case.
With MAE, a small number of large errors has significantly
less impact and thus individual mistakes are still penalised,
but not as highly. With MAE selected as the metric, and a
definition of error (Definition 1) consistent with expectations
of the problem, comparison of sets of extracted locations and
predictions can occur. Given two sets of locations and an
associated prediction model, the more desirable set is the one
which has the lowest associated cost as calculated by MAE.

B. Optimisation Algorithm

With an evaluative metric in place, the selection of optimal
parameters for a given set of data would ideally be performed
by evaluating all possible combinations of parameters and
selecting those which produce the minimum mean absolute
error. In reality, however, performing location extraction and
prediction is computationally expensive, and so it is infea-
sible to perform a complete search. Instead, a near optimal
solution can be found using techniques including heuristic-
based approaches (e.g. simulated annealing) or evolutionary
approaches (e.g. genetic algorithms). Specifically, we opt to
use simulated annealing as it can overcome the problem of
local maxima while maintaining a single state space. While
other algorithms, such as evolutionary approaches, are also
applicable, they typically assume that taking two states that
individually produce good results and merging them will
produce results at least as good. In this work, the interplay
between parameters is extremely important and thus it is
not immediately clear that this property will hold, as such,
an exploration of the applicability of different optimisation
techniques is left as future work.

Simulated annealing starts at a random point in the search
space (the parameter space in our case), evaluates the current
position and selects a single-step neighbour (i.e. a parameter
set that can be reached by modifying a single parameter by a
single increment). If evaluating this neighbour yields a more
favourable position than the current location, the move is
taken. Otherwise, the move is taken with some probability
according to the temperature function and probability function,
together regulating the moves made. This selection procedure
is repeated a maximum of kmax times, where kmax is a
user-specified parameter. If there is plenty of time remaining,
i.e. the iteration count, k, is low with respect to kmax, a
bad move is more likely to be followed as there is room
to recover later. If time is running out (k is approaching
kmax), then only positive moves are likely to be made. Once
a run has been completed, the parameters selected are those
that produced the lowest score encountered throughout the
optimisation procedure, typically the last move.



IV. EXPERIMENTAL METHODOLOGY

In order to explore the applicability of the proposed
metric and algorithm to the problem of parameter selection
for location extraction and prediction, several experiments
must be conducted using different extraction and prediction
approaches.

A. Location Extraction

As discussed in Section II-A, location extraction is typi-
cally performed as a two-step process where first periods of
low mobility, called visits, are detected in linear time from the
dataset. These visits are then clustered together into locations.
For this work, we adopt two approaches to visit extraction,
namely the stay-point detection method proposed in [18] that
uses maximum size and minimum duration thresholds, and
the gradient-based visit extractor algorithm proposed in [26]1,
referred to as thresholding and GVE respectively. Thresholding
takes two parameters, radius and time, controlling the max-
imum size and minimum duration of a visit. GVE takes four
parameters, α, β, npoints and tmax, with α and β controlling
the threshold function that dictates when a visit is marked as
having ended. Additionally, npoints sets the maximum size
of buffer over which to consider trend of motion, and tmax
specifies the maximum period of time between consecutive
points for the points to belong to the same visit. This approach
protects against periods of missing data from erroneously being
grouped into the same visit where the user could have left and
returned to a nearby location. While the thresholding approach
is perhaps the most widely used in literature, the GVE algo-
rithm is designed to overcome many of its drawbacks, and
hence both are used to explore the generality of our approach.
Once extracted, the resultant visits are then clustered using
DBSCAN. DBSCAN has been demonstrated to be applicable
to the problem and does not require the number of locations
to be known a priori, instead determining the clusters based
on density of visits, determined by the parameters minpts
and ε, which specify the minimum number of points required
within distance ε to consider a cluster. The parameters for these
algorithms are shown in Table I.

B. Location Prediction

While many methods of location prediction have been
considered (Section II-B), for this work we focus specifically
on the task of next location prediction, i.e. aiming to identify
the location out of the extracted set of locations that the user
is most likely to visit upon leaving their current location.
For this purpose, we employ hidden Markov models and
multilayer perceptions trained through backpropogation with
a single hidden layer. Both of these approaches have been
widely used for a range of tasks, including location prediction,
and have been shown to be effective [1, 9, 14, 15]. Although
alternative methods exist, such as SVMs, this work focuses on
the proposed evaluative metric and a comparison of alternative
predictors is left as future work.

Once a set of locations has been extracted, the history of
transitions between them is split into two with half used to

1This algorithm has been extended with the addition of the parameter tmax,
where a visit under consideration is ended if the time between the last point
in the buffer and the new point is greater than tmax seconds, employed to
prevent periods of missing data from being considered as part of a visit.

train the predictive models, and the remaining half used as part
of the evaluation procedure. To predict future locations from
historic transitions, the test data must be temporally after the
training data, meaning that validation methods such as cross-
validation are not appropriate. An even test:train split was
selected to ensure both sufficient training data for the predictive
models and to evaluate performance. Both of these approaches
take parameters that can be optimised to improve predictive
accuracy, shown later in Table I. For the hidden Markov model,
this is the number of hidden states, numStates, and for the
neural network it is the number of nodes in the hidden layer,
numNodes. In addition, we introduce another parameter for the
hidden Markov model, namely the sequence length, seqLength,
to provide to the model when requesting a prediction. A long
sequence length captures the recent movements of the user
better, but affords fewer opportunities for prediction as at least
seqLength transitions are required for prediction to occur. The
selection of an appropriate value is therefore left open for
optimisation as part of this process.

C. Parameter Optimisation

As described in Section III, the task of parameter opti-
misation is being performed using the Simulated Annealing
algorithm in conjunction with a novel evaluative metric (Sec-
tion III-A). The maximum number of moves that can be made
by the Simulated Annealing algorithm is set by the parameter
kmax, and thus bounds the time complexity. Complexity is,
however, not linear in our case as the evaluative procedure
requires both locations to be extracted and a predictive model
to be trained, and thus complexity is dependant upon the
specific algorithms used for these purposes. However, the
increased complexity of such algorithms is somewhat mitigated
as location extraction and prediction is only performed over a
subset of the data.

Neighbour Function

In order to utilise simulated annealing to optimise the
parameters for location extraction and prediction, a method of
selecting a neighbour of a current state must be specified. As
many of the parameters are continuous, we first discretise them
by specifying a minimum increment value for each parameter
as shown in Table I. The starting position of the algorithm
is created by selecting a value for each parameter that falls
within the start range, as shown in the table. We can now
define the neighbour of a given state as being any set of
parameters that has a single parameter altered by one increment
such that the parameter combination is legal (i.e. all constraints
imposed on the parameters by algorithms hold, for example,
most parameters must be positive). The neighbour function of
the simulated annealing algorithm selects one neighbour of the
current state at random by adhering to these rules.

Probability Function

Once a neighbour has been selected, the probability func-
tion determines whether it will replace the current state, or if
the state remains unchanged. Mean absolute error is used to
provide a cost for both of the states. If the cost for the new state
is lower, then the move is made. Additionally, if a cost cannot
be calculated for the new state (e.g. it extracts no locations)
then the neighbour is discarded and another selected. Finally,



TABLE I: Parameter increments

Method Algorithm Parameter Inc. Start Range

Visit Extraction
GVE

α 0.1 0 ≤ α ≤ 2.5
β 3 1 ≤ β ≤ 50
npoints 3 1 ≤ n ≤ 50
tmax (s) 1200 600 ≤ t ≤ 86400

Thresholding radius (m) 10 0 ≤ r ≤ 250
time (s) 120 0 ≤ t ≤ 3600

Visit Clustering DBSCAN minpts 1 0 ≤ m ≤ 10
ε (m) 5 1 ≤ ε ≤ 100

Prediction HMM numStates 1 5 ≤ n ≤ 50
seqLen 1 1 ≤ s ≤ 5

Neural Network numNodes 1 5 ≤ n ≤ 50

a move to a worse position (i.e. higher cost) can be made
with some probability dependant upon the temperature, which
reduces with time. Initially, a worse move is more likely to
be made to avoid being stuck in a local maxima while there
is time to recover later. As time progresses, however, worse
moves have a lower chance of being made.

To adhere to these principles, a probability function has
been selected:

p(c, n, t) =


1 if n > c

0 if n = null

e−
c−n

t otherwise
(2)

where c is the score of the current position, n is the score of
the selected neighbour (which is set to null if no score can be
calculated) and t is the current temperature. The probability
of selecting a worse move depends upon the magnitude of the
cost difference and the temperature, defined as:

t(r) = 0.985500r (3)

where r is the proportion of time expanded. The function
ensures that temperature reduces rapidly towards 0 so that poor
moves are only likely towards the beginning of the process.
The exact values have been empirically determined to provide
an appropriate function that responds to the problem at hand.

D. Data

Our primary evaluation data comes from 5 users in the
Nokia Mobile Data Challenge (MDC) Dataset [16, 17], which
contains high-accuracy location and usage data collected from
smartphones carried by 191 users over a period of 2 years.

E. Experiments

In order to understand the applicability of the metric
proposed in Section III-A to the task at hand, multiple runs of
the parameter optimisation approach must be performed with
different combinations of location extraction and prediction
algorithms and data from different users. Furthermore, to better
understand the metric, it is important to investigate the impact
of using different segments of data from the same users.
To this end, experiments use both different amounts of data
(continuous subsets of between 10% and 25% of the available
data per user) with different starting positions (selected at
points 0% and 50% through the data when ordered temporally).
With data selected and a methodology formalised, experiments
can be run with different values of kmax, the parameter of
simulated annealing that specifies the maximum number of
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Fig. 1: Example simulated annealing runs showing MAE
against time

iterations of the algorithm, where the selection of a neighbour,
evaluation and possible adoption of a new parameter set is
a single iteration. The results from these experiments are
presented in Section V, where each experiment was repeated
10 times and results averaged.

V. RESULTS

Investigating the applicability of parameter optimisation
to location extraction and prediction under the methodology
proposed in Section IV, this section summarises the results
obtained from the individual runs of the procedure. In total,
8,000 runs have been performed. Once a set of locations has
been extracted and a prediction model trained, the resultant
locations and predictions are given an associated cost by the
MAE metric (discussed in Section III-A), where the optimal
solution is the one with the lowest cost.

Figure 1 shows two example runs of the simulated an-
nealing algorithm and how the cost of the extracted locations
and predictions varies over time. In both cases, the final cost
is significantly lower than the initial cost (where randomly
selected parameters were used to extract locations and perform
predictions). In Fig. 1b, the cost is monotonically decreasing
and so each iteration produces a cost no worse than the
one before. Conversely, Fig. 1a shows steps that move to a
position of higher cost on several occasions. This demonstrates
simulated annealing’s ability to overcome the local maxima
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Fig. 2: Relationship between MAE and extraction properties

problem, taking worse positions towards the beginning of the
run, but converging towards a minimum as time runs out. After
t = 43, no move to a worse position is made, instead, the cost
decreases before remaining constant.

Figure 2 shows the overall trends present with respect to the
mean absolute error metric. Specifically, Figure 2a shows the
relationship between cost and average location area (in km2),
and Figure 2b shows the relationship between cost and average
predictive accuracy. Both graphs show the overall trends and
show results from all iterations in all runs, demonstrating
the link between these properties. Figure 2a shows that large
locations incur a high cost, which decreases as the locations get
smaller up to a certain point. Once locations become extremely
small in size, they encompass few visits and thus provide less
training data, leading to the cost increasing once again. Addi-
tionally, Figure 2b demonstrates that lower costs are indicative
of higher predictive accuracy, up to a point. As predictive
accuracy increases towards 1, however, the associated cost
begins to increase. This is due to the situation discussed in
Section III-A, where achieving such high predictive accuracy
comes at the cost of location size. Due to the complexity
of human mobility, achieving perfect predictions over small
locations is extremely unlikely, and so in the cases where
prediction accuracy approached 1, the locations became larger
and thus were penalised with a higher score. Combined, these
properties demonstrate that the definition of error as proposed
in Section III-A favours a balance between small locations and
high predictive accuracy. These are desirable properties for this
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purpose as they serve to accurately identify where a user will
be in the future with as little uncertainty as possible.

Finally, Figures 3-5 show the effect on cost of the maxi-
mum number of iterations (i.e. kmax, Figure 3) and percentage
of data used for each user (Figure 4 showing results when
split per user, and Figure 5 when split by combination of
visit extractor and predictor). In the case of Figure 3, the
percentage of data used is held constant at 10%, and in the
other two figures, kmax is held at 100, with results averaged
over other properties (i.e. visit extractor, predictor and user).
As evidenced by the figures, the metric performs as would
be expected and as discussed in Section III-A. Specifically,
as the number of iterations is increased, the average cost
decreases slightly because the algorithm is allowed more
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moves to find the optimal position (Fig. 3). While kmax can
be further extended beyond 100, it was observed that with
kmax of 100, 1,347 of 1,600 runs (i.e. 84%) had converged
to a stable cost, indicating that the benefits of selecting a
larger value for kmax would be minimal. Providing more
of the user’s data for optimisation results in increased costs,
however (Figures 4 and 5). More data means that the predictor
has more information to model the user’s behaviour, but it
also means that the user will likely have visited additional
locations for which no previous transitions exist, increasing
the complexity of the required predictive model and thus
resulting in slightly increased costs as these new locations
are likely to result in incorrect predictions. This combination
of factors leads to the trends shown in the graphs, where the
increase in information results in slightly higher average costs.
Furthermore, Figure 5 shows similar trends across the different
visit extraction and location prediction techniques employed,
providing an indication of the generality of the MAE metric.

VI. CONCLUSION

This work has presented a method of automatic parameter
optimisation for location extraction and prediction that under-
stands the aims of both tasks. While existing work has assumed
the validity of extracted locations and focused on prediction,
we argue that predictions are predicated upon these locations
and thus ensuring the representativness of such locations is of
paramount importance to producing useful predictions.

Through a novel definition of error for location prediction,
that considers the aims of the prediction process, combined
with the simulated annealing mathematical optimisation algo-
rithm, we provide a method of parameter optimisation that
assures both the applicability of extracted locations and the
utility of predictions. This applicability is then demonstrated
through an evaluation of properties of the proposed metric.
Such results evidence the conformity of the metric to the
stated aim of minimising the distance between predicted future

location and actual location visited by the user, thus identifying
the region to be visited with as little uncertainty as possible.

The specific contributions of this paper have been: (i)
the provison of a metric for the evaluation of both extracted
locations and predictions that characterises the goal of each of
these tasks, (ii) framing of the process of parameter selection as
that of mathematical optimisation through the presented metric,
and (iii) a discussion of characteristics of the metric along
with a demonstration of its applicability over real-world data,
location extraction algorithms and prediction techniques.

Focus for expanding the work presented in this paper
should include evaluating the applicability of this approach
on a larger range of algorithms, including additional location
extraction techniques, prediction techniques and parameter op-
timisation algorithms, in conjunction with a greater emphasis
on validation through unseen data.
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