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ABSTRACT

In this paper we propose a market-based approach for seed-
ing recommendations for new items in which publishers bid
to have items presented to the most influential users for each
item. Users are able to select (or not) items for rating on
an earn-per-rating basis, with payment given for providing
a rating regardless of whether the rating is positive or nega-
tive. This approach reduces the time taken to obtain ratings
for new items, while encouraging users to give honest rat-
ings (to increase their influence) which in turn supports the
quality of recommendations. To support this approach we
propose techniques for inferring the social influence network
from users’ rating vectors and recommendation lists. Using
this influence network we apply existing heuristics for esti-
mating a user’s influence, adapting them to account for the
new items already presented to a user. We also propose an
extension to Chen et al.’s Degree Discount heuristic [Chen
et al. 2009], to enable it to be used in this context. We eval-
uate our approach on the MovieLens dataset and show that
we are able to reduce the time taken to achieve coverage,
while supporting the quality of recommendations.

Categories and Subject Descriptors

H.3 [Information Storage and Retrieval]: Information
Search; 1.2.6 [Artificial Intelligence]: Learning

General Terms

Algorithms, Experimentation
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1. INTRODUCTION

The key issue with new items being introduced into a col-
laborative filtering based recommender system is that these
items must get rated by a few users before the item can get
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recommended. The time elapsed between release of the new
item into the market and it first appearing within a recom-
mendation list is referred to as item latency. Reducing this
item latency benefits: (i) the producer of the item, since the
item will reach the audience quicker, resulting in increased
revenue through sales, (ii) the consumer of the item (re-
ferred to as the user) who gains access to an item of interest
sooner, and (iii) the owner of the recommender system (the
retailer) who gains by increasing customer retention, loyalty
and sales revenue by recommending the item to customers
before their competitors.

To date, two methods have been studied in literature and
allegedly practised by the publisher, or producer, that aim to
influence the recommender system and/or influence the cus-
tomer. Namely, getting reviewers to write positive reviews
for their product, and attacking the recommender system by
injecting profiles (shilling attacks) [Mobasher et al. 2007].
Both of these methods aim to create positive sentiment in
the market and may or may not be targeted to particular
segments. The focus is on increasing sales without necessar-
ily taking customer satisfaction into account.

With the proliferation of social networks on the Internet,
marketeers have turned to viral marketing. The key here is
to pick a small number of “influential” people within a so-
cial network that become champions for products through
(mis)informing others about the value of the product. On
the other hand, retailers have considered various ways, typ-
ically based on item descriptors (content) to predict user
ratings for new items and hence recommend them sooner
than the organic rise of the item in recommendation lists.

In this paper, motivated by the effectiveness of online auc-
tions such as Google Adwords®, we propose a novel approach
to introducing new items into collaborative recommender
systems, adopting ideas from auctions and social network
analysis. Our proposal is to produce a ranked earn-per-
rating (EPR) list of new items for each user from which
the user can choose and provide a rating for a payment. In
contrast to producers competing to get a high ranking in
the adspace on the search results page for particular search
terms, producers here bid to gain high rankings on the earn-
per-rating lists of the most influential users of the recom-
mender system for their item. Achieving higher rankings
should lead to greater coverage and improved visibility.

The key contributions of the paper are: (i) we present
a market-based approach for seeding recommendations for
new items to reduce item latency, in which customer sat-
isfaction is an integral part of the approach, unlike other
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methods for publishers to influence the recommender sys-
tem, such as injecting profiles or paid positive reviews; (ii)
using the concept of ‘influence’ in social networks we provide
a mechanism for identifying the best set of users to which
we present new items on an earn-per-rating basis; (iii) we
present a selection of mechanisms for inferring the social
influence network from users’ rating vectors and recommen-
dation lists; (iv) we apply and evaluate existing heuristics
for estimating the influence of a user in a social network in
the context of recommender systems, adapting them to take
into account the new items already presented to a user; and
(v) we propose and evaluate an extension to Chen et al.’s
Degree Discount heuristic [Chen et al. 2009], to enable it
to be used in directed weighted graphs (since the original
heuristic only applies to undirected unweighted graphs).
The remainder of this paper is organised as follows. Sec-
tion 2 discusses related work. Our approach is introduced
in Section 3, and our experimental setup described in Sec-
tion 4. We discuss our results in Section 5, and describe our
conclusions and directions for future work in Section 6.

2. RELATED WORK
2.1 Addressing Cold Start

Cold Start is the general term used to refer to three dif-
ferent situations faced by a collaborative filtering based rec-
ommender: the system cold start where the rating matrix is
empty, the user cold start in that new users need to rate
items before they receive any recommendations, and the
item cold start in that a new item must be rated by a “suf-
ficient” number of users before it can be recommended. In
this paper we focus on the item cold start problem (also re-
ferred to as the new item problem) [Huang et al. 2004, Lam
et al. 2008, Park and Chu 2009]

Park et al. use global user bots that either aggregate rat-
ings in the rating matrix or use item content features [Park
et al. 2006]. The bots are treated like any other user by the
collaborative filtering algorithm. They show that using as
few as 7 bots can improve the accuracy of the recommender
system in new user, new item and new system (sparse ma-
trix) situations.

Park and Tuzhilin propose the clustering of long tail items
(i.e. items with below a user defined number of ratings) [Park
and Tuzhilin 2008]. The clustering is based on a set of de-
rived user and item attributes such as the average rating,
popularity of items rated and likability of items. Their re-
sults suggest improved accuracy is achievable through clus-
tering long tail items. Note that the minimum frequency of
an item was set to 10. In this paper we propose a method-
ology for dealing with items with no ratings.

Schein et al. propose incorporating item content into the
recommendation process by building a person/actor aspect
model [Schein et al. 2002]. Using the MovieLens dataset
they map all movies onto the top k£ actors acting in the
movie and use Hofmann’s aspect model to model the joint
probability of users and actors using a set of latent classes
z. To recommend a movie, m, they map m onto its set of
actors and estimate the probability p(z|m) which is in turn
used to estimate p(u|m) for user u.

Amazon’s Vine Program? invites selected reviewers to re-
view pre-release and new items based on feedback on their
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past reviews by other customers. While the goal here is
to provide potential customers of the products with third
party reviews to support their purchase decision, it appears
to be divorced from Amazon’s recommender system. In this
paper we look specifically at how a market based approach
can be incorporated into the recommender system so that
potential customers gain awareness of new items through
the recommender system.

2.2 Influence Propagation in Social Networks

An important goal of marketers is to leverage influen-
tial nodes (or the network value of nodes [Domingos and
Richardson 2001]) within a social network to market prod-
ucts to the whole network. This is referred to as the influ-
ence mazximization problem where we aim to pick a (mini-
mal) set of users that would maximize the spread of infor-
mation through the social network. Several influence prop-
agation models have been proposed in social network analy-
sis literature [Domingos and Richardson 2001, Kempe et al.
2003]. The target set of nodes are set as active at the start
of influence propagation. In subsequent cycles, neighbours
of active nodes are made active according to some model
of influence propagation. The models can be classified into
two types: those that use node-specific thresholds and those
based on interacting particle systems [Kempe et al. 2003].

In the Linear Threshold Model, a node is influenced by
each of its neighbours to varying degrees, as defined by the
edge weights. Each node v chooses a threshold 0,. When
the sum of the weights of the active neighbours of v exceeds
6,, v becomes active.

In the Independent Cascade Model (ICM) [Goldenberg
et al. 2001], each time a node v becomes active it gets one
chance to activate each of its inactive neighbours w, with
some probability p,.,. Kempe et al. showed that a simple
hill-climbing algorithm can be guaranteed to find a set of
k target nodes that has a performance slightly better than
63% of the optimal set [Kempe et al. 2003]. They also pro-
posed a weighted variant of the ICM where the probability
of a node v influencing node w is dependent on the degree
of w. One of the key issues with the greedy approach is
the need to estimate the quality of the target set. Numer-
ous heuristics have been proposed to improve the speed of
estimating the influence spread of a node [Anagnostopoulos
et al. 2008, Chen et al. 2009], but it remains a problem for
large networks.

Domingos and Richardson propose modelling users using a
Markov random field [Domingos and Richardson 2001]. The
network value of a user is then computed as the difference
between the profit when marketing to a user or not doing
so. They use the EachMovie rating matrix along with movie
genre as input to their estimation of the probability of a user
purchasing a movie. Of particular interest in the context of
this paper is the fact that when evaluating their proposal,
all movies rated by less than 1% of the customer base were
removed from the data. It is these “new” movies specifically
that are of interest to us in this paper.

3. AMARKET-BASED APPROACH

Our proposed solution to introducing a new item into the
recommender system is to choose a set of users and to per-
suade them to rate the item. As we assume a cost associated
with getting users to rate the item, we want to minimize the
cost while maximising the reach of the item within the sub-



U the set of users

I the set of items

I; the set of new items at time ¢

L the ranked list of new items (EPR list) for user
Uq at time ¢

Lt the set of EPR lists for all users at time ¢

tr the time when item i, was introduced into I

S the set of users u, for whom item i € L%

U,ﬁ U,ﬁ cU = Utkgt’gtsg is the subset of users

ugq for whom iy, has appeared in L, on at least
one occasion prior to t > t

Ui Ui C U,ﬁ is the set of users that have chosen to
rate item i by choosing it from their list Lfl/
at a time ¢’ < t.

B,tc the total budget for item iy € Iy

b, the bid for item i, € Iy, i.e. the amount paid
to the most influential user for a rating

Rl the total revenue made by users in time ¢ from

rating item ix

T(ua|G") | the network value (influence spread) of user u,
on the social network G*

the probability of an item i) in Lf ranked I,
being chosen by user u, for rating

my price paid to rater of item i, who choses to
rate it at time t

pu(lflk)

Table 1: Concepts and notation used.

set of users who have an interest in the item. We assume
that at any time ¢ there is a set of new items I competing
for ratings from users. A producer of items assigns an over-
all budget and a bid amount for each item introduced into
the market at time ¢. The budget determines the maximum
overall spend for a new item and the bid is the maximum
price paid to a user for a rating. The actual price paid is
dependent on the influence of the user with respect to the
item. In the following description we use the concepts and
notation defined in Table 1.

The recommender system places a new item in a user’s
EPR list according to the item rank for the user. The rank
It, of an item i) within a user u,’s EPR list LY is a function
of the bid price for the item b}, and the rate of uptake of the
item ruf at time ¢. The rate of uptake is defined as:

1 if t =tg
Z pu(lor)
t = g €UL
Tk 16'“7)5 otherwise 1)
Z pu(lak)
uaEU;i

where t > ti. The rate of uptake is a measure of the average
appeal of the item computed from the uptake of the item for
rating by users from their respective EPR lists since time ¢.
The number of users with 7, on their EPR list is deter-
mined by the budget and bid for the item, such that |S}| =
B} /bl.. The price paid by the producer of ix to each user in
St that decides to rate the item is mf = bl x (Z(S§)/Z(SL)),
where Sy, is the optimal seed set of size |S%| for item iy.
The expected value of influence spread for S} is then,

EIZ(SLIG)) = > puller)Z(ualG)

uEESZ

Similarly the expected value of the revenue for the paid
raters is E[RL] = mk|Sk|rul,. Hence the objective function
of our combinatorial opimization problem is:

argmax Y B[Z(SLIG)EIR}] (2)

{Sizikelt}ikelt

Thus, we want to allocate items to each user’s EPR list so
as to maximize the influence spread for the new items in I;
while maximizing revenue for the users. In order to perform
this allocation we must address three fundamental questions.
First, how do you transform a rating matrix into an influence
network G of users (noting that this graph itself is dynamic
since the influence of user u; on user u; will change as ratings
are added)? Second, how do you compute the influence of a
user over another? Third, how does influence spread within
the influence network? In the remainder of this section we
describe our solutions to these questions.

3.1 Inferring the Influence Network

We define an influence network as a weighted graph G¢ =
(U, Et). The weight of an edge represents the influence of
one node on another. The graph may be directed or undi-
rected depending on whether the influence metric is sym-
metric or not. In the context of recommendation systems
the medium of influence is the recommendation lists, and
the list for a user u; is dependent on the various users in
u;’s neighbourhood. Influence could be computed based on
the two methods for generating a user’s neighbourhood, ei-
ther using a threshold on similarity or fixing the number of
neighbours for each user. Hence E; can be defined in one of
two ways, leading to two separate influence networks:

G1: (ui,u;) € Ey if the similarity between w; and u; is
greater than some threshold 7. This is a symmetric
measure and so the resulting graph is undirected.

G2: (ui,u;) € Ey if u; is one of the k most similar users to
u; given a fixed number of neighbours £ from which
recommendations are generated. This is not a sym-
metric measure of influence, since u; may not be one
of the k neighbours of u; despite the inverse being true.
Hence this leads to a directed graph.

For both of these graphs, there are two alternatives for de-
termining influence weights, in addition to simply using the
similarity between users. These methods are based on the
following principle. User u;’s influence on w; can result in
certain items (those liked by u;) appearing in wu;’s recom-
mendation list. Equally, the influence of u; could result in
items not liked by u; not appearing in u;’s recommendation
list, despite wu;’s other neighbours liking them. To model
this dual role of item promotion and demotion within the
candidate list of recommendations for u;, we propose the
following two approaches. (Note that p below can either be
1 or 2, depending on which of the underlying graphs, G1 or
G2, are used)

G3|Gp: the similarity between the rating vector of u; and
the unpruned recommendation list (candidate items
and their ratings) for u; can be used as the edge weight.

G4|Gyp: the similarity between the recommendation list for
u; with and without u; in the neighbourhood could be
used as a measure of influence. The lower the similar-
ity, the greater the influence of u; on wu;.



This results in six alternative ways of defining the influence
network. In this paper we limit our experiments to G2,
G3|G2 and G4|G2 as previous research has shown that a
fixed neighbourhood size results in better recommendations
than using a similarity threshold [Herlocker et al. 1999].

3.2 Computing Influence and Influence Spread

There are four ways in which the influence spread of a
user can be modelled within the influence graph:

e Z(u;|Gy), where influence spread is independent of the
item,

o Z(uj|c(ix),Gt), where ¢ : I — D and D is the content
description of items, meaning that influence spread is
dependent on the content of the item,

o Z(u;|Uf, Gt), where the influence spread is dependent
on the users that have already rated the item, and

o Z(uj|c(ix), U}, Gt), where the influence spread is de-
pendent on the users that have already rated the item
and the content of the item.

Now suppose that we have |I| new items that need to be
introduced into the recommender system at time ¢, and so we
must find |I;| sets of users. Clearly there is limited number
of items an individual can rate at any time and so there is
a constraint on the solution that maximizes the objective.

A user may want to maximize their revenue or enjoyment
in consuming the new items. Clearly a user can maximise
revenue by rating lots of items randomly. So a question that
arises is: why should a rater of a new item rate it accurately?
The incentive for providing accurate ratings for items is that
it ensures that the user’s influence on others remains high.
This in turn leads to improved offers to rate new items in
the future and to revenue. Also, since the ratings are added
to the user’s profile, poor ratings will result in poor recom-
mendations in the future. We however acknowledge that the
effect on future earnings may not necessarily create incen-
tives of the right magnitude as suggested in previous liter-
ature [Lambert and Shoham 2008] and future research will
look to quantify the effect of inaccurate ratings or indeed
methods for ensuring more truthful ratings are input.

The producer wants to maximize return on their invest-
ment and the retailer wants to maximize customer loyalty
(and hence revenue) for both paid and unpaid raters. We
assume that if the recommender system is accurate over the
long term, it will increase customer loyalty. Hence, from the
perspective of the retailer, the objective of any intervention
is to make the probability of an item being recommended
converge to the expected value, or for the average rating for
an item to converge to its expected value in a shorter time.

As stated in Equation 2 the solution to the combinatorial
optimisation problem is a set of seed users Si. The ranking
of new items presented to the corresponding users is affected
by the potential of the user to influence others, the bid by
the producer and the likelihood of a user choosing the item.
To compute the influence of a set of users we now adapt the
following algorithms of influence spread in social network
literature to our domain.

1. Degree Centrality: This method produces a ranking
of users in descending order of their outdegree in G.
The seed set Si is simply the set containing the top

|St| elements of the list. We multiply the degree for
each user u, with the uptake probability pu(l%;) to
account for the position that the item i would be in
the user u,’s EPR list. The drawback of using Degree
Centrality for seed selection is that it does not take
into account the overlap in the set of nodes in the
network influenced by the individually chosen seeds
nodes. Hence, the influence spread computed for each
potential seed u;, Z(u;|Gt), is independent of U}.

2. Single Discount: In the Single Discount model [Chen
et al. 2009], when computing the degree of a node v,
the edges from v to any nodes that are already within
the seed set Si are ignored. Given that the original
Single Discount method was based on an undirected
social network, we only consider the outdegree of the
node when computing its influence spread.

3. Degree Discount: Also proposed by Chen et al. and
originally for undirected graphs, this model discounts
the degree of the node v by 2t, + (dy —tv)t,p, where d,
is the degree of v and t, is the number of nodes in v’s
neighbourhood that are already in the seed set [Chen
et al. 2009]. Given that we have a directed graph, for
each node v we distinguish between the outdegree do,
and indegree di,, and their associated sets of neigh-
bours D,(v) and influencers D;(v), and calculate the
discounted degree of v as the expected number addi-
tional nodes directly influenced by v as do, — so, —
Sty — (doy — s0y)p, where so, is the number of seeds
in Do(v), si» is the number of seeds in D;(v) and p
is the probability of a node influencing a node in its
neighbourhood. Where the probability p,. of a node
v influencing a node w in its neighbourhood is depen-
dent on the edge weight (v, w), the discounted degree
is computed as:

H (1 7p'U“i) : (1 + Z p’U“i)

u;€D;(v)NS u; €Do(v)\S

While the Single and Degree Discount heuristics only ac-
count for the direct influence of nodes in the seed set, Greedy
Selection [Kempe et al. 2003] also accounts for the overlap in
indirect influence. Greedy Selection, whether based on the
Independent Cascade Model (ICM) or the Weighted Cas-
cade Model (WCM), is computationally prohibitive. In both
cases the expected value of influence spread is computed us-
ing Monte Carlo methods. Chen et al. [Chen et al. 2009]
showed that Degree Discount actually provides a good ap-
proximation of the results obtained by Greedy Selection. To
measure the influence spread of the seed set chosen by the
degree based algorithms above, we execute the Random Cas-
cade algorithm (either Weighted or Independent) to measure
the influence spread of the seed set.

Unlike the standard usage of influence spread algorithms
in social network analysis, in our case we are interested in
choosing a set of seeds for each of the items in I;. Given our
desire to maximise the expected value of influence spread,
rather than ranking nodes within the influence network solely
based on their network value, we rank nodes by the product
of their probability of uptake and network value.

3.3 The Algorithm

Our market-based approach for seeding recommendations
is embodied by the MarketItem algorithm (Algorithm 1).



Algorithm 1 The Marketltem algorithm.
pu: uptake probability distribution
while I # () do

I*: sorted list of i, € I* in descending order of b} x rul,
for k=1to |I*| do

Bj

B

St SelectSeeds(G",ix)
S} « SelectSeeds(G?, ik, pu)
mi ;E—g%—; x bt
end for
for each u, € U do
C}, «+ selectItemsToRate(L%, pu)
for each i, € Cf do
Tak  rateltem(ix, ua)
BL < BL—m!
end for
end for
for each i, € I' do
rul, + updateRateO fUptake(Lt, CL)
if B! < bl or Ul = U} then
remove iy, from I*
end if
end for
t—t+1
end while

nk

The approach allocates items to users’ EPR lists while there
are new items for which the budget exceeds the bid (i.e.
Bj, > b},).

The first step is to sort the items into descending order
according to the product of bid b%, and rate of uptake ruf.
Then, for each item in turn we select a set of users Sf to
whose EPR lists the item will be added. The number of
users is determined by the bid and the remaining budget,
such that |SL| = BL/bl. As described above, the heuristics
for determining this set of users are based on the influence of
each user for the item, along with the likely uptake by that
user (pu(lly)), which in turn is determined by the position
the item would take on the user’s EPR list. The SelectSeeds
function populates the EPR list L of each user uq in the
seed set Si.. (Note that we do not consider users that have
already rated the item since its introduction into the rec-
ommendation system, and this filtering is incorporated into
SelectSeeds.) In this way, since items are sorted by bid and
rate of uptake, the items with a high bid and rate of uptake
will be considered earlier by the algorithm, and so have an
earlier opportunity to be allocated to the EPR lists of in-
fluential users. We also calculate the optimal seed set S}
that would be chosen if the EPR lists were empty, i.e. the
new item was allocated to the most influential users. The
payment m}, given to users who rate the item is the prod-
uct of the bid and the proportion of the expected influence
achieved by the actual set compared to that of the optimal
set, i.e. ml, = Z(S})/Z(SL) x bl,.

Once all new items have been allocated to the users’ EPR
lists, each user then selects items to rate, and for each se-
lected item provides a rating. When an item is rated by
a user they receive a payment m}, and this amount is de-
ducted from the remaining budget for the item. Finally,
based on the ratings that have occurred in this round, the

rate of uptake for each item is re-calculated and any items
whose budget is spent or that have been rated by all users
are removed from the new item set.

4. EXPERIMENTAL SETUP

4.1 Simulation

To evaluate the MarketItem algorithm we ran simulations
using the MovieLens 100K data set [Herlocker et al. 1999].
Twenty six items (the items with more than 350 ratings)
were picked as surrogates for new items, examples of which
are shown in Table 2. Item bids were assigned at random
to the new item surrogates and a fixed budget was assigned
to all these items. The budget was selected to ensure that
there are sufficient ratings in the original MovieLens data to
provide ratings for the surrogate new items. In this case, the
budget was set to £78 since the lowest bid item had a bid
of 0.2 and 390 ratings (78 = 390 x 0.2). The graph G; was
learnt from the training ratings within the rating matrix,
which consisted of all ratings within the rating matrix other
than those belonging to the new item surrogates.

The simulation ran over a number of cycles (until no fur-
ther paid ratings were obtained), with each cycle being con-
sidered to represent a notional “day”. All new items are
added into the simulation at the start, i.e. on “day 0”. In each
cycle t, each new item k with remaining budget was assigned
to the EPR lists of a set of users Si, with |SL| = BL/bk.
Each new item was limited to be assigned only to users that
have rated it in the MovieLens data (but withheld from the
training data) but have not rated it within a previous simu-
lation cycle®. Each user u, picked m items from their EPR
list L. We modelled m as a random variable that follows
the binomial distribution B(p, k), where p is the probability
of an item on the list being picked, estimated from the data
as the number of ratings per day by the user, and k is the
maximum number of items that a user may pick in one cy-
cle. The probability of a user picking an item off their EPR
list reduced exponentially with the rank of the item on the
list?, i.e., pu(ll,) = a)\pefkplék, where « is the normalisa-
tion constant defined as a = 1/ Zike% )\pe_A”lflk‘ and \p
is a constant that determines how quickly the probability
decays with rank position in the EPR list. Ratings assigned
to the new items picked by the user were the rating of that
item by the user in the full MovieLens rating matrix.

To conduct our simulations, we need a mechanism for sim-
ulating different market conditions. We do this by defining
a probability distribution on the simulation cycles that de-
termines the probability of a cycle occurring. We used an
exponential distribution where the probability of a cycle oc-
curring is p(sc;) = BAre *% where sc; is the ith simu-
lation cycle, A, is a constant that defines how steeply the
probability reduces, and f is the normalisation constant. A

3Note that collaborative filtering could have been used to
predict the ratings for any user chosen to rate an item, how-
ever we chose not to do so as it would add noise to the
evaluation and it would not be easy to infer whether any
difference in accuracy of the methods evaluated in the next
section was a result of errors in rating prediction or an arte-
fact of the method itself.

4This is in line with previous work in recommender systems
where metrics such as half-life utility score have been pro-
posed on a similar assumption [Breese et al. 1998].



Item| Title Num. | Avg. | Std. | Bid Num Ratings Coverage MAE
Id Rat- | Rat- | Dev. Graph A | E[] | Corr E[] | Corr | E]] | Corr
ings ing 0.2 72.7 | 0.8 0.61 [ 0.37 | 0.53 | 0.12
1 Toy Story 452 3.88 109309 0.4] 60.79| —0.83 | 0.58 | 0.53 | 0.56 | —0.15
7 Twelve Monkeys 392 3.80 | 0.98 | 0.5 G2 0.6 | 52.72| —0.85 | 0.55 | 0.61 0.59 | —0.28
50 Star Wars 583 4.36 | 0.88 | 1.5 0.8 47.35| —0.84 | 0.52 | 0.65 | 0.6 —0.33
1 [436| —0.82 | 0.5 | 0.67 | 0.61| —0.35

0.2 72.29] —0.80 0.62 | 0.42 0.52 | 0.11
Table 2: Example surrogate new items. 0.4] 60.57] —0.83 | 0.58 | 0.58 | 0.56 | —0.16|
G3|G2 0.6 | 52.62| —0.83 | 0.55 [ 0.66 | 0.58 | —0.27]
0.8 47.29] —0.81 | 0.52 | 0.7 0.6 | —0.31
1 43.58] —0.78 | 0.5 | 0.72 | 0.61 | —0.33

large value for A, simulates a high rate of new items be-
ing introduced into the recommender system, resulting in a
lower likelihood of later simulation cycles materialising.

Using this method we model the case where our origi-
nal set of 26 new items are “replaced” by other new items,
meaning that the original items appear sufficiently low on
users’ EPR lists that there is little likelihood of them being
selected. Thus a high value of A\, causes the system to be
“flooded” by new items early on in the simulation, in the
sense that although those of our original new items with
high bids will appear high on users’ EPR lists on “day 07,
they will rapidly drop down the lists. Items are placed in
the EPR lists according to a combination of the user’s in-
fluence, the bid, and the rate of uptake. When introduced,
new items receive a rate of uptake of 1, and in subsequent
cycles the rate of uptake for an item is determined by the
number of users that choose to rate that item (as defined in
Equation 1). Consequently, previously introduced high bid
items with remaining budget will appear below new items
with equal bids in a given user’s EPR list (assuming equal
influence for the user). Conversely, lower values of A\, mean
that items are introduced slowly, and there is an increased
probability of later simulation cycles occurring (i.e. our orig-
inal new items still featuring in prominent positions on users’
EPR lists), and in the extreme case this reduces the effect of
the bid value, since all items will eventually appear in high
positions on influential users’ EPR lists.

4.2 Evaluation

As a baseline algorithm, we assigned new items within the
simulation to a random set of users, rather than using any
influence based selection. This algorithm is referred to in
the Results section as Random. One of the objectives of
evaluation is to show that the use of influence based selec-
tion mechanisms outperform random selection. The other
objectives of the evaluation include: (i) evaluating the dif-
ferent methods for inferring an influence network from a
rating matrix, (ii) evaluating the effectiveness of various in-
fluence spread algorithms in selecting users for rating new
items, (iii) evaluating the effect of neighbourhood size on
the influence spread algorithms, and (iv) evaluating the ef-
fectiveness of the MarketItem algorithm to seed new items
into a recommender system in the presence of different “mar-
ket conditions”, as defined by the rate at which new items
are introduced into the recommender system.

To measure the effectiveness of the the MarketItem algo-
rithm, we use the following metrics:

User Coverage (UC): The average percentage of users
for whom a rating can be predicted for the new items. This
value will be 0 at the start of the simulation as the rating
matrix contains no ratings for the new items. With each
cycle of the simulation, as ratings are inserted into the rat-

0.2 73.32] —0.78 | 0.61 [ 0.41 | 0.52 | 0.15
0.4] 60.68 —0.8 0.57 1 0.57 | 0.56 | —0.08
G4|G2 0.6 | 52.57] —0.8 0.54 |1 0.64 | 0.58 [ —0.2
0.8 47.19] —0.78 | 0.52 | 0.66 | 0.59 | —0.26|
1 43.42) —0.74 | 0.5 | 0.68 | 0.6 | —0.29

Table 3: Effect of the Influence Network Inference
methods and )\, on Expected Number of Ratings,
UC and MAE with SingleDiscount and 20 neigh-
bours

ing matrix, the coverage would be expected to increase. We
would expect the MarketItem algorithm to result in the cov-
erage of items to be positively correlated to the bid values of
the items within the first few cycles, and for the correlation
to drop as more cycles of the simulation occur.

Recommendation List Coverage (RLC): The per-
centage of recommendation lists (assuming some size of neigh-
bourhood and recommendation list, we used the values of 5
and 50, respectively, in our experiments) within which the
item appears. Once again we would expect RLC to behave
in a similar fashion to UC.

Mean Absolute Error (MAE): We treat the complete
rating matrix provided by the MovieLens data as the “gold
standard” and compare the item ratings predicted for users
with a null rating in the matrix for the new items using the
full rating matrix with those predicted using the ratings that
have been “seeded” by the MarketItem algorithm. MAE can
be defined as:

1
MAFE = ﬁ Z |fak _rt/lkl

Tak ER

where R is the set of ratings predicted by the full rating
matrix for the new items, 7, is the rating predicted by
the full rating matrix and r., is the rating predicted by
the Marketltem based rating matrix. If the MarketItem
algorithm rating matrix is unable to predict a rating rqx it
uses the average rating for u,. We would expect the MAE
to reduce as the simulation cycles progress and for it to be
lower when using influence based seed selection approach as
compared to the random approach.

To evaluate the MarketItem algorithm we have simulated
a variety of market conditions, by varying A, and ., for
the alternative algorithms for seed set selection, and have
calculated the expected value for each of the three metrics
defined above.

5. RESULTS

Table 3 shows the results of running MarketItem on the
influence network resulting from each of the three methods



Num Ratings Coverage MAE

Neighbrhd| A, | E[] | Corr E[] | Corr | E]] | Corr
Size

0.2 71.72] —-0.79 | 0.36 | 0.68 | 0.64 | 0.02
0.4] 59.39] —0.81 | 0.31 | 0.8 0.67
5 0.6 | 51.21] —-0.8 0.27 1 083 | 0.68 | —0.1
0.8 45.8 | —=0.76 | 0.25 | 0.85
1 42.05] —0.7 0.23 ] 085 | 0.7

—0.06|

0.696| —0.11
—0.11

0.2] 72.7 | —-0.8 0.61 | 0.37 | 0.53 | 0.12

0.4 60.79] —0.83 | 0.58 | 0.53 | 0.56 | —0.15
20 0.6 | 52.72| —0.85 | 0.55 | 0.61 | 0.59 | —0.2§
0.8 47.35| —0.84 | 0.52 | 0.65 | 0.6 —0.33
1 43.6 | —0.82 | 0.5 | 0.67 | 0.61 | —0.35

0.2| 73.47] —0.8 0.72 1 0.19 | 0.44 | 0.25
0.4] 61.11] —0.82 | 0.69 | 0.27 | 0.49
40 0.6 | 53.06] —0.82 | 0.67 | 0.34 | 0.51
0.8 47.72] —-0.79 | 0.66 | 0.39 | 0.53 | —0.2
1 43.98] —0.75 | 0.64 | 0.43 | 0.55

—0.02
—0.18

—0.31

Table 4: Effect of Neighbourhood Size using Single
Discount (A, = 0.9 and Influence Network, G2)

in Section 3.1 for a fixed neighbourhood size. For each met-
ric, the expected value (E[]) and its correlation with the new
item bid values is shown. As can been seen from the results,
the difference is very small, suggesting that the effective-
ness of Marketltem is independent of the method used for
inferring the influence network.

Table 4 shows the effect of neighbourhood size on the cov-
erage and MAE when using the Single Discount algorithm.
The results show that coverage increases and MAE reduces
as neighbourhood size increases. It is also interesting to note
that while the number of ratings is unaffected by neighbour-
hood size (which is expected since the number of ratings is
only a function of item bid and budget and not the influence
network topology), the correlation between the bid and cov-
erage reduces as the neighbourhood size increases. This is
because each rating that is inserted into the rating matrix
by MarketItem, has a wider effect on user neighbourhoods.
Similar patterns are observed for the other influence spread
algorithms, but are omitted here due to limited space.

Table 5 shows the efficacy of the various influence spread
algorithms for a neighbourhood size of 5. As can be seen,
all three influence spread algorithms show an improved cov-
erage over a Random assignment of seeds. For all three
algorithms the improvement over Random is between 33%
and 35% depending on the value of \,. MAE also improves
by between 7% and 14.5%. Of the three influence spread al-
gorithms Degree and Degree Discount appear to be more
effective for the given topology and Degree seems to be
more faithful to the bid values in that there is a negative
correlation between the bid value and the MAE. Interest-
ingly, when the neighbourhood size increases, DegreeDis-
count shows better coverage than Degree (an improvement
of 13.3% for neighbourhood size 20) and SingleDiscount (an
improvement of 8.8% for neighbourhood size 20).

Table 6 shows the effect of the A, and A\, parameters on
user coverage, number of ratings and MAE metrics when
using SingleDiscount for assigning items to influential users.
As )\, increases there is a strong bias, within the simulation,
towards the user picking items at the top of their EPR list.
As these items are by design items with high bid values, the

RLC Coverage MAE
Algorithm A, | E[| Corr | E[] | Corr | E[] | Corr
0.2 0.198] 0.16 | 0.27 | —0.76| 0.69 | 0.29
04| 0.191] 0.15 | 0.25 | —0.69| 0.7 | 0.21
Random | 0.6 | 0.184| 0.15 | 0.23 | —0.58| 0.71 | 0.17
0.8 0.178] 0.15 | 0.21 | —0.47| 0.72 | 0.14

1 0.174] 0.16 | 0.2 —0.38] 0.72 ] 0.12
0.2 0.209| 0.22 | 0.41 | 0.57 | 0.59 | 0.03
0.4 0.206( 0.22 | 0.36 | 0.71 | 0.63 | —0.12
Degree 0.6 0.203]| 0.23 | 0.32 | 0.76 | 0.65 | —0.1§
0.8 0.2 0.24 |1 0.29 | 0.77 | 0.66 | —0.2
1 10.197] 0.25 | 0.27 | 0.78 | 0.67 | —0.21
0.2 0.2 0.24 | 0.36 | 0.68 | 0.64 | 0.02
0.4| 0.194( 0.29 | 0.31 | 0.8 0.67 | —0.06
Single 0.6 0.188] 0.33 | 0.27 | 0.83 | 0.68 | —0.1
Discount | 0.8 | 0.184| 0.37 | 0.25 | 0.85 | 0.696] —0.11
1 1018 | 039 | 023|085 | 0.7 | —0.11
0.2 0.231| 0.16 | 0.43 | 0.55 | 0.6 0.19
0.4 0.219( 0.17 | 0.37 | 0.7 0.63 | 0.04

Degree 0.6]0.209]| 0.18 | 0.32 | 0.74 | 0.65 | —0.01
Discount | 0.8 [ 0.201| 0.19 | 0.3 | 0.75 | 0.67 | —0.04
1 0.195| 0.20 | 0.27 | 0.76 | 0.67 | —0.04

Table 5: Effect of the Influence Spread algorithms
and )\, on RLC, UC and MAE using a neighbour-
hood size of 5

correlation of the coverage with item bid is strongly posi-
tive and the strength of this correlation increases with Ap.
At the same time the coverage itself drops as A, increases.
This is also to be expected as the lower bid items will ulti-
mately get more ratings (since the budget goes further) and
so are likely to get high coverage, assuming that all cycles of
the simulation are completed and the items are not pushed
down the EPR lists by new items with high bids. The data
supports this, and the correlation of coverage with bid falls
substantially for low A, values, i.e. the bid is less relevant
if there are few new items per cycle, since items persist on
the EPR lists and so are likely to be picked eventually.

When A, is low, then low bid items are more likely to
get picked in early cycles of the simulation and so coverage
will be higher, even for large A, values. The difference in
coverage also widens as A, reduces as more influential users
select more low bid items. MAE increases by a very small
amount as A, increases but the effect of A, is more pro-
nounced, where MAE reduces as A\, reduces, i.e. when the
simulation runs for longer with items introduced gradually.
Once again this is expected as in later cycles of the sim-
ulation more users rate the items with lower bids and the
error converges to that observed when using the complete
rating matrix to predict null ratings for the new item surro-
gates. Note that as A\, drops, the correlation of MAE with
item bid goes from being slightly negatively correlated to
being weakly positively correlated suggesting that the error
is more a function of the number of ratings than of the cov-
erage. Finally, the number of ratings increases as A, reduces
which would be expected as more cycles of the simulation
are completed for low A, values.

6. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a new approach to solv-
ing the new item problem. The proposed approach is imple-



Num Ratings | Coverage MAE

Xp | A | E[] | Corr E[] | Corr| E[] | Corr
0.2 72.4 | —0.801 | 0.357] 0.662| 0.651 0.078
0.4 | 60.22[ —0.799 | 0.305| 0.806| 0.674[ —0.017
1.2 0.6 | 52.07 —0.73 | 0.269| 0.845| 0.689[ —0.05
0.8 | 46.66] —0.601 | 0.244] 0.861| 0.698[ —0.057
1 | 429 | —0.451 | 0.226] 0.869| 0.704] —0.055
0.2 | 71.72[ —0.789 | 0.365| 0.683| 0.644[ 0.025
0.4 | 59.39| —0.809 | 0.311] 0.801| 0.67 | —0.066
0.9] 0.6 | 51.21] —0.8 0.275| 0.835| 0.686| —0.101
0.8 | 45.8 [ —0.762 | 0.25 | 0.849| 0.696| —0.112
1 | 42.05| —0.703 | 0.232| 0.856| 0.702| —0.113
0.2 | 71.45] —0.752 | 0.381f 0.611| 0.634| 0.03
0.4 | 58.79| —0.756 | 0.323| 0.772| 0.665| —0.073
0.6 0.6 | 50.58] —0.748 | 0.284] 0.821| 0.684| —0.107
0.8 | 45.17| —0.734 | 0.259| 0.841| 0.695[ —0.116
1 414 | —0.716 | 0.24 | 0.851] 0.703| —0.115
0.2 | 67.67 —0.697 | 0.409| 0.376| 0.618[ 0.105
0.4 | 54.98 —0.673 | 0.353| 0.623| 0.655[ —0.004
0.3] 0.6 | 47.02| —0.65 | 0.315 0.714| 0.677| —0.043
0.8 | 41.85 —0.632 | 0.289| 0.748| 0.69 [ —0.056
1 | 38.29] —0.616 | 0.27 | 0.762] 0.698| —0.06

Table 6: Effect of A\, and A\, on Expected Number
of Ratings, UC and MAE using SingleDiscount with
neighbourhood size 5

mented as the MarketItem algorithm and evaluated using
the MovieLens 100K data set. MarketItem is based on the
principle that it is in the interest of the producers, con-
sumers and retailer to reduce the item latency, and that the
producer of the item would provide money to users to rate
new items. Marketltem uses influence spread algorithms
from social network analysis and adapts them to the goal
of picking the optimal lists of items to present to users that
optimise the coverage of new items within the recommender
system along with the expected earnings of users by rating
these new items. The MarketItem algorithm was evaluated
using a simulation that clearly shows the effectiveness of our
adaptation of the DegreeDiscount heuristic in choosing users
that would be best approached to rate new items.

In the future we aim to apply the MarketItem algorithm
to additional recommender data sets. We further aim to
incorporate item content within the MarketItem algorithm
when selecting a set of users as paid raters. We also aim to
analyse the effect of rating new items on the users influence
on the recommender system. We will aim to quantify the
harm that can be caused by users that rate new items ran-
domly, or through other strategies to increase their revenue
through new item rating.
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