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Abstract—Conventions are often used in multi-agent systems
to achieve coordination amongst agents without creating ad-
ditional system requirements. Encouraging the emergence of
robust conventions in a timely manner through the use of fixed
strategy agents is one of the main methods of manipulating
how conventions emerge. In this paper we demonstrate that
fixed strategy agents can also be used to destabilise and remove
established conventions. We examine the minimum level of
intervention required to cause destabilisation, and explore the
effect of different pricing mechanisms on the cost of interventions.
We show that there is an inverse relationship between cost and
the number of fixed strategy agents used. Finally, we investigate
the effectiveness of placing fixed strategy agents by their cost,
for different pricing mechanisms, as a mechanism for causing
destabilisation. We show that doing so produces comparable
results to placing by known metrics.
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tion, Social Influence

I. INTRODUCTION

Coordination is fundamental to multi-agent systems (MAS)
and self-organisation as it enables systems to operate with
increased efficiency and reduces the costs associated with
mismatched actions. Coordinated actions are required since
incompatible actions cause conflicts or incur costs. However,
it is often impossible to constrain agents’ actions ahead of
time to ensure coordination. This can be due to a lack of
a priori knowledge about clashing actions or the inability
or unwillingness to dictate aspects of behaviour. This is of
particular importance in self-* systems where there is no
centralised control or where the range of possible actions
makes pre-determination infeasible.

In response, many MAS rely on the emergence of conven-
tions, in the form of the expected behaviour adopted by agents,
with minimal prior involvement by system designers. As such,
conventions allow coordinated actions to emerge through self-
organisation, without needing to define behaviour beforehand.
In particular, conventions have been shown to emerge given
only agent rationality and the ability to learn from previous
interactions. Understanding how they emerge and what system
characteristics, such as network topology, might influence them
is an area of active research [1], [2], [3], [4], [5].

Fixed strategy agents, that always choose the same action
regardless of others’ choices, have been shown to facilitate
rapid convention emergence and to influence the adopted
action. A small number of such agents, placed suitably, are able
to influence a much larger population [2], [4], [6]. However,
in realistic domains there is likely to be a cost associated with

inserting a fixed strategy agent, or persuading an agent to act
in a particular way, and it is desirable to minimise this cost.

It is useful to have the ability to replace existing conven-
tions, as well as to establish new ones. Suboptimal conventions
that have emerged, either due to restricted agent knowledge or
a temporal quality of optimality, can be replaced with better
conventions, increasing system efficiency. Understanding how
these changes can be instigated will also allow the design of
mechanisms that increase convention robustness, reducing the
impact of outside influence.

This paper considers what is required to destabilise an es-
tablished convention. We propose temporarily inserting agents,
known as Intervention Agents (IAs), with strategies that differ
from the established convention to influence a population into
discarding the established convention. Using this approach we
show that a small proportion of IAs placed at targeted locations
in the population for a sufficient length of time can destabilise
an established convention, replacing it with another of our
choosing. We also establish that the cost of these interventions
varies inversely with the number of IAs used and that this
effect is replicated across different pricing mechanisms. Finally
we examine how the costs associated with agents may be used
to inform where IAs are placed within the network. We show
that, provided associated costs are a non-random indication of
influence, placing by cost yields results similar to placing by
network position metrics.

The remainder of this paper is structured as follows:
in Section II we examine the related work on convention
emergence and fixed strategy agents. Section III describes the
model of convention emergence and metrics for characterising
conventions used in this paper. The experimental setting is
described in Section IV, and our results are presented in Sec-
tion V. Finally, our conclusions are presented in Section VI.

II. RELATED WORK

A convention is a form of socially-accepted rule regarding
behaviour; there is no explicit punishment for going against the
convention, nor any implicit benefit in the action represented
by the convention over similar actions. The members of a
convention expect others to act in a certain way, and deviation
from the convention increases the likelihood of coordina-
tion problems and costs. A convention is “an equilibrium
everyone expects in interactions that have more than one
equilibrium” [7]. Conventions are able to emerge from local
agent interactions [1], [3], [8], [9] and enhance coordination
by placing social constraints on the actions that agents are
likely to choose [10].



Conventions differ from norms (although the terms are
sometimes used synonymously [4], [11]) as the latter imply an
obligation to adhere with associated punishments for failing to
perform the expected behaviour [12], [13], [14], [15]. Norms
generally require additional system or agent abilities and incur
an overhead to facilitate punishment for violation. In this paper
we do not assume that agents have the capability to punish one
another (or even to observe defections). Instead we focus on
the use of conventions as a lightweight method of increasing
coordination within the system.

Our only assumptions regarding agent behaviour are ra-
tionality and access to a (limited) memory of previous in-
teractions. Convention emergence with these assumptions has
been the focus of numerous studies [1], [4], [6], [9] and has
been shown to allow rapid and robust convention emergence.
Walker and Wooldridge [9] investigated convention emergence
with few assumptions about the capabilities of the underlying
agents. In their model agents select actions based on the
observed choices of others, and global convention emergence
is shown to be possible. Building on this, Sen and Airiau [4]
explored social learning as a model for convention emergence,
where agents receive a payoff from their interactions and use
this to inform their learning. They show that convention emer-
gence can occur when agents have no memory of interactions
and are only able to observe direct interactions. However, their
model is limited in that agents are not situated within a network
topology and can interact with any member of the population,
and the convention space has only two possible actions. In
more realistic settings larger convention spaces and connecting
network topologies are likely.

The effect of network topology and has been shown to have
a significant effect on convention emergence [1], [3], [5], [16].
Recent work has investigated the effect of larger action spaces
and has shown that a larger number of actions typically slows
convergence [2], [6], [17].

The concept of utilising fixed strategy agents, those that
always choose the same action regardless of others’ choices,
to influence convention emergence has also been explored. Sen
and Airiau [4] show that a small number of such agents can
cause a population to adopt the fixed strategy as a convention
over other equally valid choices. This indicates that small
numbers of agents are able to affect much larger populations.

Franks et al. [2], [18] investigated fixed strategy agents
where interactions are constrained by a network topology with
a large convention space. They found that topology affects
the number of fixed strategy agents required to increase con-
vergence speed. They also established that where such agents
are placed is a key factor in how influential they are, with
placement by metrics such as degree or eigenvector centrality
being significantly more effective than random placement.

Previous work often assumes that there are no restrictions
when placing fixed strategy agents into the network. We follow
the assumption that such agents can be placed anywhere, but
we assume that such an insertion has an associated cost. In
real-world domains, inserting fixed strategy agents likely has
a cost, and understanding how to minimise this cost is crucial.
In this paper, we investigate the effect of the cost of insertion
and its relation to the duration and efficacy of intervention.

Relatively little work has considered destabilising estab-

lished conventions, with previous investigations of fixed strat-
egy agents typically inserting them at the beginning of a
simulation. We investigate inserting them when a convention
has already become established with the aim of causing
members of the dominant convention to change their adopted
convention. Previous work has shown that destabilisation is
possible [19], and in this paper we examine the minimum level
of intervention required to cause destabilisation, and explore
the effect of different pricing mechanisms and the effectiveness
of placing fixed strategy agents by their cost.

Villatoro et al. [5], [8] develop techniques for destabilising
meta-stable sub-conventions, which are stable subsets of the
population adhering to secondary conventions. Meta-stable
sub-conventions can slow adoption and prevent the emergence
of an overall convention. Villatoro et al. identified particular
topological substructures that are likely to cause meta-stable
sub-conventions and target them in order to prevent them.
However, their approach focusses on population segments
whereas we examine destabilisation of the entire population.
Moreover, in the work of Villatoro et al. the intention is
to target meta-stable sub-conventions in order to facilitate
better emergence of a primary convention, whilst we seek to
destabilise an already established primary convention.

III. CONVENTION EMERGENCE MODEL

Convention emergence occurs as a result of agents in a
population learning the best strategy over time. A population
contains a set of agents, Ag = {1, ..., N}, who select from a
set of possible strategies, Σ = {σ1, σ2, ..., σn}. Each timestep,
every agent will choose one of its neighbours to perform an
interaction with. Both choose an action from Σ and receive
an individual payoff that is determined by the combination of
actions. In this paper, the interaction and payoff are based on
the n-action coordination game, such that agents receive a pos-
itive payoff if they select the same action and a negative payoff
otherwise. The 2-action coordination game has frequently been
used to explore convention emergence, but we generalise to the
n-action coordination game to avoid restricting the number of
possible conventions to a binary choice.

Each agent chooses the action that it believes will result
in the highest payoff from knowledge of prior interactions.
Agents also have the capability to explore the action space,
such that with probability pexplore agents will choose randomly
from the available actions. In this regard we adopt the approach
of Villatoro et al. [5], using a simplified Q-learning algorithm
for both partners to update their strategies.

Additionally, agents are situated on a network topology
that restricts their interactions to their neighbours. We con-
sider small-world and scale-free topologies as these exhibit
properties observed in real-world networks such as power law
degree distributions and clustering. We also examine random
topologies as a baseline.

A. Convention Metrics

To allow monitoring of convention establishment we need
to formally state when a convention exists and identify the
members of that convention. Previous work has adopted Kit-
tock’s criteria to define when conventions exist, such that a
convention is considered to be established when 90% of the



non-fixed-strategy agents, when not exploring, select the same
action [3]. Whilst a useful method of defining established con-
ventions, this criteria gives no way of examining emerging con-
ventions, or of characterising a convention’s decline if desta-
bilisation occurs. Additionally, it presupposes the ability to
examine agents’ internals to establish when they are currently
exploring, an ability that may not be possible in real-world
domains. As such we utilise the metrics introduced in [19],
which offer finer-grained measurement of conventions during
their emergence, establishment and destabilisation. These are
modified from the work of Walker and Wooldridge [9] and are
defined as follows.

We begin by formalising what it means to say an agent
chose a strategy:

chosex(σ, t) ⇐⇒ ∃i : i ∈ parx(t) ∧ self x(i, t) = σ

where self x(i, t) is the strategy chosen by agent x in interac-
tion i in timestep t, and parx(t) is the set of interactions that
x participated in during timestep t.

We then define the set of agents that have chosen a given
strategy σ ∈ Σ during timestep t as:

chosen(σ, t) = {x|x ∈ Ag ∧ chosex(σ, t)}

We can now consider whether an agent is a member of
a convention, and establish whether a particular convention
exists. Due to exploration of the action space full adherence
to a single strategy is unlikely. As such it is useful to quantify
an agent’s adherence to a strategy φ as the probability of that
agent choosing φ in any potential interaction at time t:

adh(x, φ, t) = P (self x(i, t) = φ | i ∈ parx(t))

An exact measure of adherence is unlikely to be possible
as it requires examination of agent internals for all but the
simplest strategy selection methods. We can determine an
estimate of adherence by examining an agent’s interaction
history, considering the proportion of the last λ interactions
in which the agent selected φ.

We subsequently define the set of conventions Φt that exist
in a population at time t as follows:

φ ∈ Φt ⇐⇒ ∃x : x ∈ chosen(φ, t) ∧ adh(x, φ, t) > γ

That is, a given strategy is considered to be a convention
at time t if there is at least one agent using that strategy
with a probability greater than some threshold γ. This char-
acterisation allows us to capture the notion of a personal
convention analogous to that of a personal norm. We use φ
to denote a strategy that is also a convention and σ to denote
a strategy that may or may not be a convention, allowing us to
distinguish strategies selected by chance, exploration or some
other process and those selected with sufficient frequency to
be considered conventions.

We define the average adherence to a strategy σ to be the
mean adherence across all agents that chose σ in a timestep:

averageAdh(σ, t) =

∑
x∈chosen(σ,t)

adh(x, σ, t)

|chosen(σ, t)|

We assume that the temporal variance of adh is low, such
that an agent who satisfies adh(x, φ, t) > γ at time t is likely
to satisfy it at t + 1. Walker and Wooldridge [9] note that
strategy change has a cost and so the number of strategy
changes can be expected to be minimised.

Using the average adherence, we define a convention
as established if the average adherence is greater than the
convention establishment threshold β:

estbl(φ, t) ⇐⇒ φ ∈ Φt ∧ averageAdh(φ, t) > β

Finally, we can define the extent to which agents are part
of a convention. Agents are members of a convention if they
currently have an adherence to it greater than or equal to β:

member(x, φ, t) ⇐⇒ estbl(φ, t) ∧ adh(x, φ, t) ≥ β

Thus, the membership set for a convention at time t is:

membership(φ, t) = {x|x ∈ Ag, φ ∈ Φt,member(x, φ, t)}

The sizes of the convention membership sets allow us to
monitor the emergence, growth and destabilisation of conven-
tions without having access to agent internals. We are also able
to distinguish between agents who have chosen a strategy at
random and those who are members of the convention.

B. Intervention Agents

As discussed in Section II, fixed strategy agents have been
shown to affect convention emergence when placed in a popu-
lation at the start of a simulation. In contrast to previous work
we examine the effect of their introduction once a convention
has emerged. We call such agents Intervention Agents (IAs)
and, expanding on the work of Franks et al. [2], [18], we
introduce IAs as replacements for agents within the primary
convention (the convention with the highest membership) with
the aim of destabilisation. The length of time these agents
are left within the system is varied to explore the level of
intervention needed to cause permanent change.

The strategy used by IAs depends on the aim of desta-
bilisation. Where IAs use a specified convention the aim
is to promote it whilst demoting the primary. Alternatively,
the primary convention can be demoted whilst not explicitly
specifying a replacement to promote, instead allowing a new
convention to organically emerge. In this paper we focus on
promoting the second most adopted convention and demoting
the primary. Destabilisation without specifying an alternative
convention is beyond the scope of this paper, and has been
considered elsewhere [19].

IV. EXPERIMENTAL SETUP

Our experimental setup is based on that presented used by
Marchant et al. [19], in which a population of 1000 agents
use Q-learning in the 10-action coordination game. The learn-
ing and exploration rate are both set to 0.25. Unless stated
otherwise, all simulations are averaged over 30 runs.

An interaction window of λ = 30 is used for adherence
approximation calculations. The probability threshold for an
action to be considered a convention, γ, is set to 0.5 to enable
more actions to be considered as conventions.



The established convention threshold, β, is set to 0.9.
However, since we do not assume knowledge of whether an
agent is exploring, the threshold must be reduced to account
for random exploration. Therefore, we use: β = 0.9 × (1 −
(pexplore(N − 1))/N)), where N is the number of strategies,
pexplore is the exploration rate, and (N − 1)/N represents the
ratio of random choices that are not the “best” strategy.

Interaction topologies were generated using the Java Uni-
versal Network/Graph Library (version 2.0.1)1. Scale-free
topologies were generated using the Barabási-Albert algorithm
with parameters m0 = 4, m = 3, where m0 is the initial
number of vertices and m ≤ m0 is the number of edges
added from a new node to existing nodes each evolution of
the topology [20]. The Kleinberg model was used to generate
the small-world topologies with a lattice size of 10 × 100,
clustering exponent α = 5 and one long distance connection
per node [21]. As a baseline we also generated random network
topologies using the Erdös-Rényi algorithm. To ensure that the
densities of the graphs were similar a connection probability
of 0.006 was used.

Simulations were run for 5000 timesteps before IAs were
introduced, as convention emergence and stabilisation occurred
within this time in all topologies. At timestep 5000, IAs were
introduced, replacing nodes within the primary convention as
selected by the placement strategy. Unless otherwise stated,
the placement strategy was to select nodes in descending
order of degree. The strategy adopted by IAs is that of the
secondary convention at timestep 5000, i.e. the convention
with the second highest membership. If multiple conventions
have the same membership, the one with the highest average
adherence is selected.

If there are insufficient members of the primary conven-
tion for the required number of IAs then additional IAs are
placed elsewhere in the population, according to the placement
strategy. Note that this implies the primary convention is
immediately destabilised, as all its members become IAs, but
such settings are included for completeness.

The IAs remain either until the end of the simulation or
for a fixed number of timesteps, to investigate the duration
required for destabilisation. When agents cease being IAs
they again use Q-learning to choose actions (their learning
continues during the time they are IAs). Unless otherwise
stated, simulations ran for 10000 iterations in total, to give
conventions after destabilisation enough time to emerge.

Each agent also has a non-negative cost associated with
it. In order for an agent to be an IA this cost must be paid
each timestep. As such, the cost of an intervention is simply
the sum of the costs over all IAs for each timestep that the
intervention occurs.

When considering the minimum cost of intervening we
examine the idea of a minimum intervention, the minimum
length of time that a given number of agents must remain in
the system in order for destabilisation to occur. To quantify this
we introduce a new measure: the crossover ratio χco. Given the
membership level of the primary convention, membprim, and
the membership level of the secondary convention, membsec,

1http://jung.sourceforge.net/
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Fig. 1. The effect of IAs on convention membership in random graphs.

the crossover ratio is defined as:

χco =
membsec
membprim

The minimum intervention is the minimum amount of time
that a given number of IAs must be introduced to cause χco
to exceed some threshold, γco. In this paper we set γco = 1.5
such that the secondary convention must become 50% larger
than the primary to be classed as destabilisation.

V. RESULTS AND DISCUSSION

A. Number of fixed strategy agents

Our initial experiments seek to show that destabilisation is
possible and establish the minimum number of IAs required.
We begin by considering the setting where IAs remain in the
system indefinitely after introduction, to remove the length
of the intervention as a factor. Our initial experiments used
both random and degree-based placement of IAs within the
primary convention. Our results concur with the findings of
Franks et al. [2], [18] and others that random placement of
fixed strategy agents, whilst having the same overall effect,
is inferior to placement by degree in terms of speeding up
convention emergence. Therefore, in the remainder of this
paper we focus on placement by highest degree.

Note that any conventions with zero or near-zero member-
ship have been removed from the following figures for clarity,
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Fig. 2. The effect of IAs on convention membership in scale-free graphs.

as they do not affect the emergence exhibited by the system.
Conventions are labelled to indicate their relative rankings at
timestep 5000.

To establish a baseline we begin by considering random
topologies. Figure 1 shows the effect on convention member-
ship of adding IAs to randomly generated graphs. As can be
seen in Figure 1a, the addition of 50 IAs causes a drop in the
membership of the primary convention after timestep 5000.
The size of this drop is larger than that accounted for simply
by the 50 agents who become IAs, indicating that the IAs are
successful in changing the strategies of agents around them.
However, the convention soon stabilises at a new level and
the influence of the IAs ceases to spread. The secondary con-
vention never becomes established, meaning that the average
adherence to the strategy was too low, and those persuaded to
move away from the primary convention did not become strong
adherents to the secondary. In comparison, Figure 1b shows
that insertion of 100 IAs causes the entire membership of
the primary convention to switch, within only 1000 timesteps.
These results show that there is a minimum number of IAs
required to induce destabilisation, although fewer IAs than this
minimum still cause the primary convention to stabilise at a
lower level.

With a baseline established we now examine the effect on
topologies that better represent the features found in real-world
networks: scale-free and small-world. Figure 2 shows the
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Fig. 3. The effect of IAs on convention membership in small-world graphs.

results for scale-free topologies. The number of IAs required to
exhibit the same behaviour as before is far fewer. In particular,
destabilisation occurs with 40 IAs instead of 100. Fewer agents
than this fail to cause destabilisation, achieving a drop in
membership in the primary convention by influencing their
local neighbourhood without propagating this further. This
indicates that there is a topology-specific minimum number
of IAs needed. The changeover in Figure 2b takes longer than
in Figure 1b, but with larger numbers of IAs the speed of
the transition increased. Thus, additional agents beyond the
minimum speed up destabilisation.

The results for small-world topologies (shown in Figure 3)
show similar behaviour to that presented above but there are
some distinctions to highlight. Firstly, the overall level of
membership is lower than in scale-free and random graphs
and, secondly, changes take effect more gradually. Franks
et al. [2] have observed similar differences between scale-
free and small-world topologies and we hypothesise that the
clustered nature of small-world networks is responsible for
these effects. However, as in other topologies, a minimum
number of agents is required to cause a destabilisation to occur.

Within all three topologies there is some topology-specific
minimum number of IAs that must be placed within the
network in order for destabilisation to occur. Fewer IAs than
this minimum allow the primary convention to stabilise at a
lower level whilst additional IAs will increase the speed of
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Fig. 4. The effect on convention membership in scale-free graphs of 40 IAs
when introduced for a finite time.

destabilisation.

B. Length of Intervention

Having established the minimum number of agents required to
cause destabilisation we now examine the minimum duration
that is required. Due to the similarities in behaviour between
random and scale-free topologies, only scale-free and small-
world networks are considered in the remainder of this paper.

Whilst the previous simulations for scale-free networks
allowed IAs to remain indefinitely, we now include them
for finite time. This examines the ability of the primary
convention to recover from temporary interventions. Figure 4
shows the effect of including 40 IAs for various durations.
Figure 4a shows the behaviour when the IAs are inserted
for 500 timesteps and then removed. Destabilisation begins to
occur but, when the IAs are removed, the primary convention
rapidly reclaims those agents who had changed. However, not
all of them are reclaimed and the secondary convention has
a small but notable membership after the intervention. This
indicates that there is a minimum duration that IAs must be
present to prevent the primary convention from reclaiming a
significant proportion of the population. This is supported by
Figure 4b where the IAs are present for twice as long and cause
destabilisation to occur (though not fully). In this instance the
primary convention reclaims some agents when the IAs are
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Fig. 5. The effect on convention membership in small-world graphs of 40
IAs when introduced for a finite time.

removed but stabilises at a far lower level than before the
intervention.

Corresponding results for small-world topologies are pre-
sented in Figure 5. As before, the overall behaviour is the same,
although there are some differences in small-world networks
(namely the presence of a secondary convention before the
intervention). The required IA duration was 1500 timesteps,
which is significantly longer and is due to the more gradual
adoption of change in small-world topologies.

Hence there is both a minimum number of IAs and a
minimum length of time that they must be present in order
for them to induce destabilisation. That is, there is a mini-
mum intervention within each topology that must be met for
conventions to undergo lasting change.

C. Cost of Intervention

To examine how the cost of destabilisation relates to the
number of IAs used, we calculated the cost of the minimum
intervention for various numbers of IAs. In order to find the
minimum intervention for a given number of IAs the length
of time that the IAs were inserted into the population was
increased in steps of 50, starting from 0. For larger numbers
of IAs (≥ 200) the length was increased in steps of 5, to add
finer granularity to the minimum intervention approximation.
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Fig. 6. Number of IAs vs. the minimum cost to cause destabilisation for
scale-free topologies. Placement is by degree and the pricing mechanism used
is labelled on the graphs.

The minimum intervention is defined as the smallest inser-
tion time such that the crossover ratio of the averaged runs was
greater than γco = 1.5. Whilst this is not the true minimum it
gives an approximation which is sufficient for our calculations.

Initial experiments used a uniform price for all IAs, with
each IA costing one unit each timestep. The number of IAs
was varied from 40 (the minimum number needed to induce
destabilisation in both topologies) up to 500. The latter is an
unrealistically large proportion in most real-world domains,
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Fig. 7. Number of IAs vs. the minimum cost to cause destabilisation for
small-world topologies. Placement is by degree and the pricing mechanism
used is labelled on the graphs.

representing half of the population, but is included for com-
pleteness.

Figures 6a and 7a show the results for scale-free and
small-world topologies2 respectively. The cost of minimum
intervention for both topologies decreases as the number of
IAs increases, following an inverse relationship. Whilst the

2The artefacts present in all of the small-world results are due to how the
minimum length was calculated. 80 and 90 IAs both had the same minimum
length to the nearest 50 for instance.



cost per timestep increases, due to more IAs, the amount of
time needed before destabilisation occurs decreases at a faster
rate and hence the overall cost falls.

While both topologies exhibit this behaviour, the cost of
minimum intervention in small-world topologies is generally
higher than that in scale-free topologies, particularly with
smaller numbers of IAs. This is again due to convention
adoption in small-world topologies occurring at a slower rate
than in scale-free networks and hence the IAs must remain for
the same effect.

Uniform cost amongst agents is unlikely in real-world
domains and so we consider additional pricing mechanisms.
Figures 6b and 7b show results for the cost of minimum
intervention where agents are priced directly based on their
degree. Figures 6c and 7c present results where IAs have a
cost selected at random from between 0 and 1. Note that in
this set of results IA placement is by degree.

Whilst the scale of the graphs for these results vary,
the relationship for each pricing mechanism is similar, with
decreasing costs and diminishing returns as the number of IAs
increases. This indicates that, regardless of how IA costs are
calculated, it is cheaper to place as many IAs as possible into
the system at high-degree locations. However the effect that
this will have becomes substantially reduced after around 10%
of the population (100 IAs).

D. Cost-based Placement

In the above experiments we assume that information about
the topology and agents’ characteristics, such as degree, are
available. We now consider the situation where information
such as the degree of agents is hidden, and all that is known is
an advertised cost which may or may not be a good indication
of an agent’s influence.

Figures 6c and 7c correspond to the case where the cost
gives no indication of influence. However, in these simulations
the degree of agents was still available and used for placement
decisions. In the following experiments, IAs are placed at high-
cost locations, rather than assuming knowledge of degree.

Our previous experiments also assumed that multiple sim-
ulations could be performed ahead of time, slowly increasing
the duration of intervention to find the minimum effective
duration. In real-world settings this is impractical and instead
an intervention must be monitored in real-time to establish
whether destabilisation has occurred and the IAs can be re-
moved. In the following experiments we use moving averages
(with a window size of 30 timesteps) to calculate the current
χco within a simulation. When this exceeds γco we consider
destabilisation to occur and the IAs are removed and the
simulation terminated. The cost up to this point represents the
cost of a minimum intervention. If this condition is not met by
timestep 10000 then the run is deemed unlikely to destabilise
and is marked as invalid. For the minimum interventions to be
considered representative (rather than occurring by chance),
2/3 of the runs must be valid. If this condition is met then the
average minimum cost over the valid runs is calculated.

We begin by considering the effect of pricing (and hence
also placing) agents by degree in scale-free networks, with
the results shown in Figure 8a. Whilst this setting has the
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Fig. 8. Number of IAs vs. the minimum cost to cause destabilisation for
scale-free topologies. Agents are placed at high cost locations.

same placement and cost mechanism as presented in Figure 6b,
the method of calculating minimum interventions is distinct.
That the two sets of results are similar indicates that the two
methods are equally valid for determining the minimum inter-
vention, and provides a basis for further pricing mechanisms.

In order to change from degree-based placement we ex-
amine the process of pricing and placing randomly. Figure 8b
presents these results. Whilst the relationship between cost and
the number of IAs remains, a larger number of IAs is needed
to give sufficient valid runs. This is to be expected, as similar
results regarding random placement were found above and in
previous work. Importantly, even when placing randomly, we
see an inverse relationship regarding the number of IAs and
cost.

These pricing mechanisms were also examined for small-
world topologies. Figure 9a shows the effect of placing and
pricing by degree for these topologies. Unlike in scale-free
networks, the behaviour for low numbers of IAs differs from
that found previously. However, when 80 or more IAs are
introduced the relationship matches that of Figure 7b, which is
expected. Further experimentation revealed that this is due to
the variation between different runs on small-world topologies
being greater than in scale-free topologies. The ratio of valid
runs for degree-based cost placement in small-world topologies
is shown in Figure 10. As the number of agents increases the
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Fig. 9. Number of IAs vs. the minimum cost to cause destabilisation for
small-world topologies. Agents are placed at high cost locations.
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Fig. 10. Number of IAs vs. valid run ratio in small-world networks with
pricing and placement by degree.

proportion of valid runs increases. In comparison, scale-free
topologies were found to exhibit a binary valid run ratio, such
that either all runs were valid or none were. As such, the 2/3
valid runs threshold correctly captures when destabilisation is
consistently occurring in scale-free topologies. For small-world
topologies the gradual change means that runs that contain
destabilisation but are not representative will be counted, as
indicated by the lower dotted line in Figure 10. Setting the
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Fig. 11. Number of IAs vs. the minimum cost to cause destabilisation for
scale-free topologies. The pricing mechanism is degree with additional noise
with IAs placed at high cost locations. Noise is varied from 0.1 to 0.7 in steps
of 0.2.

valid run threshold higher (0.85 is also shown) means that
valid runs will be better indicators of minimum interventions.
The effect of alternative valid run thresholds is shown in
Figure 9. This gives an important insight into the nature of
small-world topologies, namely that individual simulations are
less predictable for lower numbers of IAs than their scale-free
equivalents.

Finally we examine the situation where the advertised cost
of an agent is an imperfect indication of their degree (and
hence influence). This pricing mechanism is useful in many
real-world domains where agents may be asked to estimate
their own influence or where topology information is unreli-
able. This is modelled by selecting each agent’s advertised cost
from a Gaussian distribution:

cost(v) = N
(
deg(v), (deg(v)× noise_level)2

)
That is, the cost is equal to the degree plus Gaussian noise with
a standard deviation equal to some fraction of the degree.

Results for this setting are shown in Figure 11. For both
scale-free and small-world topologies the noise level, n, was
varied from 0.1 to 0.7, and the valid run ratio threshold was set
to 0.85 to remove the artefacts present in small-world graphs.

The effect in both topologies of increasing noise is to



increase the overall cost that is needed to cause destabilisation.
The results are shown on a log-log scale to more easily
distinguish this. However, even with 70% noise being applied,
the relationship between cost and number of IAs remains the
same. As long as the cost is known to be a function of degree,
rather than truly random, it is beneficial to base placement
decisions on this information even if it is substantially noisy.

Amongst all pricing mechanisms the same inverse rela-
tionship between number of IAs and overall cost remains.
However, the number of IAs required to consistently cause
destabilisation is affected by this mechanism. Hence the best
strategy is still to insert as many IAs as possible, using
advertised cost if no other metrics are available.

VI. CONCLUSIONS

We have shown that it is possible to cause destabilisation
of existing conventions by the insertion of a small proportion
of fixed strategy Intervention Agents into the population at
key locations. By setting the strategy of these agents to that
of the second largest convention we have shown that the
primary convention can be destabilised and replaced with the
secondary. In scale-free and small-world topologies we found
that 40 IAs in a population of 1000 were sufficient to cause
this, whilst in random topologies 100 IAs were needed. Fewer
IAs than this were shown to cause a fall in the membership
of the primary convention in each topology, but not enough to
make the secondary convention dominant.

We have also shown that temporarily inserting IAs can also
cause destabilisation, and that there exists a minimum length of
time that they must be present in order to cause this. Removing
IAs prior to this minimum duration will cause the primary
convention to return to near previous levels. We found that the
minimum length of time required was smaller in scale-free
topologies than small-world topologies.

Next we considered the cost of these interventions, and
show that, independent of whether cost is random, uniform, or
linked to degree, the cost of minimum intervention is inversely
related to the number of IAs. However, the relationship is
one of diminishing returns. As such, placing as many IAs as
possible into the system is beneficial but the additional effect
generated reduces substantially after 10% of the population.

Finally, we explored the effect of placing IAs by cost and
monitoring destabilisation in real-time. The same relationship
between number of IAs and cost was found to hold regardless
of pricing/placement mechanism although higher numbers of
IAs may be needed to sufficiently guarantee destabilisation.
We also found that small-world topologies vary in this respect
more between simulations than scale-free networks. The effect
of noise on the degree-based pricing mechanism was also
considered. It was found, for both topologies, that the effect of
noise was to increase the overall cost of minimum interventions
but to not affect the relationship between cost, the number of
IAs, and the duration of minimum interventions. We conclude
from this that placing by advertised cost would offer reasonable
results, assuming non-random pricing.

Overall we have shown that destabilisation and replacement
of an established convention is possible and that minimum
criteria exist in order to cause this. We have also presented

a number of ways of evaluating how much an intervention
might cost using various pricing methods and demonstrated
the relationship between number of IAs and cost.
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