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ABSTRACT
Predicting the future actions of individuals from geospatial
data has the potential to provide a basis for tailored services.
This work presents the Predictive Context Tree (PCT), a
new hierarchical classifier based on the Context Tree sum-
mary model [8]. The PCT is capable of predicting the future
contexts and locations of individuals to provide a basis for
understanding not only where a user will be, but also what
type of activity they will be performing. Through a com-
parison to established techniques, this paper demonstrates
the applicability of the PCT by showing increased accura-
cies for location prediction, and increased utility through
context prediction.

CCS Concepts
•Computing methodologies → Classification and re-
gression trees; •Information systems→ Location based
services;
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1. INTRODUCTION
Accurately being able to predict the future actions of in-

dividuals from geospatial trajectories allows for the provi-
sion of timely information that can influence the behaviour
of an individual or group. Where existing work has pri-
marily focused on predicting the location a user will next
visit, context prediction instead aims to identify the context
that the person will be immersed within, paving the way
for understanding what the user will be doing in the future.
Building upon the Context Tree data structure [8], the re-
mainder of this paper presents and evaluates the Predictive
Context Tree (PCT), a hierarchical classifier that is capable
of predicting both future locations and future contexts of
individuals.
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Figure 1: Example Context Tree

2. RELATED WORK
Predicting the future location of individuals and devices

from geospatial trajectories has been considered in the liter-
ature, using various techniques including neural networks [1,
5], support vector machines (SVMs) [9], and Markov mod-
els [2, 6, 7]. Originally motivated by the desire to predict
movement around cellular networks [5], recent work extracts
meaningful locations from trajectories and uses these as a
basis for prediction [2, 6].

Identifying the context of user actions has also been con-
sidered in the literature, where the goal is to identify periods
of time in which the user was likely performing the same task
or had a similar goal [3]. These contexts have been used to
improve location predications [4].

2.1 The Context Tree
For the purpose of identifying contexts, the Context Tree

data structure has been proposed [8]. The Context Tree is
constructed by identifying real-world features (e.g. buildings
and roads) that an individual has interacted with and clus-
tering these elements together based on their semantics, and
properties of the interactions, using a hierarchical clustering
algorithm. The algorithm creates a tree-like data structure
where leaf nodes represent individual features, and non-leaf
nodes are contextual clusters, as illustrated in Figure 1.

The Context Tree therefore summarises the historical con-
texts of an individual in a single hierarchical data structure,
creating a basis for predicting the future context of a user.
Such predictions would help to better understand what the
user is likely to be doing, as well as where they will be.



Figure 2: Classification methods for Predictive Context
Trees. Classification begins at the root node, selecting chil-
dren to follow based on the output of their binary classifiers.
The algorithm would follow the solid green arrows for con-
text prediction, or carry on down the dotted orange arrow
for element prediction

3. THE PREDICTIVE CONTEXT TREE
The Predictive Context Tree (PCT) is an extension to the

Context Tree data structure that is capable of both sum-
marising a user’s historic contexts as well as predicting their
future context as a classification model. Initial Context
Trees are trained according to the procedure outlined in [8]:
geospatial trajectories are augmented with land usage ele-
ments to identify the real-world feature that the person was
likely interacting with. These elements are then clustered hi-
erarchically to identify contexts that the user was immersed
within. The procedure outlined in [8] allows an arbitrary
number of land usage elements to be associated with each
trajectory point, but in this work for the purpose of pre-
diction we impose a limit of one element per point. This
element is selected during filtering by considering only ele-
ments smaller than a specified size, maxradius, and selecting
the one with the highest assigned score.

The Context Tree representing the identified clusters is
then converted into a hierarchical predictive model by turn-
ing each non-root node into a binary classifier, in our case
an SVM. Each classifier aims to answer the question “does
this instance belong in the subtree rooted at this node?”
when presented with an unlabelled instance. Overall classi-
fication of an instance occurs by starting at the root node
and requesting a classification from each of the root’s chil-
dren. The child with the highest confidence, determined by
logistic regression, in a yes classification is selected for con-
sideration. Here, the goals of the prediction are considered.
If the prediction requested is for a context, then the child
is followed only if its confidence is above some threshold,
Ts, and the process repeated. This is shown by solid green
arrows in Figure 2 (for Ts = 0.5). If, however, a land usage
element is requested then the PCT must return a leaf node,
and so the threshold is ignored and the child with highest
confidence is followed at each stage until a leaf node is found
(Figure 2, following the solid then dashed arrows).

3.1 Training a PCT
As Predictive Context Trees are made up of binary classi-

fiers, they are trained in the same way as other classification-
based approaches. A set of instances is provided as the

Figure 3: Example of how a training instance is treated by
each classifier when the class label is associated with the
node labelled ‘class’. All nodes labelled with ‘+’ treat this
instance as a positive example, nodes labelled ‘-’ treat it as
negative, while nodes without a label ignore this instance
for training.

training set, where the class label refers to the next element
or context the user interacted with. These instances are fed
into each node’s classifier in turn, with the class variable
modified to become binary in the following ways:

• If the instance’s class represents this node, it is used
as a positive training example

• If the class represents a node in the subtree rooted at
this node, it is a positive example

• If the class represents a sibling of this node, or a de-
scendant of a one, it is a negative example

• If the class represents an ancestor of this node, it is a
negative example

• If the class represents any other node, it is ignored and
not used for training in this classifier

An example of how each node treats a particular instance
is shown in Figure 3. It is through such a training procedure
that the hierarchical links between contexts and elements
are learnt by the PCT. Intuitively, each node’s classifier is
trained to return yes if the instance belongs to itself or one
of its descendants, or no if the instance belongs to a sibling or
one of their descendants (i.e. following this particular child
would be a mistake). The SVM classifiers in each node can
now be trained using instances with known class labels.

4. EXPERIMENTAL METHODOLOGY
This section details the experimental methodology fol-

lowed to evaluate the applicability of the PCT to the task of
context and location prediction. For evaluation, we employ
trajectories collected from 10 members of the University of
Warwick over a period of 6 months. Additionally, we use
land usage information from OpenStreetMap1.

4.1 Extracted Locations
The first stage of evaluation is using existing location ex-

traction and prediction techniques to provide a compari-
son for predictive accuracy. Locations are extracted using
a widely-used approach, that of identifying subtrajectories
that are smaller than a specified radius and longer than a

1https://openstreetmap.org/



specified duration [10]. For this work, we set the maximum
radius as 50m, and vary the minimum duration, dmin, to
explore its impact. Clustering locations is then performed
with DBSCAN, with parameters minpts = 0, eps = 15m.

4.2 Land Usage Elements
Land usage interactions are identified through the pro-

cedure presented in Section 3. These interactions can be
considered both as a basis for prediction using established
techniques, as extracted land usage elements mirror identi-
fied locations, and as a basis for PCT generation. In order
to produce a representative comparison, parameters are se-
lected that aim to mirror the extracted locations as best
as possible: the maximum element size is constrained to be
50m across, and the same values of dmin are used for explor-
ing its impact on predictive accuracy. Additionally, δ, the
width of the buffer to consider when selecting land usage el-
ements, is set to 5 minutes and λ, the weighting assigned to
semantic similarity over feature similarity when determining
contexts, is set to 0.6, selected empirically.

4.3 Predictions
Training instances for each technique are generated by se-

lecting interactions with locations or extracted features that
last longer than dmin minutes. Higher values of dmin will
remove noise, while smaller values allow for the identifica-
tion of locations and elements that the user interacts with
briefly. Interactions are then summarised into a set of fea-
tures: day of year, day of week, hour, minute, duration, cur-
rent element/location, class (next element/location). These
instances are then used to train both existing techniques,
specifically SVMs and hidden Markov models, and the PCT.

When predicting individual locations or elements, a cor-
rect prediction is one where the class value of the test in-
stance matches the class value returned by the model. A
PCT prediction can be considered context correct if the node
represented by the predicted class label is an ancestor of the
actual class node.

5. RESULTS
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Figure 4: Predictive accuracy using existing prediction tech-
niques, for extracted locations and land usage elements
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Figure 5: Predictive accuracy for element prediction using
the PCT, with SVMs shown as a comparison
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Figure 6: Predictive accuracy for context prediction using
the PCT (Ts = 0.6)

The predictive accuracy for both location prediction and
element prediction is shown in Figure 4, for different val-
ues of dmin. The results indicate that in both cases, SVMs
outperform hidden Markov models. The figure also demon-
strates that for small values of dmin (i.e. visit durations of
less than 25 minutes), higher predictive accuracy is seen
by predicting over extracted locations than land usage el-
ements. Beyond this point, however, the predictive accu-
racy is consistently better when using identified land usage
elements. While both sets of data provide a similar foun-
dation for predicting the future movements of an individ-
ual, elements have a greater relationship with the real world
and contain information about the features they represent.
As would be expected, the predictive accuracy for all tech-
niques increases with dmin, as predicting longer interactions
reduces noise.

Using the same augmented trajectories as the element pre-
dictors in Figure 4, Figure 5 shows the accuracy attained by



0

20

40

60

80

100

S
V

M
,

L
o
cation

S
V

M
,

E
lem

en
t

E
lem

en
t

P
C

T
C

on
tex

t
P

C
T

(a) dmin = 20min
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Figure 7: Comparison with previous results

the PCT when predicting elements. The results demonstrate
that the PCT performs similarly to the existing approach,
providing a good foundation for understanding individuals
through predicting their next interactions. The PCT is also
capable of predicting contexts, with results for context pre-
diction shown in Figure 6. Element predictions are returned
when there is high confidence (≥ 0.6 in this case), other-
wise context predictions are returned according to the pro-
cedure outlined in Section 3. A comparison of the results
from the four prediction schemes is shown in Figure 7 for
dmin = 20min and 1hr.

In Figure 7, the best predictive accuracies are attained
by the context-prediction PCT, when combining the ele-
ment correct and context correct scores. For dmin = 20min,
predicting over extracted locations has a slightly higher ac-
curacy than using identified land usage elements. With
dmin = 1hr, however, predictive accuracies are significantly
higher when using identified land usage elements as a ba-
sis with either existing techniques or the PCT. Although
the difference between established techniques and the PCT
in element mode is minimal, when combining this with the
context correct predictions, the PCT offers additional utility
over existing techniques. Figure 8 demonstrates the effect
that the selection threshold (Ts) has on predictive accuracy,
where higher values of Ts make it much more likely that
a prediction will stop higher up in the tree, yielding more
context correct, and fewer element correct predictions.

6. CONCLUSION
This work has presented and evaluated the Predictive Con-

text Tree (PCT), a hierarchical classification model for pre-
dicting the future locations and contexts of individuals from
geospatial trajectories. Additionally, we have demonstrated
the applicability of predicting future interactions with land
usage elements using existing machine learning techniques,
with results indicating that land usage elements offer supe-
rior predictive accuracy than extracted locations. The PCT
has been demonstrated to produce accuracies commensurate
with existing approaches when predicting elements, and in-
creased utility over these approaches when considering con-
text prediction.
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Figure 8: Selection threshold, Ts, against accuracy (dmin =
20min). The dotted blue line represents Ts = 0, i.e. element
prediction, and the dashed red line shows Ts = 0.6, i.e.
context prediction from previous figures
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