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Abstract
In today’s distributed and heterogeneous systems, prove-

nance data is becoming increasingly important for under-

standing process flow, tracing how outputs came about, and

enabling users to make more informed decisions based on

such outputs. However, within such systems, the sources

(computational or human) that generate provenance may

belong to different stakeholders operating under different

policies. Thus, being autonomous and self-interested, these

stakeholders may claim untrue data to protect their inter-

ests (e.g. to justify bad performance). In response, this pa-

per proposes a corroboration methodology for verifying a

claim made by a source, via confirming it against the claims

of other sources. In particular, given a claim in PROV, this

claim is generalised to varying levels of abstraction, deriv-

ing two types of provenance templates, namely confirmation
patterns, capturing the information to be confirmed, and wit-
ness patterns, capturing the relevant witnesses. These pat-

terns are utilised to find relevant evidence, among the re-

ports of others, that supports the claim, and to respectively

estimate the reliability degree of the claim. The proposed

corroboration methodology is illustrated via a case study in

the service provision domain.

Keywords Corroboration, Provenance Abstraction, Confir-

mation Pattern, Witness Pattern, Provenance Template

1. Introduction
The advances in network and communication technologies

have enabled the emergence of complex, distributed com-

puting systems, where the interacting parties are indepen-

dent, heterogenous, and reside at different sites. Such sys-

tems bring many advantages to various parties including or-

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page.

TaPP 2017, June 22-23, 2017, Seattle, Washington.

Copyright remains with the owner/author(s).

timestamp

activity activityentity

attribute1=value1
attribute2=value2

agent

wasAssociatedWith

usedwasGeneratedBy

agent actedOnBehalfOf

Figure 1. PROV graph illustrating the key elements

ganisations, businesses, societies and individuals. For exam-

ple, individual users connected to open networks have ac-

cess today to a vast amount of information, goods and ser-

vices. Likewise, enterprises can utilise such distributed com-

munication capabilities not only to advertise and sell their

products and services to end-users in an efficient and cost-

effective manner, but also to automate their interactions with

their trading partners (e.g. suppliers).

Within such systems, provenance data is important for

understanding the processes under which interactions took

place, tracing the context of achieved result data, and pro-

viding individuals with useful information to support their

decision making in selecting future interaction partners. The

PROV model (Moreau and Groth 2013) provides a suitable

solution for generating (and interpreting) provenance infor-

mation by system members. A PROV document describes

in a queryable form the causes and effects within a partic-

ular past process of a system as a directed graph with an-

notations. A visualisation of such a graph, showing PROV’s

key elements, is shown in Figure 1. In summary, an activity
is something that has taken place, making use of or gener-
ating entities, which could be data, physical or other things.

Agents are parties that were responsible for (associated with)

activities taking place, and one agent may have been acting
on behalf of another in this responsibility. Activities, entities

and agents (graph nodes) may be annotated with key-value

attributes describing features that the elements had. Times-
tamps can also be added to show when entities were used or

generated by activities.

However, system members (which we henceforth refer to

as provenance sources) are potentially autonomous and self-



interested entities, acting to maximise their own utilities.

Hence, when asked to supply provenance data, they may

claim untrue events in order to protect their interests and

increase their own profit. For example, in a service-oriented

marketplace, a service provider may try to justify a poor

performance by falsely claiming to be affected by some

freak circumstances that are out of its control, in order to

avoid reputation loss.

This paper contributes towards solving this problem by

introducing a corroboration methodology that seeks evi-

dence in the provenance data of other sources to assess

the truthfulness of a provenance claim made by a source.

The methodology involves deriving corroboration patterns

at multiple abstraction levels to direct the search for evi-

dence, estimating the degree of uncertainty underlying the

evidence found, and incorporating the evidence found and

its associated uncertainty into an overall reliability score

for the claim. This reliability score reflects the degree of

confidence that the claim is true. The rest of the paper is or-

ganised as follows. The definition of a claim in presented in

Section 2. Sections 3 and 4 introduce the proposed corrob-

oration methodology, and illustrate this methodology via a

service provision case study, respectively. A discussion with

related work is provided in Section 5, and finally Section 6

concludes the paper.

2. Claim Definition
A provenance report supplied by a source can be viewed

as a collection of claims, each corresponds to a particu-

lar event conducted/experienced by a source. The reliabil-
ity of a claim from a source can be assessed via comparing

the claim against the reports of other sources. Events con-

ducted/experienced by a source may vary in their degrees

of observability by others. Some events might be local, i.e.

private to the claiming source or observed by a small com-

munity around it (e.g. the event of sub-contracting a task

might only be observed by the delegator and the delegatee).

Other events might be more global, i.e. observed by a larger

community of sources (e.g. a storm affecting shipment of

goods should potentially be observed by a large community).

Therefore, when assessing the truthfulness of a claim, it is

important to identify which sources qualify as relevant wit-
nesses for the claim, and to judge the reliability of the claim

accordingly. For example, a claim confirmed by 3 out of 4

relevant independent witnesses should be regarded as more

reliable than that supported by 3 out of 15 relevant indepen-

dent witnesses.

For this purpose, two parts are distinguished in a claim, a

main part and a supplementary context part. The main part

captures the core idea expressed by the claim. The context

part gives extra context information related to the claim, in-

dicating the witnesses that are potentially relevant for assess-

ing the claim. For example, a service provider X may claim

that its service execution Y , which occurred around time T

at location L, was influenced by event Z. In this case, the oc-

currence of the event is the core idea (main part), while the

time and location details are additional context information

(context part). This context part indicates that the providers

relevant for judging this claim’s truthfulness are those that

operated (provided services) around time T and around lo-

cation L. Generally, what constitutes the main part and the

supportive context part of a claim is application dependent,

and can be pre-defined via templates at design time. We re-

fer to the main part and the context part of a claim as M and

W , respectively. That is, claim = (M,W ).
Each part of a claim, main or context, is made up of

one (or more) clauses. Claims within a provenance report

may overlap in their clauses, e.g. the same clause may be

shared among several claims. Each clause is assumed to be

of the form rel(c1, c2), where rel is a relationship connect-

ing between concepts c1 and c2, where c1 is the subject and

c2 is the object (same order as in PROV-N for properties).

Each concept c is associated with a type (semantic class),

type(c), and possibly an individual, referent(c), that is an

instance of this class. That is, each concept c is of the form

type(c) : referent(c). If concept c is not associated with

a specific individual, referent(c) = ⇤ indicating a generic

individual.

If we were using PROV to document provenance, a clause

is mapped to PROV data model, as follows. Each concept c

is either a PROV node (entity, activity, or agent) or an at-

tribute value. Each relationship rel is either a PROV prop-

erty connecting between PROV nodes (e.g. used, wasGener-

atedBy, etc.) or an attribute key. We do not restrict the rep-

resentation to basic PROV nodes and properties, but assume

these are potentially extended to model provenance in differ-

ent application domains. In particular, type(c) 2 T , where

T = T

e

[T
a

[T
g

[T
p

is the set of concept types in the appli-

cation domain. These concept types are structured in a lattice

according to the is-a (subclass) relation, with all being the

universal type, and null being the absurd (minimal type).

Sub-lattices T

e

, T

a

, and T

g

contain the concept types that

are subclasses of prov:Entity, prov:Activity, and prov:Agent,
respectively, while T

p

is the set of all primitive types for at-

tribute values. Similarly, rel 2 R, where R is the set of re-

lationships in the application domain extending PROV basic

properties and attributes (these relationships may or may not

be structured in a lattice).

3. Corroboration Methodology
As indicated earlier, in our approach, the reliability of a

claim from a source is assessed via comparing the claim

against the reports of other sources. In particular, the reli-

ability score of a claim is the ratio of the number of relevant

witnesses confirming the claim to the total number of rele-

vant witnesses, among existing sources. Considering that the

set of available sources is S, the set of relevant witnesses for

the claim is S

W

✓ S, and the set of confirming relevant
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Figure 2. Flowchart of the Corroboration Methodology

witnesses is S

M+W

✓ S

W

, the reliability score rel, of the

claim claim, is given by,

rel(claim) =
|S

M+W

|
|S

W

| 2 [0, 1] (1)

Given knowledge of the claim and of set S, our aim is

thus to derive sets S

W

and S

M+W

. We denote our esti-

mations of these sets as S

W

and S

M+W

, respectively. Ide-

ally, the estimation process should ensure both a high re-
call and a high precision with respect to each estimated set.

High recall indicates that the estimation is comprehensive

and does not miss out important evidence. To increase re-

call, we should aim to increase the ratios

|SW\SW |
|SW | (witness

recall) and

|SM+W\SM+W |
|SM+W | (confirmation recall). High pre-

cision, on the other hand, indicates that the estimation does

not produce irrelevant evidence. To increase precision, we

should aim to increase the ratios

|SW\SW |
|SW | (witness preci-

sion) and

|SM+W\SM+W |
|SM+W | (confirmation precision). Gener-

ally, there is an inverse relationship between recall and pre-

cision. Improving recall can be achieved by loosening the

search criteria, which would increase the probability of in-

corporating irrelevant evidence into the estimated sets, thus

negatively affecting precision, and vice versa.

The estimation of sets S

W

and S

M+W

is conducted by

identifying appropriate search criteria over the provenance

reports from other sources. We refer to such search criteria

as corroboration patterns. Initially, these corroboration pat-

terns can be derived by applying abstraction operation on

the claim. This abstraction corresponds to generalising ref-

erences to the identity of the claim’s source so that these

can be mapped to the identities of other sources. It trans-

forms the claim into a more suitable query form which can

be evaluated to true in the reports of others. Assume that

claim1 = (M1,W1) is the result of applying such an ab-

straction operator op1 on the original claim = (M,W ), de-

noted claim

op1��! claim1.

To improve recall, the claim can undergo a sequence of

other abstraction operations. That is,

claim

op1��! claim1
op2��! claim2 ...

opk��! claim

k

All abstraction operations, claim

i�1
opi��! claim

i

, ensure

that claim

i�1 ) claim

i

(with claim0 = claim), i.e.

that the satisfaction of claim

i�1 implies the satisfaction of

claim

i

. However, these operations may incur information

loss, and thus do not necessarily ensure that claim

i

)
claim

i�1. That is, a report satisfying a more generic claim

form claim

i

does not necessarily satisfy a more specific ver-

sion claim

i�1. Hence, corroboration patterns derived from

abstracted forms of the claim could retrieve irrelevant evi-

dence, resulting in decreased precision. We capture the in-

formation loss (and respective precision loss) incurred by

abstraction operation claim

i�1
opi��! claim

i

, via modelling

the uncertainty underlying implication claim

i

) claim

i�1.

We denote this uncertainty as

µ(claim
i

) claim

i�1), (2)

which can be seen as a measure of the information that need

to be added to claim

i

in order to achieve satisfaction of

claim

i�1. This uncertainty is accounted for when estimating

the overall reliability score of the original claim.

The proposed corroboration process is summarised in

Figure 2. In each iteration of the process, an abstraction op-

erator is selected and applied to the current version of the

claim, estimating its associated uncertainty. This is followed

by deriving new corroboration patterns from the resulting

abstracted form of the claim, checking their conformance

against the reports of other sources, and calculating the re-

liability score from the respectively estimated sets S

W

and

S

M+W

. The overall reliability score of the original claim is

then updated with respect to the iteration outputs. The pro-

cess terminates either when a maximum number of iterations

is reached, or when the current cumulative uncertainty ex-

ceeds a predefined maximum threshold. These steps are fur-

ther detailed in the following sections.

3.1 Abstraction Operators
We consider three types of abstraction operators, namely

individual generalisation, concept type generalisation, and

clause detachment. These operators are detailed next.

The individual generalisation operator, ig(claim, c), is

applied to a concept c of claim claim. This operator gen-

eralises concept c by replacing referent(c) with a more



generic individual. For example, concept <Location: Area
X of City Y> can be generalised to concept <Location: City
Y>. The most generic individual is individual ⇤ that matches

any value. Abstracting source identity is achieved by this op-

erator.

The concept type generalisation operator, tg(claim, c),
is applied to a concept c of claim claim. This operator gen-

eralises concept c by replacing type(c) with one of its su-

perclasses in the concept type lattice T . For example, con-

cept <StormFreakEvent: ⇤> can be generalised to concept

<WeatherFreakEvent: ⇤>.

Finally, the clause detachment operator, cd(claim, cls),
generalises claim claim by eliminating clause cls from this

claim.

The uncertainty µ (of Equation 2) underlying an abstrac-

tion operator can be provided by the user in the form of un-

certainty policies. For example, the user may annotate each

is-a relation in the domain lattice with a penalty indicating

the loss in information incurred when moving up the lattice

according to this relationship. Similarly, the user may anno-

tate each clause in the claim with a penalty that is correlated

with the importance of the clause for the user. In the absence

of such domain-dependent user-defined policies, automated

means can be utilised instead to estimate uncertainties. For

example, given that a class t has three sub-classes t1, t2, t3

in the domain lattice, then generalising t1 to t can be associ-

ated with an uncertainty of

1
3 . Similarly, eliminating a clause

from a claim of k clauses can be associated with an uncer-

tainty of

k�1
k

, which assigns equal importance to all clauses.

Selecting which abstraction operation to apply at each

iteration of the process can be again either guided by the

user, or reliant on some uncertainty minimisation algorithm

(a simple form of which is to select the abstraction operation

with the minimum underlying uncertainty at each iteration).

3.2 Corroboration Patterns and Conformance Check
As indicated earlier, the estimation of sets S

W

and S

M+W

is conducted by identifying appropriate search criteria over

the provenance reports from other sources, which are re-

ferred to as corroboration patterns. In particular, we distin-

guish between two types of corroboration patterns, witness
pattern and confirmation pattern. A witness pattern, ptrn

W

,

is an abstracted provenance graph characterising the wit-

nesses relevant for assessing the truthfulness of a claim made

by a source. A confirmation pattern, ptrn

M+W

, is an ab-

stracted provenance graph capturing the information to be

confirmed by others in order to assess the truthfulness of a

claim made by a source. Given the current abstracted claim

form, claim

i

= (M
i

,W

i

), following the abstraction opera-

tor op

i

selected at the current iteration, the witness and con-

firmation patterns for the current iteration are thus W

i

and

M

i

+W

i

(entire claim

i

), respectively.

Based on this, sets S

W

and S

M+W

for the current itera-

tion can be estimated as follows.

S

W

= {s 2 S | rprt(s) ) ptrn

W

} (3)

S

M+W

= {s 2 S | rprt(s) ) ptrn

M+W

} (4)

where rprt(s) is the report supplied by source s, and

rprt(s) ) ptrn indicates that report rprt(s) implies (satis-

fies) pattern ptrn. The definition of this implication is pro-

vided below.

Definition. A provenance graph rprt, satisfies (implies) a

pattern graph ptrn, denoted rprt ) ptrn, if there exists a

projection (mapping) ⇡ from ptrn to rprt, denoted ⇡(ptrn),
such that ⇡(ptrn) is a sub-graph of rprt satisfying all the

following:

1. for each graph node n in ptrn, ⇡(n) is a graph node in

rprt with the same or a more restricted class, and the

same or a more restricted individual (note that the generic

individual ⇤ is considered similar to any individual);

2. for each connecting property pr in ptrn, ⇡(pr) is the

same property in rprt; and

3. if nodes n1 and n2 in ptrn are connected via property pr,

then ⇡(n1) and ⇡(n2) in rprt are connected via property

⇡(pr).

3.3 Overall Reliability Score
The cumulative uncertainty µ̃, after applying a sequence

of abstraction operators op1op2...opk on the original claim

claim, is estimated as

µ̃(claim
k

) claim) =
kY

i=1

µ(claim
i

) claim

i�1) (5)

where claim0 = claim.

Based on this, the overall reliability score of the original

claim claim, accounting for all the performed abstraction

operations op1op2...opk, is estimated as

overallRel(claim) =
kX

i=1

wt(claim
i

)⇥rel(claim|claim
i

)

(6)

where: rel(claim|claim
i

) is the reliability score of claim

(as indicated by Equation 1) given that the corroboration

patterns for estimating sets S

W

and S

M+W

are derived from

abstract form claim

i

; and wt(claim
i

) corresponds to the

relative weight (importance) of claim

i

for estimating the

overall reliability of the original claim, and is given as

wt(claim
i

) =
µ̃(claim

i

) claim)
P

k

j=1 µ̃(claimj

) claim)
(7)

That is, evidence derived from abstractions that incurred

more information loss would have a lower impact on the

overall score that that derived from abstractions with less

information loss.
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Figure 3. Multi-level Abstraction of a Claim

4. Case Study
In this section, we illustrate our corroboration model via an

example from the service provision domain. In a service-

oriented system, individuals rely on external providers to

execute services for them. Knowledge of the circumstances
under which past service provisions took place gives individ-

uals useful information to support their decision making in

selecting a future provider. Examples of circumstances that

may affect the provision of a service by a provider include

occurrence of freak events and sub delegation (Miles and

Griffiths 2015). The PROV standard provides a suitable so-

lution for recording and interpreting information on the cir-

cumstances of various types underlying a service provision.

However, service providers may claim circumstances, which

did not occur in reality, in order to justify their occasional

poor performance. A potential solution to this problem is to

compare a provider’s claim against the claims made by other

providers in order to assess its truthfulness.

An example freak event claim in PROV, supplied by a

provider, is depicted in Figure 3(a). It reports a volcanic

freak event experienced by logisticsProcess1, within time

period [time1, time2], at location location1. Note that

class ServiceExecution is-a prov:Activity, and VolcanicF-
reakEvent is-a prov:Agent. The clauses of the main and con-
text parts of this claim are given in Table 1. The context part

indicates that the providers relevant for judging this claim’s

truthfulness are those operated (provided services) around

time frame [time1, time2], at locations close to location1.

Initial corroboration patterns for this claim, i.e. the wit-

ness pattern and confirmation pattern, are derived from the

claim after applying an individual generalisation operator to

abstract specific provider information (see Figure 3(b)). Fur-

ther abstractions could also be applied to improve recall. For

example, we can increase the range of search for evidence by

applying concept type generalisation operator to generalise

VolcanicFreakEvent to FreakEvent (see Figure 3(c)). The re-

sult can be further abstracted by applying clause detachment
operator to eliminate the starting time restriction (see Fig-

ure 3(d)).

Once the corroboration patterns at each abstraction level

are derived, sources whose reports imply these patterns

are retrieved. A possible way to implement this implica-

tion relationship is via translating the corroboration patterns

into a SPARQL query over the provenance reports of other

sources.

5. Discussion and Related Work
In the proposed corroboration methodology, we have pre-

sented three example abstraction operations to a claim. How-

ever, the proposed methodology is not limited to these oper-

ations and can be extended to incorporate other abstraction

operators. In fact, a number of approaches in the literature

are concerned with abstracting away specific details from a

provenance graph, via generating views (Danger et al. 2015),

summaries (Moreau 2015), or abstractions (Missier et al.

2015) over the provenance graph. Some of these techniques

can be incorporated into our methodology as additional ab-

straction operators. For example, we can introduce another

abstraction operator, node grouping, which replaces a set of

nodes in the graph with a new abstract node, as proposed

by Missier et al. (2015). This would also require adjusting

our definition of the implication relationship to account for

sub-graph substitutions (Buneman et al. 2016). That is, it

would require allowing a node in a pattern graph to be pro-

jected into a sub-graph in a specific report graph.



Table 1. Clauses of the Example Claim

Part Clauses
Main wasInfluencedBy(ServiceExecution: logisticsProcess1, VolcanicFreakEvent)

Context

startTime(ServiceExecution: logisticsProcess1, xsd:dateTime: time1)

endTime(ServiceExecution: logisticsProcess1, xsd:dateTime: time2)

location(ServiceExecution: logisticsProcess1, xsd:string: location1)

The claim template at each abstraction level may also

have some similarity with the template language of PROV-

TEMPLATE (Moreau et al. 2017). Specifically, the high-

est level of abstraction for a concept in our approach is

hEntity: ⇤i, hActivity: ⇤i, or hAgent: ⇤i, potentially ob-

tained via an individual generalisation and a sequence of

concept type generalisation operators. Provenance nodes at

such abstraction level are placeholders for any value, and in

that sense are similar to the notion of variables in PROV-

TEMPLATE (Moreau et al. 2017).

Our corroboration checking can also be considered re-

lated to the area of checking compliance to policies/rules

using provenance. In particular, a provenance-based Compli-

ance Framework is proposed by Aldeco-P´erez and Moreau

(2010), in which past information processing is compared

against defined policies to which the processing should com-

ply. The algorithms proposed in this framework are specific

to information processing requirements, and do not handle

pattern generalisation nor reliability score estimation based

on multiple witnesses required in the context of our problem.

Corroboration is a different problem to compliance as, in the

former, you do not have a canonical source of what should

be true.

When estimating the reliability score of a claim (Equa-

tion 1), we have assumed independence among witnesses.

However, members comprising a complex distributed sys-

tem may in fact experience different types of dependencies

among each other. For example, in a service-oriented mar-

ketplace, two different providers might outsource their sub-

tasks to the same sub-providers at similar times, making

their experiences similar and thus their testimonies redun-

dant. We can account for such dependencies (redundancies)

among witnesses in a similar manner to the channel weight-

ing for a multi-version fault tolerant system (Townend et al.

2005). In particular, the contribution of each witness can be

weighted based on the degree of its independence from other

witnesses. Equation 1 can be rewritten to account for such

weighting as,

rel(claim) =

X

s2SM+W

weight(s)

X

s2SW

weight(s)
(8)

Finally, the concepts of abstraction and confirmation

check presented in this paper share similarity with the con-

cepts of query expansion (Carpineto and Romano 2012) and

relevance models (Crestani and Lalmas 2001) from Informa-

tion Retrieval (IR). Query expansion techniques reprocess a

user’s original query in order to improve search effective-

ness, while the goal of a relevance model is to find the set of

relevant documents that satisfy a query (information need)

expressed by a user. In particular, a document is regarded as

relevant to a query if the query can be inferred by the docu-

ment. For example, some semantic IR models (Kheirbek and

Chiaramella 1995) represent queries and documents as con-

ceptual graphs, with relevance being assessed via the con-

ceptual graph’s projection operation (Mugnier 1995; Sowa

2013).

6. Conclusion
In this paper, we have presented a corroboration methodol-

ogy capable of assessing the reliability degree of a prove-

nance claim. The methodology derives suitable corrobora-

tion patterns for confirming the claim against the reports of

relevant witnesses. To improve witness recall, the search

space for witnesses is iteratively increased via applying

abstraction operations on the search patterns. The respec-

tive uncertainties associated with such abstractions are ac-

counted for and incorporated into the overall reliability score

of the claim.
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