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Abstract. In this paper, we consider the effects of trust and conventions on the

evolution of a multi-agent system. To do so, we provide a simulation in which

agents are able to use a trust mechanism to select interaction partners, and a learn-

ing mechanism that leads to convention emergence. We examine the impacts on

the system of: different network topologies; the presence or absence of malicious

agents; and the presence or absence of the trust and learning system. Our results

indicate that while trust has a slight positive impact on the rate of convergence

emergence, its main benefit arises when malicious agents are present in the sys-

tem.

1 Introduction

Trust, norms and conventions all aim to increase the likelihood of globally desirable
system behaviour. The former operates by reducing the probability that a poorly behav-
ing agent will continue to be selected for interaction by others, while both norms and
conventions aim to specify correct patterns of behaviour, with norms imposing sanc-
tions on agents who deviate from this behaviour.

Within human societies, behaviour is regulated using a mix of these mechanisms.
However since any mechanism typically has some cost associated with it (e.g. requir-
ing monitoring and sanctioning in the case of norms, or potentially disadvantaging new
agents in the case of trust), the question arises of why several distinct behaviour reg-
ulation mechanisms have emerged, and whether one is sufficient to maintain desirable
system outcomes. This is important, because if we are able to achieve desired behaviour
through only a subset of these mechanisms, then in principle we may be able to do so
more efficiently.

The impact of trust on a system in which convention emergence occurs under differ-
ent system properties is therefore crucial to understand clearly. That is the focus of this
paper. More specifically, we aim to establish the impacts of different network topologies
on agent outcomes in such systems, as well the effects of different types of malicious
agents and of churn — the replacement of existing agents by new agents. We investigate
the following core hypotheses.
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1. The topology of the network can affect the usefulness of a trust mechanism.
2. Trust can cause islands to form, inhibiting the emergence of conventions.
3. Trust is critical for correct system behaviour when malicious agents exist.

We seek to validate these hypotheses through simulation in which a population of
agents interact with each other playing a coordination game. A trust mechanism enables
agents to select partners to interact with, while a learning mechanism allows agents to
learn a strategy, simulating the emergence of conventions1. We evaluate the effects of
the presence or absence of each of these mechanisms on different configurations of
the system, considering different interaction network topologies, malicious agents, and
churn.

Our results validate our hypotheses, indicating that the main impact of trust arises
when malicious agents are present, but that its use can also hamper global convergence
emergence. In the following section we introduce the notions of trust and conventions,
and identify the key related work. Section 3 describes the cooperative game in which
agents participate. Section 4.1 introduces our simulation system in more detail, and our
experimental results are described in Section 4.2. Finally, Section 5 concludes the paper.

2 Trust and Conventions

In open dynamic decentralised systems, global control is not always practical, and
agents need to decide for themselves who to interact with, and what behaviour to ex-
hibit. In multi-agent systems (MAS), the problem of who to interact with has often been
addressed using trust and reputation to build an estimation of how others are likely to
act, and so enable trustworthy partners to be selected. In many domains, answering the
question of what action to perform requires consideration of the actions that other in-
dividuals are likely to take. For example, consider deciding whether to drive on the left
or right side of the road on arrival in an unfamiliar location. There is no intrinsic pref-
erence between the options, but there is clearly a very strong incentive to drive on the
same side as others to prevent collisions. This problem of selecting between actions,
when their effectiveness is strongly influenced by the choices of others, is addressed by
the notion of conventions, where a convention can be viewed as a social rule or standard
of behaviour agreed on, or adopted by, a set of individuals [7, 22].

There is a significant body of work on trust and reputation in multi-agent systems,
ranging from lightweight image scoring approaches to rich models using detailed histo-
ries of previous transactions. Conventions have also been explored in relation to multi-
agent systems, typically considering how they can emerge as a result of individuals
learning which actions afford them the highest utility. However, to our knowledge, there
has been little investigation of the relationship between trust and conventions. In the re-
mainder of this section we briefly introduce the key literature on trust and conventions,
as related to this paper.

1 In this paper we focus on conventions as they are a broader notion than norms, which typically

require sanctions or rewards.
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2.1 Trust in Multi-Agent Systems

Trust and reputation are effective mechanisms for supporting cooperative and coordi-
nated behaviour by enabling agents to choose who to interact with [6, 12, 14, 15]. We
can view trust as a subjectively held belief about the likelihood with which another agent
will act as expected, typically meaning that the other individual will be cooperative if
given an opportunity to defect and receive higher payoff. Reputation can be viewed as a
socially accepted trust assessment for a given individual [6]. Trust often requires signif-
icant historical interaction data for accurate assessments, and instantiations often make
use of multiple dimensions of information [4, 16]. Reputation is a key mechanism when
individuals have insufficient direct interaction history with which to assess a partner’s
trust value, but it still relies on being able to draw on the indirect experiences of others.

The trust and reputation mechanisms that have exhibited the most promising results
tend to be the most complex, requiring significant information on agents’ previous inter-
actions [4, 16]. In decentralised open multi-agent systems, especially where individuals
can leave and join the system, such mechanisms may be less suitable than alternatives
with less complex requirements. Indeed, it has be shown that very simple trust mecha-
nisms with low overheads can still be effective [12, 14].

Nowak and Sigmund introduced image scoring as a simple instantiation of trust and
reputation with low overheads, based on the notion of indirect reciprocity, in which
cooperation emerges without requiring subsequent interactions between the same indi-
viduals [12, 13]. This property is key to its suitability in open decentralised systems.
Each agent maintains an image score for each individual it interacts with or observes
interacting. Cooperative actions increase the image score by one, and selfish actions
decrease it by one. When deciding whether to cooperate or not, an agent compares its
strategy, an integer, with the perceived image score of the potential partner (if no data
is available, it is assumed to be zero). If the image score is greater than or equal to the
strategy then the agent cooperates. We use this image scoring view of trust as the basis
for the trust model used in this paper.

2.2 Conventions in Multi-Agent Systems

A convention is a social rule or standard of behaviour agreed upon by a set of individ-
uals [7, 22], and can be considered established once a high proportion of a population
adheres to it for a significant amount of the time [7]. Conventions can increase levels of
coordination in multi-agent systems [2, 5, 21], and they are a powerful abstraction tool
for modelling the aggregate interactions of agents.

Conventions can be generated offline by system designers or dynamically emerge
through interactions. However, offline generation is often impractical due to limited
knowledge of society characteristics, time variance, and computational expense. More-
over, such conventions also lack robustness and, as a result, much research has concen-
trated on generating conventions online [11, 17].

A common theme in the definition of conventions revolves around the regularity in
the behaviour of a population in repeated iterations in the same situation. From a multi-
agent systems perspective, conventions have been viewed in game-theoretic terms, as a
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Agent 1

action A B

Agent 2
A 1 -1

B -1 1

Agent 1

action A B

Agent 2
A -1 1

B 1 -1
(a) (b)

Table 1. Payoff matrices for (a) normal agents and (b) imperfect malicious agents.

restriction of agents’ decisions to a single choice in a coordination game [19], or more
generally being defined by a high proportion of agents adopting a particular strategy [7].

Convention emergence is often illustrated by considering coordination games, such
as which side of the road to drive on [11, 18]. The ideal is for every agent to adhere to the
same convention, but this may be unrealistic. As the multitude of global conventions in
real-world traffic systems show, it is not necessary for a single global convention to per-
vade for high levels of local coordination to emerge. However, the cost of inappropriate
or inefficient conventions is very high.

It is well known that constraints on interactions between agents, originating from
different network topologies, impact on how conventions emerge. For example, Vil-
latoro et al. have shown that fully connected networks are the quickest to converge,
with scale-free being significantly slower [20]. Other researchers have also shown that
topology is an important factor in convention emergence, but have often assumed full
observability of others [2, 7].

3 The Cooperation Game

In order to be able to investigate the impact of trust in the context of convention emer-
gence, we instantiate a simple MAS in which agents interact with each other by playing
a cooperative two party coordination game2; this is equivalent to the setting consid-
ered in [18]. Agents within this system are described through a single parameter — the
probability of playing an action within an interaction (i.e. the likelihood of selecting
a specific action within the game). Each agent is able to interact with a subset of the
other agents in the system, which we refer to as an agent’s neighbourhood. We encode
this structure through an undirected interaction network or graph, in which agents are
represented as nodes, and the ability to interact is represented by an edge.

The game progresses in discrete rounds. During each round, every agent selects
others in its neighbourhood to interact with. Each interaction consists of both agents
selecting an action. These actions are evaluated through a payoff matrix (shown in Table
1(a)), and the agents are then informed of their reward.

Clearly, making the right choice of which neighbours to interact with is the crucial
aspect of this game, where some may choose compatible actions, and others incompati-
ble actions. In this game, different methods exist for neighbour selection (e.g. weighting

2 Note that there is no intrinsic preference between actions, differentiating this work from the

evolution of trust for prisoner’s dilemma games [9].
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Algorithm 1 The PHC Q-learning algorithm.

1: function Q-LEARNING(ε,α, δ)

2: Q[A], Q[B]← 0
3: π ← uniform random number in [0,1]

4: while true do

5: if a uniform random number selected from [0,1] > ε then

6: select action A with probability π, otherwise select B

7: else

8: select action from A,B with uniform likelihood

9: end if

10: r ← reward from the interaction

11: Q[selected action] = (1− α)Q[selected action] + αr

12: if Q[A] > Q[B] then π ← π + δ

13: if Q[B] > Q[A] then π ← π − δ

14: ensure that π ∈ [0, 1]
15: end while

16: end function

this selection based on a trust mechanism, or randomly choosing a neighbour for inter-
action), and for updating the probability of playing a specific action (e.g. keeping this
probability fixed, or performing learning to modify it). Moreover, the game may be
played with different interaction topologies, different numbers of malicious agents, and
agents leaving and entering the system, which we refer to as churn. Next, we describe
each of these aspects.

Trust Mechanism Our trust mechanism stores the outcome of the last n interactions.
Given a total of s successful interactions with all neighbours, the likelihood of interact-
ing with a specific neighbour is x/s where x is the number of successful interactions
with that neighbour, or x = 1, whichever is greater. This is a simple trust mechanism,
and although more sophisticated mechanisms are possible, they typically have compar-
atively large overheads in terms of information and computation requirements.

Convention Learning After every interaction, an agent can update its probability of
playing an action. To do so, the agent utilises a slightly modified version of 2 action
PHC Q-learning [1] with no lookahead, as described in Algorithm 1, and as has previ-
ously been used when investigating conventions [18]. Unlike standard PHC Q-learning,
we randomise the initial policy.

Malicious Agents and Churn Malicious agents seek to undermine the system, ei-
ther due to holding a different utility function to the other agents, or out of malice.
In this paper, we consider two types of malicious agents, referred to as imperfect or
omniscient malicious agents respectively. The former type of agent utilises the utility
function shown in Table 1(b), and otherwise acts as an agent able to utilise both trust
and convention learning. Omniscient malicious agents always cause the agent interact-
ing with them to obtain a utility of -1. While it is difficult to identify an obvious real
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(a) Fully connected

 

(b) Scale-free

 

(c) Small world

Fig. 1. Illustrative network topologies

world analogy to the latter class of agent, they represent a pathological worst case, and
are thus useful in our evaluation.

Churn represents the departure of existing agents, and the introduction of new agents
as the system runs. These new agents are unaware of any conventions that may have
emerged, and also disrupt the trust mechanism. We simulate churn by randomly se-
lecting a small proportion of the population and resetting their interaction histories and
learned parameters.

Network Topologies While many different network structures are possible, we focus
on three archetypes of interaction topologies, namely fully connected networks, scale-
free networks, and small world networks. Fully connected networks provide agents with
the greatest latitude in choosing interaction partners, allowing them to easily ignore
malicious agents through the use of a trust mechanism. However, such networks are,
in most situations unrealistic, and we therefore consider additional topologies, which
model the properties of a large family of real world systems such as social networks,
citation networks, and road networks. Small world networks are constructed from a
ring topology. A parameter k adds extra edges to ensure that all agents within k/2 hops
from each other are connected. Another parameter, the rewiring probability β, is then
used to replace some of these connections with others to randomly selected nodes in the
network [8]. The connections between nodes in scale-free networks follow the power
law distribution so that some nodes have very many connections, but the majority have
very few [3]. These networks are illustrated in Figure 1.

4 Evaluation

We begin this section by describing our simulation environment, following which we
detail the experiments we ran, and discuss our results.
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4.1 The Simulation Environment

To investigate the impact of these mechanisms, we developed a simulation environment
for the coordination game, and undertook experiments consisting of running repeated
iterations within this environment. During each iteration, every agent in the system
selects another agent for a single interaction.

The trust mechanism was instantiated with a history of 20 interactions (n = 20),
so that agents had this number of interactions with others available for use when de-
termining trust, and our convention learning approach specified in Algorithm 1 was
instantiated with the exploration parameter ε being set to 0.02, while the α and δ learn-
ing parameters were set to 0.1 and 0.01 respectively. The full set of parameters can be
found in Table 2. The simulation environment, and thus the experiments, consisted of
50 agents, averaged over 10 runs, with 10000 iterations per run.3 When examining the
effects of malicious agents and churn, we assigned each individual agent a probabil-
ity (0.1) of becoming a malicious agent or being reset (to simulate churn), every 1000
rounds. Once an agent becomes malicious, it remains so until the simulation terminates.

Number of Agents 50 Number of iterations 10000

Number of runs 10 Exploration probability ε 0.02

Likelihood of agent replacement 0.1 Frequency of agent replacement 1000

Trust system memory n 20 Q learning δ, α 0.01, 0.1

Scale-free graph m 2 Small world graph β,k 0.2, 6

Table 2. Simulation parameters

4.2 Experiments

In this section, we provide further details of our experiments and results. Unless stated,
results were obtained by averaging together 10 runs of the system.4

Experiment 1: Topologies We began by undertaking a high level comparison of the
three topologies, comparing average utility where agents utilise both convention learn-
ing and trust, and where only the former is utilised, to evaluate the effect of trust. Figure
2(a) illustrates the utility obtained when exploration is present as part of the convention
learning (solid), and when no exploration learning occurs, i.e. ε = 0 (the dashed line).
Note that while utility converges to 1 for fully connected networks in the no-exploration
case, this does not occur for any other network topologies. We believe that the core rea-
son for this is the so-called island effect, discussed later.

More generally, Figure 2(b) illustrates the difference between the no-exploration
and exploration utility curves for all network topologies. Given these curves, it appears

3 Every agent will thus have at least 200 interactions in the course of a single run.
4 For clarity, all graphs were smoothed using GNUPlot’s acspline option (weight=0.1).
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Fig. 2. Comparing average utilities with no malicious agents. In (b)–(d), the solid line indicates

results for the fully connected graph, the dashed line indicates the small world network, and the

dotted line the scale-free network.

that when no malicious agents are present, exploration is unnecessary; the average util-
ity obtained with no exploration appears to exceed (or in the case of scale-free graphs,
approximately equal) the utility obtained when exploration takes place. Furthermore,
as demonstrated for example in Figure 2(a), the rate of convergence, particularly in the
fully connected network, is faster when no exploration takes place. Figure 2(c) illus-
trates the difference in utilities when exploration does and does not occur, when only
conventions (rather than both conventions and trust) are present in the system. Again,
the exploration seems to detract from the rate at which conventions emerge. Given this,
in the remainder of our experiments, we considered only the no-exploration form of Q-
learning. It should be noted that only 500 iterations are displayed in most of our figures
since that is sufficient to identify dominant system trends, though we ran up to 10000
iterations in our experiments.

Figure 2(d) illustrates the difference between utility curves when only conventions
are used, and when both conventions and trust are used in the no-exploration scenario.
While the difference for fully connected graphs quickly reaches zero, indicating fast
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(c) Scale-free network with trust.

Fig. 3. Heat maps. The vertical axis identifies different agents in the system, while the horizontal

axis is the iteration number. Plots are shown for the first 1000 iterations.

convergence in both the trust and no trust cases, this does not occur for other topolo-
gies. For example, scale-free networks neared convergence after approximately 10000
iterations.

We hypothesised that the presence of trust will lead to the formation of islands,
where highly trusted cliques of agents form, causing all these agents to play a specific
action, while other cliques play some other action. Figure 3(a) shows a heat map of the
probabilities that agents play some move for the fully connected graph. It is clear that
no islands form. This can be contrasted with Figure 3(b) which shows a heat map for the
scale-free network case where no trust mechanism exists. Here, it is clear that distinct
islands form. This suggests that islands form due to physical neighbourhoods rather
than due to the trust mechanism. A closer examination of the trust system explains why.

Consider the fully connected case for a system of 50 agents. Initially, there is a
0.02 chance (1/50) of an agent being selected for an interaction. Now consider the case
where an agent was selected 20 times for interactions (the maximum possible due to
our trust system’s memory). In this case, there is approximately a 0.3 likelihood of
this agent being selected for interaction, but there is a 0.7 likelihood that some other
agent will be selected. As an agent’s neighbourhood shrinks, this effect (i.e. that trust
plays a minority role in interaction partner selection) becomes less pronounced, but the
constraints due to lack of connectivity begin to dominate. Comparing Figure 3(b) and
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Fig. 4. Average utility under difference scenarios.In (a)–(c) solid lines plot imperfect malicious

agents using trust and conventions; long dashes plot imperfect malicious agents with no trust;

short dashes plot omniscient malicious agents using trust and conventions; dots plot omniscient

malicious agents with no trust. In (d), solid lines plot fully connected; long dashes plot small

world; short dashes plot scale-free.

3(c), we see that the main effect of trust in the scale-free case arises from the increased
rate of convergence, and that islands (represented as horizontal lines of one colour)
appear in both cases. Additional work is needed to verify whether the island effect is
greater in the presence of trust. We believe that this interplay between trust and limited
interaction partners also explains the lack of convergence encountered in Figure 2(d).

Experiment 2: Maliciousness and Churn We have shown that in many situations,
the use of trust in the context of convention learning either provides only limited help
or perhaps even hinders the effectiveness of a normally functioning system. However,
trust is aimed at situations where agents are not always benign. In this experiment, we
examined the effectiveness of the use of trust in the presence of both omniscient and
imperfect malicious agents.

Figures 4(a)–4(c) illustrate the effects of malicious agents on all network topologies
in the presence and absence of trust. These can be contrasted with Figure 4(d), which
was plotted for a system containing churn. While the different x-axis scale between this
figure and 2(d) — required in the latter to identify relevant results — make it difficult to
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see, the curves here are similar to those of the latter figure. Churn introduces disconti-
nuities into the curve, which the trust and convention learning system is able to quickly
overcome. Therefore while useful, trust has only a small effect in the presence of churn.
However, its presence in situations where malicious agents exist is critical to the sys-
tem. Note that due to our agent replacement strategy, approximately 65% of the agents
were malicious after 9000 iterations. Also note that graph topologies had a relatively
minor effect on the overall impact of malicious agents.

5 Discussion and Conclusions

With regard to our hypotheses, our experiments confirm that network topology can
have an effect on the usefulness of a trust mechanism, and that trust is indeed critical
in helping convergence emerge in the presence of malicious agents. Our experiments
also indicate that, at least in the manner in which we implemented trust, the problem of
islands of conventions is minor, with the dominant factor regarding the emergence of
these islands being the topology of the network itself.

We have also shown that trust increases the initial rate of convergence of a con-
vention. While Q-learning in our domain meant that conventions emerged relatively
quickly, this property could be useful in some domains.

We intend to pursue several avenues of future work. First, we have only highlighted
the most significant results of our work for very specific parameter settings. Exploring
how other parameters affect the system could allow us to identify additional situations
where trust is, or is not, necessary. In conjunction with this, we intend to extend our
work to the normative domain. Following work such as [10], a norm requires an agent
to adhere to some specific behaviour. However, unlike a convention, the violation of a
norm allows for a sanction to be imposed on the violator. We intend to investigate why
this sanctioning mechanism, whose effects are similar to that of a trust mechanism,
emerged, and to investigate the interplay between these.

To our knowledge, our work is the first to seek to identify the relationship between
conventions and trust, determining the situations in which one, or both, of these mecha-
nisms is required to obtain desired system behaviour. We believe that several important
avenues of future research remain, and that our work will aid in the design of efficient
large scale multi-agent systems.
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11. J. Morales, M. López-Sánchez, and M. Esteva. Using Experience to Generate New Regula-

tions. In Proc. of the 22th Int. Joint Conf. on Artificial Intelligence, pages 307–312, 2011.

12. M. Nowak and K. Sigmund. The dynamics of indirect reciprocity. Journal of theoretical

biology, 194(4):561–74, October 1998.

13. M. A. Nowak and K. Sigmund. Evolution of indirect reciprocity. Nature, 437(7063):1291–

1298, 2005.

14. A. A. Pirzada and C. Mcdonald. Trust Establishment In Pure Ad-hoc Networks. Wireless

Personal Communications, 37(1-2):139–168, 2006.

15. S. D. Ramchurn, D. Huynh, and N. R. Jennings. Trust in multi-agent systems. The Knowl-

edge Engineering Review, 19(01):1–25, April 2005.

16. J. Sabater, M. Paolucci, and R. Conte. Repage: Reputation and image among limited au-

tonomous partners. Journal of Artificial Societies and Social Simulation, 9(2):3, 2006.

17. N. Salazar, J. A. Rodriguez-Aguilar, and J. L. Arcos. Robust coordination in large convention

spaces. AI Communications, 23(4):357–372, 2010.

18. S. Sen and S. Airiau. Emergence of norms through social learning. In Proc. of the 20th Int.

Joint Conf. on Artificial Intelligence, pages 1507–1512, 2007.

19. Y. Shoham and M. Tennenholtz. On the emergence of social conventions: modeling, analysis,

and simulations. Artificial Intelligence, 94(1-2):139–166, July 1997.

20. D. Villatoro, S. Sen, and J. Sabater-Mir. Topology and memory effect on convention emer-

gence. In Proc. of the 2009 Int. Conf. on Web Intelligence and Intelligent Agent Technologies,

pages 233–240, 2009.

21. A. Walker and M. Wooldridge. Understanding the emergence of conventions in multi-agent

systems. In Proc. of the 1st Int. Conf. on Multi-Agent Systems, pages 384–389, 1995.

22. H. P. Young. The economics of convention. The Journal of Economic Perspectives,

10(2):105–122, 1996.

62


