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Abstract

In real-world environments, cooperation often emerges amongst agents
who are observably similar. Estimating the expected behaviour of an-
other agent is a challenging problem, particularly for new agents who
have little or no experience of others. In this paper, we show how ob-
servable features can be used to find similar, and hence cooperative,
partners.

Our contribution extends trust and stereotype approaches, to include
comparisons and learning of observable features, called tags. In envi-
ronments where no reciprocity exists (or where there have been insuf-
ficient interactions for reciprocity to take effect) tags have been used
to encourage cooperation. The only information available to an agent
early in its life is knowledge of its own tags and behaviour. We assume
that agents who are observably similar will be behaviourally similar
too. Agents use reinforcement learning to take advantage of as much
available information as possible, until sufficient experience has been
gathered for more established trust and stereotype models to be built.

Our results show that using tags improves agents’ rewards in the early
stages of their lifetime when used prior to established stereotype and
trust algorithms. We demonstrate that tags are successful in supporting
cooperation, even when agent behaviour is independent of the partner,
because the approach correctly identifies similar agents. Good agents
are able to select partners who will act as they do, while bad agents
avoid those who are observably similar.

1 Introduction

Trust in multi-agent systems (MAS) encourages cooperation amongst agents without the need for a central
authority or rules, which can be expensive and impossible to impose. We adopt Gambetta’s definition of trust,
namely, the amount of trust you have in another agent is the utility you expect to receive from that agent
when that behaviour impacts on your future [Gam00]. This is important for agents choosing partners that will
maximise their expected reward. However a situation faced by new agents is having insufficient information with
which to calculate trust.
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Calculating trust and reputation requires a significant number of experiences with the agent. Furthermore,
agents can get stuck in local maxima when choosing their partners because they continue to interact with the
first agent(s) they find who are better than average.

One method to improve estimates of a new agent’s behaviour, is to assume that it will act the same as
agents who are observably similar. Known as stereotype-based trust, such models typically use machine learning
techniques to learn these estimates, but they require large amounts of representative data [BNS10, LDRLO09].
Stereotypes help existing agents evaluate new agents in the system despite not having direct experiences with
them. They do this by using the experiences they have accumulated in their lifetime to learn which observable
feature values of agents they prefer when selecting a new partner. However, stereotypes do not address the
problem for a new agent to choose an interaction partner, as they have not yet collected the experiences with
which to formulate preferences.

Choosing a partner in the early stages of an agent’s lifetime needs to strike a balance between exploration and
reward. We use tags, a concept from evolutionary biology [Daw76, Ham64], which have been found to encourage
cooperation in MAS [Axe84, ADT88, AHG04, HO05, YCS15]. Tags are notionally equivalent to the features
used in stereotype models. Agents know their own tags and how they themselves behave, and so they can make
assumptions about another agent’s behaviour if they have similar tags. As with stereotype models, we assume
that there is a correlation between tags and behaviour, and in line with evolutionary studies we assume that this
behaviour is more altruistic amongst similar agents. However, existing tag-based cooperation techniques have
not considered identifying features that do not correlate with behaviour or identifying agents who behave well
despite having different tags.

In this paper we propose a method for using tags to bootstrap stereotypes and trust, with the aim of improving
new agents’ rewards. Such agents have no prior experience and so cannot assess others’ trustworthiness, and do
not know which tags are indicative of good behaviour or are irrelevant. The tag-based system is complemented
by trust and stereotype assessments once sufficient experiences are available, allowing agents to obtain accurate
assessments later in their lifetime. Once they start to gain experience, agents can use reinforcement learning to
improve their estimates of trust.

The remainder of this paper is structured as follows. In Section 2 a discussion of existing techniques is
presented. Section 3 describes the context of this work and how it translates to MAS. The specifics of using tags
to bootstrap stereotypes and trust is presented in Section 4. The results and analysis are given in Section 5, and
Section 6 concludes the paper.

2 Related Work

Trust and reputation assess the belief and uncertainty in agents’ expected behaviour. ReGreT is a successful
algorithm which aggregates the values of experiences (where experiences are classified as positive or negative),
and weights them by how old each experience is [SS01]. This multi-faceted model assumes aspects ranging from
social connections, to price and quality affect an agent’s behaviour. Trust algorithms such as ReGreT can be
successful in a specific environment though lack the generality required to be applied in new contexts.

Reputation models, which often work in conjunction with trust, include information from third parties as
well as direct personal experiences when assessing expected behaviour of other agents. FIRE is a reputation
model that extends ReGreT to tackle the cold-start problem in open MAS by using reputation information from
more established agents [HJ04]. In this paper we demonstrate a proof of concept by bootstrapping the Beta
Reputation System (BRS) [J102], since it is simple and is the base of other more complex methods [BNS10,
BNS13, TLRJ12, TPJL06]. The contribution of this paper is the bootstrap model, and an alternative reputation
model could be used instead of BRS.

Stereotypes are a tool for existing agents of a system to assess others where no direct or indirect experiences
are available. Stereotype models use past interactions with all agents, to discover whether their features correlate
with good or bad behaviour. A new agent can then be classified by its features. Different stereotype learning
techniques have been successful in different circumstances, such as clustering [Wagl0], or finding patterns in a
semantic web graph of the features [JYN16]. Bootstrapping trust with stereotypes to improve an agent’s ability to
classify a new potential partner, while allowing a trust algorithm to take precedence after interaction experiences
have become available, has been shown to improve an agent’s ability to find successful partners [JYN16, BNS10].
We extend the approach of Burnett et al. because of its use of the BRS reputation model and simple approach,
where we can replace early estimations of behaviour with our tag-based model before the agent has collected the
necessary amount of information to build a stereotype model.



Table 1: Tag types and their distance equations

| ) |

Tag Type Distance Equation, dist(7},7]) | Example ‘

binary Hamming Distance Hamming(1001,1100) = %

\/(107191107192)2Jr

(latitude, longitude) Euclidean Distance (lat, — laty)?

ordered category extent of difference {very good, good,
bad, very bad}.
dist(very good, good) = i

category different or not {England, France,
Germany, Ttaly}.

dist(Germany, England) = 1
dist(England, England = 0)

nominal value difference valy — vals

In evolutionary biology, animals are found to use observable features, called tags, to determine relatedness and
therefore selective altruism [Ham64]. The green beard example illustrates this concept: those with a green beard,
which can be formalised to a tag holding a value, are more likely to cooperate amongst themselves [Daw76].
Existing tag-based work typically assigns a tag and threshold to each agent, and an agent will choose a coop-
erative strategy if the difference between their two tags is within the threshold, thus enabling cooperation to
emerge [HE03, RCAO01]. These studies pursue social rationality, a phenomenon where agents optionally choose
strategies that earn them less immediate reward but improve the group utility. This differs from trust and
reputation which aim to accurately evaluate another agent’s behaviour. However, we apply the assumption that
an agent’s behaviour is influenced by their partner’s tags. Tags are similar to features, they are used to describe
characteristics other than physical appearances in agents, such as location, points on a driving license, or criminal
convictions. We use the terms tags and features interchangeably to mean any descriptor of an agent.

3 Agent Interaction Environment

The tag-based model introduced in this paper is depicted and evaluated in the context of ride sharing, although
its generality makes it applicable to an online marketplace. The drivers and passengers are represented as a set
of agents, A.

3.1 Agents and Behaviours

An agent, a; € A, may represent a driver or a passenger. The set of trustors are a subset of the agents who use
the model to choose a partner to interact with. The other agents are trustees, who are being evaluated by the
trustors, all connected in a complete bipartite graph. In our evaluation a passenger is a trustor, a;, who chooses
a driver, a trustee a;.

Agent a; € A, can be described by their tags, which are their observable features, denoted as the vector ?1
Each tag corresponds to a characteristic, for example their location, and will be of a type listed in Table 1. The
index of a tag corresponds to the same tag in another agent, making tag vectors comparable.

Trustors receive some utility /outcome as a result of interacting with a trustee. The utilities a trustee offers
over multiple interactions are drawn from a Gaussian distribution and are not uniform, since environmental
factors may cause variances in their capabilities at any time. We evaluate our work with two different types of
behaviour. First, agents can have simple behaviours of the form used by Burnett et al. [BNS10]. Second, based
on biases which have been found to occur in real world societies [Daw76, Ham64], agents using biased behaviours
tend to act more cooperatively towards agents who are observably similar to them.

With simple behaviours, the utility that trustor a; receives from trustee a;’s behaviour comes from a Gaussian
distribution defined by mean, y;, and standard deviation, ;. An agent is assigned a profile which is associated
with values for a mean and standard deviation then adopted by the agent, as well as their tags. Relevant
features are those in the tag vector 7 that have the same value v for all agents of that profile, enforcing the
correlation with that profile’s behaviour. There are N, noisy features assigned randomly to every agent, for
example not all features of a driver are an indication of the service they provide. Table 2 shows each profile’s



Table 2: Profiles with non-binary tags, based on [BNSI0]

Profile | u 0 | 7o, 1, 75, location | 73, nominal | 74, ordered category | 75 s54n,;
binary | categorical
p1 090051 VU1 Vo V3 V4 rand
P2 06 0151]0 0 Vo V3 0 rand
P3 04101510 V1 C V3 0 rand
P4 03] 01 1|0 0 C 0 0 rand
s 0.0 1 0 0 C V3 Vg rand

behaviour distribution parameters and tags. In the case of simple behaviours, these parameters remain static in
an interaction, regardless of the trustor they are interacting with.

Biased behaviours replace the static value of p for each profile by the output of a function, f(sim;;) — ;.
This new mean accounts for how trustee a; specifically treats a;. Similarity between two agents is the mean
difference in value of every observable feature, as defined in Equation 1, and includes irrelevant tags as agents do
not know which are relevant and which are not. The dii;cance between the t** tag of each agent depends what

- —
type it is. Each tag type’s distance calculation dist(7/,77), can be seen in Table 1.

. > dist(rf 7)
sim;; =1 — E (1)

The profiles’ behavioural functions are given in Table 3 (the standard deviation and tag vectors remain the
same as Table 2). These functions are either sigmoid or exponential functions, transformed to create outputs in
the range [0, 1]. Agents improve their behaviour if they are interacting with an agent they believe is observably
similar to them, and the different profiles do this to more extreme extents as visualised in Figure 1. An agent
of profile p; always has a high mean and this might denote a well established, highly reputable driver who is
keen to perform well despite differences in similarity. Alternatively, p3 agents only perform well when they are
very similar to their partner, which might represent an agent who is trained in some very specific way thus only
performing well in that circumstance.

1.0
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Figure 1: Biased behaviour functions.

3.2 Partner Selection

Trustors have the ability to choose the trustee they believe is the best, but they can get stuck in a local maximum
when they find a set of agents who behave better than average and are ignorant to the existence of available,
better agents. Therefore, we use simulated annealing to explore agents that would otherwise not be selected. The
probability, p, of choosing a random agent a; instead of the best available agent is dependent on the difference
in their expected behaviour, AEB, and the current temperature 7T'.

AEB

p=e T (2)



The temperature should decrease as agent a; increases their number of experiences n; relative to their lifetime.

A trustor tr can leave the system with probability P, so its average lifetime is ﬁ. The number of experiences

they have as a proportion of their lifetime is therefore: Pt,.lxn“ We scale this temperature, by a coefficient ¢,

such that most their exploration is done within some proportion of their life.

1

TiniXPtTXL (3)
Specifically, the coefficient, ¢, scales the decay to achieve an exploration probability of higher than 0.3 in «
percent of the agent’s lifetime, if it is interacting with an agent of average difference in expected behaviour from
the best known available agent. The average difference in expected behaviour, AEB, between a random agent
a; and the best known agent apest is trust(a;) — trust(apest), and as trust(a;) < trust(apest), AEB = —0.5.
The value of 0.3 to probabilistically choose a random agent is an upper bound and other non-zero values could

be used, with the magnitude determining the extent of initial exploration. Solving for ¢, we have:

,— In(0.3) @)
—0.5 %«

Equation 5 gives the overall probability of selecting a random agent instead of the best. Figure 2a visualises
this probability when faced with trustees of varying differences of expected behaviour between them and the
best known agent. While Figure 2b shows how exploration decays more slowly as « increases, because we want
the agent exploring for higher proportions of their lives.

AEBXPiyxn; XIn(0.3)

p=e —05xXa (5)
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(a) Varying AEB (alpha = 0.02 and P, = 0.01) (b) Varying a (AEB = 0.5 and P, = 0.01)

Figure 2: Average trust in profiles, agents use simple behaviours, TSB

3.3 Interactions and Histories

In an interaction between a; and a;, the utility u; received by a; is a real number drawn from a;’s behaviour
distribution. Agent a; records u; as either a good or bad experience depending if u; is above or below 0.5
respectively, in a tuple of the format (r;, s;), where r; is the number of good interactions with a;, and s; is the
number of bad interactions. We recall n; denotes a;’s total number of interactions.

In our ride sharing example, an interaction between two agents represents a driver giving a passenger a lift.
We assume that all drivers are continually giving lifts and being paid at the same rate. Utility represents how
pleasant the interaction experience was, which may include but is not limited to, the passenger not producing
full payment, or a passenger giving a tip.

At the end of a time step, when all interactions have occurred, trustees leave the network with a probability
P,., and trustors with probability P;,.. They are replaced by a new agent of the same profile, thus maintaining



the distribution of agent behaviours in the population. Burnett et al. used a high value for P to highlight how
established agents could use their experiences with other trustees to identify the behaviour of new agents. In
this paper, our evaluation considers a higher P;., to emphasise how new agents can choose a partner with no
experience of the correlations between tags and behaviour.

4 Bootstrapping Trust

Probabilistic trust assessment uses personal experiences to calculate the expected behaviour of another agent.
When combined with subjective logic, this assessment includes an a priori which is weighted higher when the
probabilistic trust assessment is uncertain. BRS uses a default value of 0.5 as the a priori for all agents. This
section describes how the a priori can be replaced using other information about agents e.g observable features.
We first describe the probabilistic trust algorithm, and how a stereotype model can bootstrap trust, which we
refer to as the SB model. Finally, we describe how tags can bootstrap both trust and stereotypes, which we refer
to as the T'SB model.

4.1 Trust and Reputation

Recall that agent a; maintains a tuple, (r;, s;), recording the number of good and bad interactions with agent
a;. To estimate agent a;’s behaviour from this history we use beta probabilities. First, we calculate the belief,
b, which represents the expected behaviour based solely on the direct experiences. Using subjective logic, we
weight the a priori, a, by an uncertainty factor, u, which decreases as more direct experiences are collected. The
overall expected behaviour, trust, is calculated according to Equation 8 [JI02, BNS10].

Tj—‘rl

b= ——— 6
i +5;+2 (6)
2
U= —- (7)
Tj+8j+2
trust =b—+u X a (8)

If we do not assume honest reputation providers, then agents might lie about their experiences, similarly when
agents use biased behaviours one trustee will treat two trustors differently, and so a recommendation may not
be applicable. It is therefore important to weight the recommendations from third parties.

Equation 9 aggregates evidence about a trustee a; from third party trustors, by replacing the values of
r; and s; in Equations 6, 7 and 8 with the sum of good and bad experiences with the target trustee from
all the trustors [JI02]. Honesty is assumed in the SB model [BNS10], and so all the opinions from trustors are
weighted equally. However in the TSB model it is possible to evaluate another trustor by comparing tags, despite
never having interacted with them (because trustors do not interact with other trustors). This is particularly
advantageous when agents use biased behaviours because a similar trustor would likely be treated the same by
a trustee, and so we should weight that trustor’s opinion higher.

Atr -At'r

_ tr e tr
r; = g X w,  sj = E s X w (9)
tr tr

Where the weighting, w, of a trustor’s opinion is 1 if the SB model is being used. Otherwise, if the agent is using
the TSB model, w is calculated by how similar the two trustors are, as in Equation 1. A trustor will weight the
reputation information provided by an observably similar trustor higher, as the trustee is likely to treat them
the same.

4.2 Stereotypes

The results of interactions used in trust algorithms are associated with specific agents. Conversely, stereotypes
assume that data from one agent can have similar implications to a different agent with similar observable
features. Therefore, stereotypes associate the results of interactions with observable features instead of with
individual agents.

The learning interval L, is the minimum number of experiences an agent must have to build the stereotype
model, and it is rebuilt every L interactions with the data accumulated in that time. The data has the form



<?, trust) which is used to train an M5 decision tree. The tree learns correlations between tag values and the
class variable, trust, which is calculated using Equation 8.

The decision tree learns correlations between features and behaviour so that when a new agent is encountered,
their tags are classified by the decision tree and an expected behaviour is output. The output of the decision tree
replaces the a priori value of Equation 8. Before this time, the default value of 0.5 is used. As interactions with
a specific agent are collected, the uncertainty will decrease, allowing the trust algorithm to take more precedence
over the stereotype model for that agent.

The TSB model extends this by replacing the a priori before L experiences are collected, as explained in
Section 4.3. However, once the agent can build a stereotype model this takes precedence over the tags.

4.3 Bootstrapping Using Tags

The stereotype model cannot be built until n; > L, and so before this we replace a in Equation 8 with the
outcome of the following tag-based model. This solution does not incur any serious space or time constraints
as it scales with the number of tags. A trustor maintains @-values for each tag at different levels of similarity.
These estimate the trust for agents whose tag has that level of similarity to their own. Using Q)-learning prevents
ignoring experience information up until L interactions have occurred. Error calculations for each Q-value are
used in an attempt to identify irrelevant features early on. We measure similarity using distances between values
of the various tags.

Each tag is one of the types described in Table 1. Different types of tags require different distance calculations,
examples of which are given in this table. The output of each distance calculation is in the range [0, 1].

— =
T {dist(TZ,th) x kJ (10)

Agents maintain two k X |?| matrices: one containing @)-values for trust estimates and one for the average
error for each @-value over time. The parameter k specifies how many equal-width bins to discretize the output
of the continuous distance function between tags into. The matricgs are then indexed by each tag at each distance

interval. When trustor a; is considering trustee a;’s ' tag of, T,;" , it will fall into bin = given by Equation 10,
which scales the output of the tag’s distance function. The value of k will have a relationship with the number
of profiles, but agents do not know how many profiles exist and so each agent is assigned k£ at random between
0 and 10.

The first matrix, M9, maintains Q-values for each tag ¢ in distance bin x at M9[z][t]. The Q-values are learnt
from the updated trust values after an interaction has occurred as this is the only information available to them.
Trust is an expectation of behaviour and so the @-values are learning expected behaviour indirectly for each
<tag, distance> state. The update equation for this reinforcement learning can be seen in Equation 11, taken
from [Wak92]. We set the discount factor, +, to 1 so as to weight all past experiences equally, and the learning
rate, A that determines the effect of an update on the new @-value is 0.3. Different values for A were not found
to significantly vary the results, therefore this is not explored further.

The second matrix, M€, maintains at index M¢[z][t] a running average error between the original )-value at
that index, and the newly calculated trust after the interaction has occurred. This calculation is in Equation 12,
where m} is the number of times this tag-distance pair has been updated in order to calculate an average. This is
attempting to identify irrelevant features as a continually high error for certain tags implies it is likely unrelated
to behaviour.

M@ [z][t] MQ[ac] [t] + A(new_trust — 'y(MQ[x] [t]) (11)

n [trust — MP[z][t]| — M€[z][t]

T
my

M€ [z][t] « M*[z][t]

(12)

Using these two matrices, we calculate the a priori trust using a weighted sum as given in Equation 13. The
intuition is that each tag is associated with an expected reward, and we weight the influence this has on the
overall expected behaviour calculation by the error associated with it.

71 Aga _ M
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Table 4: Default environment parameters

] parameter | value |
# rounds 200
# trustors 20
# trustees 500
# relevant tags 6
# irrelevant tags, Ny 6
trustee turnover, P, 10%

The values in matrix M© belonging to trustor a; are initialised to how a; would behave towards theoretical
partners with each of those tags at each of the distance intervals from their own tags. With the simple behaviours,
this means all tags in every interval are initialised to p;. When behaviours are biased the same tag will be
initialised to a less cooperative value the larger the distance between them are. The error matrix is initialised to
0, giving all tags an equal weighting of 1 to begin with as we do not know which are irrelevant.

5 Evaluation and Results

The results in this section compare the tag-bootstrap model (T'SB) described above, to the original stereotype-
bootstrap model (SB) from [BNS10]. The parameters described in Section 3 remain static throughout the
experiments and have the values in Table 4. The parameters that vary in our experiments are: the probability
of trustors leaving the network, Py, the proportion of an agent’s lifetime they should explore for, «, and the
learning interval, L.

The aim of this work is to aid agents in establishing themselves as quickly as possible by improving their
rewards in the early stages of their life. The metric of success for the trustors is their average outcome over time,
which will indicate whether they have chosen good partners. An important difference between biased behaviours
and simple behaviours are that the mean values defining agent behaviours are different between the same profiles,
therefore the results are not directly comparable between simple and biased behaviours and only the trends can
be compared. In the following results, biased behaviours appear to cause less average utility over time, but this
is due to the average outcome of a p; trustee being less when they are interacting with dissimilar trustors. The
best agent profile type is still being chosen for interactions.

5.1 Simple and Biased Behaviours

We compare the results of the SB model from Burnett’s work to our TSB model as it is an extension of the
former [BNS10]. The first results in Figure 3a demonstrate a comparison to the original work in the closest
like-for-like environment!'. The initial gain in outcome is clearly visible, however when there is no exploration
in the TSB model the average outcome reduces once the stereotype model is built (around the 100* round)?.
We identify the source of this in the next section on exploration. The tag subsystem is also vulnerable to noisy
features in early stages. When this data trains the decision tree it produces less accurate predictions and thus
why it performs worse later in time. By forcing agents to explore a small amount initially, this already improves
results, as can be seen in both Figures 3a and 3b. The best value for exploration, «, is 0.02 as demonstrated in
Section 5.2.

Recall that the absolute value for average outcome from simple behaviours are not comparable to biased
behaviours, because the means defining trustee behaviour vary with similarity. When trustees use simple be-
haviours and all trustors are interacting with p; trustees, the average outcome will be the p associated with p;.
However, when p varies and all trustees being chosen for interaction of type p1, the average outcome will depend
on how p; trustees act with all the different types of trustors. The results converge on 0.8 when all trustees
chosen are p;. Therefore analysis of the results compares the trends.

When agents have biased behaviours, the trends are very similar to simple behaviours, as seen in Figure 3b.
This demonstrates that despite inclinations to interact with similar agents, the TSB model can still identify the
best agents to interact with.

ISpecifically, we compare the results of global interaction and reputation sources (GGS) from the work of Burnett et al.
2All results in this paper were proven to be statistically significant using ¢ tests with the area under the curve to remove temporal
dependencies over 50 runs for p < 0.001.
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Figure 3: Comparison of the SB and TSB models

5.2 Model Accuracy

With no exploration, the TSB model causes the decision tree trained afterwards to perform worse than when
the TSB model is not used. This is because the TSB model quickly identifies the more extreme behaviours i.e
agents of profiles p; and p4, because the extreme profiles consistently perform either good or bad given our binary
outcome scale for an interaction. Without exploration, the TSB model always selects p; agents for interactions,
never having enough interactions with agents of other profiles to accurately learn the expected behaviour or the
tags which correlate with them. The decision tree is then trained on this inaccurate data, and as a result cannot
easily distinguish between the remaining profiles. Figure 4 confirms this, showing trustors’ average estimated
behaviour of the five profiles using the TSB model. With no exploration, as seen in Figure 4a, the four worst
profiles are estimated to have almost identical behaviour by the stereotype model, and only one direct experience
will influence which partner to choose regardless of how representative that one interaction is of true behaviour.
As exploration increases, in Figures 4b and 4c, the TSB model has more interactions with other profile types and
thus gathers more data on them enabling the decision tree to distinguish between profiles more clearly. However,
this long term improvement incurs an earlier cost, as the agents are not able to interact with profile one agents
when they would otherwise choose to.

Exploration is therefore an important consideration of the model, and different environments will require more
or less exploration. If the trustors are not able to leave the population then they have more time to explore.
Figure 5 shows that the SB model performs the same regardless of exploration, this is because its partner choices
are initially random, and so the exploration has little effect. Having identified that more exploration leads to a
more accurate decision tree later in time, we now confirm the effects on short term utility of this. A high « of
0.1 results in the best decision tree, but slowest gain in utility early on. The best compromise is when a to be
0.02, because there is minimal long term utility loss as a result of a less well trained decision tree, but the short
term utility compared to no exploration is still high.

When the trustor turnover is marginally increased to 0.01, it is more beneficial for agents to identify the
best partners despite not accurately assessing their behaviour, as they leave the system before needing any
estimation of agent behaviour. Figure 6 shows the effects of exploration in such a dynamic population, and the
TSB model with low exploration continuously does better. The appropriate exploration is very dependent on
the environment which agents are exploring. The advantage of using « is it varies decay as a proportion of agent
lifetime, so we can intuitively see how to include it in other evaluative scenarios.

5.3 Dynamic Population and Learning Interval

The SB model performs well with both low or high values of L because the relationship between tags and
behaviour is static so old interaction histories are always representative of current agents’ profiles. In our ride
sharing example, relevant tags which correlate with behaviour that might change include location (e.g. a new
nightclub in a previously quiet area). In this case, methods relying on historical data such as stereotyping, will
be slower to learn the new correlation compared to the tag based method. We are not implying that tags can be
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Figure 4: Average trust in profiles, agents use simple behaviours, TSB

falsified, but that correlations between tag values and behaviours might change. The TSB model will not be as
susceptible to this change, because an agent’s own tags and behaviours will have changed too, for example a taxi
driver sharing the same location tag as the new nightclub will be aware of the change. Despite not demonstrating
this dynamic behaviour, we present results for both simple and biased behaviours in Figure 7. The TSB model
performs at least as well as the SB model for any value of L.

When P, is 0.1 an agent’s average lifetime is 10, Figure 7 verifies that when L is 100, the SB model performs
poorly because agents are solely relying on personal experiences to calculate expected behaviour. However, when
L is 1 they have the chance to learn correlations between features and behaviour and start to perform better.
The TSB model results presented here performs at least as well as the best SB model because it is accurately
choosing agents having profile p;, so maximising outcome.

Environments ranging in complexity will have different optimal values of L to maximise learning without
including outdated information. However, the TSB model reduces the need to know this in advance, which is
especially important where the trustor turn over is high as trustors might not ever get the chance to collect L
experiences to build their stereotype model.

5.4 Inaccurate Reputation Sources

Trustors might give inaccurate accounts of interactions with trustees for two reasons. Firstly, when agent
behaviours are biased towards similar agents, a trustee will treat one trustor differently to another if those two
trustors are dissimilar. Secondly, the trustor could be lying for their own selfish motivations. We expect the
TSB model to account for the former issue by weighting feedback from similar agents higher, as described in
Equation 9. With the latter case, both models are susceptible to this noise unless they use a more advanced
reputation model such as TRAVOS [TPJL06]. Therefore, we evaluate in an environment where a third of sources
report exactly the opposite of their experience, a third are noisy sources, and a third are accurate.

The results in Figure 8 show that both models perform similarly to when agents are honest. With such a
high trustee turnover, Pj., direct experiences are rarely weighted much higher than the a priori of the model
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Figure 6: Different exploration rates, «, for Py, = 0.01.

because they are not available. As the SB model uses the default a priori for all agents, experiences are the only
distinguishing feature between trustees, making it more susceptible to lying reputation sources. We can see this
in the early stages of the SB model. However, the TSB model uses the trustees features to calculate an a prior
in the early stages, and so converges at the best average outcome when sources are lying, just slower than when
they honest.

6 Discussion and Conclusions

Tags are observable features inspired from evolutionary studies showing similarity encourages selective altruism.
We have shown that when agents use the concept of relatedness, they have the ability to identify cooperative
interactions partners without external information such as prior experiences with the agent. Using this model to
bootstrap existing trust and stereotype models improves an agent’s reward in the early stages of its life. This is
especially prominent in dynamic populations where agents have insufficient experiences to successfully use other
trust and stereotype techniques.

The model presented in this paper accurately identifies extreme behaviours, which is useful to agents who do
not have enough time in the network to accurately predict behaviours of all profile types. However, this can
produce inaccurate long term estimations of behaviour for all profile types which we have shown can be alleviated
with exploration. A trade off must be made between how much agents should explore against immediate short
term utility gains.

The amount of exploration depends on the context. If agents can afford to establish themselves slowly and
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Figure 8: Coping with inaccurate reputation sources.

so with exploration, the short term utility gain is reduced but improves the accuracy of the stereotype model
being bootstrapped. However, in competitive and dynamic environments it is often important to perform well
as quickly as possible. This is called “survival of the fittest” in evolutionary theory and is prevalent in modern
society, for example competition in market places [Hun97]. The tag system presented here offers quick and large
rewards to new agents with less exploration.

Future work includes allowing the tag-based model to take precedence even after enough experiences have
been gathered for a stereotype model. If agent behaviours are dynamic, changing which tags are indicative of
good behaviour over time then the stereotype model will have trained on unrepresentative data. Reverting to
tag comparisons could prevent ages from choosing bad partners using old data.

One final consideration for future work is handling cheating agents. In related literature these agents mis-
represent themselves by mimicking tag values which are indicative of good behaviour. Cheaters will be selected
for interactions but then behave badly and selfishly. This is common in real world applications such as online
marketplaces or peer-to-peer networks, for example as fraud or virus spreading. A limitation to the work pre-
sented here is that tags can be easily mislead, though the inclusion of BRS makes it less susceptible than solely
tag-based models.
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