Argon ne°

NATIONAL LABORATORY

Techniques for Modeling Large-scale HPC
/0 Workloads

Shane Snyder, Philip Carns, Robert Latham, Misbah Mubarak,
Robert Ross

Argonne National Laboratory
Christopher Carothers

Rensselaer Polytechnic Institute
Babak Behzad, Huong Vu Thanh Luu

University of lllinois at Urbana-Champaign
Surendra Byna, Prabhat

Lawrence Berkeley National Laboratory

y. , U.S. DEPARTMENT OF

Background & Motivation

= Meaningful storage system analysis is contingent on the use of representative I/0
workloads
— Conclusive I/0 analysis needs to be done in context of workloads expected in production

= Storage system designs/algorithms have typically been evaluated using workloads
from the following sources:
— 1/0 traces: capture detailed info about each I/O function of interest from some target
application
— 1/0 kernels: manually developed representations of application |/O workloads

— 1/0 characterizations: condensed representations of the salient characteristics of
application 1/0O workloads

= Each method has inherent tradeoffs & no one method works best in all scenarios

— There is great benefit in giving researchers flexibility in types of workloads they can use
to drive their analyses

Snyder et al. @ PMBS’15

-

Modeling HPC 1/0 workloads

= HPC /0O workloads are particularly difficult to model
— Large-scale (10,000-100,000 application processes, & growing)
— Many distinct 1/O strategies
— Coordinated access
— Proliferation of 1/0O libraries and data interfaces

= Further, drawing meaningful conclusions from HPC I/O analysis is nontrivial
— HPC storage systems are shared among many competing I/O workloads

* The performance of some workload of interest is dependent on the imposed 1/0
workloads of other jobs in the system

— HPC systems are complex and the I/O stack is deep
* Performance issues may be difficult to isolate

Snyder et al. @ PMBS’15

-

A solution: IOWA (/0 workload abstraction)

= |OWA is an interface allowing arbitrary workload consumers to ingest
representative 1/O workloads from a number of distinct workload generator

methods

= |OWA allows I/O researchers to
generate workloads from a range of
sources:
— 1/0O traces
— 1/O kernels
— 1/0 characterizations
— Mathematical models

= Researchers now have the option to choose workload sources most suitable for

their study:

Workload
Generator
Methods

Workload
Consumers

{

{

Recorder

CODES 1/O
Language

Darshan

IOWA Component

Storage
System
Simulation

I/O Replay
Tool

I/0 Workload
Parser

— What sources are amenable to the evaluation they are performing?

— What sources are actually available or attainable?

Snyder et al. @ PMBS’15

-

IOWA workload model

= |OWA embodies the following design criteria:

i Workloads composed of an ordered, identifiable set of application processes (e.g. MPI
ranks)

i Independent streams of workload operations generated for each process

M Workload operations include not only I/O primitives, but operations for modeling
application computation and synchronization points

i Ability to “undo” generation of an operation, for compatibility with optimistic DES
systems

= Workloads modeled at the POSIX layer
— Primarily for portability of workloads
— Is this the best idea? More on this later...

" Currently supported operations:
— open, read, write, close => |/O primitives
— delay => models application computation
— barrier => models collective communication

Snyder et al. @ PMBS’15

-

IOWA collective I/0 model

= HPC I/O workloads often include coordinated, collective operations that enable
optimizations such as two-phase 1/0O:

— Phase 1: processes read large, contiguous regions of file
— Phase 2: processes redistribute data amongst themselves

oo B
o o o (o] o o

Initial State Phase 1: 11O Phase 2: Redistribution

two-phase read

= Key terms:
— Aggregators — workload processes that perform 1/0 on behalf of other processes

* Typically, num aggs <<num procs
— File domain — the file extent that a given aggregator is responsible for

= |OWA workload generator methods must emulate the two-phase algorithm to
accurately reproduce collective 1/0 workloads

Snyder et al. @ PMBS’15

IOWA workload sources: Recorder 1/0 traces

= Recorder is a multi-level (HDF5, MPI-IO, POSIX) 1/0O tracing tool
= For each I/O function, Recorder traces:

— Functional parameters

— Timestamp call began & duration of the call

— Return code

= MPI-IO calls are also traced to give hints to the workload generator about which
POSIX calls are issued as part of a collective 1/0O operation

1395246918.82860
1395246921.58050
1395246921.66498
1395246926.45888
1395246926.46044
1395246926.53713
1395246926.80371
1395246926.98298
1395246927.15213
1395246927 .36947

MPI Barrier (MPI COMM WORLD) 0 2.74235

open64 (/etc/romio-hints, 0, 0) -1 0.00812

open64 (/projects/SSSPPg/hluu//sample datasetlk.h5part, 2, 0) 5 0.00045
MPI Barrier () 0 0.00004

MPI Barrier (MPI COMM WORLD) 0 0.00004

write (null, buf=0x1fa2b590b8, 16777216) 16777216 0.12372

write (null, buf=0x1fa2b590b8, 16777216) 16777216 0.11414

write (null, buf=0x1fa2b590b8, 16777216) 16777216 0.11806

write (null, buf=0x1fa2b590b8, 16777216) 16777216 0.11534

write (

null, buf=0x1fa2b590b8, 16777216) 16777216 0.11358

[1] H. Luu et al. A multi-level approach for understanding 1/0 activity in HPC applications. In IEEE International
Conference on Cluster Computing (CLUSTER), pages 1-5, 2013.

Snyder et al. @ PMBS’15

-

IOWA workload sources: CODES 1/0 kernels

= CODES is a highly parallel simulation toolkit for modeling exascale storage systems
— Built on top of the ROSS optimistic DES

= CODES includes a domain-specific language for describing I/O workloads
— Originally only used in CODES storage models
— Includes 1/O primitives, delay & synchronization mechanisms
— Variable assignment, conditional, & loop constructs

if ((r / p) < 512)
{

0 = (0 * 68719476736) + (((r / p) * 8) * 16777216);
writeat f, 16777216, o;

[2] J. Cope et al. CODES: Enabling Co-design of Multilayer Exascale Storage Architectures. In Proceedings of the
Workshop on Emerging Supercomputing Technologies 2011, ACM.

Snyder et al. @ PMBS’15

IOWA workload sources: Darshan I/0 characterizations

= Darshan is a lightweight, 1/0 characterization tool for HPC applications

" For each accessed file, Darshan captures:
— Counts of I/O operations at different layers (POSIX, MPI-10, HDF5, PnetCDF)
— 1/0 access information (histograms, common access sizes & strides)
— Cumulative I/O timers and timestamps
= Per-file statistics recorded at each process, shared file records aggregated at
shutdown
= Darshan enabled by default on production systems at the ALCF, NERSC, and NCSA
— Breadth of HPC application I/O workloads in Darshan logs

14818971734818452778 CP_POSIX READS 0 .../vpicio test.
14818971734818452778 CP_POSIX WRITES 133138 .../vplcio test.
14818971734818452778 CP_POSIX OPENS 8193 .../vpicio test.
14818971734818452778 CP_POSIX SEEKS 4180 .../vpicio_ test.

14818971734818452778 CP_BYTES READ 0 .../vpicio test.
14818971734818452778 CP_BYTES WRITTEN 2199023259968 .../vpicio test.
14818971734818452778 CP_MAX BYTE READ 0 .../vplcio test.
14818971734818452778 CP_MAX BYTE WRITTEN 2199023261831 .../vpicio test.

[3] P. Carns et al. Understanding and improving computational science storage access through continuous

characterization. Trans. Storage, 7:1-26, October 2011.
Snyder et al. @ PMBS’15

‘; 9

-

Generating workloads from Darshan logs

= Challenges:

— The timespan in which 1/O occurred is known, but not the complete timeline of I/0
operations

— Info on I/O access parameters limited to per-file histogram of access sizes and the most
commonly occurring 1/0 sizes and strides

— Shared file records are further collapsed into a single aggregate file record
* Obscures individual ranks’ roles in the shared file workload

= Approach:
— Apply heuristics to classify the I/O strategy for each given file record:
* Independent I/O to independent file
* Independent I/O to shared file
* Collective 1/0 to shared file

— Formulate assumptions based on this classification to simplify regenerating the
workload

* E.g., mimicking a collective 1/0 algorithm when regenerating collective /0
workloads

Snyder et al. @ PMBS’15

10

Generating workloads from Darshan logs

Rank 0 1/0 Workload

" For each workload process, we:

Iterate Darshan’s per-file fe record delay=s) open Jdelay=if write delay=1] write fdelay=2 close
records, generating workload ook
opents:5.0: |
operations which belong to this close ts: 100 | ‘
process last write end ts: 8.0 3 777777
writes: 2 | |
. . :Ztal \tNerSite time: 1.0 ! ! merge sort
— Operations from each file | T
record are merged into an A B

aggregate process workload

= Simplifying assumptions:
— Constant sized delay between |/O operations, determined using observed idle time
— Access sizes are assigned from common access sizes and default histogram bin sizes
— Offsets assigned sequentially through a given file

= Shared file records are classified into 2 distinct cases: independent & collective |/O

— round-robin strategy used in each case to evenly distribute |/O among processes
performing the I/0O

* Independent I/O => all processes
* Collective I/O => “aggregator” processes

Snyder et al. @ PMBS’15

11

Example use case |: storage system simulation

One potential application of IOWA is to inject I/O workloads into storage system
simulations

— Could be used to analyze storage architecture/algorithm models with 1/0O workloads of
interest

We integrated IOWA into an existing CODES model of Intrepid, a decommissioned
IBM BG/P system at the ALCF

— Model includes major components of the BG/P architecture: compute nodes, I/0 nodes,
file servers, storage devices, and interconnects

* Compute node components modified to interface with IOWA for obtaining 1/0
workloads

We used this model to compare the execution of each of the IOWA workload
generators’ representations of the VPIC-10 workload

— VPIC-IOis an I/O kernel of the VPIC plasma physics simulation code
— VPIC-10 leverages HDF5 collectives to write time-varying datasets to file

Snyder et al. @ PMBS’15

12

Example use case |: storage system simulation

= |OWA workload sources for VPIC-IO workload obtained as follows:

— Recorder traces and Darshan logs using link-time instrumentation on Mira (BG/Q system
@ the ALCF)

— CODES 1/0 kernels crafted manually

= Figure shows aggregate write operation counts over 40 distinct intervals using
each IOWA generator’s model of the VPIC-10 workload (workload size = 8K ranks)

— Why do Recorder and CODES 1I/0 language workloads experience reduced write rate?

100000 [

Recorder

- CODES I/Olanguage ©

5 Darshan

8

[=}

2

®

§_ Q6@%‘%2‘%66666@eﬁé66&@%6@6@666@%%6%@%@%60

P 10000 -

5 F o

]

©

g’ ¥

=)

<

1000 | | | |
o) % % 2 o>

b % % % %

Time (seconds)

Snyder et al. @ PMBS’15

-

-

Example use case |: storage system simulation

100000

- Recorder

CODES I/Olanguage ©
Darshan

%@@@66’9@@6%@@@@663@@@%@@6@@3@@@%@@@g@é@@@@

Aggregate write operation count

10000 |- -

N . .

)

[reduced write rate at end of each

of VPIC's 8 collective variable writes
1000]]]]

o) Vs 7. << <
(#) (s)) [4) S
Z % % % %

Time (seconds)

Recorder generates delays exactly as described in trace files, possibly reproducing
runtime anomalies (e.g., a straggling process)

Snyder et al. @ PMBS’15

14

Example use case |: storage system simulation

100000
- Recorder

CODES I/O language
Darshan

X
©)

%@@@66’9@@6%@@@@663@@@%@@6@@3@@@%@@@g@é@@@@

Aggregate write operation count

10000 |- -

. o)

)

[reduced write rate at end of each

of VPIC's 8 collective variable writes
1000]]]]

o) Vs 7. << <
(#) (s)) [4) S
Z % % % %

Time (seconds)

= CODES I/0 language modeling of two-phase collective I/O results in idle
“aggregator” processes in the final round of each collective

Snyder et al. @ PMBS’15

-

15

-

Example use case ll: storage system 1/0 replay

Another useful application of IOWA is for replaying 1/O workloads on real HPC
systems

— Could be used to analyze a workload’s performance on a new platform (without need
for compiling/configuring/executing the application on this system)

We developed an MPI-based 1/0 replay tool that interfaces with IOWA to replay
arbitrary workloads on a real system

— POSIX calls used to replay IOWA I/O operations
— MPI_Barrier() used to replay IOWA synchronization operations
— High-resolution sleep function used to replay delays

We then used this replay tool to compare the performance of a real I/O workload
to each IOWA generator’s model of the workload on Mira

— Again, Recorder traces and Darshan logs obtained using link-time instrumentation on
Mira, CODES 1/0 kernels crafted manually

Snyder et al. @ PMBS’15

16

Example use case ll: storage system 1/0 replay

= We use a simple independent checkpointing 1/0O workload as a proof of concept of
the IOWA design

— This type of workload is common in
HPC applications that use the
checkpoint-restart model for

400

Original IOR workioad ——
350 Recorder replay ---- . ;.
CODES I/O language replay & r oot

-

Darshan replay ot

resilience 300 -

g 250 i

= Figure shows the run time of the g i
original workload and each 2 150 .

generator’s representation using 1o I

our MPI replay tool on Mira

— Workload scaled from 8K-128K 8K 16K 82K 64K 128K
. . Workload size (processes)
application processes

50 .

= Each example obtains comparable performance on this workload, with no more
than 10% error in any case

— This workload is straightforward enough to be reproducible using any of the IOWA
workload generators

Snyder et al. @ PMBS’15

é 17

Workload modeling challenges: collective I/0

= Figure shows the performance of
each IOWA generator at

450
400
350
300

T T
Original IOR workload —+—
Recorder replay ----
CODES I/O language replay &
Darshan replay

reproducing a shared-file g »50
checkpointing workload rather than & 200
independent H 150 | o™
— Uses MPI-10 two-phase collective 100
/O algorithm 0r]

8K 16K 32K 64K 128K
Workload size (processes)

= Recorder workload generator exhibits up to a 25% decrease in runtime
compared to the target IOR workload at larger scales?
— We believe this is an artifact of modeling collective communication with a barrier

* A barrier is likely inadequate at modeling the cost of large-scale collective
communication in the two-phase 1/0 algorithm

= Why do the Darshan & CODES I/0 language generators exhibit such poor
performance (up to 55% increase in runtime)?

Snyder et al. @ PMBS’15

é 18

Workload modeling challenges: collective I/0

Recorder x
CODES /O language ©
Darshan

= Figure shows the distribution of “file
domains” among “aggregators” for the
IOR collective 1/0 workload

— Gives us indication of which parts of the
file were accessed by which aggregators

Starting file domain offset (GiB)

) 7, 2 &) P
Q. 0! 7. 7, p/
2 % % % B R B
MPI rank of aggregator processes

= Darshan & CODES I/0 language generators simply assign file domains to
aggregators sequentially through the file
— Mira’s MPI-IO driver prefers special “bridge” nodes as aggregators
— File domains aligned to GPFS lock boundaries

— Recorder traces embed this data, but is difficult to construct for CODES 1/0O kernels and
Darshan 1/O characterizations

= Best practice: accurately modeling collective I/O typically will require accounting
for platform-specific optimizations and topology details
— Capturing and replaying workloads at a higher layer likely preferable on real systems

Snyder et al. @ PMBS’15
19

-

Conclusions

" We have designed IOWA, an |/O workload abstraction offering I/O researchers
flexibility in choosing different workload generation methods

— Allows researchers to choose appropriate workloads based on the study being
performed and the resources available

= We also evaluated the relative merits of 3 distinct IOWA workload sources:

— Recorder I/0 traces are most accurate, but at cost of size and ease of modifying
workload characteristics

— CODES 1/0 kernels are most flexible, but can be cumbersome to develop

— Darshan 1/O characterizations are small and offer access to a breadth of HPC workloads,
but at a cost of workload accuracy

= Accurately modeling HPC I/O workloads is a difficult problem, providing many non-
obvious challenges to 1/0 researchers

— E.g., modeling I/O workloads at POSIX layer is enticing for workload portability, but
complicates modeling high-level collective 1/0 workloads

Snyder et al. @ PMBS’15

20

-

Acknowledgements

= Thank you for your time!

= |OWA software is available as part of the CODES project:

— http://www.mcs.anl.gov/research/projects/codes/

= Questions??

This material is based on work supported by the U.S. Department of Energy, Office of Science,
Advanced Scientific Computer Research Program under contract DE-AC02-06CH11357. The

research used resources of the Argonne Leadership Computing Facility at Argonne National
Laboratory, which is a DOE Office of Science User Facility.

Snyder et al. @ PMBS’15

21

http://www.mcs.anl.gov/research/projects/codes/
http://www.mcs.anl.gov/research/projects/codes/

