
Modeling Large Compute Nodes with
Heterogeneous Memories with Cache-Aware

Roofline Model

Nicolas Denoyelle13, Brice Goglin1, Aleksandar Ilic2, Emmanuel Jeannot1, and
Leonel Sousa2

1 Inria – Bordeaux - Sud-Ouest, Univ. Bordeaux, France
{nicolas.denoyelle, brice.goglin, emmanuel.jeannot}@inria.fr

2 INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
{aleksandar.ilic, leonel.sousa}@inesc-id.pt

3 Atos

Abstract. In order to fulfill modern applications needs, computing sys-
tems become more powerful, heterogeneous and complex. NUMA plat-
forms and emerging high bandwidth memories offer new opportunities
for performance improvements. However they also increase hardware
and software complexity, thus making application performance analy-
sis and optimization an even harder task. The Cache-Aware Roofline
Model (CARM) is an insightful, yet simple model designed to address
this issue. It provides feedback on potential applications bottlenecks and
shows how far is the application performance from the achievable hard-
ware upper-bounds. However, it does not encompass NUMA systems
and next generation processors with heterogeneous memories. Yet, some
application bottlenecks belong to those memory subsystems, and would
benefit from the CARM insights. In this paper, we fill the missing require-
ments to scope recent large shared memory systems with the CARM.
We provide the methodology to instantiate, and validate the model on
a NUMA system as well as on the latest Xeon Phi processor equiped
with configurable hybrid memory. Finally, we show the model ability to
exhibits several bottlenecks of such systems, which were not supported
by CARM.

1 Introduction

The increasing demands of current applications, both in terms of computation
and amount of data, and the limited improvements of sequential performance of
the cores led to the development of large multi-core and many-core systems [1].
These platforms embed complex memory hierarchies, spanning from registers, to
private and shared caches, local main memory, and memory accessed remotely
through the interconnection network. In these systems, memory throughput is
not uniform anymore since the distance between processor and memory banks
varies. On such Non-Uniform Memory Access (NUMA) architectures, the way
data is allocated and accessed has a strong impact on performance [2]. Optimizing
applications data locality for these machines requires a deep understanding of

2 Denoyelle, Goglin, Ilic, Jeannot, Sousa

hardware bottlenecks as well as application needs. Hence, modeling of memory
access performance is of high importance.

Recently, the latest Intel Xeon Phi processor, codename Knights Landing
(KNL) [3], entered the NUMA landscape with a processor divisible into 4 Sub-
NUMA Clusters (SNC-4 mode). Usually, NUMA platforms include several sock-
ets interconnected with processor-specific links (e.g. Quick Path Interconnect [4])
or by custom technologies such as SGI NUMAlink or Bull Coherent Switch [5].
However, the KNL interconnects NUMA clusters at the chip scale (through a 2D
mesh of up to 36 dual-core tiles). Though the software may see both types of
system as similar homogeneous NUMA trees, the strong architectural differences
between NUMA sockets and KNL chips, described above, can impact application
performance in different ways and motivate the joint study of both systems.

Additionally, each cluster of the KNL may feature traditional DDR memory
as well as 3D-stacked high-bandwidth memory named MCDRAM, that can be
used as a hardware-managed cache or as an additional software-managed memory.
Managing heterogeneous memories in runtime systems, applications or compilers
brings another level of complexity and makes performance analysis harder and
even more necessary. Hence, being able to understand the impact of the memory
hierarchy and core layout on application performance as well as on attainable
hardware upper-bounds is of high interest. This is especially true when modeling
the architecture and tuning applications to this kind of hardware.

To optimize the application execution and to infer their ability to fully exploit
the capabilities of those complex systems, it is necessary to model and acquire the
knowledge about the realistically achievable performance upper-bounds of these
systems and their components (including all levels of memory hierarchy and in-
terconnection network). The Cache-Aware Roofline Model [6] (CARM) has been
recently proposed (by some of the authors of this paper) as an insightful model and
an associated methodology aimed at visually aiding the performance characteri-
zation and optimization of applications running on systems with cache memory
subsystems. CARM has been integrated by Intel into their proprietary tools, and
it is described as “an incredibly useful diagnosis tool (that can guide the develop-
ers in the application optimization process), ensuring that they can squeeze the
maximum performance out of their code with minimal time and effort.”4 How-
ever, the CARM only refers to systems based on a single-socket computational
node with uniform memory access, without considering the NUMA effects that
can also dramatically impact the performance.

To address these issues, we propose a new methodology to enhance the CARM
insightfullness and provide locality hints for application optimization on contem-
porary large shared memory systems, such as multi-socket NUMA systems and
Many Integrated Core processors equipped with heterogeneous memory technolo-
gies and with various hardware configurations. The proposed model is experimen-
tally validated with high accuracy on both an Intel Knights Landing and a dual-
socket Broadwell Xeon multi-core host by relying on a set of micro-benchmarks,
a set of synthetic benchmarks, and finally proxy applications.

4 Intel Advisor Roofline - 2017-05-12: https://software.intel.com/en-us/articles/intel-
advisor-roofline

Locality-Aware Roofline Model 3

The remainder of this paper is organized as follows. Section 2 provides an in-
depth overview of the Cache Aware Roofline Model and our contribution to make
the model usable for NUMA and KNL architectures. Section 3 deep dives into the
methodology to measure hardware upper-bounds for these systems. Sections 4
and 5 detail the model instantiation and validation for a Xeon E5-2650L v4
NUMA system composed of 4 NUMA nodes and the latest Xeon Phi many-core
processor. Finally, Section 6 gives an overview of state-of-the-art related works.

2 Locality Aware Roofline Modeling

The generic Roofline modeling [7] is an insightful approach to represent the per-
formance upper-bounds of a processor micro-architecture. Since computation and
memory transfers can be simultaneously performed, this modeling is based on the
assumption that the overall execution time can be limited either by the time to
perform computations or by the time to transfer data. Hence, from the micro-
architecture perspective, the overall performance can be limited either by the
peak performance of computational units or by the capabilities of the memory
system (i.e. bandwidth).

To model the performance limits of contemporary multi-core systems, the
Cache-Aware Roofline Model (CARM) [6] explicitly considers both the through-
put of computational unit and the realistically achievable bandwidth of each
memory hierarchy level5. With this purpose, the CARM (see Figure 1) includes
several lines representing the system upper-bounds (Roofs). Oblique lines (repre-
senting the memory bandwidths) cross the horizontal lines (representing the peak
compute performance), bounding hereby the area of application characterization
by respectively memory and compute regions. The CARM introduces a detailed
and meticulous methodology for plateform benchmarking from which this paper
inherit and extends the content to NUMA platforms.

Arithmetic Intensity [Flops/Byte]

Pe
rf

or
m

an
ce

 [
G

Fl
op

s/
s]

Remote Bandwidth * A
I

fpeak

Memory Bandwidth * A
I

Cach
e Bandwidth * A

I

Application with good locality

Same application with worse locality

Fig. 1: CARM chart of an hypothetical compute node composed of one cache level
and NUMA memories.

5 Main memory and cache levels.

4 Denoyelle, Goglin, Ilic, Jeannot, Sousa

In contrast to the other roofline approaches [7], the CARM perceives the
computations and memory transfers from a consistent micro-architecture point
of view, i.e. cores where the instructions are issued. Hence, when characterizing
the applications, the CARM relies on the performance (in GFlop/s) and the true
Arithmetic Intensity (AI), i.e. the ratio of performed compute operations (flops)
over the total volume of requested data (in bytes). The CARM is presented in
the log-log scale, where the x-axis refers to the AI (in flops/byte) and the y-axis
to the performance (in GFlop/s).

Our Contribution: extending the CARM to NUMA and KNL

From the application perspective, the memory of modern computing systems is
abstracted as a flat address space. However, the memory architecture of con-
temporary large compute nodes is made of remote and/or heterogeneous mem-
ories. In order to fully exploit those system capabilities, current software inter-
faces [8][9][10] require an explicit data allocation policy and/or thread binding
policy to reach good performance [11][12]. Figure 2 depicts such a system, in-

0 1 2 3

Node:0

4 5 6 7

Node:1

(a) Local memory accesses on first NUMA
cluster.

0 1 2 3

Node:0 Node:1

4 5 6 7

(b) Remote memory accesses from second
to first NUMA cluster.

0 1 2 3

Node:0 Node:1

4 5 6 7

(c) One-to-all: Each core accesses simulta-
neously a single NUMA node. Contended
bandwidth of first NUMA cluster is the
bandwidth seen by cores 0-3.

0 1 2 3

Node:0 Node:1

4 5 6 7

(d) All-to-all: Each core accesses simul-
taneously all NUMA nodes. Congested
bandwidth of first NUMA cluster is the
bandwidth seen by cores 0-3.

Fig. 2: Modeled memory access patterns.

cluding two sockets with their local memory (also named NUMA node) and a
set of cores. On these systems, the bandwidth is not uniform across the network,
and it influences memory access performance. Hence, when modeling, the source
and destination of memory access (i.e. from a core to a NUMA node, e.g local
access: Figures 2a or remote access: Figure 2b) should be taken into account to
understand application performance. Moreover, such large scale systems contain
a high amount of cores whose pressure on NUMA nodes can cause data accesses
to be serialized when all of them are accessing a single memory. We qualify this

Locality-Aware Roofline Model 5

situation as Contention and depict it in Figure 2c. Finally, the network connect-
ing the NUMA nodes to the cores can be subject to Congestion, when several
data paths from the memory to the cores, cross the same link. In Figure 2d, we
consider the case where data is balanced on memories, i.e there is no contention,
however, each core will access data located over the whole system NUMA nodes
and will eventually create Congestion because of the interleaved data paths. In
the remainder of the paper, we use the term Cluster to refer to a set of neighbor
cores and their local NUMA node(s)6.

CARM metrics are consistent across the whole memory hierarchy of a sin-
gle cluster (as illustrated for the first cluster in Figure 2a). However, from the
core perspective, memory access performance is not consistent across the sys-
tem: bytes transferred from one NUMA node to a cluster are not transferred at
the same speed to other clusters. This implies that the legacy CARM can only
handle a single multi-core cluster, and fails to characterize accurately the cases
in Figures 2b, 2c, and 2d. Yet, as Figure 1 shows, without proper (here remote)
bandwidth representation in the CARM, locality issues are not obvious since the
performance loss can come from many different sources: no vectorization, sparse
memory access, etc.

Thus, we propose to extend the CARM with the Locality Aware Roofline
Model (LARM), providing the lacking NUMA insights, represented in Figure 2
and characterizing the three main throughput bottlenecks, characteristic of this
type of hardware: non uniform network bandwidth (Figure 2b), node contention
(Figure 2c), and network congestion (Figure 2d). For this purpose, the LARM
iterates the CARM over all the clusters of a computing system and keeps local
consistency while minimizing the changes over the legacy model and taking into
account the non-uniform aspect of the system. It follows that the LARM chart is
a set of CARM charts, i.e. one chart per cluster, characterizing hereby the system
performance upper-bounds under all perspectives. In each subsequent chart, the
LARM includes three new groups of roof characterizing above mentioned bottle-
necks. The remote roofs set the reference upper-bound of achievable bandwidth
from remote nodes to a cluster. The congestion roof set the bandwidth achieved
by a cluster when all the system cores are accessing simultaneously memory re-
gions located across every NUMA nodes in a round-robin fashion. Finally the
contention roofs characterize a cluster granted bandwidth when the whole sys-
tem cores are accessing simultaneously a single NUMA node. Unlike usual CARM
roofs, the new roofs stand as lower-bound roofs because they represent a refer-
ence below top expectations, i.e. local memory access roofs. However, as for the
CARM, the closer an application is to a roof, the more likely this application is
to be bound by this hardware bottleneck.

To the best of our knowledge, there is no work using the CARM to character-
ize NUMA platforms. Hence, beside the contribution of extending the CARM, we
present the following work in the remainder of this paper: 1) we implemented a
tool based on CARM methodology and the proposed improvements to automat-

6 On usual platforms, a cluster is identical to the widely-used definition of a NUMA
node. On KNL, there can exist two local NUMA nodes near each core (DDR and
MCDRAM), hence two NUMA nodes per cluster.

6 Denoyelle, Goglin, Ilic, Jeannot, Sousa

ically instantiate and validate the model on multi-socket systems and Knights
Landing (KNL) Xeon Phi (for various memory configurations); 2) we thus val-
idate the new model with high accuracy micro-benchmarks, for both systems;
3) We also demonstrate the model usability with synthetic benchmarks from the
BLAS package; and 4) we exhibit the model ability to pinpoint data locality issues
on MG from the NAS parallel benchmarks [13] and Lulesh proxy-application [14],
where several data allocation policies are applied.

3 Methodology for Memory and Micro-Architecture
Throughputs Evaluation

Initially, the Cache-Aware Roofline Model is built with two sets of parame-
ters: micro-architecture instruction throughput and the attainable memory band-
width. The former provides the peak floating point performance and L1 band-
width while the latter is used to construct a set of local memory roofs (i.e L2, L3,
local DRAM bandwidths). The Locality-Aware Roofline model, adds the perspec-
tive dimension and rooflines for several memory access patterns which require the
ability to detect and model the system topology. For this purpose, we leverage
hwloc [9] hierarchical representation of the machine to automatically enrich the
CARM with the herein proposed memory roofs.

The micro-architecture throughput can be obtained whether by relying on
the theoretical hardware properties, or by extensively benchmarking the micro
architecture. In the former case, the peak floating point performance can be
computed as:

Fpeak︸ ︷︷ ︸
GFlop/s

= Throughput︸ ︷︷ ︸
Instructions/Cycle

∗ Flops

Instruction
∗N ∗ Frequency︸ ︷︷ ︸

GHz

, (1)

where the Throughput is the number floating point instruction retired per cycle
by one core, Flops/instruction is the number of floating point operations per-
formed in each instruction (e.g 2 for FMA instruction and 1 for ADD instruction),
and N is the number of cores considered. Similarly, the peak bandwidth of the
Level 1 cache can be computed as:

Bandwidth︸ ︷︷ ︸
GByte/s

= Throughput︸ ︷︷ ︸
Instructions/Cycle

∗ Bytes

Instruction
∗N ∗ Frequency︸ ︷︷ ︸

GHz

. (2)

Sometimes, theoretical throughput, provided by the constructor, and experimen-
tal throughput measured from highly tuned software do not match, or even the
former is not publicly available. For this reason, we use the prior CARM method-
ology to implement highly optimized micro-benchmarks and build the proposed
roofs. Our methodology for NUMA-specific bandwidth evaluation relies on a hi-
erarchical description of the system topology as provided by the hwloc library, to
characterize the system bandwidth in a pertinent way. We focus on deep and het-
erogeneous memory level evaluation, rather than on micro-architecture through-

Locality-Aware Roofline Model 7

put evaluation and caches already studied in [6]. Since the model needs to pro-
vide insights on possible bottlenecks of NUMA systems, the model includes the
bandwidth roofs described in Section 2 and Figure 2, i.e. local accesses, remote
accesses, accesses with congestion and accesses with contention. In order to char-
acterize local and remote bandwidths of a cluster in the model, a benchmark
performs contiguous memory access, as in the CARM, but on each NUMA node
individually. One thread per core of the target cluster is spawned, then for each
roof (i.e local and remotes), the workload is iteratively allocated on each NUMA
node, as depicted in Figures 2a and 2b. We do not look at individual links, but
rather at pairs of cores+NUMA node, even though sometimes there are multiple
(unknown) hops between clusters. The contended bandwidths are obtained sim-
ilarly to the local and remote bandwidths, but loading the whole system cores
with threads (Figure 2c). Each cluster granted bandwidth is associated with the
source contended node to build the contended roofs on each cluster chart. Finally,
the congested bandwidth is obtained by doing memory access from all the cores,
contiguous on the virtual address space, but with pages physically allocated in a
round-robin fashion across the system NUMA nodes, and with a private data set
for each thread. Once again, the bandwidth perceived by each cluster is modeled
as the congested roof in its local CARM. Though we call it congestion, it differs
from the official definition7. However it fits a more practical and easy to reproduce
memory access pattern, i.e the one implied by using the linux interleave memory
allocation policy.

In this paper, we only show the bandwidth of LOAD instructions because it suits
better our use cases, however we are able to also measure STORE, non-temporal
STORE and mix of those for all memory levels with our tool.

4 Model Instantiation and Validation on Multi-Socket
System

In order to set up and validate the model, we use a dual-socket NUMA system
named Joe0. It is composed with two Broadwell Xeon E5-2650L v4 processors
(at 1.7 GHz), configured with the cluster-on-die mode and exposing the 4 NUMA
nodes to the system. Each NUMA node of the system topology (Figure 3) imple-
ment 7 cores, here with hyperthreading disabled, and is pictured on Figure 3.

4.1 Platform Evaluation and Model Instantiation

By relying on the testing methodology proposed in [6], it was possible to reach
near theoretical compute and L1 cache throughputs on the Intel Broadwell micro-
architecture, as presented in Table 1. Each core throughput is derived using the
number of operations per instruction and the processor frequency to obtain the
peak FMA floating point performance (reaching 190 GFlop/s for a single cluster).

7 Network congestion in data networking and queueing theory is the reduced quality
of service that occurs when a network node is carrying more data than it can handle.

8 Denoyelle, Goglin, Ilic, Jeannot, Sousa

Machine

Package P#0

NUMANode P#0

L3

L2

L1d

Core

L2

L1d

Core

L2

L1d

Core

L2

L1d

Core

L2

L1d

Core

L2

L1d

Core

L2

L1d

Core

NUMANode P#2

L3

L2

L1d

Core

L2

L1d

Core

L2

L1d

Core

L2

L1d

Core

L2

L1d

Core

L2

L1d

Core

L2

L1d

Core

Package P#1

NUMANode P#1

L3

L2

L1d

Core

L2

L1d

Core

L2

L1d

Core

L2

L1d

Core

L2

L1d

Core

L2

L1d

Core

L2

L1d

Core

NUMANode P#3

L3

L2

L1d

Core

L2

L1d

Core

L2

L1d

Core

L2

L1d

Core

L2

L1d

Core

L2

L1d

Core

L2

L1d

Core

Fig. 3: hwloc topology representation of a dual-socket Xeon E5-2650L v4.

Instruction Throughput Load Store ADD MUL FMA
Theoretical 2 1 1 2 2

Experimental 1.99 0.99 0.99 1.99 1.99

Table 1: Joe0 core instructions throughput (Instructions/Cycle)

Memory Level Bandwidth (GByte/s)
L1 760.1
L2 309.2
L3 154.0

NUMANODE:0 (local) 36.1
NUMANODE:1 (remote) 17.5
NUMANODE:2 (remote) 15.0
NUMANODE:3 (remote) 14.3

NUMANODE:0 (contended) 16.7
NUMANODE:1 (contended) 8.3
NUMANODE:2 (contended) 6.8
NUMANODE:3 (contended) 6.2

All NUMANODES (congested) 18.1

Table 2: Joe0 bandwidth roofs to the first NUMA cluster, i.e NUMANODE:0.

Locality-Aware Roofline Model 9

As presented in Section 3, the next evaluation aims to extensively benchmark
the memory subsystem with several memory access patterns, i.e. the remote/local
bandwidth between each pair (cluster, NUMA node), as well as the contended/-
congested ones. The results obtained are presented in Table 2 for the first NUMA
cluster of the system. Unless specified, the model presented herein is restricted
to a single NUMA cluster, due to the bandwidth symmetry between clusters.

The obtained measures (Tables 1, 2) are then used to build the proposed
model depicted in Figure 4 for the first cluster of Joe0. Besides the roofs for local
caches, this CARM chart also includes all the proposed memory roofs, namely
local, remote, contended and congested roofs.

4.2 Model Validation

With Micro-Benchmarks This validation step consists in micro-benchmarking
the system with several arithmetic intensities, i.e interleaving the memory and
compute instructions used in the above platform evaluation. It assesses code abil-
ity to reach measured roofs while performing both computations and memory
accesses. We measure the roofs fitness as the relative root mean squared error8

of validation points to the roof performance for a realistic range of arithmetic
intensities. The errors and deviation (too small to be visible) for each validation
point, and for each bandwidth roof of a single cluster of the system are presented
in Figure 4. As the error computed in the legend is small (less than 2% in average
for every roof), the validation enforces that measured bandwidths are attainable
by programs of various arithmetic intensities.

With Synthetic Benchmarks Figure 5 shows the LARM instantiated on the
first socket of Joe0. For each NUMA cluster a CARM chart includes local cache
bandwidths, local node bandwidth, the bandwidth under congestion9 and the
bandwidth of the first NUMA node under contention (which is different whether
we see it from the first or the second cluster). Figure 5 also illustrates the memory-
bound ddot kernel and the compute-bound dgemm kernel from the BLAS pack-
age, under several scenarios, showing the model ability to pinpoint locality issues.
For each scenario, threads are bound in round-robin fashion and data allocation
policy is one of: firsttouch (i.e data in memory close to threads), interleave (i.e
data spread on all nodes), Node:0 (i.e data on a single memory node). Each
thread performs the same amount of work though the allocation policy on a
single node may create an asymmetry when observing their performance across
different NUMA nodes (Figure 5). The modeled applications were run on the
full system, i.e. 28 threads (1 thread per core), however, only the model for a
single socket is presented to avoid redundancy. On the chart (Figure 5), ddot and
dgemm are represented each with their own constant arithmetic intensity (i.e the

8 The error is computed as 100
n
×
√∑

i=1..n

(
yi−ŷi

ŷi

)2
where yi is the validation point

at a given arithmetic intensity, and ŷi is the corresponding roof.
9 Remote memory bandwidths are very close to congested bandwidths on this system

and we omit the former in the chart to avoid confusion.

10 Denoyelle, Goglin, Ilic, Jeannot, Sousa

●

●

●

●

●

●

●
● ● ● ● ●●● ● ●● ●●

●

●

●

●

●

●

●

●

●

●

●●●
●●●

●●● ●●● ●●●

●

●

●

●

●

●

●

●

●

●

●●●
●●●

●● ●●●
●●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●
●●●

●●
●●●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●●●
●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●●●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●●
●●

NUMANODE:0_LOCAL error = 0.8%
MACHINE:0_CONGESTED error = 0.9%
NUMANODE:1_REMOTE error = 1.0%
NUMANODE:0_LOCAL_CONTENDED error = 1.8%
NUMANODE:2_REMOTE error = 0.9%
NUMANODE:3_REMOTE error = 0.8%
NUMANODE:1_REMOTE_CONTENDED error = 0.1%
NUMANODE:2_REMOTE_CONTENDED error = 0.6%
NUMANODE:3_REMOTE_CONTENDED error = 0.4%

NUMANODE:0_LOCAL

MACHINE:0_CONGESTED

NUMANODE:1_REMOTE_CONTENDED

2−1 20 21 22 23 24

FMA

2.00

101

190.1

Flops/Byte

G
F

lo
p/

s

Fig. 4: CARM validation of one NUMA cluster of Joe0 platform. Validation points
are visible along the roofs. Finally the model error for each roof is in the legend.

L1
D_L

OAD

L2_LOAD

L3_LOAD

NUMANODE:0_LOCAL

MACHIN
E:0_CONGESTED

2−5 2−4 2−3 2−2 2−1 20

FMA

1.00

101

190.1

NODE:0
INTERLEAVE

FIRSTTOUCH

FIRSTSTOUCH
NODE:0

DDOT_ AI=0.12
DGEMM_ AI=0.50

NUMANODE:0

Flops/Byte

G
F

lo
p/

s

(a) CARM of the first NUMA cluster.

L1
D_L

OAD

L2_LOAD

L3_LOAD

NUMANODE:1_LOCAL

MACHIN
E:0_CONGESTED

NUMANODE:0_REMOTE_CONTENDED

2−5 2−4 2−3 2−2 2−1 20

FMA

1.00

101

190.1

NODE:0

INTERLEAVE

FIRSTTOUCH

FIRSTSTOUCH
NODE:0

DDOT_ AI=0.12
DGEMM_ AI=0.50

NUMANODE:1

Flops/Byte

G
F

lo
p/

s

(b) CARM of the second NUMA cluster.

Fig. 5: LARM chart of linear algebra kernels on one socket of Joe0 system.

Locality-Aware Roofline Model 11

code is unchanged between scenarios) but with several performances (changed
runtime parameters).

The ddot case with allocation on Node:0 has a different performance whether
we look at the first or the second cluster. Hence, the kernel characterization shows
the model ability to spot asymmetries. Even if asymmetries do not originate from
the instructions, they can come from the data distribution and significantly im-
pact the performance [15]. Congested and contended roofs also successfully char-
acterize similar bottlenecks in ddot application. Indeed, in Figure 5, ddot kernel
with interleaved access (i.e. inducing congestion) and access on a single node
(i.e. inducing contention) match with appropriate memory bandwidths. Opti-
mized compute-intensive applications do not suffer from locality issues. Indeed,
as presented in Figure 5, the dgemm execution is not affected by non-uniform
memory access, since it achieves the same performance on each node even if data
is allocated with different policies. This can be attributed the high cache effi-
ciency of the kernel allowing the system to prefetch the required data into the
cache before it is actually required, thus avoiding the local and remote memory
access bottlenecks.

In a nutshell, data allocation policies applied to synthetic benchmarks affects
the performance in a way that is foreseeable. It matches expectations from their
characterization in the LARM, thus validating the proposed roofs relevance.

With NAS MG Parallel Benchmark This step aims to show that the model
insights can help to flush out performance bottlenecks, i.e application charac-
terization relatively to the new roofs can help to pinpoint potential execution
bottlenecks. For this purpose, we ran a C version10 of the NAS-3.0 MG bench-
mark with one thread per core, bound in a round-robin fashion on the system
cores. On this system, we extract the LARM metrics with hardware counters at
the core level, and aggregate the results at the Cluster level. As presented in Fig-
ure 6, three functions from MG benchmark are characterized on the first cluster
of the system with several memory allocation strategies. In the first scenario, the
default linux policy firsttouch is used for data allocation. The characterization of
these functions (labeled with firsttouch) reach near contention roof performance,
and suggest to use the interleave allocation policy to balance memory accesses
over the NUMA nodes in order to decrease the contention. Indeed, the latter
policy increases dramatically the performance above the congestion roof. How-
ever, it is unlikely that the interleave policy surpasses the firsttouch policy with
such a significance. Hence this observation also suggests that firsttouch actu-
ally allocates memory on a single node. Indeed, once parallelized, the previously
sequential memory allocations, enable the firsttouch policy to allocate data on
all NUMA nodes near appropriate threads, and improve again the performance
(labeled with enhanced firsttouch) compared to the interleave policy.

To sum up, the LARM characterization of the memory-bound MG bench-
mark, matches the contended roofs when data-allocation is serialized, i.e data
is allocated on a single contented node, and improves above the congestion roof
once the contention issue is solved, validating hereby the proposed roofs.

10 https://github.com/benchmark-subsetting/NPB3.0-omp-C

12 Denoyelle, Goglin, Ilic, Jeannot, Sousa

L1D_LOAD

L3_LOAD

NUMANODE:0_LOCAL

MACHINE:0_CONGESTED

NUMANODE:1_REMOTE_CONTENDED

2−10 2−9 2−8 2−7 2−6 2−5 2−4 2−3

0.05

10−1

100

9.00

FIRSTTOUCH

INTERLEAVE
ENHANCED_FIRSTTOUCH

FIRSTTOUCH

INTERLEAVE
ENHANCED_FIRSTTOUCH

FIRSTTOUCH

INTERLEAVE
ENHANCED_FIRSTTOUCH

RESID_ AI=0.01
RPRJ3_ AI=0.11
INTERP_ AI=0.02

Flops/Byte

G
F

lo
p/

s

Fig. 6: NAS-3.0 MG Functions Characterization on Joe0 first cluster.

5 Model Instantiation and Validation on Knights Landing
Processor

Machine

Package

Cluster

NUMANode L#0

MCDRAM L#1

Cluster

NUMANode L#2

MCDRAM L#3

Cluster

NUMANode L#4

MCDRAM L#5

Cluster

NUMANode L#6

L2

L1d

Core

L1d

Core

L2

L1d

Core

L1d

Core

L2

L1d

Core

L1d

Core

L2

L1d

Core

L1d

Core

L2

L1d

Core

L1d

Core

L2

L1d

Core

L1d

Core

L2

L1d

Core

L1d

Core

L2

L1d

Core

L1d

Core

MCDRAM L#7

Fig. 7: hwloc model of KNL topology in SNC-4 flat mode. Only the fourth cluster
is detailed, for clarity. Other clusters have a similar topology.

When in SNC-4 mode [3], the KNL is a special case of a multi-Socket system
where each socket has an additional fast memory (MCDRAM) to the conventional
memory (DRAM also specified as NUMA:i), which is addressable in Flat mode
or configurable as a last level cache in Cache mode. Whether the flat mode or
the cache mode is used, the system may yield different bandwidths, performance
and execution time, and thus, the proposed model changes accordingly.

Locality-Aware Roofline Model 13

For our experiments, we used Knights Landing 7230 chips, with 64 cores at
1.3GHz. The topology of the KNL with SNC-4 flat configuration is shown in
Figure 7 where the complete topology is provided for the last cluster. The mesh
interconnection network (Figure 8) between L2 tiles of the chip is widely different
from conventional multi-socket system [16] and motivates additional observations
compared to the previous system.

Fig. 8: Architecture of the Knights Landing mesh interconnect with DRAM and
MCDRAM memory controllers (Source: Intel). Only 32 of these 38 tiles are ac-
tually enabled in our experimentation platform. The amount of tiles enabled can
reach up to 36 tiles, though 38 are present.

5.1 Platform Evaluation and Model Instantiation

By relying on the micro-architecture evaluation methodology from Section 3,
the highest achievable throughput with carefully design micro-benchmarks is
slightly lower than the theoretical values (see Table 3). However a performance
of 2.2 TFlop/s for 64 cores is still achieved.

Table 4 presents the bandwidth evaluation between clusters solo (i.e. by fully
exercising memory units with a single cluster) for the flat mode. Only the evalu-
ation for the first two clusters is presented since the others yield a similar band-
width. Contrary to the multi-socket system, remote and local DRAM attain
similar bandwidths which suggests high efficiency of the KNL interconnection
network. However, significant and less predictable variations can be noticed for

14 Denoyelle, Goglin, Ilic, Jeannot, Sousa

Instruction Load Store ADD MUL FMA
Theoretical throughput 2 1 2 2 2

Experimental throughput 1.66 0.96 1.70 1.70 1.70

Table 3: Theoretical and experimental instruction throughput (in instructions
per cycle) for a single core of the KNL platform.

MCDRAM, which would require the disclosure of more architectural details to
fully explain the mesh behavior.

from
NUMA:0 MCDRAM:1 NUMA:2 MCDRAM:3

. . .
to

Cluster:0 38.1±0.1 92.0±0.5 38.0±0.8 86.6±0.4
Cluster:1 38.1±0.1 91.5±0.4 38.2±0.1 92.8±0.4
Cluster:2 37.8±0.1 90.6±0.5 38.1±0.1 83.7±0.6
Cluster:3 38.0±0.2 82.8±0.4 38.0±0.1 90.8±0.3

Table 4: KNL load bandwidth (GByte/s) from first and second clusters memories
to cores in flat mode. Other clusters are omitted because of similar results.

In Table 5, we also compare the load bandwidth granted to the first cluster
when the data set is allocated into the first cluster DRAM and MCDRAM under
several scenarios. The very first line is the reference when the cluster runs solo
as in Table 4 but comparing the cache and flat modes. In the cache mode, the
bandwidth of both types of memories (i.e. DRAM and MCDRAM) decreases,
probably due to the overheads induced by the MCDRAM caching mechanism. In
both modes, the DRAM bandwidth (NUMA:0) reduces when using all clusters
simultaneously (i.e local with 64 versus 16 threads), whereas this is less obvious
for the MCDRAM. The presence of only two DRAM memory controllers shared
among 4 clusters to access DRAM memory, whereas there are 8 EDC controllers
(two per cluster) to access the MCDRAM (see Figure 8), is a possible cause of
this behavior.

flat cache
NUMA:0 MCDRAM:1 NUMA:0 MCDRAM:1 threads

C
lu

st
er

:0 local 38.1 ±0.1 92.0 ±0.5 22.9 ±0.7 85.4 ±3.0 16
local 21.7 ±0.7 90.9 ±1.2 20.0 ±0.7 83.3 ±2.0 64

congested 19.8 ±0.3 77.6 ±2.0 17.0 ±0.4 NA 64
contended 10.7 ±0.0 21.5 ±0.5 NA NA 64

Table 5: KNL load bandwidth (GByte/s) from first cluster memories.

In the cache mode, the bandwidth drop of DRAM memory when using all clus-
ters simultaneously is not as high as the drop in the flat mode, probably because of
data reuse in MCDRAM cache, which redirects a part of the traffic via the EDC

Locality-Aware Roofline Model 15

channels and absorbs a part of the contention on DRAM memory controllers.
Congestion already happens for interleaved memory access on DRAMs, provok-
ing a further bandwidth reduction when compared to local memory accesses. As
expected, contention is the worse case scenario, resulting in a dramatic band-
width reduction for the cluster. Since congestion and contention are observable,
they imply a need for locality to get good performance. Several Non-Achievable
values stand in Table 4. One of them, i.e contention on NUMA:0 in cache mode
cannot be observed with the technique used in Section 3 methodology. Indeed,
the private data accessed by each cluster in NUMA:0 memory would actually fit
into the 4 MCDRAMs and result in MCDRAMs benchmark instead of NUMA:0
benchmark.

Based on the above characterization, the LARM is constructed for a single
cluster and presented in Figure 9, where the chip is configured in (SNC-4), flat
mode. In contrast to the previous platform, it also includes the MCDRAM roofs
siblings of the DRAM roofs. Bandwidths of remote nodes are hidden for clarity
because they have the same order of magnitude as the local bandwidth and thus
overlap on the chart.

5.2 Model Validation

With Micro-Benchmarks We use again the previous methodology to validate
the model in Figure 9, for one cluster (equivalent on the others). The micro-
benchmark validation on KNL fits the model with an error below 5% in average
for each roofs. Most of it is due to the points located near the ridge on L1 and
MCDRAM bandwidths roofs. Otherwise it still fits nearly perfectly the roofs in
the memory-bound and in the compute-bound regions.

With Synthetic Benchmarks As previously referred, the validation with syn-
thetic benchmarks aims to verify that well chosen causes lead to expected conse-
quences, i.e well chosen synthetic benchmarks are able to hit the roofs. For this
purpose, we characterize again ddot and dgemm BLAS kernels in the CARM
chart (Figure 10) of the first cluster of the KNL. Here we focus on MCDRAM
usage rather than the classical memory allocation policy already studied for the
multi-socket system. Hence, we compare several data allocation strategies and
sizes, as well as the flat and cache configurations of the chip.

The ddot function is compared under both flat and cache modes and by adopt-
ing various allocation strategies and data-set sizes. The small data-set (labeled
small in Figure 10 fits into the MCDRAM, whereas the large data-set (labeled
large) does not. In the MCDRAM policy, we allocate the whole small data-set
into MCDRAM. In the interleave policy, we use the Linux policy allocating pages
of the data-set across all the nodes, i.e. MCDRAM and DRAM nodes. Finally,
the Linux policy firsttouch allocates data on the DRAM near the first thread
writing the corresponding page.

In flat mode, allocation into MCDRAM allows for the performance to reach
near MCDRAM roof, and is visually assessed by the model. Unlike allocations

16 Denoyelle, Goglin, Ilic, Jeannot, Sousa

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

● ●

●

●

●

● ●●
● ●●●

●

●

●

●

●

●

● ●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

MCDRAM:1_LOAD error = 3.6%
MCDRAM:1_CONGESTED_MCDRAM error = 2.0%
NUMANODE:0_LOAD error = 0.8%
NUMANODE:0_CONGESTED_DDR error = 0.1%
MCDRAM:1_CONTENDED error = 0.2%
NUMANODE:0_CONTENDED error = 0.1%

MCDRAM:1_LOAD

NUMANODE:0_LOAD

NUMANODE:0_CONGESTED_DDR

NUMANODE:0_CONTENDED

20 21 22 23 24

FMA

10.00

102

562.2

Flops/Byte

G
F

lo
p/

s

Fig. 9: CARM validation of one sub-NUMA cluster of KNL platform in SNC-4
flat mode.

into MCDRAM, large data-set with firsttouch policy are allocated into slow mem-
ory and also reach near DRAM roof performance. With the interleave policy, the
data-set is mixed across memories and thus the performance stands in between
the local DRAM roof and the local MCDRAM roof, with higher influence of the
slower DRAM memory (the point is closer to this roof). In cache mode, the small
data-set is cached in the MCDRAM, thus reaches a performance near MCDRAM
bandwidth roof. Although the MCDRAM bandwidth is lower in cache mode, the
performance of large data-set with firsttouch policy is higher than the DRAM
roof. This is because of the large MCDRAM cache size that allows reusing a sig-
nificant part of the data, thus improving the achievable performance. Interleaving
memory accesses decreases the performance when compared to firsttouch policy,
because of the congestion hereby created.

The dgemm function uses a data set too large to fit into MCDRAM and is
compared in flat or cache mode. As expected, the intrinsic temporal locality of
this kernel allows the cache mode to yield a better performance. When choosing
the dataset size or location (DRAM or MCDRAM) the synthetic benchmark
performance still correspond to our expectation and validate the model insights
on KNL system. When choosing the system configuration (flat or cache), the
model also shows that kernels with good data reuse, i.e with a performance over
MCDRAM roofs, benefit from the hardware cache mechanism and also validates
the model relevance.

Locality-Aware Roofline Model 17

L1
D_L

OAD

L2
_L

OAD

MCDRAM:1_LOCAL_MCDRAM

NUMANODE:0_LOCAL_DDR

2−6 2−5 2−4 2−3 2−2 2−1 20

FMA

1.00

101

102

562.2

FIRSTTOUCH_LARGE
FIRSTTOUCH_SMALL
INTERLEAVE_SMALL
INTERLEAVE_LARGE

MCDRAM

FLAT

DDOT_ AI=0.12
MKL_DGEMM_ AI=0.81

Flops/Byte

G
F

lo
p/

s

(a) CARM of the first cluster in flat mode.

L1
D_L

OAD

L2
_L

OAD

MCDRAM_C
ACHE_L

OAD

NUMANODE:0_
LO

CAL_
LO

AD

2−6 2−5 2−4 2−3 2−2 2−1 20

FMA

1.00

101

102

562.2

INTERLEAVE_LARGE

FIRSTTOUCH_LARGE
INTERLEAVE_SMALL

MCDRAM

CACHE

DDOT_ AI=0.12
MKL_DGEMM_ AI=0.81

Flops/Byte

G
F

lo
p/

s

(b) CARM of the first cluster in cache mode.

Fig. 10: CARM of KNL first cluster with synthetic benchmarks running whether
in flat mode or in cache mode.

With Lulesh proxy-applications For this NUMA system, we focus on the
Lulesh application because of it sensitivity to memory bandwidth. The aim of this
validation step, is to show whether the model helps managing memory, i.e whether
performance can be improved with the chip configuration or a good memory
allocation policy. From Lulesh, we pick the three greatest memory-bound hot
spots of the application (i.e. the ones bounded below NUMANode:0 roof), namely
CalcFBHourGlassForElems, IntegrateStressForElems functions, and a loop in the
main function. Due to the lack of required hardware counters, arithmetic intensity,
performance and application profile are collected with the Intel advisor tool11. In
our experiments, we ran the application using a working set size large enough12

not to fit into the MCDRAM. Hence, target memory needs to be carefully chosen
to fulfill size constraints and a special care needs to be addressed when managing
memory allocation to get good performance.

The first run allocates all data into regular DRAM memory (labeled DRAM),
and aims at characterizing the application to find the potential allocation im-
provements. We then customize dynamic allocations in those hot spots by replac-
ing the usual allocator from the standard C library with memkind [17] allocator
to target the fast memory (labeled as MCDRAM in Figure 11a) instead of the

11 Product version: Update 2 (build 501009).
12 Lulesh application run parameters: -i 1000 -s 60 -r 4. The application is compiled

with ICC 17.0.2 and options: -DUSE MPI=0 -qopenmp -O3 -xHost

18 Denoyelle, Goglin, Ilic, Jeannot, Sousa

M
CDRAM

:1
_L

OAD

NUMANODE:0_LOAD

MCDRAM:1_CONTENDED

NUMANODE:0_CONTENDED

2−4 2−3 2−2 2−1

0.80

101

20.00

INTERLEAVE

DRAM
MCDRAM

INTERLEAVE

DRAM
MCDRAM

INTERLEAVE

DRAM
MCDRAM

CALCFBHOURGLASS_ AI=0.19
INTEGRATESTRESS_ AI=0.20
LOOP_IN_MAIN_ AI=0.22

Flops/Byte

G
F

lo
p/

s

(a) KNL first cluster in flat mode.

MCDRAM_C
ACHE_L

OAD

NUMANODE:0_LOAD

2−4 2−3 2−2 2−1

0.80

101

20.00

●CACHE

CACHE

CACHE

● CALCFBHOURGLASS_ AI=0.19
INTEGRATESTRESS_ AI=0.20
LOOP_IN_MAIN_ AI=0.22

Flops/Byte

G
F

lo
p/

s

(b) KNL first cluster in cache mode.

Fig. 11: CARM chart of the KNL first cluster. The 3 main hot spots as detected
by Intel Advisor are represented both in cache and flat modes.

traditional DRAM (labeled as DRAM). Finally, instead of forcing MCDRAM al-
locations, we let the interleave policy (labeled as interleave) to choose data to put
into MCDRAM for all allocations visible in the file lulesh.cc. Summarized, each
hereby found hot spot is executed using three different policies, i.e DRAM allo-
cation (labeled DRAM), custom allocations (labeled MCDRAM), and interleave
policy, in flat mode (see Figure 11a).

The second chart in cache mode (see Figure 11b), contrasts the performance
of hand-tuned allocations into the MCDRAM with the hardware management
of the fast MCDRAM cache. As expected MCDRAM allocations provide higher
performance in flat mode. However, in cache mode the hot spots characterization
reaches comparable performance to the top achieved performances in flat mode,
denoting the hardware efficiency to manage data locality. In comparison, the in-
terleave memory policy performs poorly maybe because of the spread allocations
forcing threads to access remote nodes, and congesting the mesh.

To summarize the use of the LARM for data allocation policy choice with
lulesh on the KNL, the cache mode brings no significant performance improve-
ment, and the characterization laying below the MCDRAM roofs gave us this
insight. The data allocation policy however changes the performance dramati-
cally between the interleave policy and other policies, but the cause is not clear
in the model since the interleave points are widely spread on the performance
axis which suggest another issue than ones the expected.

Locality-Aware Roofline Model 19

6 Related Works

To this date, there are two main approaches for Roofline modeling, namely:
the Original Roofline Model (ORM) [7] and the Cache-Aware Roofline Model
(CARM) [6]. Unlike the CARM that includes the complete memory hierarchy
in a single plot, the ORM mainly considers the memory transfers between the
last level cache and the DRAM, thus it provides fundamentally different perspec-
tive and insights when characterizing and optimizing applications [18]. Recently,
the ORM was also instantiated on the KNL [19], without modifying the original
model. The arithmetic intensity (AI) described in ORM is not to be confused
with CARM AI because of the difference in the way how the memory traffic is
observed. The bandwidth measured also differs from the one measured in this
paper, the latter being explicitly load bandwidth. In [19], the authors present
several ORM-based optimization case studies, and compare the performance im-
provements between Haswell processor and KNL, with data in DDR4 memory
or MCDRAM, and finally KNL with data in MCDRAM memory. However, the
authors do not show how the model can help choosing between memories when
working sets do not fit in the fastest one nor they provide a comparison with the
cache mode.

An extension to the ORM, named 3DyRM [20], has been proposed to provide
locality insights on NUMA systems. This model considers memory accesses from a
single last level cache to any other memory, and not only local memory. It extends
the ORM with a latency dimension to characterize the sampled memory access.
Not only 3DyRM inherits the distorted perspective of the ORM, when character-
izing real-world applications, but also it gives very limited insights on the distance
of memory accesses to the NUMA thresholds considered in this paper. Moreover,
3DyRM characterizes applications with sampled memory accesses, without clas-
sifying them nor providing a methodology to get the first order insights, which is
the main goal of the legacy model.

Capability Model [16] is recently proposed to evaluate KNL realistic upper-
bounds and guide applications performance optimizations. The authors estab-
lished a complex model mostly focusing on latency and bandwidth of the mesh
interconnect. The Capability Model focuses on communication intensive algo-
rithms (such as barrier synchronization, reduction, sorting, etc), whereas the
LARM has a throughput oriented approach, focusing on computational work-
loads stressing both compute and memory units. As such, the Capability models
suits better message passing programming paradigms to enhance communication
based algorithms, while the LARM suits better shared memory programming
paradigms where communications are not explicitly expressed and mixed with
computations.

Execution Cache Memory (ECM) [21] is also another insightful approach to
model performance of memory-bound applications. This model is built under the
similar assumptions as the CARM when modeling the performance of processing
elements and memory levels, e.g., by considering their maximum throughput.
However, the ECM aims at predicting the application runtime whereas the CARM
aims at providing insights toward application characterization and optimization.
Moreover, to the best of our knowledge, their are no studies demonstrating the

20 Denoyelle, Goglin, Ilic, Jeannot, Sousa

usability of the ECM for NUMA and heterogeneous memory systems featuring
emerging heterogeneous memory technologies.

Our contribution to the CARM also advances its current implementation
in the Intel proprietary tool’s, referred as Intel Advisor Roofline [22], and for
which some author of this paper published concrete cases usage [23]. Unlike Intel
Advisor Roofline, we keep track of the MCDRAM bandwidth in several aspects,
and provide additional insights about potential bottlenecks and characteristics
of NUMA systems. Indeed, we demonstrated that our model improvements can
efficiently spot locality related issues, and provide more insights, especially in the
case of traditional multi-socket systems.

7 Conclusions

The trend of increasing the number of cores on-chip is enlarging the gap between
compute power and memory performance. This issue leads to design systems with
heterogeneous memories, creating new challenges for data locality. Before the re-
lease of those memory architectures, the Cache-Aware Roofline Model offered
an insightful model and methodology to improve application performance with
knowledge of the cache memory subsystem. With the help of hwloc library, we are
able to leverage the machine topology to extend the CARM for modeling NUMA
and heterogeneous memory systems, by evaluating the memory bandwidths be-
tween all combinations of cores and NUMA nodes.

Our contribution scopes most contemporary types of large compute nodes
and characterizes three bottlenecks typical of those systems, namely contention,
congestion and remote access. We showed that this additional information can
help to successfully spot locality issues coming from parameters such as data
allocation policy or memory configuration. To do so, we emphasized on several
validation stages, ranging from micro-benchmarks to real-world applications on
both a dual-Broadwell Xeon host and on an Intel Knight Landing processor. The
LARM extension remains consistent with the traditional Cache-Aware Roofline
Model while including a minimum of changes to the original methodology.

In the future we intend to validate the model also on larger systems embedding
tens of NUMA nodes and probably yielding even more interest for locality aware
modeling. It would also be interesting to investigate an extension of the model
over the network in order to include distributed workloads characterization. Also,
as mentioned in Section 3 footnote, we only consider the load bandwidth in the
paper. However most applications mix load and store instructions and the top
achievable roof in that case is neither the load bandwidth nor the store bandwidth
but rather a combination of those. Additional constraints could also be added to
the load/store mix in order to define a roof, but this would deserve a paper on
its own. It could end up with an automatic roof matching features, which as for
now, is left to the user.

Locality-Aware Roofline Model 21

Acknowledgments

We would like to acknowledge COST Action IC1305 (NESUS) and Atos for fund-
ing parts of this work, as well as national funds through Fundação para a Ciência
e a Tecnologia (FCT) with reference UID/CEC/50021/2013.

Some experiments presented in this paper were carried out using the PLAFRIM
experimental testbed, being developed under the Inria PlaFRIM development ac-
tion with support from Bordeaux INP, LaBRI and IMB and other entities: Con-
seil Régional d’Aquitaine, Université de Bordeaux and CNRS (and ANR in accor-
dance to the programme d’investissements d’Avenirs, see https://www.plafrim.fr/).

References

1. Blake, G., Dreslinski, R.G., Mudge, T.: A survey of multicore processors. IEEE
Signal Processing Magazine 26(6) (November 2009) 26–37

2. Blagodurov, S., Zhuravlev, S., Dashti, M., Fedorova, A.: A Case for NUMA-aware
Contention Management on Multicore Systems. In: 2011 USENIX Annual Tech-
nical Conference, Portland, OR, USA, June 15-17, 2011. (2011)

3. Reinders, J., Jeffers, J., Sodani, A.: Intel Xeon Phi Processor High Performance
Programming Knights Landing Edition (2016)

4. Ziakas, D., Baum, A., Maddox, R.A., Safranek, R.J.: Intel R© QuickPath Intercon-
nect Architectural Features Supporting Scalable System Architectures. In: High
Performance Interconnects (HOTI), 2010 IEEE 18th Annual Symposium on, IEEE
(2010) 1–6

5. : Bull atos technologies: Bull coherent switch.
http://support.bull.com/ols/product/platforms/hw-extremcomp/hw-bullx-
sup-node/BCS/index.htm

6. Ilic, A., Pratas, F., Sousa, L.: Cache-aware Roofline model: Upgrading the loft.
IEEE Computer Architecture Letters 13(1) (2014) 21–24

7. Williams, S., Waterman, A., Patterson, D.: Roofline: An Insightful Visual Per-
formance Model for Multicore Architectures. Commun. ACM 52(4) (April 2009)
65–76

8. Cantalupo, C., Venkatesan, V., Hammond, J., Czurlyo, K., Hammond, S.D.:
memkind: An Extensible Heap Memory Manager for Heterogeneous Memory Plat-
forms and Mixed Memory Policies. Technical report, Sandia National Laboratories
(SNL-NM), Albuquerque, NM (United States) (2015)

9. Broquedis, F., Clet-Ortega, J., Moreaud, S., Furmento, N., Goglin, B., Mercier, G.,
Thibault, S., Namyst, R.: hwloc: a Generic Framework for Managing Hardware
Affinities in HPC Applications. In IEEE, ed.: PDP 2010 - The 18th Euromicro
International Conference on Parallel, Distributed and Network-Based Computing,
Pisa, Italy (February 2010)

10. Kleen, A.: A NUMA API for LINUX. Novel Inc (2005)
11. Lepers, B., Quema, V., Fedorova, A.: Thread and Memory Placement on NUMA

Systems: Asymmetry Matters. In: 2015 USENIX Annual Technical Conference
(USENIX ATC 15), Santa Clara, CA, USENIX Association (July 2015) 277–289

12. Chou, C., Jaleel, A., Qureshi, M.K.: CAMEO: A Two-Level Memory Organization
with Capacity of Main Memory and Flexibility of Hardware-Managed Cache. In:
Proceedings of the 47th Annual IEEE/ACM International Symposium on Microar-
chitecture. MICRO-47, Washington, DC, USA, IEEE Computer Society (2014)
1–12

22 Denoyelle, Goglin, Ilic, Jeannot, Sousa

13. Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Fatoohi,
R.A., Frederickson, P.O., Lasinski, T.A., Simon, H.D., Venkatakrishnan, V., Weer-
atunga, S.K.: The nas parallel benchmarks. Technical report, The International
Journal of Supercomputer Applications (1991)

14. Karlin, I., Keasler, J., Neely, R.: Lulesh 2.0 updates and changes. Technical Report
LLNL-TR-641973 (August 2013)

15. Lepers, B., Quéma, V., Fedorova, A.: Thread and Memory Placement on NUMA
Systems: Asymmetry Matters. In: USENIX Annual Technical Conference. (2015)
277–289

16. Ramos, S., Hoefler, T.: Capability Models for Manycore Memory Systems: A Case-
Study with Xeon Phi KNL

17. : The Memkind Library. http://memkind.github.io/memkind
18. Ilic, A., Pratas, F., Sousa, L.: Beyond the Roofline: Cache-Aware Power and

Energy-Efficiency Modeling for Multi-Cores. IEEE Transactions on Computers
66(1) (Jan 2017) 52–58

19. Doerfler, D., Deslippe, J., Williams, S., Oliker, L., Cook, B., Kurth, T., Lobet, M.,
Malas, T., Vay, J.L., Vincenti, H.: Applying the Roofline Performance Model to
the Intel Xeon Phi Knights Landing Processor. In: International Conference on
High Performance Computing, Springer (2016) 339–353

20. Lorenzo, O.G., Pena, T.F., Cabaleiro, J.C., Pichel, J.C., Rivera, F.F.: Using an ex-
tended Roofline Model to understand data and thread affinities on NUMA systems.
Annals of Multicore and GPU Programming 1(1) (2014) 56–67

21. Hofmann, J., Eitzinger, J., Fey, D.: Execution-Cache-Memory Performance Model:
Introduction and Validation. CoRR abs/1509.03118 (2015)

22. Intel: Intel Advisor Roofline (2017)
23. Marques, D., Duarte, H., Ilic, A., Sousa, L., Belenov, R., Thierry, P., Matveev, Z.A.:

Performance analysis with cache-aware roofline model in intel advisor. In: 2017
International Conference on High Performance Computing Simulation (HPCS).
(July 2017) 898–907

