
A performance study of Quantum ESPRESSO’s
PWscf code on multi-core and GPU systems

Joshua Romero1, Everett Phillips1, Gregory Ruetsch1, Massimiliano Fatica1,
Filippo Spiga2, and Paolo Giannozzi3

1 NVIDIA Corporation, Santa Clara (USA)
2 Research Computing Service, University of Cambridge (UK)

3 Dip. Scienze Matematiche Informatiche e Fisiche, University of Udine (Italy)

Abstract. We describe the porting of PWscf (Plane-Wave Self Consis-
tent Field), a key component of the Quantum ESPRESSO open-source
suite of codes for materials modeling, to GPU systems using CUDA For-
tran. Kernel loop directives (CUF kernels) have been extensively used in
order to have a single source code for both CPU and GPU implemen-
tations. The results of the GPU version have been carefully validated
and the performance of the code on several GPU systems (both x86 and
POWER8 based) has been compared with traditional Intel multi-core
(CPU only) systems. This current GPU version can reduce the time-
to-solution by an average factor of 2 − 3 running two different input
cases widely used as benchmarks on small and large high performance
computing systems.

Keywords: DFT, materials science, eigensolver, GPU computing, CUDA
Fortran

1 Introduction

Computer simulations of materials, in particular first-principle simulations based
on density-functional theory [9, 13], pseudo-potentials, and plane-wave basis
sets [14], have become widespread in many fields of science as well as in industry.
These applications are run on a variety of computing systems, from desktop PCs
to very large parallel machines, depending on the physical system under inves-
tigation and the property to be computed. The search for better methodologies
and for better algorithms is a very active field of research.

Among the various packages implementing first-principle techniques, we focus
on Quantum ESPRESSO (QE) [6], an integrated suite of open-source software
released under the terms of the GNU General Public License (GPL). Programs
included in QE can perform many different kinds of calculations. The complete
distribution consists of approximately 520,000 lines of Fortran 95 source code,
some additional code written in C, auxiliary scripts, and Python utilities. Due
to accuracy requirements in electronic-structure computations, double precision
floating point arithmetic is always used. In this study, we will concentrate on

the PWscf code which solves self-consistently the Kohn-Sham equations arising
in density-functional theory.

QE is designed to work on a variety of computing architectures and has
evolved into a complex application with multiple layers of parallelism and key
dependencies on mathematical libraries. The suite is able to run in serial and
in parallel, targeting multi-core systems via multi-threaded libraries and explicit
OpenMP and distributed systems using the Message Passing Interface (MPI) [12]
and parallel libraries such as ScaLAPACK [2] or ELPA [11]. QE also supports
modern approaches to effectively exploit multi-core and many-core architectures
via hybrid parallelism based on MPI and OpenMP combined [17].

The need to accelerate time to discovery and tackle bigger and more chal-
lenging problems has motivated the first porting of QE to the programmable
Graphics Processing Unit (GPU). GPUs are remarkable pieces of technology
that have evolved into highly parallel many-core processors with floating-point
performance and memory bandwidth that far exceed that of today’s central pro-
cessing units (CPUs). GPUs are especially well suited to address problems that
can be expressed as data-parallel computations, where the same program is ex-
ecuted on different data elements in parallel. The CUDA programming model
developed by NVIDIA has become the de-facto standard in GPU computing.

Today, the highest performing GPUs available on the market, suitable for
scientific computation in fields like materials science, computational fluid dy-
namics, astrophysics and many others, are those within the NVIDIA Pascal
family. In this paper, we will focus our evaluation on several computing plat-
forms based on NVIDIA Pascal P100. This GPU is available in both PCI and
SMX2 form-factors, with slightly different technical specifications (such as peak
memory bandwidth and peak floating-point throughput). It is now possible to
program GPUs in several languages, from the original CUDA C to the new Ope-
nACC directive based compilers. QE is written in Fortran 90, so the natural
choices for a GPU port are either CUDA Fortran or OpenACC. We decided to
use CUDA Fortran as the structure of the code allows for the extensive use of
CUF kernels, making the effort comparable to an OpenACC port, while also
retaining the possibility of using explicit CUDA kernels when needed. In addi-
tion, the explicit nature of data movement in CUDA Fortran allows us to better
optimize the CPU/GPU data movement and network traffic.

An initial GPU version of QE was developed several years ago [18] written in
CUDA C and bundled with the original Fortran source code. This version, still
available for reference and performance comparison [16], has been discontinued
due to the complexity of managing and maintaining a large code base of mixed
Fortran and CUDA C. This original version offloaded only limited portions of the
workload to GPUs. A brand new version compatible with QE version 6 has been
developed from the ground-up based on CUDA Fortran, focused on delivering
performance on both large-scale and dense GPU system configurations, with
all significant computation carried out on GPUs. As a consequence, unlike the
original plugin, this new version requires the complete dataset to fit in GPU
memory.

2

The following section will first introduce the CUDA programming model and
then provide an overview of CUDA Fortran and some specific features used in
the porting effort. A detailed guide of the CUDA Fortran language extensions
and features used can be found in [4].

2 CUDA Programming Model and CUDA Fortran

CUDA-enabled GPUs can contain anything from a few to thousands of processor
cores which are capable of running tens of thousands of threads concurrently. To
allow for the same CUDA code to run efficiently on different GPUs with varying
specifications, a hierarchy of resources exists both in physical hardware, and in
available programming models. In hardware, the processor cores on a GPU are
grouped into multiprocessors. The programming model mimics this grouping: a
subroutine run on the device, called a kernel, is launched with a grid of threads
grouped into thread blocks. Within a thread block, data can be shared between
threads, and there is a fine-grained thread and data parallelism. Thread blocks
run independently of one another, which allows for scalability in the program-
ming model: each block of threads can be scheduled on any of the available
multiprocessors within a GPU, in any order, concurrently or sequentially, so
that a compiled CUDA program can execute on a device with any number of
multiprocessors. This scheduling is performed behind the scenes, the CUDA pro-
grammer needs only to partition the problem into coarse sub-problems that can
be solved independently in parallel by blocks of threads, where each sub-problem
is solved cooperatively in parallel by all threads within the block.

The CUDA platform enables hybrid computing, where both the host (CPU
and its memory) and device (GPU and its memory) can be used to perform
computations. A typical sequence of operations for a simple CUDA Fortran
code is:

– Declare and allocate host and device memory
– Initialize host data
– Transfer data from the host to the device
– Execute one or more kernels
– Transfer results from the device to the host

From a performance perspective, the bandwidth of the PCIe bus is over
an order of magnitude less than the bandwidth between the device’s memory
and GPU, and therefore a special emphasis needs to be placed on limiting and
hiding PCIe traffic. For MPI applications, data transfers between the host and
device are required to transfer data between MPI processes. Therefore, the use
of asynchronous data transfers, i.e. performing data transfers concurrently with
computation, becomes mandatory. This will be discussed in detail in Section 5.

Data declaration, allocation, and transfers The first Fortran extension we
discuss is the variable attribute device used when declaring data that resides in

3

GPU memory. Such declarations can be allocatable. The allocate() command
has been overloaded so allocation occurs on the device when the argument is
declared with the device attribute. Similarly, the assignment operator has been
overloaded to perform data transfers between host and device memory spaces.

The Fortran 2003 sourced allocation construct, allocate(lhs, source=rhs),
is also supported and extended. When allocate is invoked with the optional
source= argument, lhs becomes a clone of rhs: it is allocated with the same
shape of rhs and each element of rhs is copied into the corresponding element
of lhs. In CUDA Fortran, if the lhs array was defined as a device array, lhs
will be a GPU array and the content from the CPU array rhs will be copied
over the PCIe bus to GPU memory.

The above methods of data transfer are all blocking transfers, in that con-
trol is not returned to the CPU thread until the transfer is complete. This is
sufficient in many cases, but prevents the possibility of overlapping data trans-
fers with computation on both the host and device. The CUDA API function
cudaMemcpyAsync() and its variants can be used to perform asynchronous trans-
fers between host and device which allows concurrent computation.

Kernels Kernels, or subroutines that are executed on the device, are denoted
using the attributes(global) function attribute. Kernels are typically invoked
in host code just as any subroutine is called, with the exception that an additional
execution configuration specifying the number of thread blocks and number of
threads per thread block to be used is included. In the device code itself, the
automatically defined variables threadIdx, blockIdx, blockDim, and gridDim

can be used to map threads to data elements. Aside from this, kernel code looks
similar to the subroutines in the host code. The difference is that the kernel code
is executed by many threads in parallel.

CUF kernels CUDA Fortran can automatically generate and invoke kernel
code from a region of host code containing tightly nested loops. Such code is
referred to as a CUF kernel. A simple example of a CUF kernel is:

!$cuf kernel do <<<*,*>>>

do i=1, n

a_d(i) = a_d(i) + b

enddo

where the directive indicates that the following loop has to be performed on
the device. One can specify the execution configuration in the chevrons. In the
example above we use wild-cards and let the runtime system determine these
parameters. The arrays in CUF kernels, such as a d above, are required to be
device arrays; however, the scalar b can be a host variable which will be passed
as a kernel argument by value.

One can port host code to the device using CUF kernels without modifying
the contents of the loops using the following programming convention. If the
arrays used in the loops are declared in a module, along with a device equivalent:

4

module m

...

real :: a(n)

real ,device :: a_d(n)

...

end module

then the rename option to the use statement can be invoked to allow conditional
execution of the code either on the host or device:

subroutine update

#ifdef USE_CUDA

use m, only: a => a_d

#else

use m, only: a

#endif

...

!$cuf kernel do <<<*,*>>>

do i=1, n

a(i) = a(i) + b

enddo

...

If the arrays used in the loops are explicitly passed to the subroutine, the
only change required is to add the device attribute:

subroutine update(a,n)

real:: a(n)

#ifdef USE_CUDA

attributes(device) :: a

#endif

...

!$cuf kernel do <<<*,*>>>

do i=1, n

a(i) = a(i) + b

enddo

...

Note that here the contents of the loop are unaltered. The only changes to
the host code are the conditional renaming of module variables or the additional
device attribute and the CUF kernel directive. The directive will appear as a
comment to the compiler if GPU code generation is disabled or if the compiler
does not support them (similar to the OpenMP directives that are ignored if
OpenMP is not enabled).

3 Profiling using NVTX

Profiling is an essential tool to identify parts of the code that may require ad-
ditional tuning. When dealing with GPU codes, profiling is even more impor-
tant as new opportunities for better interactions between the CPUs and the

5

GPUs can be discovered. The standard profiling tools in CUDA, nvprof and
nvvp, are able to show the GPU timeline but do not present CPU activity.
The NVIDIA Tools Extension (NVTX) is a C-based API (application program
interface) to annotate the profiler time line with events and ranges and to cus-
tomize their appearance and assign names to resources such as CPU threads
and devices [10]. We have written a Fortran module to instrument CUDA/Ope-
nACC Fortran codes using Fortran ISO C bindings [3]. Using this module is
very simple: once the NVTX module is included, the developer only needs to
mark the region of interest with nvtxRangePush and nvtxRangePop calls. Calls
to nvtxStartRange("text") with a single argument will insert green markers
with a text label in the timeline. Different colors can be selected using an optional
integer parameter and the regions of interest can be nested.

Since QE already has a built-in performance report that summarizes the time
spent in the important parts of the code, we added the NVTX calls to the timing
functions. This allowed a minimal code change.

To eliminate profiling overhead during production runs, we use a preprocessor
variable to make the profiling calls return immediately. During the runs, one or
more MPI processes generate the traces that are later imported and visualized
with nvvp, the NVIDIA Visual Profiler.

Fig. 1. Segment of nvvp output for AUSURF112 case on the DGX-1 system with
8 GPUs and no GPUDirect (GDR) features enabled. “Markers and Ranges” section
contains colored markers corresponding to various NVTX ranges.

6

Fig. 1 shows a typical output for a PWscf run (when the mouse rolls over the
markers, it will indicate the name of the marker and information on the kernel
configurations).

4 Structure of the PWscf code

As noted in the introduction, QE is not a monolithic program but a modular
suite of codes sharing common libraries and data structures. The two major
packages that are the foundation of every material science simulation work-flow
are PWscf (Plane-Wave Self-Consistent Field) and CP (Car-Parrinello).

In this GPU porting effort, PWscf has been the main focus. The basic com-
putations of the PWscf code involve the calculation of the Kohn-Sham (KS) or-
bitals and energies for isolated or extended/periodic systems and the complete
structural optimizations of the microscopic (atomic coordinates) and macro-
scopic (unit cell) degrees of freedom. The KS orbitals are quantum-mechanical
states of electrons under an effective Kohn-Sham potential. The solution is self-
consistent: the KS potential depends upon the KS orbitals via the charge density
(the sum of the square moduli of Kohn-Sham orbitals). This non-linear problem
can be solved with an iterative procedure (see [6], Appendix A.2). Figure 2 il-
lustrates the main activities performed in a typical execution of PWscf , where
both high-level structural optimization and self-consistency [8] are explored.

Fig. 2. Schematic view of PWscf internal steps.

In a plane-wave basis set, each KS orbital, ψ, is represented by a vector of
plane-wave coefficients. The self-consistency loop is an iteration over the charge
density, until input and output charge densities are the same within a predefined
threshold. The output charge density is computed from KS orbitals, obtained
by diagonalizing the matrix of the Hamiltonian operator, HKS , which depends
on the KS potential. By default, iterative diagonalization is completed using
a block Davidson method. The calculation of the charge density requires all
occupied KS orbitals in the system. In a crystal, KS orbitals are classified by a
Bloch vector, or “k-point”, and by a “band” index. In practice, a discrete number
of k-points, ranging from one to a few tens or hundreds at most, is needed [5].

7

The diagonalization is separately performed for each k-point. The number of
occupied KS orbitals is determined by the number of electrons in the unit cell.

The iterative diagonalization and computation of charge density account for
the majority of the time spent in the solver, with the remaining cost attributed
to initialization and post processing routines. In the iterative diagonalization,
the time-consuming step is the direct calculation of products HKSψ. Note that
those products are not computed as matrix-vector products: the HKS matrix
would be far too large for all but the simplest systems. Using the so-called dual-
space technique, all computationally expensive terms can be expressed in terms
of the following basic operations:

– 3-dimensional Fast Fourier Transforms (FFT);
– basic linear-algebra operations on vectors and matrices, in particular matrix-

matrix multiplications (Level-3 BLAS);
– dense matrix diagonalization (LAPACK or ScaLAPACK).

The code offers a number of run-time options that affect the parallelization
and enable distributed operation. A list of options used in this study includes:

– k-point parallelization using -npool: distributes the k-points into NK pools,
allowing embarrassingly parallel execution of the iterative diagonalizations.
If N is the total number of MPI processes, there are NP = N

NK
processes

per pool.
– linear-algebra parallelization using -ndiag: distributes the solution of the

subspace diagonalization, needed by the block Davidson algorithm, to ND ≤
NP processes, enabling usage of ScaLAPACK or similar distributed linear
solver library.

These options can be applied simultaneously, resulting in a wide array of
possible combinations, not all valid or equally effective. The k-point paralleliza-
tion takes precedence, splitting all available processes into equal pools. Within
each pool, plane waves are distributed (this is also referred as plane-wave or
g-parallelism). This distribution of plane waves across multiple MPI processes
results in the need to perform parallel distributed 3D FFTs in order to trans-
form physical quantities (KS orbitals, charge density and potentials) between
reciprocal and real space. The FFT grids are generally of modest size (with di-
mensions in the hundreds); however, the FFT computation is repeated many
times throughout the course of the calculation.

5 GPU porting of key routines

While the full GPU porting effort involved the translation of a number routines
in the original CPU code to GPU either by the use of CUF directives or CUDA
kernels, we focus our discussion here on the routines that are considered most
performance critical. Without delving too deep into the specifics, it is informative
to breakdown the major components of the PWscf iteration and identify the
key computational operations involved. The iterative diagonalization involves

8

the heavy use of three main computational components: a dense generalized
eigensolver to diagonalize the subspace projected linear system, double-precision
complex GEMMs which are mostly used to process the approximated eigenvalues
and eigenvectors and expand the basis, and distributed forward and inverse
3D FFTs used in the procedure to compute the local potential term in HKSψ
for each unconverged band using the dual-space technique. The computation
of the symmetrized charge density is dominated by the accumulation of wave-
function contributions to the charge from each k-point which involves numerous
distributed forward 3D FFT computations, one for each band.

Of the operations identified, the matrix-matrix multiplications are the most
straightforward and can be easily computed on GPU using the CUBLAS library.
The porting effort of the other computational components is more involved and
requires further discussion.

5.1 Forward and inverse 3D FFTs

Forward and inverse 3D FFTs are required in both the iterative diagonalization
process and the computation of charge. As such, they account for a large share of
the total computational load. While the component-wise 1D FFT computations
can be carried out on GPU using simple calls to the CUFFT library, the complete
computation is typically distributed among a number of processes, requiring
transposition and communication of data across processes.

Currently, QE uses a 1D decomposition of the domain to distribute the 3D
FFTs. With this decomposition, a typical 3D FFT computation of dimension
NX ×NY ×NZ, distributed across NP processes in the pool, is completed in
the following steps:

1. Begin with contiguous columns of data along z-dimension. Each process
contains a NX/NP × NY × NZ sized chunk of the domain. Perform 1D
FFTs on the z-columns.

2. Transpose result into planes representation via MPI Alltoall or similar com-
munication pattern. After communication, each process contains a NX ×
NY ×NZ/NP sized chunk of the domain.

3. Perform 2D FFTs on the xy-planes.

This process also occurs in reverse within the solver, but the forward description
is sufficient for this discussion.

The existing CPU implementation of this distributed 3D FFT procedure
is fairly basic, with a few characteristics making a direct translation to GPU
low performing. The first of these characteristics is that the FFT computation
is carried out in a loop over bands, with relatively small FFT computations
for each band. These small FFT computations are problematic on GPUs due
to the lack of available concurrent work to fully saturate the GPU resources,
leading to inefficient device utilization and possible losses due to latency. The
second characteristic is that the existing procedure does not make any attempt
to overlap MPI communication with computation. This is especially problem-
atic for a GPU implementation where, when direct peer-to-peer access between

9

GPUs is unavailable, MPI communication buffers must be staged through CPU
memory. Therefore, in addition to efficiency losses due to non-overlapped MPI
communication, there are additional losses attributed to data movement of the
communication buffers between host and device memory.

To address these issues, a new batched FFT strategy was implemented for
GPUs which processes the 3D FFTs for several bands together. By processing
multiple 3D FFTs at a time, there is naturally more concurrent work avail-
able to fully saturate the GPUs which addresses the first issue with the original
implementation. In addition to this, further separation of batches into smaller
sub-batches yields an opportunity for pipelining data movement and compu-
tation between sub-batches which we leveraged in our implementation. As a
further optimization, the all-to-all communication pattern was carried out us-
ing non-blocking MPI Isend and MPI Irecv. This is of particular importance on
GPU systems with fully-connected subsets of GPUs via NVLink, like the DGX-1,
where numerous peer-to-peer transfers can occur simultaneously via GPUDirect
(GDR). A simple method to enable these concurrent peer-to-peer transfers is
through the use of a CUDA-aware MPI distribution. With that being said, early
experimentation indicated that several issues arise in a number of available MPI
implementations of these features, leading to suboptimal utilization of available
peer-to-peer bandwidth on systems with numerous peer-to-peer links. To address
this, an explicit handling of peer-to-peer communication was implemented us-
ing CUDA inter-process communication (IPC) features, with non-peer transfers
handled by the linked MPI library. Lastly, by finely controlling the all-to-all com-
munication, self-to-self buffer transfers on the GPU can be handled specifically
to avoid any unneeded use of host resources. It should be noted that batching
the FFT computation does increase memory requirements, as multiple FFT do-
mains must be resident in device memory. For the benchmark cases tested in
this study, this was not a limiting factor; however, for larger cases, the batch
size can be adjusted to fit within available memory.

5.2 Solving the eigenproblem

The final major computational component to discuss is the dense eigensolver,
which is used to solve the subspace projected problem generated through the
Davidson iteration process. In the existing CPU implementation, the dense eigen-
solve can either be computed sequentially, using one process in a k-point pool
group, or distributed across ND processes in the pool group using ScaLAPACK
or a similar distributed linear algebra package.

The initial GPU port targets only the serial path, using a custom devel-
oped GPU eigensolver. A custom solver was chosen in lieu of several existing
GPU-enabled eigensolvers, like those available in MAGMA [7]. The custom GPU
eigensolver was developed to specifically limit dependencies on CPU resources,
using the CPU only for the solution of a reduced tridiagonal eigensystem us-
ing available functionality from Intel MKL or other LAPACK implementations.
This is in contrast to implementations available in MAGMA, where many more

10

operations are offloaded to the CPU, with a complex pipelining of CPU com-
putation, GPU computation, and data movement between the host and device.
This is especially beneficial on “fat” GPU nodes, nodes with a high ratio of GPU
to CPU sockets, where available CPU resources (host memory bandwidth, PCIe
bandwidth between host and device, available CPU FLOPS) per GPU can be
limited. By limiting the use of CPU resources, the custom eigensolver can achieve
more consistent performance across these types of node topologies, with less sen-
sitivity to available CPU resources per GPU. Even with node topologies with
one full CPU socket available per GPU, limiting these CPU dependencies has
been shown to improve performance of the custom solver relative to MAGMA
and MKL [15].

While only the serial eigensolver path has been ported, the results of several
benchmark cases to be discussed in later sections will show that our custom
eigensolver, even operating on a single GPU, provides competitive performance
relative to high-performance distributed CPU solvers, like the ELPA solver [1].

6 Performance comparison

Performance results were obtained on a number of GPU systems ranging in
size from a small workstation containing only two GPUs up to several large
GPU accelerated clusters, with reference CPU performance results obtained on
a private development cluster.

The reference CPU system (labeled “Broadwell” in the results) is a private
development system of a few hundred nodes fully based on Intel technology. Each
node has dual socket 18-core Intel Xeon E5-2697 v4 (Broadwell) CPUs, 128 GB
of system memory and one single Intel Omni-Path interconnect to provide 100
Gb/s connectivity for both parallel jobs and I/O.

The small systems used in this study were a workstation with a 6-core Intel
Core i7-5930K CPU with two 16 GB NVIDIA P100 GPUs and an NVIDIA
DGX-1 system. The DGX-1 contains dual socket 20-core Intel Xeon E5-2698 v4
(Broadwell) CPUs with eight 16 GB NVIDIA P100 GPUs, with fully-connected
clusters of four GPUs with NVLink associated with each CPU socket.

The large GPU systems used in this study were Piz Daint at the Swiss Na-
tional Supercomputing Centre (CSCS), SummitDev at the Oak Ridge National
Laboratory (ORNL) and Wilkes-2 cluster at the University of Cambridge.

Piz Daint is a Cray XC50 with 5,272 nodes, each with a 12-core Intel Xeon
E5-2690 v3 (Haswell) CPU, 64 GB of system memory and a 16 GB NVIDIA
P100 GPU. The network uses Aries routing and communications ASICs and a
dragonfly network topology. Piz Daint is currently number three on the June
2017 Top500 list with 19.59PF and is one of the most efficient petaFLOP class
machines in the world: in the Green 500 list published in June 2017, the machine
was able to achieve 10398 MFLOP/s/W with level 3 measurements, the most
accurate available.

The SummitDev system is an early access system that is one generation
removed from ORNL’s next big supercomputer, Summit. The system has 54 IBM

11

POWER8 S822LC nodes. Each node has dual socket IBM POWER8 CPUs, each
with 10 cores and 80 HW threads, 256 GB of system memory, and four 16 GB
NVIDIA P100 GPUs, with two NVLink connected GPUs per socket. In contrast
to the Intel based systems, the GPUs on SummitDev are connected to the CPUs
by NVLink 1.0 at 80 GB/s. The nodes are connected in a full fat-tree via EDR
InfiniBand. SummitDev has access to Spider 2, the OLCF’s center-wide Lustre
parallel file system, and also local NVMe disks.

Wilkes-2 is a new GPU cluster at the University of Cambridge composed of
90 Dell PowerEdge C4130 compute nodes. Each node has a single socket 12-core
Intel Xeon CPU E5-2650 v4 (Broadwell) CPU, 96 GB of system memory and
four 16 GB NVIDIA P100 GPUs all connected to the same PCIe root complex.
One single Mellanox Infiniband EDR card provides 100 Gb/s connectivity for
both parallel jobs and access to the Lustre storage. Wilkes-2 is completely based
on commodity hardware and it is currently number 100 on the June 2017 Top500
list with 1.193 PF and number 5 on the Green500 list with 10428 MFLOP/s/W.

6.1 Performance analysis

Benchmark cases and details For testing, two benchmark test cases were
used which span a range of typical use cases for the PWscf solver. The cases
used were:

– AUSURF112: computation of a surface of 112 gold atoms with two k-points.
Small case suitable for testing on workstations and small distributed systems.

– Ta2O5: computation of tantalum pentoxide with 96 atoms and 26 k-points.
Large case suitable for scaling from small to large distributed systems.

Detailed input specifications for these benchmark cases can be found in Table 1.

Table 1. Benchmark case input specifications

Benchmark case
Parameter AUSURF112 Ta2O5

Number of atomic species 1 2
Number of atoms 112 96
Number of electrons 1, 232 544
Number of Kohn-Sham states 739 326
Number of k-points 2 26
Number of plane waves 100, 747 477, 247
Kinetic energy cutoff 25 Ry 130 Ry
Charge density cutoff 200 Ry 520 Ry
Dimension of dense FFT grid {180, 90, 288} {198, 168, 220}

For cases run on GPU systems with Intel CPUs, multithreaded MKL was
used for any BLAS and LAPACK routines computed using the CPU, including

12

the tridiagonal eigensolve offloaded from the custom GPU eigensolver. On Sum-
mitDev, multithreaded ESSL was used in place of MKL; however, due to the
lack of a linkable implementation of ZSTEDC, the CPU tridiagonal eigensolver
routine we require for our GPU eigensolver, the program was linked against the
LAPACK implementation provided with PGI, with underlying BLAS routines
computed using ESSL.

For all runs on the reference CPU system, the eigenproblem is solved using
the distributed ELPA library, with ND set to the closest square number to half
the available MPI processes per pool group. Note that the number of available
MPI processes per pool group is reduced if OpenMP threads are enabled. The
results on the reference CPU system reported are the best-case results achieved
using a variety of possible configurations of OpenMP threads and ND values.

For all runs on the GPU systems, ND is always set to one since only the serial
eigensolver path was ported to GPU. For systems using Intel CPUs, OpenMP
threading was enabled to improve the offloaded CPU tridiagonal eigensolve using
multithreaded MKL; as such, threads were distributed so that a larger portion of
available cores were bound to processes within pool groups performing the serial
eigensolve. On SummitDev, a similar thread distribution strategy was utilized
with multi-threaded ESSL; however, OpenMP was disabled elsewhere in the
code due to existing compatibility issues between the PGI and IBM OpenMP
runtimes.

On GPU systems with available peer-to-peer connections between GPUs, the
test cases were run both with and without using GPUDirect (GDR) features. For
all communication except the all-to-all in the distributed FFTs, these features
were enabled implicitly through the use of CUDA-aware MPI distributions, typ-
ically Open MPI or Cray MPICH on Piz Daint. On SummitDev, due to poor
performance of the CUDA-aware features of Spectrum MPI, all MPI communi-
cation is staged through the host. For the all-to-all communication, peer-to-peer
transfers were handled explicitly using our explicit CUDA IPC implementation,
with non-peer transfers handled by the linked MPI library.

Results and discussion Performance results for the AUSURF112 test case
can be found in Table 2, with timing breakdowns for the cases run with 4 GPUs
or CPUs and cases run with 8 GPUs or CPUs plotted in Figures 3 and 4 respec-
tively. For accuracy considerations, the final converged total energy results on the
reference CPU system for this test case were within the range −11427.08997421
Ry to −11427.08997363 Ry. This compares well with the converged total energy
results obtained on the GPU systems, which ranged from −11427.08997417 Ry
to −11427.08997388 Ry.

Similarly, performance results for the Ta2O5 test case across the tested sys-
tems can be found in Table 3, with timing breakdowns for the cases using 8
GPUs or CPUs, 104 GPUs or CPUs, and 208 GPUs or CPUs plotted in Fig-
ures 5 to 7 respectively. For this test case, the final converged total energy
results on the reference CPU system were within the range −2370.63541806 Ry
to −2370.63541801 Ry. This also compares well with the converged total energy

13

Table 2. PWscf time in seconds for AUSURF112 testcase

Number of CPUs or GPUs used
System NK 2 4 8 16 32

Broadwell (CPU) 1 1142.24 642.03 369.66 272.00 266.20
2 1190.13 586.84 335.00 196.54 144.07

Piz Daint 1 286.24 219.91 171.80 — —
2 — 149.21 115.87 — —

DGX-1 1 347.82 271.37 210.67 — —
2 — 184.10 142.15 — —

DGX-1, GDR 1 270.21 190.12 174.75 — —
2 — 142.43 100.54 — —

Summit Dev 1 321.69 234.32 187.69 — —
2 — 176.50 128.85 — —

Summit Dev, GDR 1 308.52 227.74 188.39 — —
2 — 169.60 124.22 — —

Wilkes-2 1 395.26 326.71 227.61 — —
2 — 226.89 167.80 — —

Wilkes-2, GDR 1 300.03 226.13 203.59 — —
2 — 164.63 116.50 — —

Workstation 1 334.23 — — — —
Workstation, GDR 1 279.54 — — — —

results obtained on the GPU systems, which ranged from −2370.63541805 Ry
to −2370.63541804 Ry.

Considering the tabulated performance results in Tables 2 and 3, several
observations can be made. First, across most results for this case, it can be
noted that for a fixed number of CPU or GPU resources, increasing NK provides
a performance improvement. This indicates that the program on both CPU
and GPU is more efficiently utilizing compute resources when there are fewer
resources assigned per pool. If the program scaled perfectly with the number of
resources per pool, the PWscf time, assuming the computation outside the scope
of the pool parallelization is negligible, should remain nearly fixed if the number
of pools is doubled. This is because the doubling of performance associated with
processing more k-points concurrently would be counteracted by a halving in
performance due to halving the number of compute resources per pool.

This reduction in efficiency can largely be attributed to the scaling charac-
teristics of the distributed 3D FFT computations and the eigensolver. This can
be observed clearly in the timing breakdowns plotted in Figures 3 to 7 when
comparing the results for the different NK values on each system. First, on both
the CPU and GPU systems, the distributed FFT operates more efficiently when
distributed across fewer processes. This is because distribution across fewer pro-
cesses on the tested systems generally resulted in improved all-to-all communica-
tion performance. One reason for this performance improvement is that a smaller

14

0 200 400 600 800
Wall Time [s]

NK = 2
Wilkes-2, GDR: NK = 1

NK = 2
Wilkes-2: NK = 1

NK = 2
Summit Dev, GDR: NK = 1

NK = 2
Summit Dev: NK = 1

NK = 2
Piz Daint: NK = 1

NK = 2
DGX-1, GDR: NK = 1

NK = 2
DGX-1: NK = 1

NK = 2
Broadwell: NK = 1

164.63 s
226.13 s
226.89 s

326.71 s
169.60 s

227.74 s
176.50 s

234.32 s
149.21 s

219.91 s
142.43 s

190.12 s
184.10 s

271.37 s
586.84 s

642.03 s

FFT Eigensolver Other

Fig. 3. Breakdown of PWscf time for AUSURF112 using 4 GPUs or CPUs by system
and pool size.

group of processes can maintain better locality, resulting in a larger percentage of
communication occurring over higher bandwidth intra-node connections, either
within local CPU memory, or through more direct NVLink or PCIe connections
when using GDR features on GPU systems. In addition to this, with fewer pro-
cesses, the self to self buffer involved in the all-to-all, which is a fast local memory
movement, comprises a larger portion of the total communication volume.

Continuing on this point, the benefits of using GDR on the GPU systems
with available peer-to-peer access can be substantial, with improved performance
in most cases on systems with GDR features utilized. As expected, systems with
more available peer-to-peer links between GPUs, like the DGX-1 and Wilkes-2
with fully connected clusters of four GPUs, benefit the most from these features;
in contrast, SummitDev, which has only connected pairs of GPUs, benefits less
in this case. Comparing plots in Figures 3 to 7 with and without GDR enabled
indicates that the use of GDR primarily improves the performance of the dis-
tributed 3D FFTs. Additionally, it can be noted that on the DGX-1 and Wilkes-
2, the FFT performance improves dramatically when the number of pools results
in pool groups with four GPUs, where all communication within the all-to-all
occurs over peer-to-peer connections.

Considering the eigensolver on the CPU, the scaling behavior aligns more
closely with what is expected, with a small edge in efficiency when distributed

15

0 200 400 600 800
Wall Time [s]

NK = 2
Wilkes-2, GDR: NK = 1

NK = 2
Wilkes-2: NK = 1

NK = 2
Summit Dev, GDR: NK = 1

NK = 2
Summit Dev: NK = 1

NK = 2
Piz Daint: NK = 1

NK = 2
DGX-1, GDR: NK = 1

NK = 2
DGX-1: NK = 1

NK = 2
Broadwell: NK = 1

116.50 s
203.59 s

167.80 s
227.61 s

124.22 s
188.39 s

128.85 s
187.69 s

115.87 s
171.80 s

100.54 s
174.75 s

142.15 s
210.67 s

335.00 s
369.66 s

FFT Eigensolver Other

Fig. 4. Breakdown of PWscf time for AUSURF112 using 8 GPUs or CPUs by system
and pool size.

across fewer processes. On the GPU systems, due to the use of a serial eigen-
solver, increasing the number of pools from one to two results in a halving of the
eigensolve time. Since the serial eigensolver is always computed using a single
GPU per pool group, the eigensolve time scales proportionally with the number
of pools. This trend can be observed in Figures 3 to 7 on all the GPU sys-
tems. Consequently, for a given number of pools, the eigensolver performance
will remain fixed regardless of the number of GPUs assigned to the pool group,
leading to some loss in efficiency. Despite this, the serial GPU eigensolver outper-
forms the distributed ELPA library used on the reference CPU system for the
AUSURF112 cases, while maintaining competitive performance in the Ta2O5
cases.

Comparing the reference CPU system to the GPU system results, the GPU
systems are outperforming the reference CPU system in all tested configurations,
when comparing single CPU socket performance to single GPU performance,
with relative speedups ranging from 2 to 4. Figures 3 to 7 illustrate where to
attribute these gains in performance. In all cases, a large portion of the im-
provement can be attributed to faster ZGEMM and DGEMM performance on
the GPU systems. This is clear, since on the GPU systems, the GEMM domi-
nated portion of the runtime outside of the FFT and eigensolve is significantly
reduced on the GPU systems relative to the reference CPU system. Beyond this,

16

Table 3. PWscf time in seconds for Ta2O5 testcase

Number of CPUs or GPUs used
System NK 8 26 52 104 208

Broadwell (CPU) 13 — — 1374.26 809.36 540.64
26 — 3055.46 1566.95 682.05 378.73

Piz Daint 1 5273.93 — — — —
2 3602.07 — — — —
13 — — 617.58 419.39 330.85
26 — — — 315.60 217.29

DGX-1 1 7253.06 — — — —
2 5008.94 — — — —

DGX-1, GDR 1 4139.18 — — — —
2 2701.00 — — — —

Summit Dev 1 4122.03 — — — —
2 3236.12 — — — —
13 — — 581.15 394.62 289.30
26 — — — 305.66 216.95

Summit Dev, GDR 1 3994.21 — — — —
2 2959.70 — — — —
13 — — 544.83 398.91 292.87
26 — — — 284.90 207.37

Wilkes-2 1 7394.40 — — — —
2 6111.83 — — — —
13 — — 1035.20 656.85 —
26 — — — 515.78 —

Wilkes-2, GDR 1 5032.51 — — — —
2 3264.26 — — — —
13 — — 572.43 460.16 —
26 — — — 273.86 —

additional performance improvements of varying degree can be attributed to the
FFT and eigensolver.

Comparing GPU system results, there is some observed variability in the per-
formance between the systems, which can be attributed to differences in node
topology (how many GPUs are associated with each CPU socket and how are
they connected) and node architecture (IBM POWER8 with host-to-device con-
nections via NVLink compared to Intel Xeon with host-to-device connections
via PCIe). As a first example, the slowest GPU system results occur on DGX-
1 and Wilkes-2 when GDR features are disabled. These two systems have the
highest ratio of GPUs to CPU sockets, with each system having four GPUs per
CPU socket. In addition to this, the GPUs on these system share PCIe lanes,
with two GPUs per PCIe root complex on the DGX-1, and four GPUs per PCIe
root complex on Wilkes-2. Thus, with GDR disabled, the all-to-all communi-
cation during the distributed 3D FFTs become bottlenecked by a lack of PCIe

17

0 2000 4000 6000 8000
Wall Time [s]

NK = 2
Wilkes-2, GDR: NK = 1

NK = 2
Wilkes-2: NK = 1

NK = 2
Summit Dev, GDR: NK = 1

NK = 2
Summit Dev: NK = 1

NK = 2
Piz Daint: NK = 1

NK = 2
DGX-1, GDR: NK = 1

NK = 2
DGX-1: NK = 1

3264.26 s
5032.51 s

6111.83 s
7394.40 s

2959.70 s
3994.21 s

3236.12 s
4122.03 s

3602.07 s
5273.93 s

2701.00 s
4139.18 s

5008.94 s
7253.06 s

FFT Eigensolver Other

Fig. 5. Breakdown of PWscf time for Ta2O5 using 8 GPUs or CPUs by system and
pool size.

bandwidth for transfer of communication buffers between the host and device
and CPU memory bandwidth to handle all the MPI traffic. With GDR features
enabled however, these bottlenecks are alleviated due to the substantial increase
in device-to-device bandwidth offered via peer-to-peer connections, freeing up
the CPU to handle only out of socket MPI traffic. This results in these systems
showing the highest performance of all the systems tested when GDR features
are enabled, demonstrating the importance of exploiting these peer-to-peer con-
nections when possible.

On a related note, due to higher memory bandwidth offered by the POWER8
CPU and greater host-device bandwidth through NVLink, SummitDev is less
impacted by these issues, leading to high distributed FFT performance even
without GDR. The higher host-to-device bandwidth also gives SummitDev an
improvement in distributed FFT performance over Piz Daint, due to faster trans-
fer of communication buffers between host and device.

While SummitDev maintains an edge in the distributed FFT performance
in non-GDR enabled cases, the eigensolver performance on this system lags be-
hinds that of the other GPU systems. As a generic LAPACK implementation
of the offloaded tridiagonal eigensolver was used for this system, the benefits
of multithreading from ESSL was limited to the underlying BLAS calls, lead-
ing to a loss in performance relative to a fully multi-threaded implementation.
Otherwise, the eigensolver performance is generally more consistent across the

18

0 200 400 600 800 1000
Wall Time [s]

NK = 26
Wilkes-2, GDR: NK = 13

NK = 26
Wilkes-2: NK = 13

NK = 26
Summit Dev, GDR: NK = 13

NK = 26
Summit Dev: NK = 13

NK = 26
Piz Daint: NK = 13

NK = 26
Broadwell: NK = 13

273.86 s
460.16 s

515.78 s
656.85 s

284.90 s
398.91 s

305.66 s
394.62 s

315.60 s
419.39 s

682.05 s
809.36 s

FFT Eigensolver Other

Fig. 6. Breakdown of PWscf time for Ta2O5 using 104 GPUs or CPUs by system and
pool size.

0 200 400 600 800 1000
Wall Time [s]

NK = 26
Summit Dev, GDR: NK = 13

NK = 26
Summit Dev: NK = 13

NK = 26
Piz Daint: NK = 13

NK = 26
Broadwell: NK = 13

207.37 s
292.87 s

216.95 s
289.30 s

217.29 s
330.85 s

378.73 s
540.64 s

FFT Eigensolver Other

Fig. 7. Breakdown of PWscf time for Ta2O5 using 208 GPUs or CPUs by system and
pool size.

19

GPU systems using Intel CPUs with MKL, even with a varied number of cores
available to the GPUs performing the eigensolve.

7 Conclusions

This paper presented development details and performance of PWscf on CPU
and GPU systems. The new GPU version produces accurate results and can
reduce the time-to-solution by an average factor of 2 − 3 relative to a reference
CPU system.

The custom GPU eigensolver developed for this code is very competitive with
both ScaLAPACK and ELPA, with little sensitivity to available host resources.
Improvements to performance via distribution over multiple GPUs and removing
existing CPU dependencies are being considered for future development.

The performance results in this study illustrate the importance of exploiting
peer-to-peer connectivity between GPUs when available, implicitly via CUDA-
aware MPI or explicitly using CUDA IPC or similar mechanisms. These features,
when properly utilized, can provide a substantial performance boost, particularly
on systems with high GPU to CPU socket ratios. The upcoming generation of
NVIDIA GPUs, Volta, with a faster memory subsystem and double precision
performance higher than 7 TeraFLOP/s, will help push the performance of this
code even further.
The code is available for download at https://github.com/fspiga/qe-gpu.

Acknowledgments

This research used resources of the Oak Ridge Leadership Computing Facil-
ity at the Oak Ridge National Laboratory, which is supported by the Office
of Science of the U.S. Department of Energy under Contract No. DE-AC05-
00OR22725. This work was also supported by a grant from the Swiss National
Supercomputing Centre (CSCS) under project ID g33. Wilkes-2 is part of the
Cambridge Service for Data Driven Discovery (CSD3) system operated by the
University of Cambridge Research Computing Service funded by EPSRC Tier-2
capital grant EP/P020259/1, the STFC DiRAC HPC Facility (BIS National E-
infrastructure capital grant ST/K001590/1, STFC capital grants ST/H008861/1
and ST/H00887X/1, Operations grant ST/K00333X/1) and the University of
Cambridge. CSD3 and DiRAC are part of the UK National e-Infrastructure.
Paolo Giannozzi also acknowledges support from the European Union through
the MaX Centre of Excellence (Grant No. 676598).

References

1. Auckenthaler, T., Blum, V., Bungartz, H.J., Huckle, T., Johanni, R., Krmer, L.,
Lang, B., Lederer, H., Willems, P.R.: Parallel solution of partial symmetric eigen-
value problems from electronic structure calculations. Parallel Computing 37(12),
783–794 (2011)

20

2. Blackford, L.S., Choi, J., Cleary, A., D’Azeuedo, E., Demmel, J., Dhillon, I., Ham-
marling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley, R.C.: ScaLA-
PACK User’s Guide. Society for Industrial and Applied Mathematics (1997)

3. Fatica, M.: Customize CUDA Fortran Profiling with NVTX (2015), https://

devblogs.nvidia.com/parallelforall/customize-cuda-fortran-profiling-

nvtx

4. Fatica, M., Ruetsch, G.: CUDA Fortran for Scientists and Engineers. Morgan Kauf-
mann (2014)

5. Froyen, S.: Brillouin-zone integration by Fourier quadrature: Special points for
superlattice and supercell calculations. Physical Review B 39, 3168–3172 (1989)

6. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C.,
Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., et al.: QUANTUM
ESPRESSO: a modular and open-source software project for quantum simulations
of materials. Journal of Physics: Condensed Matter 21(39), 395502 (2009)

7. Jack Dongarra and Mark Gates and Azzam Haidar and Jakub Kurzak and Piotr
Luszczek and Stanimire Tomov and Ichitaro Yamazaki: Accelerating Numerical
Dense Linear Algebra Calculations with GPUs, pp. 3–28. Springer International
Publishing (2014)

8. Johnson, D.D.: Modified Broyden’s method for accelerating convergence in self-
consistent calculations. Physical Review B 38, 12807–12813 (1988)

9. Kohn, W.: Fundamentals of density functional theory. In: Density Functionals:
Theory and Applications, pp. 1–7. Springer (1998)

10. Kraus, J.: CUDA Pro Tip: Generate Custom Application Profile Timelines with
NVTX (2013), https://devblogs.nvidia.com/parallelforall/cuda-pro-tip-
generate-custom-application-profile-timelines-nvtx

11. Marek, A., Blum, V., Johanni, R., Havu, V., Lang, B., Auckenthaler, T., Heinecke,
A., Bungartz, H.J., Lederer, H.: The ELPA library: scalable parallel eigenvalue
solutions for electronic structure theory and computational science. Journal of
Physics: Condensed Matter 26(21), 213201 (2014)

12. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard,
Version 2.2. Tech. rep. (2009), http://www.mpi-forum.org/docs/mpi-2.2/mpi22-
report.pdf

13. Parr, R. G., Yang, W.: Density-Functional Theory of Atoms and Molecules (In-
ternational Series of Monographs on Chemistry). Oxford University Press, USA
(1994)

14. Pickett, W.E.: Pseudopotential methods in condensed matter applications. Com-
puter Physics Reports 9(3), 115–197 (1989)

15. Romero, J.: Developing an Improved Generalized Eigensolver with Limited
CPU Offloading (2017), http://on- demand.gputechconf.com/gtc/2017/

presentation/s7388-joshua-romero-developing-an-improved-generalized-

eigensolver.pdf, GPU Technology Conference, San Jose, CA
16. Spiga, F.: Plug-in code to accelerate Quantum ESPRESSO v5 using NVIDIA GPU,

https://github.com/fspiga/qe-gpu-plugin

17. Spiga, F.: Implementing and testing mixed parallel programming model into Quan-
tum ESPRESSO. Science and Supercomputing in Europe – research highlights
2009, CINECA Consorzio Interuniversitario, Bologna, Italy (2010)

18. Spiga, F., Girotto, I.: phiGEMM: A CPU-GPU library for porting Quantum
ESPRESSO on hybrid systems. In: 2012 20th Euromicro International Conference
on Parallel, Distributed and Network-based Processing. pp. 368–375 (2012)

21

