
A	Slurm	Simulator:	
Implementation	and	Parametric	

Analysis
Nikolay	A.	Simakov,	Martins	D.	Innus,	Matthew	D.	Jones,Robert L.	

DeLeon,	Joseph	P.	White,	Steven	M.	Gallo,	Abani K.	Patra	and	Thomas	R.	
Furlani

November	13,	2017,	PMBS17	at	SC17



Center	for	Computational	Research,	University	at	Buffalo
• Regional	HPC	Center
• Serving	academic	and	
industry	users	from	western	
NY

• 8,000	Cores	Academic	
Cluster,	3,456 Cores	
Industry	Cluster

• 500	active	users	and	200	PI
• 106	millions	cores	hours	
delivered	during	2016-2017	
academic	year



A	Tool	for	HPC	System	Management
• XDMoD:	XD	Metrics	on	Demand

• HPC	resources	usage	and	performance		monitoring	
and	analysis

• On	demand,	responsive,	access	to	job	accounting	data
• NSF	funded	analytics	framework	developed	for	XSEDE
• http://xdmod.ccr.buffalo.edu/

• Comprehensive	Framework	for	HPC	Management
• Support	for	several	resource	managers	(Slurm,	PBS,	

LSF,	SGE)
• Utilization	metrics	across	multiple	dimensions
• Measure	QoS of	HPC	Infrastructure	(App	Kernels)
• Job-level	performance	data

• Open XDMoD*: Open Source version for HPC 
Centers

• 100+ academic & industrial installations worldwide
• http://open.xdmod.org/

• Utilized for Blue Waters Workload Analysis
• Currently Carrying out “XSEDE” Workload Analysis 



Center	for	Computational	Research,	University	at	Buffalo



Effect	of	Node	Sharing
• Under	node	sharing	several	jobs	are	
allowed	to	be	executed	on	same	node.

• Jobs	has	dedicated	cores.

4x
DD

R4
	R
AM CPU	0 CPU	1

4x
DD

R4
	R
AM

Local	Storage
Network

Job	BJob	A

Job	C

• There	are	computational	tasks	
which	cannot	efficiently	use	all	of	
the	cores	available	on	a	node

• serial	applications
• poorly	scalable	parallel	software
• small	problem	sizes
• Time	imbalanced	embarrassingly	
parallel	tasks	such	as	parameter	
sweeps

But how does it 
affect the 
application 

performance?



Effect	of	Node	Sharing

Simakov et al., 2016. Proceedings of the XSEDE16. 1–8.

• The	effect	of	node	
sharing	on	application	
performance	is	small.

-2% 0% 2% 4% 6% 8%10%12%

GAMESS

NWChem

NAMD

Graph500

HPCC

IOR

Mean	Wall	Time
Percent	Difference

Sharing	>	0 Sharing	>	0.75
0.0% 0.5% 1.0% 1.5%

ENZO

GAMESS

NWChem

NAMD

Graph500

HPCC

IOR

Mean	Wall	Time
Percent	Diffrence

Sharing	>	0 Sharing	>	0.75

Single	Core Single	Socket

What	is	the	overall	effect	on	the	
whole	system?	

Will	it	actually	increase	
throughput?	

To	have	quantitative	
answer	we	need	

workflow	simulator!



Slurm	Workload	Manager
• Slurm	is	an	open-source	resource	
manager	for	HPC

• It	provides	high	configurability	for	
inhomogeneous	resources	and	job	
scheduling

• It	is	used	on	large	range	of	HPC	
resources	from	small	to	very	large	
systems.

• Which	configuration	is	best	for	
particular	needs?

Compute	Nodes,	Gen.	i

Compute	Nodes,	Gen.	i+1

Compute	Nodes,	Gen.	i+2

Big	Memory	Node,	Gen.	i

Very	Big	Memory	Nodes,	Gen.	i+1

GPU	Nodes,	Gen.	i+1



Slurm	Simulator
• Why	do	We	Need	Slurm	Simulator?

• To	check	Slurm	configuration	prior	it	
deployment

• Finding	most	optimal	parameters	for	
Slurm

• Modeling	of	future	systems
• Workflow	Simulators:

• Bricks,	SimGrid,	Simbatch,	GridSim
and	Alea,	Maui	and	Moab	Scheduler

• Slurm	Simulators:
• Original	version	developed	by	Alejandro	Lucero
• Later	improved	by	Trofinoff and	Benini

• Works	only	for	very	small	systems	and	Slurm	Version	
is	outdates.



Making	Slurm	Simulator	from	Slurm
• Started	from	latest	stable	Slurm	
Release

• Minimized	number	of	processes
• Slurm	Controller	performs	simulation
• Serialize	Slurm	Controller	

User	Commands
squeue,	sbatch,	etc.

Slurm	Controller Slurm	DB

Slurm	Daemon,
Running	on	each	Managed	

Resource	

Job	Trace	
File

MS Sleep	60

Sleep	120 BF

MS Sleep	60 MS Sleep	60 MS Sleep	60 MS Sleep	60Sleep	60

Sleep	120 BF Sleep	120

W

Time



• Serialized	Slurm	Controller
• In	real	Slurm	scheduling	is	efficiently	
serial	due	to	thread	locks

• Due	to	lacking	of	threads	locks,	
compilation	with	optimization	flags	on	
and	with	assert	functions	off,	the	backfill	
scheduler	is	about	10	times	faster	in	
simulation	mode

Serialization	of	Slurm	Controller
Simulator	Main	Loop

Main	Priority	Based	Scheduler

Backfill	Scheduler

Submit	New	Jobs	

Terminate	Running	Jobs	which	Exceeded	
their	Planned	Wall	Time

Slurm	DB	Synchronization

Increment	time	if	applicable

tsim

treal

•Simulating	time	–Scaled	real-
time	with	time	stepping

•Shifted	real	time	in	most	places
•Shifted	and	scaled	real	time	in	
backfill	scheduler
•Time	increment	(30-60	seconds)	in	
case	of	no	events



Simulating	Workflows	with	Slurm	Simulator

• RSlurmSimTools – R	
library	for	input	
generation	and	results	
analysis

• slurm_sim_tools –
multiple	convenience	
scripts

Slurm
Database
Daemon

MySQL

Job	Trace
Slurm

Controller
Daemon

Users	List

Simulation	
Parameters

Job	Execution	
Log

Slurm	
Parameters

RSlurmSimTools
Input	generation

Historic	jobs
(sacct output)

Users	and	Accounts
(sacctmgr output	or	

sql dump)

RSlurmSimTools
Results	Analysis

run_sim.py - Python	
Convenience	Start-up	

Script



Slurm	Simulator:	Implementation	Details
• For	better	performance	number	of	process	and	
thread	was	decreased

• Communication	with	Slurmd mimicked	within	
Slurmctld

• Slurmctld was	serialized,	function	are	executed	
serially	from	main	simulation	event	loop

• Slurm	compiled	with	optimization	flags	and	
with	assert	functions	off

• Time	is	scaled	within	backfill	scheduler	usually	
by	factor	of	10	to	reflect	difference	in	
performance	of	real	Slurm	and	Slurm	simulator

• At	the	end	of	main	simulator	event	loop	time	is	
incremented	by	1	seconds	if	no	event	
happened	during	the	loop

• R-scripts	is	used	to	generate	job	trace	files
• R-scripts	is	used	to	analyzed	results

Slurm
Database
Daemon

MySQL

Job	Trace
Slurm

Controller
Daemon

Users	List

Simulation	
Parameters

Job	Execution	
Log

Slurm	
Parameters



Validating	Simulator	using,	Micro-Cluster,	Small	Model	System

• Micro-Cluster	is	small	model	cluster	
created	for	Slurm	simulator	validation

• Reference	data	was	obtained	by	
running	regular	Slurm	in	front-end	
mode

• Micro-Cluster	configuration	was	chosen	
to	test	constrains,	GRes,	cores	and	
memory	as	consumable	resources

• The	workload	consisted	of	500	jobs	and	
takes	12.9	hours	to	complete

• 5	users	belonging	to	2	accounts

Node	Type Numb
er	of	
Nodes

Cores
per	Node

CPU	Type RAM

Compute 4 12 CPU-N 48GB
Compute 4 12 CPU-M 48GB
High	Memory 1 12 CPU-G 512GB

GPU	Compute 1 12 CPU-G 48GB

Account	1 Account	2



Micro-Cluster:	Slurm	Scheduling	is	not	Unique

• Simulation	has	similar	variability	to	real	Slurm

Job start time difference:

Between simulated and real Slurm runs

Between two real Slurm runs.



Variability	Origin

MS Sleep	60

Sleep	120 BF

MS Sleep	60 MS Sleep	60 MS Sleep	60 MS Sleep	60Sleep	60

Sleep	120 BF Sleep	120

W

Time
Job	I
Submitted

Job	I
Places

Job	J
Submitted

Job	K
Submitted

Job	I
Finished

Job	K
Places

Job	J	has	lower	priority	then	Job	K

MS Sleep	60

BF

MS Sleep	60 MS Sleep	60 MS Sleep	60 MSSleep	60

Sleep	120 BF Sleep	120 BF

W

Time
Job	I
Submitted

Job	I
Places

Job	J
Submitted

Job	K
Submitted

Job	I
Finished

Job	J
Places

W W



Micro-Cluster:	Comparison	of	Utilization	and	Job	Priorities

• Resource	utilization	and	job	priority	
changes	in	simulation	is	similar	to	real	
Slurm

Changing of Job Priority Factor over Time



Micro-Cluster:	Modifying	fair-share	priority	factor	weight
• Fair-share	priority	factor	weight	
was	increased	by	20%

• User	1	should	biggest	decrease	in	
wait	time

• Real	wait	time	are	within	
the	range	of	predicted	
values

Account	1 Account	2



Studying	UB-HPC	Cluster
Node	Type Number	

of	Nodes
Cores per	
Node

CPU	Type RAM

Compute 32 16 Intel	E5-2660 128GB

Compute 372 12 Intel	E5645 48GB

Compute 128 8 Intel	L5630 24GB

Compute 128 8 Intel	L5520 24GB

High	Memory 8 32 Intel	E7-4830 256GB

High	Memory 8 32 AMD	6132HE 256GB

High	Memory 2 32 Intel	E7-4830 512GB

GPU	Compute 26 12 Intel	X5650 48GB

Historic	workload	for	24	days	was	used	
(October	4,	2016	to	October	28,	2016)



Studying	UB-HPC	Cluster:	Simulation	vs	Historic	Data
• Simulation	was	not	having	initial	historic	
usage	therefore	initial	fair-share	priorities	
were	incorrect



Studying	UB-HPC	Cluster:	Simulation	vs	Historic	Data

• Missing	the	influence	from	excessive	RPC	
calls,	the	performance	hit	from	multiple	
threads	started	for	jobs	start-up	and	
finalization



Reducing	bf_max_job_user
• bf_max_job_user specifies	maximal	number	of	user’s	jobs	considered	by	backfill	
scheduler	for	scheduling

• bf_max_job_user was	reduced	from	20	to	10

• 0.1%	(40	minutes	or	0.1%	)	increase	in	
time	to	complete	the	workload

• The	mean	wait	time	is	8	minutes	
longer	and		the	standard	deviation	of	
the	wait	time	differences	is	3	hours.

• 25%	decrease	in	the	number	of	jobs	
considered	for	scheduling

• 30%	decrease	in	backfill	scheduler	run	
time.



UB-HPC	Cluster:	Node	sharing
• The exclusive mode takes 10.8 more days (45% more 

time) to complete the same workload

• The average increase in waiting time is 5.1 days with a 
standard deviation of 6.6 days. 

• The 45% increase in time to complete the same load 
can be translated into the need to have a 45% larger 
cluster to serve the same workload. 



Studying	Stampede	2

• Node	Sharing	on	Skylake-X	Nodes
• Sharing	by	Sockets	or	by	Cores

• Separate	Controller	For	KNL	and	
Skylake-X	Nodes

Node	Type Number	of	
Nodes

Cores per	
Node

CPU	Type RAM

Intel	Knights	Landing 6400 68 Intel	Xeon	Phi	7250 96GB+16GB

Intel	Xeon	Skylake-X 1736 48 Intel	Xeon	Platinum	8160 192GB

• 12 weeks workload was generated from stampede 1 historic workload 
(2015-05-16 to 2015-08-08)

• Number of jobs was scaled proportional to node count
• Sub-node jobs was calculated using CPU utilization



Stampede	2.	Node	Sharing	and	Separate	Slurm	Controllers

• Node	sharing	and	separate	controllers	cut	waiting	
times	nearly	in	half

Controller Node	Sharing	on	SKX	Nodes Wait	Hours,	Mean Wait	Hours,	Mean	
Weighted	by	Node	Hours

Jobs on SKX Nodes
Single no sharing 10.9	(			0%) 17.0	(			0%)

sharing by sockets 8.2	(-25%) 15.5	(		-9%)
sharing by cores 8.2	(-24%) 15.5	(		-9%)

Separate no sharing 7.1	(-35%) 15.0	(-12%)
sharing by sockets 5.3	(-51%) 13.8	(-19%)
sharing by cores 5.5	(-49%) 13.9	(-18%)

Jobs on KNL Nodes
Single no sharing 8.6	(				0%) 9.2	(		0%)

sharing by sockets 7.2	(-16%) 9.2	(-1%)
sharing by cores 7.3	(-15%) 9.1	(-1%)

Separate no sharing 8.2	(		-4%) 9.4	(	2%)



Simulation	Speed

The	simulator	speed	heavily	depends	
on	the	cluster	size,	workload	and	
Slurm	configuration

System	
Name

System	
Characteristics

Simulation	
Characteristics

Simulation	Speed,
Simulated days	per	

hour
Micro	Cluster 120	cores Node	sharing	on 112.0

UB-HPC 8000	cores Exclusive	nodes 0.8

Node	sharing	on 5.4

Smaller	
bf_max_job_user

17.3

Stampede 6400	nodes 0.5



How	to	Get	Simulator
Various	utilities	and	documentation	are	available	at	

https://github.com/nsimakov/slurm_sim_tools
Slurm	Simulator	code:	

https://github.com/nsimakov/slurm_simulator



Conclusions
• A	new	Slurm	simulator	was	developed	capable	of	simulation	of	a	mid-sized	cluster	with	
a	simulation	speed	of	multiple	days	per	hour

• Its	validity	was	established	by	comparison	with	actual	Slurm	runs	which	showed	a	good	
match	with	similar	mean	values	for	job	start	times	with	a	slightly	larger	standard	
deviation

• Simulator	can	be	used	to	study	a	number	of	Slurm	parameters	that	effect	system	
utilization	and	throughput	such	as	fair	share	policy,	maximum	number	of	user	jobs	
considered	for	backfill,	and	node	sharing	policy

• As	expected	fair	share	policy	alters	job	priorities	and	start	times	but	in	a	non-trivial	
fashion

• Decreasing	the	maximal	number	of	user’s	job	considered	by	the	backfill	scheduler	from	
20	to	10	was	found	to	have	a	minimal	effect	on	average	scheduling	and	decrease	the	
backfill	scheduler	run	time	by	30%

• The	simulation	study	of	node	sharing	on	our	cluster	showed	a	45%	increase	in	the	time	
needed	to	complete	the	workload	in	exclusive	mode	compared	to	shared	mode.	

• For	a	large	system	(>6000	nodes)	comprised	of	two	distinct	sub-clusters,	two	separate	
Slurm	controllers	and	adding	node	sharing	can	cut	waiting	times	nearly	in	half.	



Acknowledgments
• XDMoD Developers	Team

• UB: Tom	Furlani,	Matt	Jones,	Steve	Gallo,	
Bob	DeLeon,	Martins	Innus,	Jeff	Palmer,	
Ben	Plessenger,	Ryan	Rathsam,	Nikolay	
Simakov,	Jeanette	Sperhac,	Joe	White,	
Tom	Yearke,	Rudra Chakraborty,	Cynthia	
Cornelius,	Abani Patra

• Indiana: Gregor von	Laszewski,	Fugang
Wang

• University	of	Texas: Jim	Browne
• TACC: Bill	Barth,	Todd	Evans,	Weijia Xu
• NCAR:	Shiquan Su

• Funding:
• National	Science	Foundation	under	awards	
OCI	1025159,	1203560,	ACI	1445806.



Questions?
• Visit	our	Booth	at:

• University	at	Buffalo/Center	for	
Computational	Research,	booth	1867

• Visit	XDMoD Birds-of-a-Feather	(BOF)	
session:

• Tracking	and	Analyzing	Job-level	Activity	
Using	Open	XDMoD,	XALT	and	OGRT

• Tuesday,	November	14th,	5:15pm	- 7pm
• Room:	205-207

UB

Various	utilities	and	documentation	are	available	at	
https://github.com/nsimakov/slurm_sim_tools

Slurm	Simulator	code:	
https://github.com/nsimakov/slurm_simulator


