
Periodic I/O Scheduling for Supercomputers

Guillaume Aupy1, Ana Gainaru2, Valentin Le Fèvre3

1 – Inria & U. of Bordeaux
2 – Vanderbilt University

3 – ENS Lyon & Inria

PMBS Workshop, November 2017
Slides available at https://project.inria.fr/dash/

https://project.inria.fr/dash/


1

IO congestion in HPC systems

Some numbers for motivation:

I Computational power keeps increasing (Intrepid: 0.56 PFlop/s, Mira: 10 PFlop/s,
Aurora: 450 PFlop/s (?)).

I IO Bandwidth increases at slowlier rate (Intrepid: 88 GB/s, Mira: 240 GB/s, Aurora:
1 TB/s (?)).

In other terms:

Intrepid can process 160 GB for every PFlop
Mira can process 24 GB for every PFlop

Aurora will (?) process 2.2 GB for every PFlop

Congestion is coming.



1

IO congestion in HPC systems

Some numbers for motivation:

I Computational power keeps increasing (Intrepid: 0.56 PFlop/s, Mira: 10 PFlop/s,
Aurora: 450 PFlop/s (?)).

I IO Bandwidth increases at slowlier rate (Intrepid: 88 GB/s, Mira: 240 GB/s, Aurora:
1 TB/s (?)).

In other terms:

Intrepid can process 160 GB for every PFlop
Mira can process 24 GB for every PFlop

Aurora will (?) process 2.2 GB for every PFlop

Congestion is coming.



2

Burst buffers: the solution?

Simplistically:

I If IO bandwidth available: use it

I Else, fill the burst buffers

I When IO bandwidth is available: empty the burst-buffers.

If the Burst Buffers are big enough it should work

right?

Average I/O occupation: sum for all applications of the volume of I/O transfered,
divided by the time they execute, normalized by the peak I/O bandwidth.

Given a set of data-intensive applications running conjointly:

I on Intrepid have a max average I/O occupation of 25%

I on Mira have an average I/O occupation of 120 to 300%!



2

Burst buffers: the solution?

Simplistically:

I If IO bandwidth available: use it

I Else, fill the burst buffers

I When IO bandwidth is available: empty the burst-buffers.

If the Burst Buffers are big enough it should work right?

Average I/O occupation: sum for all applications of the volume of I/O transfered,
divided by the time they execute, normalized by the peak I/O bandwidth.

Given a set of data-intensive applications running conjointly:

I on Intrepid have a max average I/O occupation of 25%

I on Mira have an average I/O occupation of 120 to 300%!



2

Burst buffers: the solution?

Simplistically:

I If IO bandwidth available: use it

I Else, fill the burst buffers

I When IO bandwidth is available: empty the burst-buffers.

If the Burst Buffers are big enough it should work right?

Average I/O occupation: sum for all applications of the volume of I/O transfered,
divided by the time they execute, normalized by the peak I/O bandwidth.

Given a set of data-intensive applications running conjointly:

I on Intrepid have a max average I/O occupation of 25%

I on Mira have an average I/O occupation of 120 to 300%!



2

Burst buffers: the solution?

Simplistically:

I If IO bandwidth available: use it

I Else, fill the burst buffers

I When IO bandwidth is available: empty the burst-buffers.

If the Burst Buffers are big enough it should work right?

Average I/O occupation: sum for all applications of the volume of I/O transfered,
divided by the time they execute, normalized by the peak I/O bandwidth.

Given a set of data-intensive applications running conjointly:

I on Intrepid have a max average I/O occupation of 25%

I on Mira have an average I/O occupation of 120 to 300%!



2

Burst buffers: the solution?

Simplistically:

I If IO bandwidth available: use it

I Else, fill the burst buffers

I When IO bandwidth is available: empty the burst-buffers.

If the Burst Buffers are big enough it should work right?

Average I/O occupation: sum for all applications of the volume of I/O transfered,
divided by the time they execute, normalized by the peak I/O bandwidth.

Given a set of data-intensive applications running conjointly:

I on Intrepid have a max average I/O occupation of 25%

I on Mira have an average I/O occupation of 120 to 300%!



3

Previously in IO cong.

“Online” scheduling (Gainaru et al. Ipdps’15):

I When an application is ready to do I/O, it sends a message to an I/O scheduler;

I Based on the other applications running and a priority function, the I/O scheduler
will give a GO or NOGO to the application.

I If the application receives a NOGO, it pauses until a GO instruction.

I Else, it performs I/O.



3

Previously in IO cong.

App(1)

App(2)
App(3)

w(1)

w(2)
w(3)

w(1)

w(3)

w(2)

w(1)

w(2)
w(3)

bw

Time0
0

B

Approx 10% improvement in application performance with 5% gain in system performance
on Intrepid.



3

Previously in IO cong.

App(1)

App(2)
App(3)

w(1)

w(2)
w(3)

w(1)

w(3)

w(2)

w(1)

w(2)
w(3)

bw

Time0
0

B

Approx 10% improvement in application performance with 5% gain in system performance
on Intrepid.



3

Previously in IO cong.

App(1)

App(2)
App(3)

w(1)

w(2)
w(3)

w(1)

w(3)

w(2)

w(1)

w(2)
w(3)

bw

Time0
0

B

Approx 10% improvement in application performance with 5% gain in system performance
on Intrepid.



3

Previously in IO cong.

App(1)

App(2)
App(3)

w(1)

w(2)
w(3)

w(1)

w(3)

w(2)

w(1)

w(2)
w(3)

bw

Time0
0

B

Approx 10% improvement in application performance with 5% gain in system performance
on Intrepid.



3

Previously in IO cong.

App(1)

App(2)
App(3)

w(1)

w(2)
w(3)

w(1)

w(3)

w(2)

w(1)

w(2)
w(3)

bw

Time0
0

B

Approx 10% improvement in application performance with 5% gain in system performance
on Intrepid.



3

Previously in IO cong.

App(1)

App(2)
App(3)

w(1)

w(2)
w(3)

w(1)

w(3)

w(2)

w(1)

w(2)
w(3)

bw

Time0
0

B

Approx 10% improvement in application performance with 5% gain in system performance
on Intrepid.



3

Previously in IO cong.

App(1)

App(2)
App(3)

w(1)

w(2)
w(3)

w(1)

w(3)

w(2)

w(1)

w(2)
w(3)

bw

Time0
0

B

Approx 10% improvement in application performance with 5% gain in system performance
on Intrepid.



3

Previously in IO cong.

App(1)

App(2)
App(3)

w(1)

w(2)
w(3)

w(1)

w(3)

w(2)

w(1)

w(2)
w(3)

bw

Time0
0

B

Approx 10% improvement in application performance with 5% gain in system performance
on Intrepid.



3

Previously in IO cong.

App(1)

App(2)
App(3)

w(1)

w(2)
w(3)

w(1)

w(3)

w(2)

w(1)

w(2)
w(3)

bw

Time0
0

B

Approx 10% improvement in application performance with 5% gain in system performance
on Intrepid.



3

Previously in IO cong.

App(1)

App(2)
App(3)

w(1)

w(2)
w(3)

w(1)

w(3)

w(2)

w(1)

w(2)
w(3)

bw

Time0
0

B

Approx 10% improvement in application performance with 5% gain in system performance
on Intrepid.



3

Previously in IO cong.

App(1)

App(2)
App(3)

w(1)

w(2)
w(3)

w(1)

w(3)

w(2)

w(1)

w(2)
w(3)

bw

Time0
0

B

Approx 10% improvement in application performance with 5% gain in system performance
on Intrepid.



4

This work

Assumption: Applications follow I/O patterns1 that we can obtain (based on historical
data for intance).

I We use this information to compute an I/O time schedule;

I Each application then knows its GO/NOGO information and uses it to perform I/O.

Spoiler: it works very well (at least it seems)

1periodic pattern, to be defined



5

I/O characterization of HPC applis
Hu et al. 2016

1. Periodicity: computation and I/O phases (write operations such as checkpoints).

2. Synchronization: parallel identical jobs lead to synchronized I/O operations.

3. Repeatability: jobs run several times with different inputs.

4. Burstiness: short burst of write operations.

Idea: use the periodic behavior to compute periodic schedules.



6

Platform model

I N unit-speed processors, equipped with an I/O card of bandwidth b

I Centralized I/O system with total bandwidth B

b=0.1Gb/s/Node

=B

Model instantiation for the Intrepid platform.



7

Application Model

K periodic applications already scheduled in the system: App(k)(β(k), w(k), vol
(k)
io ).

I β(k) is the number of processors onto which App(k) is assigned
I w(k) is the computation time of a period

I vol
(k)
io is the volume of I/O to transfor after the w(k) units of time

time
(k)
io =

vol
(k)
io

min(β(k) · b, B)

App(1)
w(1) w(1) w(1)

App(2) w(2) w(2) w(2)

App(3)
w(3) w(3) w(3)

Bandwidth

Time0
0

B



8

Objectives

If App(k) runs during a total time Tk and performs n(k) instances, we define:

ρ(k) =
w(k)

w(k) + time
(k)
io

, ρ̃(k) =
n(k)w(k)

Tk

SysEfficiency

maximize peak performance
(average number of Flops):

maximize 1
N

∑K
k=1 β

(k)ρ̃(k).

Dilation

minimize largest slowdown
(fairness between users):

minimize maxk=1..K
ρ(k)

ρ̃(k) .



8

Objectives

If App(k) runs during a total time Tk and performs n(k) instances, we define:

ρ(k) =
w(k)

w(k) + time
(k)
io

, ρ̃(k) =
n(k)w(k)

Tk

SysEfficiency

maximize peak performance
(average number of Flops):

maximize 1
N

∑K
k=1 β

(k)ρ̃(k).

Dilation

minimize largest slowdown
(fairness between users):

minimize maxk=1..K
ρ(k)

ρ̃(k) .



8

Objectives

If App(k) runs during a total time Tk and performs n(k) instances, we define:

ρ(k) =
w(k)

w(k) + time
(k)
io

, ρ̃(k) =
n(k)w(k)

Tk

SysEfficiency

maximize peak performance
(average number of Flops):

maximize 1
N

∑K
k=1 β

(k)ρ̃(k).

Dilation

minimize largest slowdown
(fairness between users):

minimize maxk=1..K
ρ(k)

ρ̃(k) .



9

High-level constraints

I Applications are already scheduled on the machines:
not (yet) our job to do it;

I We want the schedule information distributed over the applis:
the goal is not to add a new congestion point;

I Computing a full I/O schedule over all iterations of all applications would be too
expensive (i) in time, (ii) in space.

I We want a minimum overhead for Applis users:
otherwise, our guess is, users might not like it that much ,.

We introduce Periodic Scheduling.



9

High-level constraints

I Applications are already scheduled on the machines:
not (yet) our job to do it;

I We want the schedule information distributed over the applis:
the goal is not to add a new congestion point;

I Computing a full I/O schedule over all iterations of all applications would be too
expensive (i) in time, (ii) in space.

I We want a minimum overhead for Applis users:
otherwise, our guess is, users might not like it that much ,.

We introduce Periodic Scheduling.



9

High-level constraints

I Applications are already scheduled on the machines:
not (yet) our job to do it;

I We want the schedule information distributed over the applis:
the goal is not to add a new congestion point;

I Computing a full I/O schedule over all iterations of all applications would be too
expensive (i) in time, (ii) in space.

I We want a minimum overhead for Applis users:
otherwise, our guess is, users might not like it that much ,.

We introduce Periodic Scheduling.



9

High-level constraints

I Applications are already scheduled on the machines:
not (yet) our job to do it;

I We want the schedule information distributed over the applis:
the goal is not to add a new congestion point;

I Computing a full I/O schedule over all iterations of all applications would be too
expensive (i) in time, (ii) in space.

I We want a minimum overhead for Applis users:
otherwise, our guess is, users might not like it that much ,.

We introduce Periodic Scheduling.



9

High-level constraints

I Applications are already scheduled on the machines:
not (yet) our job to do it;

I We want the schedule information distributed over the applis:
the goal is not to add a new congestion point;

I Computing a full I/O schedule over all iterations of all applications would be too
expensive (i) in time, (ii) in space.

I We want a minimum overhead for Applis users:
otherwise, our guess is, users might not like it that much ,.

We introduce Periodic Scheduling.



9

High-level constraints

I Applications are already scheduled on the machines:
not (yet) our job to do it;

I We want the schedule information distributed over the applis:
the goal is not to add a new congestion point;

I Computing a full I/O schedule over all iterations of all applications would be too
expensive (i) in time, (ii) in space.

I We want a minimum overhead for Applis users:
otherwise, our guess is, users might not like it that much ,.

We introduce Periodic Scheduling.



10

Periodic schedules

Bw

Time

Init

· · ·

Pattern Clean up

c T+c 2T+c 3T+c (n−2)T+c (n−1)T+c nT+c

(a) Periodic schedule (phases)

Bw

Time0

0

T

B

vol
(1)
io vol

(1)
io vol

(1)
io

vol
(2)
io vol

(2)
io vol

(2)
io

vol
(3)
io vol

(3)
iovol

(4)
io

initW
(4)
1endW

(4)
1 initIO

(4)
1

(b) Detail of I/O in a period/pattern



10

Periodic schedules

Time Schedule vs what Application 4 sees
Bw

0

B

Timec T+c

vol
(1)
io vol

(1)
io vol

(1)
io

vol
(2)
io vol

(2)
io vol

(2)
io

vol
(3)
io vol

(3)
iovol

(4)
io

initW
(4)
1endW

(4)
1 initIO

(4)
1

Compute Idle IO + bw Idle

IO
+
bw

Compute

I Distributed information

I Low complexity

I Minimum overhead



10

Periodic schedules

Time Schedule vs what Application 4 sees

Bw

0

B

Timec T+c

vol
(1)
io vol

(1)
io vol

(1)
io

vol
(2)
io vol

(2)
io vol

(2)
io

vol
(3)
io vol

(3)
iovol

(4)
io

initW
(4)
1endW

(4)
1 initIO

(4)
1

Compute Idle IO + bw Idle

IO
+
bw

Compute

I Distributed information

I Low complexity

I Minimum overhead



11

Finding a schedule

Obj: algorithm with good SysEfficiency and Dilation perf.

Questions:

1. Pattern length T?

2. How many instances of each application?

3. How to schedule them efficiently?

Bw

Time0

0

T

B

initW
(4)
1endW

(4)
1 initIO

(4)
1

Answers:

1. Iterative search, exponential growth (Tmin to Tmax).

2. Bound on the number of instances of each application O

(
maxk(w

(k)+time
(k)
io )

mink(w
(k)+time

(k)
io )

)
.

3. Greedy insertion of instances, priority to applis with small Dilation.

• Distributed information

• Low complexity

• Minimum overhead



11

Finding a schedule

Obj: algorithm with good SysEfficiency and Dilation perf.

Questions:

1. Pattern length T?

2. How many instances of each application?

3. How to schedule them efficiently?

Bw

Time0

0

T

B

initW
(4)
1endW

(4)
1 initIO

(4)
1

Answers:

1. Iterative search, exponential growth (Tmin to Tmax).

2. Bound on the number of instances of each application O

(
maxk(w

(k)+time
(k)
io )

mink(w
(k)+time

(k)
io )

)
.

3. Greedy insertion of instances, priority to applis with small Dilation.

• Distributed information

• Low complexity

• Minimum overhead



11

Finding a schedule

Obj: algorithm with good SysEfficiency and Dilation perf.

Questions:

1. Pattern length T?

2. How many instances of each application?

3. How to schedule them efficiently?

Bw

Time0

0

T

B

initW
(4)
1endW

(4)
1 initIO

(4)
1

Answers:

1. Iterative search, exponential growth (Tmin to Tmax).

2. Bound on the number of instances of each application O

(
maxk(w

(k)+time
(k)
io )

mink(w
(k)+time

(k)
io )

)
.

3. Greedy insertion of instances, priority to applis with small Dilation.

• Distributed information

• Low complexity

• Minimum overhead



12

Model validation (I)

Announcement:

It’s hard to find appli data (w(k), vol
(k)
io , β

(k)).
If you have some, let’s talk ,.



12

Model validation (I)

I Four periodic behaviors from the literature to instantiate the applications.

I Comparison between simulations and a real machine
(Jupiter @Mellanox: 640 cores, b = 0.01GB/s, B = 3GB/s).

I We use IOR benchmark to instantiate the applications on the cluster (ideal world, no
other communication than I/O transfers).

App(k) w(k) (s) vol
(k)
io (GB) β(k)

Turbulence1 (T1) 70 128.2 32,768
Turbulence2 (T2) 1.2 235.8 4,096
AstroPhysics (AP) 240 423.4 8,192
PlasmaPhysics (PP) 7554 34304 32,768

Set # T1 T2 AP PP
1 0 10 0 0
2 0 8 1 0
3 0 6 2 0
4 0 4 3 0
5 0 2 0 1
6 0 2 4 0
7 1 2 0 0
8 0 0 1 1
9 0 0 5 0
10 1 0 1 0



13

Model validation (II)

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9 10
Set

Sy
st

em
 E

ffi
ci

en
cy

 / 
U

pp
er

 b
ou

nd

Periodic (expe)

Periodic (simu)

Online (expe)

Online (simu)

Congestion

(c) SysEfficiency/Upper bound

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6 7 8 9 10
Set

D
ila

tio
n

Periodic (expe)

Periodic (simu)

Online (expe)

Online (simu)

Congestion

(d) Dilation

The performance estimated by our model is accurate within 3.8% for periodic schedules
and 2.3% for online schedules.



14

Results

I Periodic: our periodic algorithm;

I Online: the best performance (Dilation or SysEff resp.) of any online algorithm in Gainaru et al.
Ipdps’15;

I Congestion: Current performance on the machine.

Set Dilation SysEff
1 -9.33% +17.94%
2 -13.81% +7.01%
3 -15.81% +8.60%
4 -1.46% +1.09%
5 -0.49% +0.62%
6 -2.90% +6.96%
7 -0.49% +0.73%
8 -0.00% +0.00%
9 -0.40% +0.10%
10 -0.59% +0.10%

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9 10
Set

Sy
st

em
 E

ffi
ci

en
cy

 / 
U

pp
er

 b
ou

nd
Periodic (expe)

Periodic (simu)

Online (expe)

Online (simu)

Congestion

Figure: SysEfficiency/Upper bound



14

Results

I Periodic: our periodic algorithm;

I Online: the best performance (Dilation or SysEff resp.) of any online algorithm in Gainaru et al.
Ipdps’15;

I Congestion: Current performance on the machine.

Set Dilation SysEff
1 -9.33% +17.94%
2 -13.81% +7.01%
3 -15.81% +8.60%
4 -1.46% +1.09%
5 -0.49% +0.62%
6 -2.90% +6.96%
7 -0.49% +0.73%
8 -0.00% +0.00%
9 -0.40% +0.10%
10 -0.59% +0.10%

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6 7 8 9 10
Set

D
ila

tio
n

Periodic (expe)

Periodic (simu)

Online (expe)

Online (simu)

Congestion

Figure: Dilation



15

More data

I We generate more sets
of applications

I Simulate on
instanciations of
Intrepid and Mira.

0.6

0.8

1.0

0 25 50 75 100
Set

Sy
st

em
 E

ffi
ci

en
cy

 / 
U

pp
er

 b
ou

nd

Periodic
Online (best) 0.4

0.6

0.8

1.0

0 25 50 75 100
Set

Sy
st

em
 E

ffi
ci

en
cy

 / 
U

pp
er

 b
ou

nd

Periodic
Online (best)

1.0

1.2

1.4

1.6

0 25 50 75 100
Set

D
ila

tio
n

Periodic
Online (best)

1

2

3

0 25 50 75 100
Set

D
ila

tio
n

Periodic
Online (best)

Intrepid Mira



16

List of open issues / Future steps

I Study of robustness: what if w(k) and vol
(k)
io are not exactly known?

I Integrating non-periodic application

I Burst-buffers integration/modeling

I Coupling application scheduler to IO scheduler

I Evaluation on real applications



Conclusion

I Offline periodic scheduling algorithm for periodic applications. Algorithm scales well
(complexity depends on the unmber of applications, not on the size of the machine).

I Very good expected performance.

I Very precise model on very friendly benchmarks.

I Right now, more a proof of concept.

Paper, data, code: https://github.com/vlefevre/IO-scheduling-simu

https://github.com/vlefevre/IO-scheduling-simu

	Introduction
	Model
	Platform

	Algorithm
	Simulations and experiments
	Conclusion

