PERIODIC I/O SCHEDULING FOR SUPERCOMPUTERS

Guillaume Aupy!, Ana Gainaru?, Valentin Le Fevre®

1 — Inria & U. of Bordeaux
2 — Vanderbilt University
3 — ENS Lyon & Inria

PMBS Workshop, November 2017
Slides available at https://project.inria.fr/dash/

https://project.inria.fr/dash/

[IO CONGESTION IN HPC SYSTEMS]

Some numbers for motivation:
» Computational power keeps increasing (Intrepid: PFlop/s, Mira: PFlop/s,
Aurora: PFlop/s (7)).
» 1O Bandwidth increases at slowlier rate (Intrepid: GB/s, Mira: GB/s, Aurora:
TB/s (7).

(=5

[IO CONGESTION IN HPC SYSTEMS)

Some numbers for motivation:

» Computational power keeps increasing (Intrepid: PFlop/s, Mira: PFlop/s,
Aurora: PFlop/s (7)).

» 10 Bandwidth increases at slowlier rate (Intrepid: GB/s, Mira: GB/s, Aurora:
TB/s (7).
In other terms:

Intrepid can process 160 GB for every PFlop
Mira can process 24 GB for every PFlop
Aurora will (?) process 2.2 GB for every PFlop

CONGESTION IS COMING.

(=5

(BURST BUFFERS: THE SOLUTION?)

Simplistically:
» If IO bandwidth available: use it
» Else, fill the burst buffers
» When IO bandwidth is available: empty the burst-buffers.

If the Burst Buffers are big enough it should work

(=1%)

(BURST BUFFERS: THE SOLUTION?)

Simplistically:
» If IO bandwidth available: use it
» Else, fill the burst buffers
» When IO bandwidth is available: empty the burst-buffers.

If the Burst Buffers are big enough it should work rigne?

(=1%)

(BURST BUFFERS: THE SOLUTION?)

Simplistically:
» If IO bandwidth available: use it
» Else, fill the burst buffers
» When IO bandwidth is available: empty the burst-buffers.

If the Burst Buffers are big enough it should work rigne?

Average I/0 occupation: sum for all applications of the volume of 1/O transfered,
divided by the time they execute, normalized by the peak I/O bandwidth.

(=1%)

(BURST BUFFERS: THE SOLUTION?)

Simplistically:
» If IO bandwidth available: use it
» Else, fill the burst buffers
» When IO bandwidth is available: empty the burst-buffers.

If the Burst Buffers are big enough it should work rigne?

Average I/0 occupation: sum for all applications of the volume of 1/O transfered,
divided by the time they execute, normalized by the peak I/O bandwidth.

Given a set of data-intensive applications running conjointly:

» on Intrepid have a max average I/O occupation of 25%

(=1%)

(BURST BUFFERS: THE SOLUTION?)

Simplistically:
» If IO bandwidth available: use it
» Else, fill the burst buffers
» When IO bandwidth is available: empty the burst-buffers.

If the Burst Buffers are big enough it should work rigne?

Average I/0 occupation: sum for all applications of the volume of 1/O transfered,
divided by the time they execute, normalized by the peak I/O bandwidth.

Given a set of data-intensive applications running conjointly:
» on Intrepid have a max average I/O occupation of 25%

» on Mira have an average I1/0O occupation of 120 to 300%!

(=1%)

[PREVIOUSLY IN 1O CONG.]

“Online” scheduling (Gainaru et al. Tppps’15):
» When an application is ready to do I/0, it sends a message to an 1/O scheduler;

» Based on the other applications running and a priority function, the I/O scheduler
will give a GO or NOGO to the application.

» If the application receives a NOGQO, it pauses until a GO instruction.
» Else, it performs I/0.

Dw

[PREVIOUSLY IN 1O CONG.]

7
0 Time

Dw

(3
(2)
1

App
App
App

bW/

[PREVIOUSLY IN 1O CONG.)

4
Time

Dw

[PREVIOUSLY IN 1O CONG.)

App® OB
App(z) 7/7(2)
App™ w

bW/

4
Time

Dw

[PREVIOUSLY IN 1O CONG.]

App® MO
App(z) =) |
T
App(l) w(l)l |
I T
Lo
by L
I I
|
ok | >

4
Time

Dw

[PREVIOUSLY IN 1O CONG.]

App(3) 7,,f35 | :
App(z) =) [
i
App(l) w(l)l |
I o
I o
by L
_ wl
|
0 & >
0 Time

Dw

[PREVIOUSLY IN 1O CONG.]

App(3) 7,,(35 | | :
App(z) 7/7(2) [|
T !
App(l) 'w(l)| I [
| o
| 1o [
by L
| |
0+ >
Time

Dw

[PREVIOUSLY IN 1O CONG.]

App(3) W) | : :
App(z) an(z) [|
App(l) w), : | | w) |
I o
I T
by L
I I
0+ >
Time

Dw

[PREVIOUSLY IN 1O CONG.]

ﬁ—rﬁ—l | (I
APP(S) ms Lo
App(z) an(z) | |
| |
App(l) lU(l)| | | | | ’lU(l) |
| I I
| I I
by Lo
| |
0 >
Time

Dw

(3
(2)
1

App
App
App

bW/

[PREVIOUSLY IN 1O CONG.]

MCRNE B w®) I
an(z) | |
o] [T]
[
I N
1 1

4
Time

Dw

(3
(2)
1

App
App
App

bW/

[PREVIOUSLY IN 1O CONG.]

| |
0w | 1 (3) |
=) [2, (2) |
| |
lL’(l) | | | | |’lU(l)

| | |

[

]

4
Time

Dw

[PREVIOUSLY IN 10 CONG.]

App® [| [e
APP(2) =) o 24) | Ry) | N I
i i 1o i ii
App(l) 'U"(l)l | | | | |’1U(l) | || Il 71)<l>| | | 1l
I R | o 1o AT
| I [o 1 Lo
bg/} |] L1 | Il |] |
I I I I I I
I
0
0 Time

Approx 10% improvement in application performance with 5% gain in system performance
on Intrepid.

Dw

[THIS WORK]

Assumption: Applications follow I1/O patterns' that we can obtain (based on historical
data for intance).

» We use this information to compute an I/O time schedule;
» Each application then knows its GO/NOGO information and uses it to perform I/O.

Spoiler: it works very well (at least it seems)

Lperiodic pattern, to be defined

3 o o o o o o

=TS

1

4

I/O CHARACTERIZATION OF HPC APPLIS
Hu ET AL. 2016

. Periodicity: computation and I/O phases (write operations such as checkpoints).
. Synchronization: parallel identical jobs lead to synchronized I/O operations.
. Repeatability: jobs run several times with different inputs.

» Burstiness: short burst of write operations.

Idea: use the periodic behavior to compute periodic schedules.

Do

[PLATFORM MODEL]

» N unit-speed processors, equipped with an 1/0O card of bandwidth b
» Centralized I/O system with total bandwidth B

Intrepid BG/P Compute Resource
Eureka Analysis Cluster

100 Node

200 GPUs
40K Nodes i 110 TFlops
160K Cores 1/0 —

557 TFlops h‘ Nodes

128 File
Servers

Storage System

Model instantiation for the Intrepid platform.

3 o ° o o

Do

[APPLICATION MODEL]

(k)).

io

K periodic applications already scheduled in the system: App(’“)(ﬂ(k)7 w® vol

» 3(%) is the number of processors onto which App(k) is assigned

» w®) is the computation time of a period
(k)

» vol;"” is the volume of I/O to transfor after the w*) units of time

(k) _ volfy
o min(B®) - b, B)

time

o | o
App® «@ 0 [w® R [w®) - o
. - R - 1 - I
App® w® | w®] L w®] [
T T T i T i
AppV) w1 | ! [w([| i ! Wt | i
L I L I [n
| [o I [AT
I [N T R o I [o
I [N R o I [AT
. I [N T R Lo I [AT
Bandwidth 4, [N B [I [o
B
I I I I I I
I | | | |
o A
0 Time

(=B

[OBJECTIVES]

If App(k) runs during a total time T} and performs n(*) instances, we define:

w®) NOMO!

(k) — o) =

P wk) + timei(f) 7 Ty

Do

[OBJECTIVES]

If App(k) runs during a total time T} and performs n(*) instances, we define:

W w® o (R (k)

g wk) 4 timei(f) 7 Ty,

—)

maximize peak performance
(average number of Flops):

maximize + Zszl B k),

Do

[OBJECTIVES]

If App(k) runs during a total time T} and performs n(*) instances, we define:

(k) (k),, (k)
w ~ n w
p(k) — p(k) _ v

wk) 4 timei(f) 7 T,

M sykiiciency SEMMINSNNNNS Dilation S

maximize peak performance minimize largest slowdown

(average number of Flops): (fairness between users):
imize L 5K 506 5(8) minimize max L

maximize « > ,_; 3% p%). k=1..K 5

Do

[HIGH—LEVEL CONSTRAINTS]

» Applications are already scheduled on the machines:
not (yet) our job to do it;

Do

[HIGH—LEVEL CONSTRAINTS]

» Applications are already scheduled on the machines:
not (yet) our job to do it;

» We want the schedule information distributed over the applis:
the goal is not to add a new congestion point;

Do

[HIGH—LEVEL CONSTRAINTS]

» Applications are already scheduled on the machines:
not (yet) our job to do it;

» We want the schedule information distributed over the applis:
the goal is not to add a new congestion point;

» Computing a full I/O schedule over all iterations of all applications would be too
expensive (i) in time, (ii) in space.

Do

[HIGH—LEVEL CONSTRAINTS]

Applications are already scheduled on the machines:
not (yet) our job to do it;

We want the schedule information distributed over the applis:
the goal is not to add a new congestion point;

Computing a full I/O schedule over all iterations of all applications would be too
expensive (i) in time, (ii) in space.

We want a minimum overhead for Applis users:
otherwise, our guess is, users might not like it that much ©.

Do

[HIGH—LEVEL CONSTRAINTS]

Applications are already scheduled on the machines:
not (yet) our job to do it;

We want the schedule information distributed over the applis:
the goal is not to add a new congestion point;

Computing a full I/O schedule over all iterations of all applications would be too
expensive (i) in time, (ii) in space.

We want a minimum overhead for Applis users:
otherwise, our guess is, users might not like it that much ©.

Do

[HIGH—LEVEL CONSTRAINTS]

Applications are already scheduled on the machines:
not (yet) our job to do it;

We want the schedule information distributed over the applis:
the goal is not to add a new congestion point;

Computing a full I/O schedule over all iterations of all applications would be too
expensive (i) in time, (ii) in space.

We want a minimum overhead for Applis users:
otherwise, our guess is, users might not like it that much ©.

We introduce Periodic Scheduling.

Do

777777777 7777777777777
77777777 11777777077
177777777 7277727777777
120777777 7777777777777

7777777777777

72777

7
1227277777
7

77777777777777

77777777777777

/7777777777777

P77777277277777

PERIODIC SCHEDULES

Init

T+Hc 2T+c
P

Pattern

3T+c

(n—2)T+c (n—1)T+c nT+c

(a) Periodic schedule (phases)

——
Clean up

AN
4
Time

endWYl) ini

t10(®

initw(®

(b) Detail of I/O in a period/pattern

3

[PERIODIC SCHEDULES]

Time Schedule vs what Application 4 sees

Bw

B

0 3 ,
¢ enaw{® initro{® initw(" T+4c Time

» Distributed information
» Low complexity

» Minimum overhead

Time Schedule vs what Application 4 sees

[PERIODIC SCHEDULES]

1] | 1 | 1

| ; n : o! !

' Compute ; Idle 2 IO + bw : Idle =+: Compute :

| I L™ :
oo] ' ,,,,, l ______ T s R

¢ enaw{® initro{® initw(" Te Time

» Distributed information v~
» Low complexity

» Minimum overhead v~

[FINDING A SCHEDULE]

Obj: algorithm with good SYSEFFICIENCY and DILATION perf.

Questions: N

1. Pattern length T'7 ’

2. How many instances of each application? ,
3. How to schedule them efficiently?

enaw(? init10{" initw(®

11

[FINDING A SCHEDULE]

Obj: algorithm with good SYSEFFICIENCY and DILATION perf.

Questions: N
1. Pattern length T'7 L

2. How many instances of each application? ,
3. How to schedule them efficiently?

enaw(? init10{"

sniey® ime

Answers:
1. Tterative search, exponential growth (Tinin t0 Tinax)-

. . . maxy, (w(*) ime.(k)
2. Bound on the number of instances of each application O((w7 dtimeyg >).

minyg (w(k) +time§§))

3. Greedy insertion of instances, priority to applis with small DILATION.

11

[FINDING A SCHEDULE]

Obj: algorithm with good SYSEFFICIENCY and DILATION perf.

Questions:

1. Pattern length T]

2. How many instar e Distributed information v~
3. How to schedule ® Low complexity v”

e Minimum overhead v~

Answers:

1. Tterative search, exponential growth (Tinin t0 Tinax)-

. . . maxy, (w(*) ime.(k)
2. Bound on the number of instances of each application O((w7 dtimeyg >).

minyg (w(k) +timei(:f))

3. Greedy insertion of instances, priority to applis with small DILATION.

[MODEL VALIDATION (I)]

Announcement:

It’s hard to find appli data (w*), Voli(f), B,
If you have some, let’s talk ©.

[MODEL VALIDATION (I)]

» Four periodic behaviors from the literature to instantiate the applications.

» Comparison between simulations and a real machine

(Jupiter @Mellanox: 640 cores, b = 0.01GB/s, B = 3GB/s).

» We use IOR benchmark to instantiate the applications on the cluster (ideal world, no
other communication than I/O transfers).

Set #| T1 | T2 [AP | PP
1 [of10]0]o0
2 |o|8]11]0
App®) w® (s)[vol® (@B)| p® 3 1ol6|z2]o0
Turbulencel (T1) 70 128.2[32,768 4 |0o]4a]3]0
Turbulence2 (T2) 1.2 235.8| 4,096 5 |0]2]0]1
AstroPhysics (AP) 240 423.4] 8,192 6 012|410
PlasmaPhysics (PP) 7554 34304(32,768 71121010
8 oo 11
9 |ojo]| 50
0]1]0[1]0

@
(=}

[MODEL VALIDATION (II)

% Congestion

System Efficiency / Upper bound

3 i“

i H 3 i 5 6 7 5 s 1o i : $ 4 5 6
Set Set

(c¢) SysEFrFICIENCY/Upper bound (d) DiLaTION

The performance estimated by our model is accurate within 3.8% for periodic schedules
and 2.3% for online schedules.

» Periodic: our periodic algorithm;
» Online: the best performance (DILATION or SYSEFF resp.) of any online algorithm in Gainaru et al.

IpPDPS’15;

» Congestion: Current performance on the machine.

Set | DILATION SYSEFF
1 -9.33% +17.94%
2 -13.81% +7.01%
3 -15.81% +8.60%
4 -1.46% +1.09%
5 -0.49% +0.62%
6 -2.90% +6.96%
7 -0.49% +0.73%
8 -0.00% +0.00%
9 -0.40% +0.10%
10 -0.59% +0.10%

.
£
8 o8- 4
I
g
g
3
3
3
g
2
2
2
W oo6-
13
2
2
b
|]
0
i 3
Figure:

RESULTS

Periodic (expe)
Periodic (simu)
@ Online (expe)
4l Onine (simu)
Congestion
3 i 5 6 7 8 $ 10
Set

SYSEFFICIENCY /Upper bound

» Periodic: our periodic algorithm;
» Online: the best performance (DILATION or SYSEFF resp.) of any online algorithm in Gainaru et al.

» Congestion: Current performance on the machine.

IpPDPS’15;

Set | DILATION SYSEFF
1 -9.33% +17.94%
2 -13.81% +7.01%
3 -15.81% +8.60%
4 -1.46% +1.09%
5 -0.49% +0.62%
6 -2.90% +6.96%
7 -0.49% +0.73%
8 -0.00% +0.00%
9 -0.40% +0.10%
10 -0.59% +0.10%

Dilation

) |
X

RESULTS

Periodic (expe)

Periodic (simu)
“® Online (expe)
4 Online (simu)

Congestion

Set

DiLATION

» We generate more sets
of applications

» Simulate on
instanciations of
Intrepid and Mira.

System Efficiency / Upper bound

Dilation

50
Set

75

~ Periodic
~ Online (best)

100

~ Periodic
~Online (best)

System Efficiency / Upper bound

Dilation

o
©

o
>

°
Y

~ Periodic
~Online (best)

50
Set

75 100

~ Periodic
~ Online (best)

50
Set

Intrepid

75

100

v

v

v

v

v

[LIST OF OPEN ISSUES / FUTURE STEPS]

Study of robustness: what if w*) and VOli(f) are not exactly known?
Integrating non-periodic application

Burst-buffers integration/modeling

Coupling application scheduler to IO scheduler

Evaluation on real applications

v

v

[CONCLUSION]

Offline periodic scheduling algorithm for periodic applications. Algorithm scales well
(complexity depends on the unmber of applications, not on the size of the machine).

Very good expected performance.
Very precise model on very friendly benchmarks.

Right now, more a proof of concept.

Paper, data, code: https://github.com/vlefevre/I0-scheduling-simu

https://github.com/vlefevre/IO-scheduling-simu

	Introduction
	Model
	Platform

	Algorithm
	Simulations and experiments
	Conclusion

