
Comparison of Parallelisation Approaches, Languages,
and Compilers for Unstructured Mesh Algorithms on

GPUs

G. D. Balogh1 I. Z. Reguly1 G. R. Mudalige2

1Faculty of Information Technology and Bionics, Pazmany Peter Catholic University,
Budapest, Hungary,

2Department of Computer Science, University of Warwick, Coventry,
United Kingdom

November 13, 2017

PMBS17

G. D. Balogh (PPCU - ITK) November 13, 2017PMBS17 1 / 22

Motivation

CUDA gives best performance on GPUs with the low level SIMT
abstraction

Converting applications to use CUDA require significant effort
OpenACC and OpenMP gives a high level directive based abstraction

Simplify the adoption of GPUs
Performance difference between CUDA and the directive based approaches
depends on multiple factors

Type of computation
Language (C/C++ or Fortran)
Compiler

G. D. Balogh (PPCU - ITK) November 13, 2017PMBS17 2 / 22

Motivation

Performance difference between C/C++ and Fortran?
How the new support for OpenMP performs?

G. D. Balogh (PPCU - ITK) November 13, 2017PMBS17 3 / 22

Our contribution

Using Airfoil (C & Fortran) to compare CUDA, OpenMP 4, and
OpenACC on a K40 and a P100 GPU
We carry out analysis to identify differences between algorithms,
languages, and compilers.
Evaluate these parallelizations and compilers on Volna (C) and
BookLeaf (Fortran)
We compared the performance of

nvcc CUDA C/C++
clang CUDA and OpenMP C/C++
XL CUDA and OpenMP Fortran and for OpenMP C/C++
PGI for CUDA and OpenACC Fortran and for OpenACC C/C++
Cray

G. D. Balogh (PPCU - ITK) November 13, 2017PMBS17 4 / 22

Ustructured mesh applications

Operates on unstructured grids
A collection of nodes, edges, etc., with explicit connections - e.g.
mapping tables define connections from edges to nodes

Consists of parallel loops over some set in the mesh
Accessing data directly on the iteration set or indirectly via a mapping
Indirect data accesses make the parallelisation difficult

low-level models have advantage in orchestrating parallelism

cells[edgeToCells [2*i+0]]
+= edge[i];

cells[edgeToCells [2*i+1]]
+= edge[i];

G. D. Balogh (PPCU - ITK) November 13, 2017PMBS17 5 / 22

Hierarchical coloring

MPI boundary
Owner-compute
Halo exchanges

Block 1
Block 2

Organizing parallelism

Figure: Illustration for hierarchical coloring on a computation on edges that write
data on the cells. The blocks are colored so that there is no neighboring blocks
with the same color and inside the blocks threads colored so that no two threads
with the same color write the same data.

G. D. Balogh (PPCU - ITK) November 13, 2017PMBS17 6 / 22

Global coloring

MPI boundary
Owner-compute
Halo exchanges

Organizing parallelism

Figure: Illustration for global coloring on a computation on edges that write data
on the cells. Threads colored so that no two threads with the same color write
the same data.

G. D. Balogh (PPCU - ITK) November 13, 2017PMBS17 7 / 22

OP2[1]

G. D. Balogh (PPCU - ITK) November 13, 2017PMBS17 8 / 22

Airfoil[2]

Non-linear 2D inviscid airfoil code
Both in C and Fortran
Five kernels with different access patterns:

save soln - simple kernel, only direct reads and writes
adt calc - computationally expensive operations, indirect reads, direct
increments
res calc - complex computation, indirect reads and indirect increments
bres calc - similar to res calc but on the boundary edges
update - simple computation with a global reduction, only direct reads
and writes

G. D. Balogh (PPCU - ITK) November 13, 2017PMBS17 9 / 22

BookLeaf and Volna

BookLeaf [3]
2D Lagrangian hydrodynamics application
Written in Fortran 90
Most time consuming kernels:

getacc scatter - indirect increments
getq christiensen1, and gather - indirect reads and direct writes

Volna [4]
Shallow water simulation capable of handling the complete life-cycle of
a tsunami
Written in C++
Most time consuming kernels:

SpaceDiscretization - indirect reads and increments
NumericalFluxes - indirect reads and global reduction
computeFluxes - indirect reads

G. D. Balogh (PPCU - ITK) November 13, 2017PMBS17 10 / 22

Simple kernels
save soln - 3.6% of total runtime on K40 (nvcc global coloring), 3.8% on
P100

All versions perform within 2% of each other
Fortran versions execute 10% more integer instructions

G. D. Balogh (PPCU - ITK) November 13, 2017PMBS17 11 / 22

Computation intensive kernels

adt calc - 9.5% of total runtime on K40 (nvcc global coloring), 9.1% on
P100

CUDA clang executes 15-20%
less integer and floating point
operation than nvcc
High register usage with high
level models and Fortran
OpenMP compilers struggle
with texture cache

OpenMP with XL and OpenACC fail to optimize with multiple global
writes
High number of memory transactions with Fortran

G. D. Balogh (PPCU - ITK) November 13, 2017PMBS17 12 / 22

Computation intensive kernels

On large computations all versions but nvcc end up with spilled registers.

G. D. Balogh (PPCU - ITK) November 13, 2017PMBS17 13 / 22

Complex kernels with indirections - Hierarchical coloring

res calc (Airfoil) - 70% of total runtime (global coloring),
SpaceDiscretization (Volna) - 60%, getacc scatter (BookLeaf) - 12%

G. D. Balogh (PPCU - ITK) November 13, 2017PMBS17 14 / 22

Complex kernels with indirections - Global coloring

res calc - 71% of total runtime on K40, 70% on P100

All C versions within 5%, Fortran lagging with 10% behind C
Main factors are occupancy and global memory usage

Directive based approaches and Fortran versions have high register
counts
OpenMP doesn’t use texture caches
OpenMP and Fortran version execute more memory transactions

Same tendencies in getacc scatter (BookLeaf)
OpenMP XL have a 40% lower performance in SpaceDiscretization
(Volna)

G. D. Balogh (PPCU - ITK) November 13, 2017PMBS17 15 / 22

Reduction

update - 15% of total runtime on K40 (nvcc global coloring), 16% on
P100

OpenACC runs separate kernels for reductions
Higher occupancy

In OpenMP reductions lead to 4-6 times more control and integer
instruction

G. D. Balogh (PPCU - ITK) November 13, 2017PMBS17 16 / 22

Airfoil (Total) runtimes on K40

G. D. Balogh (PPCU - ITK) November 13, 2017PMBS17 17 / 22

Volna (Total) runtimes on K40

G. D. Balogh (PPCU - ITK) November 13, 2017PMBS17 18 / 22

BookLeaf (Total) runtimes on K40

G. D. Balogh (PPCU - ITK) November 13, 2017PMBS17 19 / 22

Conclusions

CUDA and the SIMT abstraction gives fine-grained control over GPU
architectures.

Significantly better performance with hierarchical coloring compared
to global coloring
New Clang support for CUDA

outperforms nvcc in arithmetic instruction counts
On Fortran side there is support for CUDA in PGI and XL compilers

5-20% performance gap compared to CUDA C/C++
Most cases end up with high register usage (and low occupancy)
High number of read transactions

G. D. Balogh (PPCU - ITK) November 13, 2017PMBS17 20 / 22

Conclusions II

OpenMP4 and OpenACC reach same performance as CUDA in simple
kernels
For complex kernels there is a 5-15% performance gap compared to
CUDA

High register usage
Low support for texture caches

Relatively new OpenMP4 support already within 5-10% of
OpenACC’s performance

G. D. Balogh (PPCU - ITK) November 13, 2017PMBS17 21 / 22

References I

The authors would like to acknowledge the use of the University of Oxford
Advanced Research Computing (ARC) facility in carrying out this work
http://dx.doi.org/10.5281/zenodo.22558

[1] “OP2 github repository.” https://github.com/OP2/OP2-Common.

[2] M. Giles, G. Mudalige, and I. Reguly, “Op2 airfoil example,” 2012.

[3] “Uk mini-app consortium.” https://uk-mac.github.io.

[4] D. Dutykh, R. Poncet, and F. Dias, “The volna code for the numerical
modeling of tsunami waves: Generation, propagation and inundation,”
European Journal of Mechanics-B/Fluids, vol. 30, no. 6, pp. 598–615,
2011.

G. D. Balogh (PPCU - ITK) November 13, 2017PMBS17 22 / 22

http://dx.doi.org/10.5281/zenodo.22558
https://github.com/OP2/OP2-Common
https://uk-mac.github.io

