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Exascale Computing

• Exascale is the next supercomputing performance goal (~2021)
• Exascale enables new opportunities in science and technology
• Exascale Computing→ Cluster with performance 1 ExaFLOP/s
• DoE targets initial power constraint to 1 ExaFLOP/s

20 MegaWatts
• Performance under power constraint is the top evaluation metric

Figure: Aurora, to be the first US Exascale computer in 2021 at ANL
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Manycore Era

• Current HPC systems are adopting Manycore CPUs
• KNL is Intel’s first manycore self-hosted CPU
• KNL is in NERSC’s Cori, ANL’s Theta, LANL’s Trinity, etc...
• Manycore offers performance and power benefits

• Research Questions
• Does the NERSC workload benefit from KNL?
• Is KNL the right direction for Exascale?

Figure: Cori, NERSC’s pre-exascale flagship system, #6 on TOP500
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Knight’s Landing

• KNL is a milestone on path to exascale
• KNL is Intel’s first manycore self-hosted CPU
• 64-72 cores, 4 Hyperthreads Per Core
• Cores “lighter” than traditional server chips

I Shallower pipelines, less prediction, etc
• 16GB MCDRAM - Intel On-Chip High Bandwidth Memory (HBM)

I High Bandwidth, High Latency, High Power-Efficiency

Possible MCDRAM Configurations

Memory Mode Clustering Mode

Cache Quadrant
Cache Hemisphere
Flat Quadrant
Flat Hemisphere
Flat SNC4
Flat SNC2

Table: Cache/Quad and Flat/Quad are easiest to use, most used at NERSC
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Experimental Overview

• Goal: Compare Manycore to HPC CPU “norm”
• HPC Norm: Intel Xeon Server Multicore CPUs
• Multiple heavy cores vs. Many lighter cores
• Is KNL the correct path to Exascale?

• Method: Benchmark and Contrast
• We use microbenchmarks to characterize specific features
• We use real world apps to evaluate practical benefit
• Benchmarks run on modern KNL and Xeon systems
• Metrics: Time to Solution, Power/Energy Consumption
• Variables: MPI/OMP, threads-per-core, MCDRAM configuration
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Test System: Cori

• Our test system was NERSC’s Cori Supercomputer

• Cori is a representative modern HPC system

Haswell Xeon KNL

CPU Model Intel Xeon E5−2698 Intel Xeon Phi 7250 KNL
Clock Speed 2.3GHz 1.4GHz
Total Cores 32 68
Logical Cores 64 272
Sockets 2 1
Memory 128GB 2133MHz DDR4 96GB 2400MHz DDR4

16GB On-Chip MCDRAM
Total Nodes 2388 9688
Network Cray Aries Dragonfly Cray Aries Dragonfly
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Profiling Tool - IPM

• IPM: Integrated Performance Monitoring
• IPM is an open-source lightweight profiling tool

• Source Available at
http://www.github.com/nerscadmin/ipm

• IPM aggregates low-level profiling interface
• PAPI performance counters, MPI call data, perf events...

• We added energy/power monitoring to IPM
• Supported through Cray Power Monitoring and sensors
• Measures energy over application duration
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Experiment Applications

• We use common microbenchmarks to test specific features
• We use applications from NERSC and other DoE labs

• All applications use hybrid MPI/OpenMP

Application Science Area Nodes Rnks-Thds/Rnk
HSW KNL

STREAM Memory bandwidth 1 32t 68t
RandN Random memory access 1 64t 256t
DGEMM Dense linear algebra 1 32t 136t
GTC-P Fusion 8 32r-1t 32r-8t
MILC Quantum chromodynamics 8 32r-1t 32r-2t
Nyx-AMReX Cosmology 2 16r-4t 16r-16t
Castro-AMReX Astrophysics 4 32r-1t 32r-2t
Quantum Espresso Quantum chemistry 4 4r-8t 4r-16t
BD-CATS Data analytics for cosmology 16 16r-4t 16r-16t
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Terminology

• TPC: Threads Per Core

• KNL-Cache: KNL w/ MCDRAM as LLC

• KNL-MCDRAM: KNL w/ MCDRAM as Addressable Memory

• KNL-DDR: KNL w/ MCDRAM not used
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Microbenchmark Performance Results vs Haswell

(a) STREAM performance (b) RandN performance

• MCDRAM has significant impact on performance on STREAM

• STREAM is sequential and RandN is random mem access

• Locality has large impact on MCDRAM/hyperthread value
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Microbenchmark Power Results vs. Haswell

Benchmark Perf Improvement Energy Improvement

DGEMM 1.9x 2.5x
STREAM 4.0x 4.8x
RandN 1.5x 2.4x

• Note: Table values are with KNL-Cache mode

• Energy efficiency shows greater improvement than performance
• Our results show DGEMM achieves 150pJ/FLOP

• Exascale Target: 20pJ/FLOP
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KNL vs. Haswell Performance

(c) Geometric mean: 0.84 and 1.27

Figure: Best KNL configuration against best Haswell

• Value above bar
indicates speedup
relative to Haswell

• Real Apps on
KNL-DDR always
worse than Haswell

• The best KNL
configuration is always
KNL-Cache
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KNL vs. Haswell Total Energy

(a) Energy Consumption
Geometric mean: 1.21 and 1.84

Figure: Best KNL configuration against best Haswell

• Except BD-CATS, all
show significant
efficiency improvement
w/ MCDRAM

• Cache mode always
improves energy
efficiency over Haswell
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Summary

• We evaluated HPC applications on KNL vs. Haswell

• We explored the parameter spaces for KNL and Haswell
• Main Findings

• KNL improves performance for 6 of 9 apps vs Haswell
• KNL reduces energy consumption for all listed applications
• Apps with locality show significant improvement from MCDRAM
• Geometric Mean Perf Improvement vs. Haswell: 1.27x
• Geometric Mean Energy Improvement vs. Haswell: 1.84x
• DGEMM achieves 150pJ/FLOP vs. Exascale Target of 20pJ/FLOP

• KNL is a step in the direction of Exascale

• We still need much greater efficiency gains
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Future Work

• Compare KNL to more recent Intel architecture (Broadwell, etc)

• More thorough, specific characterization using perf counters

• Derive specific indicators of application sensitivity to parameters
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Stream Variability in KNL-Cache

• Cache mode has issues with consistency
• Performance reduction correlated with DDR Traffic

• Indicating a Last-Level Cache Miss
• However, STREAM should fit in MCDRAM
• Direct-map KNL cache can cause significant variation

Figure: STREAM bandwidth in KNL-Cache mode over 48 trials
17 / 18



Introduction Background Methodology Results Conclusion

Cray Power Monitoring vs RAPL

• Cray power monitoring using physical sensor
• RAPL uses perf event avg estimation
• Physical measurement far more accurate

• Cray monitors on the rail at input source before voltage drop

• Supported by default on Cray systems (Cori)
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