## Memory Use on ARCHER

Analysis of memory use on the UK national supercomputing service

Andy Turner <u>a.turner@epcc.ed.ac.uk</u> Simon McIntosh-Smith <u>S.McIntosh-Smith@bristol.ac.uk</u>





# Background

### Why do we care about memory use?

Two main reasons:

#### 1. Procurement

Memory cost is now a major factor in large-scale procurements. A factor of 2 difference in memory per node has a big effect.

#### 2. Future architectures

Small-but-fast high bandwidth memories such as HBM and MCDRAM will become increasingly common over the next 3 years, even on CPUs. Will we be able to exploit these for mainstream HPC systems?

### What did we do?

We set out to collect a rigorous dataset from a large-scale, mainstream HPC service (ARCHER), over a substantial timeframe (~1 year).

To be rigorous, we collected data on real application memory use during production runs.

Our goal was to produce a contemporary dataset on application memory use that could be useful for anyone running procurements or considering future designs which rely on HBM-like technologies.

## Data collection





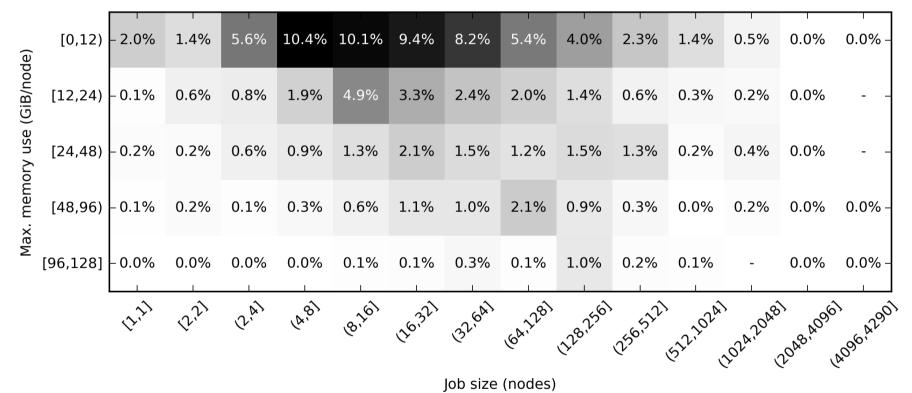
epcc

# EPSRC

Engineering and Physical Sciences Research Council



### Data collection and munging


- We used Cray Resource Usage Reporting (RUR)
  - Gathers data for every parallel application run on the system
- Needed to link this data to other streams to get useful information
  - Identify application used
  - Project and user information
  - Job sizes, job IDs
- Used EPCC's SAFE system, which links multiple data streams
  - Allows us to query memory usage by application, project, user, job size, etc.

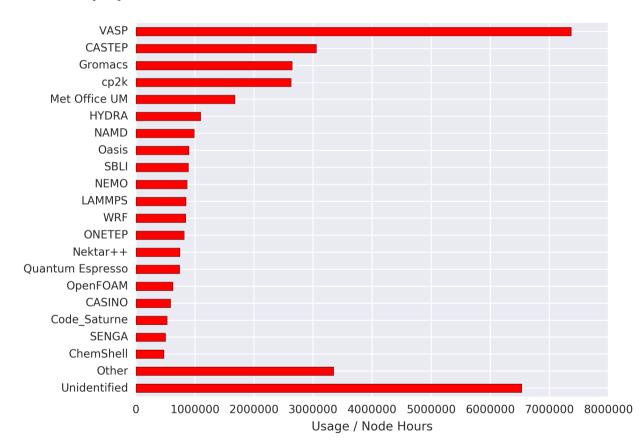


## Results

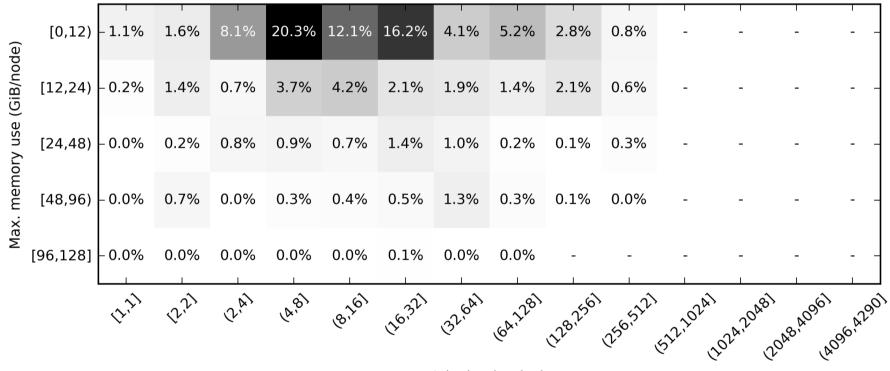
#### Caveats

- We assume homogeneous memory usage per process
  - This is a reasonable assumption for most use cases on ARCHER
  - Can overestimate memory requirements
  - We've seen at least one case where this assumption is false
- Initial pass through the data
  - Much more analysis to be done



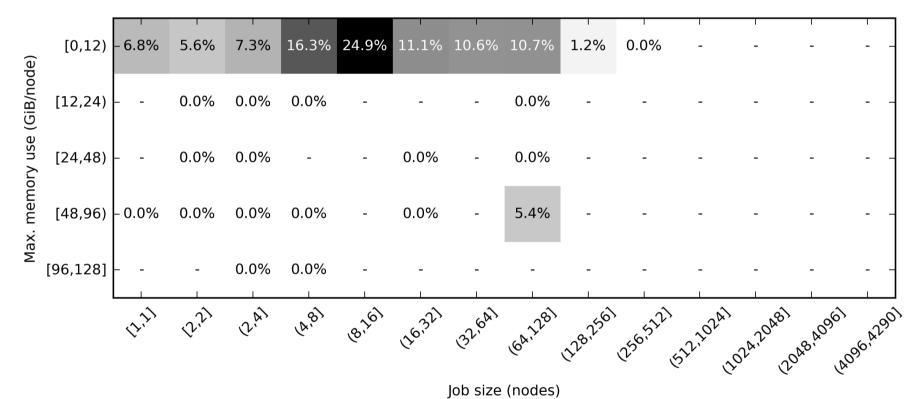

### Overall memory use

24 cores per node


### % use by max. memory

| Max. Memory<br>Use<br>(GiB/node) | Small<br>(<= 32 nodes) | Large<br>(> 32 nodes) | All   | All<br>(Cumulative) |
|----------------------------------|------------------------|-----------------------|-------|---------------------|
| (0,12)                           | 68.6%                  | 55.4%                 | 65.4% | 65.4%               |
| [12,24)                          | 20.0%                  | 25.7%                 | 21.4% | 86.8%               |
| [24,48)                          | 8.5%                   | 12.1%                 | 9.4%  | 96.2%               |
| [48,96)                          | 2.7%                   | 6.7%                  | 3.7%  | 99.9%               |
| [96,128)                         | 0.1%                   | 0.1%                  | 0.1%  | 100.0%              |

### **ARCHER** Application Use




### VASP – Periodic Electronic Structure



Job size (nodes)

### GROMACS – *N*-body Modelling







### Conclusions & next steps

- > 80% of use on ARCHER uses less than 24 GiB/node (1 GiB/core)
  - > 60% uses less than 12 GiB/node (0.5 GiB/core)
- Memory requirements often increase as job size increases
- Opportunity to exploit limited-capacity, high-bandwidth memory
  - Many applications are memory-bandwidth bound
  - Performance needs to be available without code modification
- Improve analysis to catch non-homogeneous memory use
- Work with other centres to understand differences/similarities
- Work with user communities to improve understanding of application memory use

### Questions?

Andy Turner <u>a.turner@epcc.ed.ac.uk</u> Simon McIntosh-Smith <u>S.McIntosh-Smith@bristol.ac.uk</u>



