

Resilient N-Body Tree Computations with Algorithm-Based Focused Recovery: Model and Performance Analysis

Aurélien Cavelan^{1,2} Aiman Fang³ Andrew A. Chien^{3,4} Yves Robert^{2,5}

<aurelien.cavelan@unibas.ch>

¹University of Basel, Switzerland. ²Laboratoire LIP, ENS Lyon & Inria, France.

³University of Chicago, USA. ⁴Argonne National Laboratory, USA.

⁵University of Tennessee Knoxville, USA.

In February 2014, the Advanced Scientific Computing Advisory Committee identified resilience as one of the top 10 challenges for Exascale:

Ensuring correct scientific computation in face of faults, reproducibility, and algorithm verification challenges.

To achieve 1000x increase in performance:

- > Larger node count: $10^5 \mbox{ or } 10^6$ nodes, each with $10^2 \mbox{ or } 10^3$ cores
- > Shorter Mean Time Between Failures (MTBF)

Theorem: $MTBF_p = \frac{MTBF_{ind}}{p}$ for arbitrary distributions.

MTBF (individual node)	1 year	10 years	100 years
MTBF (platform of 10^6 nodes)	30 secs	5 mins	50 mins

We need more resilient techniques!

In this paper, we focus on Silent Data Corruptions:

- > Caused by bit-flips in the memory
- > RAM, CPU, GPU, cache, disk, ...
- > Errors are only detected when corrupted data is activated
- > Long detection latency: thousands (10^3) to billions (10^9) cycles
- > Undetected errors propagate and corrupt application data

Existing hardware protections are not enough:

- $^{>}$ ECC/chipkill codes only target specific parts of the memory
- $^{\scriptscriptstyle >}$ We focus on errors that escape such simple system level detection

Errors can be exposed via sophisticated application checks.

Silent Error Detectors

General-purpose approaches

Replication [Fiala et al. 2012] or triple modular redundancy and voting [Lyons and Vanderkulk 1962]

Application-specific approaches

- Algorithm-based fault tolerance (ABFT): checksums in dense matrices limited to one error detection and/or correction in practice [Huang and Abraham 1984]
- Partial differential equations (PDE): use lower-order scheme as verification mechanism [Benson, Schmit and Schreiber 2014]
- Preconditioned conjugate gradients (PCG): orthogonalization check every k iterations, re-orthogonalization if problem detected [Sao and Vuduc 2013, Chen 2013]

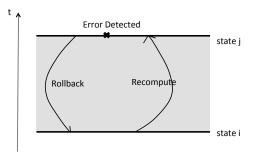
Data-analytics approaches

- Dynamic monitoring of HPC datasets based on physical laws (e.g., temperature limit, speed limit) and space or temporal proximity [Bautista-Gomez and Cappello 2014]
- Time-series prediction, spatial multivariate interpolation [Di et al. 2014]

Standard Checkpoint and Recovery (CR)

We must ensure that checkpoints are correct:

- > Check application data before checkpointing with SDC detector
- > Upon error, rollback to the last correct checkpoint and re-execute



There are downsides:

- > Only a small fraction of the data might be corrupted
- > But classic CR incurs considerable overhead in case of error

Application-Based Focused Recovery (ABFR):

ABFR takes a different approach:

- Exploits application dataflow to bound the impact of the error
- Only recompute potentially corrupted data

ABFR works in three steps:

- 1 Inverse propagation: identify potential root causes (PRC)
- 2 Diagnosis: locate the root cause of the error (prune PRCs)
- 3 Recomputation: recompute potentially corrupted data

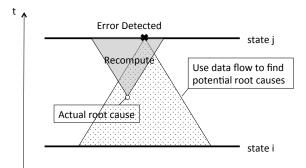
We take advantage of frequent versioning:

- > Exploits DRAM and high bandwidth and capacity burst buffers
- > This allows frequent versioning of application data

ABFR for Stencil Computations (previous work)

ABFR works in three steps:

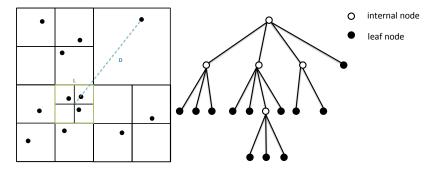
- 1 Inverse propagation: identify potential root causes (PRC)
- 2 Diagnosis: locate the root cause of the error (prune PRCs)
- 3 Recomputation: recompute potentially corrupted data



ABFR only recomputes a small fraction of the data.

Resilient N-Body Tree Computations with Algorithm-Based Focused Recovery: Model and Performance Analysis

We investigate the impact of ABFR on N-Body computations.



N-Body computations are much more challenging:

- > Information is exchanged along the tree
- > Nodes are updated at different time intervals

In this paper we focus on perfect binary trees:

- > It encompasses the intrisic comlexity of the model
- > The model remains valid for arbitrary N-Body trees
- \geq It is amenable to an exact analytical evaluation

Two major contributions:

- 1 A detailed analytical model to compare ABFR with CR
- 2 A comprehensive performance study for perfect binary trees

The goal is obtain a better understanding of the potential impact of ABFR on N-body computations.

We consider a perfect binary tree T_n of depth n. We assume the following execution model (example with n = 3):

Level	Iterations							
	1	2	3	4	5	6	7	8
0								2^{0}
1				2^{1}				2^{1}
2		2^{2}		2^{2}		2^{2}		2^{2}
3	$K\cdot 2^3$	$K \cdot 2^3$	$K\cdot 2^3$	$K \cdot 2^3$	$K\cdot 2^3$	$K\cdot 2^3$	$K\cdot 2^3$	$K \cdot 2^3$

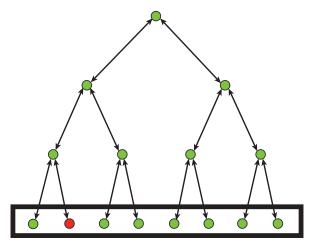
We version every step.

We assume exponentially distributed errors.

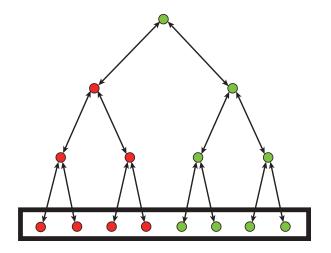
We make the following assumptions on the detector

- > The detector is computationally expensive
- > The SDC detector has 100% coverage
- The detector signals the manifestation of the error

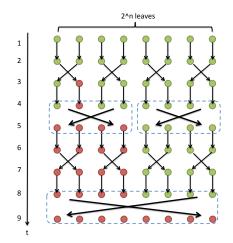
Error Propagation (t = 3)



Error Propagation (t = 5)



Error Propagation (t = 9)



> After one period, all nodes are corrupted

Detection should be done after iteration 2, 4, or 8

	Definitions				
n	Height of tree				
K	Number of updates performed at level n (tree leaves)				
	Error Rate				
λ	Errors per second per leaf				
	Time				
c	Time to compute one leaf				
d	Time to detect errors on one leaf				
v	Time to version one leaf				
r	Time to recover one leaf				
	Tree-wise				
T_c	Time to compute the tree without errors				
T_d	Time for detection the tree without errors				
T_v	Time for versioning the tree without errors				
	Frequency				
D	Detection interval of the form $2^x \cdot K$				

Expected execution time for one period with CR:

$$\mathbb{E}(T_{CR}) = T_c + 2^n \cdot (d+v) + (1 - e^{-\lambda T_c})T_c .$$

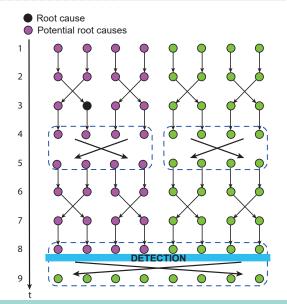
Expected execution time for one period with **ABFR**:

$$\mathbb{E}(T_{ABFR}) = T_c + T_d + T_v + (1 - e^{-\lambda T_c}) \left(\mathbb{E}(T_{diag}) + \mathbb{E}(T_{recomp})\right)$$

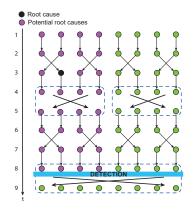
ABFR works in three steps:

- 1 Inverse propagation: identify potential root causes (PRC)
- 2 **Diagnosis**: bound error impact (prune PRC)
- 3 Recomputation: recompute potentially corrupted data

1. Inverse Propagation



1. Inverse Propagation

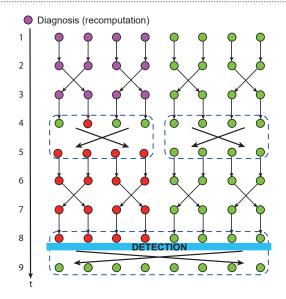


- > The number of PRCs depends on the detection interval $D = 2^x K$
-) The error can only be located in the 2^{x-1} nodes
- > In total, there are $2^x \cdot 2^{x-1}$ PRCs

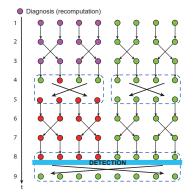
Number of PRCs strongly depends on the detection interval.

Resilient N-Body Tree Computations with Algorithm-Based Focused Recovery: Model and Performance Analysis

2. Diagnosis



2. Diagnosis



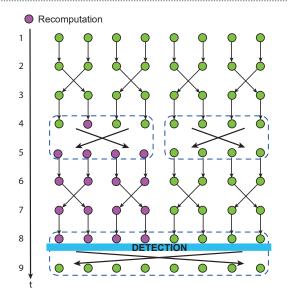
Assuming that faults are uniformly distributed among nodes:

$$\mathbb{E}(T_{diag}) = \sum_{i=1}^{2^{x}} \frac{1}{2^{x}} \cdot i \cdot 2^{x-1} (Kc+r)$$

Cost of diagnosis strongly depends on the detection interval.

Resilient N-Body Tree Computations with Algorithm-Based Focused Recovery: Model and Performance Analysis

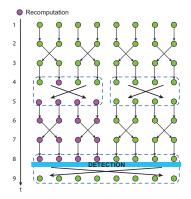
3. Recomputation



3. Recomputation

$$\mathbb{E}(T_{recomp}) = \frac{1}{2} \begin{cases} 2^{n-1}2^{n-1}(K \cdot c + v) + \frac{1}{2} \begin{cases} 2^{n-2}2^{n-2}(K \cdot c + v) + \frac{1}{2} \begin{cases} (K \cdot c + v) \\ \frac{1}{2} \begin{cases} (K \cdot c + v) \\ 0 \end{cases} \\ \\ \frac{1}{2} \begin{cases} 2^{n-2}2^{n-2}(K \cdot c + v) + \frac{1}{2} \begin{cases} (K \cdot c + v) \\ 0 \end{cases} \\ \\ \frac{1}{2} \begin{cases} (K \cdot c + v) \\ 0 \end{cases} \end{cases}$$

3. Recomputation



$$\mathbb{E}(T_{recomp}) = \frac{1}{6}(4^x - 1)(Kc + v)$$

Again, recomputation cost depends on the detection interval.

Resilient N-Body Tree Computations with Algorithm-Based Focused Recovery: Model and Performance Analysis

Finally, we obtain an exact analytical formula:

 $\mathbb{E}(T_{ABFR}) = T_c + T_d + T_v + (1 - e^{-\lambda T_c}) \left(\mathbb{E}(T_{diag}) + \mathbb{E}(T_{recomp})\right)$

$$\mathbb{E}(T_{diag}) = \sum_{i=1}^{2^{x}} \frac{1}{2^{x}} \cdot i \cdot 2^{x-1} (Kc+r)$$

$$\mathbb{E}(T_{recomp}) = \frac{1}{6}(4^x - 1)(Kc + v)$$

What is the optimal detection interval? i.e. optimal x? Find tradeoff between **detection cost**, **diagnosis** and **recomputation**.

Expected overhead for **CR**:

$$\mathbb{E}(H_{CR}) = \frac{\mathbb{E}(T_{CR})}{T_c} - 1 \; .$$

Expected overhead for **ABFR**:

$$\mathbb{E}(H_{ABFR}) = \frac{\mathbb{E}(T_{ABFR})}{T_c} - 1 \; .$$

We can analytically compare ABFR and CR. Finally, in order to get the optimal value for x, we need to solve (numerically):

$$\frac{\partial \mathbb{E}(H_{ABFR})}{\partial x} = 0$$

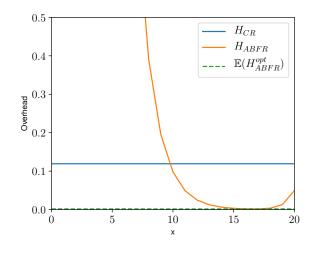
The goal is twofold:

- > Show the accuracy of the theoretical analysis
- > Assess the performance of ABFR against CR

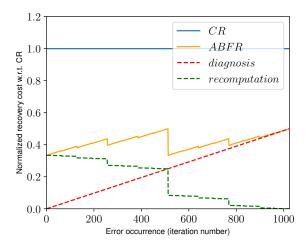
Simulation settings:

- > Number of nodes in the tree: $n = \lceil log_2(10^6) \rceil = 20$
-) Computing one leaf: $c=10^{-5}{\rm s}$
- > Repetition at leaf level: K = 100
- Reload?version cost: $r = v = \frac{c}{100}$
- > Detection cost: $d = 100 \cdot c$
-) Error rate: $\lambda = 1.15 \cdot 10^{-10}$

The overhead of the simulation is obtained by averaging the results of $1000\ {\rm runs}.$



 $D^{opt} = 2^{17}K.$



- > We have applied **ABFR** for N-Body tree computations to efficiently recover from latent errors
- > We have proposed an **analytical model** to compare the performace of **ABFR** against **CR**
- > Simulation results show that ABFR reduces recovery overhead by 60% compared to the standard CR approach
- > While the model is built for binary trees, it can be generalized for arbitrary higher dimensions

Future directions include applying ABFR to production N-Body tree codes

Questions?

aurelien.cavelan@unibas.ch