\zf/ —
WASHINGTON STATE

\
Reees ECFP U

miniVite: A Graph Analytics Benchmarking Tool
for Massively Parallel Systems

Sayan Ghosh’, Mahantesh Halappanavar¥, Antonino Tumeo¥, Ananth
Kalyanaraman’, Assefaw Gebremedhin’

‘Washington State University, Pullman, WA
YPacific Northwest National Laboratory, Richland, WA

2018 IEEE/ACM Performance Modeling, Benchmarking and Simulation of High Performance
Computer Systems (PMBS)
12 Nov, 2018. Dallas, Texas.

o

Pacific

Northwest Graph Clustering (community detection)

AAAAAAAAAAAAAAAAAA

* Problem: Given G(V,E,w), identify tightly knit groups of
vertices that strongly correlate to one another within their
group, and sparsely so, outside.

Input :

> V={12,..n}

» E: a set of M edges

> w(e). weight of edge e
(non-negative)

> m = ZVGEE C()(e)

Output :

» A partitioning of V into
k mutually disjoint clusters
P={C, C,... C}
such that: ... ?

o

Pacific

Nortwest Mlodularity (Newman 2004)

AAAAAAAAAAAAAAAAAA

A statistical measure for assessing the quality of a given community-wise
partitioning P of the vertices V-

inter-cluster Notation Definiion

edges C(i) Cluster containing vertex i

€i>c(i) Number of edges from / to vertices in C(/)

\ ac Sum of the degree of all vertices in cluster C
N 1 ac ac
° @ = 2m 4 CimC(3) Z (Qm Qm)
VieV vCeP

Intra-cluster \) \)

edges ! Y
Fraction of Equivalent fraction in

intra-cluster edges a random graph

o

Pacific

Northwest LOUvaln method (Blondel et al. 2008)
Input: G(V,E)
Goal: Compute a partitioning of V that maximizes modularity (Q)
Init: Every vertex starts in its own community (i.e., C(i)={1})
Multi-phase multi-iterative heuristic
Within each iteration:
* For every vertex i € V.
1. Let C(i) : current community of i
Upon no further 2. Compute modularity gain (4Q) for
modularity aain @ moving / into each of i's neighboring
Y9 communities
4 3. Let C,,.,: neighboring community with
Next 2 largest AQ
phase 4. If (AQ>0) {Set C(i) = C,,.x }

o

Pacific Our Parallel Algorithm: Grappolo

Northwest
PARALLEL FOR each vertex i € V.
G(V’iﬁ)) 1. Let C(i) : current community of /
Vertex 2. Compute modularity gain (4Q) for

moving i into each of i's neighboring

. | communities
Coloring*m)pr set 3. Let C,,, : neighboring community with

argest AQ (ML)
4. If (4Q>0) {Set C(i) =C,,.,}

Following*

G,(V,aE,aO),) —— | FANSfOrm graph by collapsing
communities into nodes

* Steps are optional Rebuilding is nontrivial, but takes 1-10% of total time

o

B fic Distributed Grappolo: Vite

Northwest

NATIONAL LABORATORY

V2A U1A ViR P1A
64 T T T T —T 64 T T T T T 256 T T T T T 128 S
5 5 | baseline —— 5 | i | | ' | | 5 | F
W ; : : tscale EEEEE o : : : : o o B
§ 3 ; et1 § no ; ; ; § : § i . ‘
$ 321 g s & 32— o R bt & 128 B R . e
£ 5 3 etc1 £ 3 5 3 3 £ £ i 5 3 ;
= etc2 zzzza = = : o : : | | |
2 el |f S N A Py . Bl B el g al |} i 71 A R
c g f : i c i i i c : c K : 3 i i
£ b i i £ n 1k : § i £ : £ : : § i
é [— 5’ 7_ R é [— ;) P] é T — é 16 | B 2 § B S S] S S—
i : S8 7B i : i & g - Al
. IR : i ¥ ; G E f
4 - — 4 16 - 8 -
96 192 384 768 1536 96 192 384 768 1536 96 192 384 768 1536 96 192 384 768 1536
Processes Processes Processes Processes

Fig. 7. Scalability of protein k-mer graphs.

We implement heuristics on top of the baseline distributed version, yielding speedups
of up to 2.5-46x (compared to baseline), modularity affects sometimes by ~8-20%

Scale 21 Scale 22 Scale 23 Scale 24
32 T T T T — 64 T T T T T 128 T T T T T 256 T T
! ! i baseline ! | | ! !] | | ! | F | | !
w ‘ | . tscale E=Ex w . ‘ ‘ | | w . | ‘ . |)
T { i at1 i i i { { { { i
§ et2 § Pkt i i i i § §: i i
= etcl = ": = 64 B HEIR r= 128 |]
© 5 i i | etc2 ZZZA P ¥ i i i i Py i Py i
£ |el— B bl B sl dEeg—] E P | £ o
c o c " : c b ' c g ?
g : o § A1 B e . § ml il A |/— g el ;LA i/ n—
5 i i i 5 ot) ; [i 5 b 3 5 H
(%] - { { ! Q < 3 ! ! Q Q K ’
@ : i i @ : : | | @ : @ %
i [VIR & i b = E Lo g g ' 'E E & : [E E
b : : g A : 3 H 4 . i1
8 = S W= W 16 % |-E B fom i A 16 b I ¢ 32 ’ %
96 192 384 768 1536 96 192 384 768 1536 96 192 384 768 1536 96 192 384 768 1536

Processes Processes Processes Processes

Fig. 1. Parallel heuristics have little effect on RMAT generated Graph500 graphs.

However, heuristics have little impact for some inputs!
Our goal: To study the baseline version: Communication options, data structures, etc.

o

racitic Qb ti f Vit

P st servations from Vite

NATIONA! | ARNDATNADYV

. First phase Complete execution

Graphs #Vertices | #Edges Iterations | Modularity Time | Phases | Iterations | Modularity Time
friendster 65.6M 1.8B 143 0.619 | 565.201 3 440 0.624 || 567.173
it-2004 41.3M 1.15B 14 0.394 45.064 4 91 0.973 45.849
nlpkkt240 279M | 401.2M 3 0.143 3.57 5 832 0.939 21.084 !h
sk-2005 50.6M 1.9B 11 0.314 71.562 4 83 0.971 72.94
orkut 3M | 117.1IM 89 0.643 59.5 3 281 0.658 59.64
sinaweibo 58.6M | 261.3M 3 0.198 | 270.254 4 108 0.482 || 281.216
twitter-2010 21.2M 265M 3 0.028 | 209.385 4 184 0.478 || 386.483
uk2007 105.8M 3.3B 9 0431 35.174 6 139 0.972 37.988
web-cc12-paylvladmin 42.8M 1.2B 31 0.541 | 140.493 4 159 0.687 146.92
webbase-2001 118M 1B 14 0.458 14.702 7 239 0.983 24.455 *

For a number of real world graphs, the first phase of Louvain metho
does most of the work (little difference between first and final phase)

- B main 6.40e+11 100.0 1

HPCToolkit profiling shows over
60% of time is spent in managing«
and communicating vertex-
community information

2. About 40% is spent on global
communication (MPI_Allreduce)
for computing modularity

loop at main.cpp: 212 6.34e+1l 99.0%

- B 230: distLouvainMethod(int, int, DistGraph const&, std::vector<long, std::allocator<long> >&, double, double) 6.29e+11 98.2%
loop at distLouvainMethodNew.cpp: 47 6.24e+1l 97.5%
+ By 88: [I] _INTERNAL 24 distLouvainMethodNew_cpp_2cB85}7cd::distComputeModularity(Graph const&, std::vector

+ B 58! INTERNAL 24 distLouvainMethodNew_cpp_2c85374d::fillRemoteCommunities(DistGraph const&, int, int, sta

2.67e+11 41.6%

2.16e+1l 33.7%

1.38e+11 21.6%

-

+ B 68 __kmpc_fork_call
3.30e+09 0.5%

+ B> 125: INTERNAL 24 _distLouvainMethodNew_cpp_2c853] cd::updateRemoteCommunities (DistGraph consté&, std:

+ B 106: __kmpc_fork_call 5.62e+07 0.0%

+ B 46: _INTERNAL_24 _distLouvainMethodNew_cpp_2c8537cd::exchangeVertexRegs(DistGraph const&, int, int) 3.84e+09 0.6%
+ B 138: [I] std::unordered_map<long, long, std::hash<long>, std::equal_to<long>, std::allocator<std::pair<long cons 2.63e+08 0.0%
+ B 34 INTERNAL 24 distLouvainMethodNew_cpp_2c8537cd: distinitLouvain(DistGraph const&, std::vector<long, std 2.46e+08 0.0%
+ By 245 distbuildNextlLevelGraph(int, int, DistGraph*&, std::vector<long, std::allocator<long> >&) 5.06e+09 0.8%
+ B 145: loadDistGraphMPIO(int, int, DistGraph*&, std::string&)

+ B 365: MPI Finalize

6.11e+09 1.0%

2.64e+08 0.0%

El%ﬂ:ﬁf/:vest miniVite (/,Vi:te/)

NATIONAL LABORATORY

MPI Externals Distributed CSR

RGG (Ral_rsgom representation
* Implements a single phase of Louvain method generator] | numbers) | | ™ Algorithms
(without rebuilding the graph) Binary || core ||| [Single phase

« Capable of generating synthetic Random minivite
Geometric Graphs (RGG) in parallel (needs
random numbers)

»= Can also add random edges across processes

MPI

ECP Proxy Applications

» Can also use real world graphs as input (have M ...
to convert to a binary format first)

() Pa rtS Of COd e h as m u Itl p I e CO m m u n | Catl O n The online collection for exascale applications
options (can be selected at compile time) — 7o ey e e e s

Sendrecv, NB Isend/Irecv (default), MPlI RMA
and Collectives

¢ AbOUt 3K LOC Exascale Proxy Applications . ’;\\

EEEEEEEEEEEEEEEEEEEEEEEE

o

Pacific

|
? TOTAL VOLUME BYTES TOTAL VOLUME BYTES
Northwest clustering- T e
NATIONAL LABORATORY o RN 6.12€8 0 . —
\‘ | L -
E : ‘ L ‘

Computation: Performs some computation
(modularity), whereas other graph
workloads may have 0 FLOPS

Communication intensive: In every al
iteration, as a vertex migrates, {size, Louvain method on 256 PEs, Louvain method on 1K PEs,
degree} of communities Change and ghost Friendster (1.8B edges) Friendster (1.8B edges)
communities have to exchange information
accordingly

Nondeterministic: Execution time is
sensitive to structure and sizes of input
(#iterations, #clusters, relative sizes)

DVnamiC: Process neighborhood Changes 1/2-approx matching on 1K PEs, Graph500 BFS on 1K PEs,

N every phase, as graph gets rebuilt Friendster (1.8B edges) Scale 27 (2.14B edges)

Communication heat maps

o

Pacific

Nortwest Random Geometric Graph

» Constructed by randomly placing N nodes
within a unit square — only add an edge
between two vertices if their distance is
within a range d

* RGG is known to demonstrate good
community structure (meaningful)

» \WWe distribute equal number of vertices
across processes, each process may have
(cross) edges with its up and/or down
neighbors

» Option to add random number of (cross)
edges across processes that are farther
apart

6, mod=0.761

1, deg=

0.759

6, mod

4, deg

p=

6, mod=0.749

0.78#=2, deg=

8, deg=6, mod=

p=

7

Pacific

Nortwest Communication characteristics

NATIONAL LABORATORY
NUMBER OF CALLS

NUMBER OF CALLS

MIN MESSAGE BYTES MIN MESSAGE BYTES

%)

(a) MPI calls — (b) MPI calls — Graph500
I ."-‘-' I miniVite. BES.
- ™ - . MEAN MESSAGE BYTES MEAN M[SS:"\E[BYTES

(a) Basic RGG input, black (b) RGG input with 20%
spot means zero exchange. extra edges.

T

Process only communicates with 2 neighbors for
basic RGG, however, communication patterns
change when extra edges are added randomly

(modularity changes as weII) (c) Mean message sizes — (d) Mean message sizes —
miniVite. Graph500 BFS.
Clustering BFS

No dark spots, reasonable communication volume per process

o

Pacific

Northwest

NATIONAL LABORATORY

100
90
80
70
60
50
40
30
20
10

0

RGG (basic) with unit weights

140

120

100

1024 (1.59B) s

—=-2048 (3.24B) ,

AN 4096 (6.64B) ,_

//\\ 20

0

NBSR COLL SR

RGG (basic) with Euclidean weights

Impact of communication models

RGG (+20% edges) with unit weights

-— 4.//‘\\-
& > aum e
NBSR COLL SR RMA

RGG (+20%) with Euclidean weights

100
90

70

80

60

70

50

60

50

——1024 (1.59B) 40

—=—-2048 (3.24B) ,,

40
30

20

10 -

'Y 4096 (6.64B) .

/ \
. *24/‘\\.\ 10
NBSR COLL | SR | RMA | i

Subpar MP|_Sendrecv implementation?

——1024 (1.9B)
—=—2048 (3.89B)
4096 (7.97B)

Weak
scaling
runs

NBSR COLL SR RMA

Execution time increases with extra edges (up to 3x)

—1024 (1.9B)
—=—2048 (3.89B)
4096 (7.97B)

Pacific Impact on modularity

Northwest
NATIONAL LABORATORY
RGG(basic) with unit weights RGG(+20%) with unit weights
0.754 0.6262
0.753
0.626
0.752
0.6258
0.751 0.6256
0.75 m 1024 (1.59B) 0:6254 m 1024 (1.9B)
0.749 m 2048 (3.24B) 0.6252 w2048 (3.89B)
0.748 4096 (6.64B) 0.625 4096 (7.97B)
0.747
0.6248
0.746
0.6246
0.745 0.6244
NBSR COLL ' NBSR COLL RMA
RGG(basic) with Euclidean weights RGG(+20%) with Euclidean weights
0.7772 07
0.777 06
0.7768 0.001
0.7766 09
0.7764 m 1024 (1.59B) 0.4 m 1024 (1.9B)
0.7762 m2048 (3.24B) 03 w2048 (3.89B)
0.776 4096 (6.64B) 4096 (7.97B)
0.7758 02
0.7756 0.1
0.7754 0

NBSR COLL NBSR COLL
Minor varlatlon in modularity, owing to non-deterministic nature of Louvaln

o

Pacific

Northwest Strong scaling (Friendster, 1.8B edges)

AAAAAAAAAAAAAAAAAA

Number of iterations, execution time (in secs.) and Modularity
(Q) of Friendster (65.6M vertices, 1.8B edges) on 1024/2048 processes.

Versions 1024 processes 2048 processes

Itrs Time Q | Itrs Time Q
NBSR 111 | 745.80 | 0.6155 127]| 498.89 || 0.6177
COLL 109 | 75241 | 0.6159 || 141 | 554.98 || 0.6204
SR 111 | 783.94 | 0.6157 ||103] | 423.43 || 0.6191
RMA 109 | 782.47 | 0.6162 ||111] | 589.47 || 0.6190

+* *

Dissimilar number of iterations across versions affect execution
time and modularities

o

Pacific

Nortwest Concluding remarks

AAAAAAAAAAAAAAAAAA

* miniVite serves as a sandbox for assessing performance of
different communication primitives, quality of heuristics,
correctness, and understanding impact of different datasets

» Can generate different datasets due to in-memory graph
generator, extra options that may impact communication

» Code released as part of ECP Proxy Apps suite

https://proxyapps.exascaleproject.org/app/minivite

e E -

lF\’laci:fric . Tl A T Tas
orthwes g7 A ——
AAAAAAAAAAAAAAAAAA *® El ’
e 'e
A o ..::: _
: % ’:.... .'.._ \ . ' (. P
| 10'00.....’ A Y e > o .
- ‘o ""00"....‘§’ e r ' X L s .0
' :".'IA.OA.A’A. LAIOLY I AP

* DOE Exascale Computing Project

Thank you » Dave Richards and Abhinav Bhatele
(LLNL) — Thanks for the push!

N e O, ¢‘..'-.o...o. ” ..0.. .0...
u“'. "..:....:.:.§. .:-:o.o.°:';.oa‘ ~.'t.'

git clone https://github.com/Exa-Graph/miniVite.git

mailto:hala@pnnl.gov

