
miniVite: A Graph Analytics Benchmarking Tool
for Massively Parallel Systems

Sayan Ghosh*, Mahantesh Halappanavar !, Antonino Tumeo!, Ananth
Kalyanaraman*, Assefaw Gebremedhin*

*Washington State University, Pullman, WA
!Pacific Northwest National Laboratory, Richland, WA

2018 IEEE/ACM Performance Modeling, Benchmarking and Simulation of High Performance
Computer Systems (PMBS)
12 Nov, 2018. Dallas, Texas.

2

Graph Clustering (community detection)

• Problem: Given G(V,E,w), identify tightly knit groups of
vertices that strongly correlate to one another within their
group, and sparsely so, outside.

Input :
Ø V = {1,2,… n }
Ø E: a set of M edges
Ø w(e): weight of edge e

(non-negative)
Ø m = S"eÎE w(e)

Output :
Ø A partitioning of V into

k mutually disjoint clusters
P = {C1, C2,… Ck}
such that: … ?

3

Modularity (Newman 2004)

• A statistical measure for assessing the quality of a given community-wise
partitioning P of the vertices V:

Fraction of
intra-cluster edges

Equivalent fraction in
a random graph

intra-cluster
edges

inter-cluster
edges

Notation Definition
C(i) Cluster containing vertex i
ei->C(i) Number of edges from i to vertices in C(i)
aC Sum of the degree of all vertices in cluster C

4

Louvain method (Blondel et al. 2008)

Multi-phase multi-iterative heuristic
Within each iteration:
• For every vertex i Î V:

1. Let C(i) : current community of i
2. Compute modularity gain (DQ) for

moving i into each of i’s neighboring
communities

3. Let Cmax : neighboring community with
largest DQ

4. If (DQ>0) { Set C(i) = Cmax }

Input: G(V,E)
Goal: Compute a partitioning of V that maximizes modularity (Q)
Init: Every vertex starts in its own community (i.e., C(i)={i})

Next
phase

Upon no further
modularity gain

5 4

3

2

1

5

Our Parallel Algorithm: Grappolo

G(V,E,w)

Vertex
Following*

Coloring*

* Steps are optional

PARALLEL FOR each vertex i Î Vc:
1. Let C(i) : current community of i
2. Compute modularity gain (DQ) for

moving i into each of i’s neighboring
communities

3. Let Cmax : neighboring community with
largest DQ (ML)

4. If (DQ>0) { Set C(i) = Cmax }

For every color set

Check for convergenceno

yes
Transform graph by collapsing

communities into nodes
G’(V’,E’,w’)

Rebuilding is nontrivial, but takes 1-10% of total time

6

Distributed Grappolo: Vite

We implement heuristics on top of the baseline distributed version, yielding speedups
of up to 2.5-46x (compared to baseline), modularity affects sometimes by ~8-20%

However, heuristics have little impact for some inputs!
Our goal: To study the baseline version: Communication options, data structures, etc.

7

Observations from Vite

For a number of real world graphs, the first phase of Louvain method
does most of the work (little difference between first and final phase)

1. HPCToolkit profiling shows over
60% of time is spent in managing
and communicating vertex-
community information

2. About 40% is spent on global
communication (MPI_Allreduce)
for computing modularity

8

miniVite (/’vi:te/)
• Implements a single phase of Louvain method

(without rebuilding the graph)
• Capable of generating synthetic Random

Geometric Graphs (RGG) in parallel (needs
random numbers)
§ Can also add random edges across processes

• Can also use real world graphs as input (have
to convert to a binary format first)

• Parts of code has multiple communication
options (can be selected at compile time) –
Sendrecv, NB Isend/Irecv (default), MPI RMA
and Collectives

• About 3K LoC

9

Why clustering?
• Computation: Performs some computation

(modularity), whereas other graph
workloads may have 0 FLOPS

• Communication intensive: In every
iteration, as a vertex migrates, {size,
degree} of communities change and ghost
communities have to exchange information
accordingly

• Nondeterministic: Execution time is
sensitive to structure and sizes of input
(#iterations, #clusters, relative sizes)

• Dynamic: Process neighborhood changes
in every phase, as graph gets rebuilt

Louvain method on 256 PEs,
Friendster (1.8B edges)

Louvain method on 1K PEs,
Friendster (1.8B edges)

1/2-approx matching on 1K PEs,
Friendster (1.8B edges)

Graph500 BFS on 1K PEs,
Scale 27 (2.14B edges)

Communication heat maps

10

Random Geometric Graph
• Constructed by randomly placing N nodes

within a unit square – only add an edge
between two vertices if their distance is
within a range d
§ RGG is known to demonstrate good

community structure (meaningful)
• We distribute equal number of vertices

across processes, each process may have
(cross) edges with its up and/or down
neighbors

• Option to add random number of (cross)
edges across processes that are farther
apart

p=
1,

 d
eg

=6
, m

od
=0

.7
61

p=
8,

 d
eg

=6
, m

od
=0

.7
84p

=2
, d

eg
=6

, m
od

=0
.7

49

p=
4,

 d
eg

=6
, m

od
=0

.7
54

p = 8

p = 1 p = 2

p = 4

1/p > d

11

Communication characteristics

No dark spots, reasonable communication volume per process

Process only communicates with 2 neighbors for
basic RGG, however, communication patterns
change when extra edges are added randomly

(modularity changes as well)

BFSClustering

12

Impact of communication models

0
10
20
30
40
50
60
70
80
90

100

NBSR COLL SR RMA

RGG (basic) with unit weights

1024 (1.59B)
2048 (3.24B)
4096 (6.64B)

0

20

40

60

80

100

120

140

NBSR COLL SR RMA

RGG (+20% edges) with unit weights

1024 (1.9B)

2048 (3.89B)

4096 (7.97B)

0

10

20

30

40

50

60

70

80

90

100

NBSR COLL SR RMA

RGG (basic) with Euclidean weights

1024 (1.59B)
2048 (3.24B)
4096 (6.64B)

0

10

20

30

40

50

60

70

NBSR COLL SR RMA

RGG (+20%) with Euclidean weights

1024 (1.9B)
2048 (3.89B)
4096 (7.97B)

Execution time increases with extra edges (up to 3x)Subpar MPI_Sendrecv implementation?

Weak
scaling

runs

13

Impact on modularity

0.745
0.746
0.747
0.748
0.749

0.75
0.751
0.752
0.753
0.754

NBSR COLL SR RMA

RGG(basic) with unit weights

1024 (1.59B)

2048 (3.24B)

4096 (6.64B)

0.6244
0.6246
0.6248

0.625
0.6252
0.6254
0.6256
0.6258

0.626
0.6262

NBSR COLL SR RMA

RGG(+20%) with unit weights

1024 (1.9B)

2048 (3.89B)

4096 (7.97B)

0.7754

0.7756

0.7758

0.776

0.7762

0.7764

0.7766

0.7768

0.777

0.7772

NBSR COLL SR RMA

RGG(basic) with Euclidean weights

1024 (1.59B)

2048 (3.24B)

4096 (6.64B)

0.001

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

NBSR COLL SR RMA

RGG(+20%) with Euclidean weights

1024 (1.9B)

2048 (3.89B)

4096 (7.97B)

Minor variation in modularity, owing to non-deterministic nature of Louvain

14

Strong scaling (Friendster, 1.8B edges)

Number of iterations, execution time (in secs.) and Modularity
(Q) of Friendster (65.6M vertices, 1.8B edges) on 1024/2048 processes.

Dissimilar number of iterations across versions affect execution
time and modularities

15

Concluding remarks

• miniVite serves as a sandbox for assessing performance of
different communication primitives, quality of heuristics,
correctness, and understanding impact of different datasets

• Can generate different datasets due to in-memory graph
generator, extra options that may impact communication

• Code released as part of ECP Proxy Apps suite

https://proxyapps.exascaleproject.org/app/minivite

Thank you

16

hala@pnnl.gov

• DOE Exascale Computing Project
• Dave Richards and Abhinav Bhatele

(LLNL) – Thanks for the push!

git clone https://github.com/Exa-Graph/miniVite.git

mailto:hala@pnnl.gov

