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Northwest  Graph Clustering (community detection)
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* Problem: Given G(V,E,w), identify tightly knit groups of
vertices that strongly correlate to one another within their
group, and sparsely so, outside.

Input :

> V={12,..n}

» E: a set of M edges

> w(e). weight of edge e
(non-negative)

> m = ZVGEE C()(e)

Output :

» A partitioning of V into
k mutually disjoint clusters
P={C, C,... C}
such that: ... ?
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Nortwest  Mlodularity (Newman 2004)
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A statistical measure for assessing the quality of a given community-wise
partitioning P of the vertices V-

inter-cluster Notation Definiion

edges C(i) Cluster containing vertex i

€i>c(i) Number of edges from / to vertices in C(/)

\ ac Sum of the degree of all vertices in cluster C
N 1 ac ac
° @ = 2m 4 CimC(3) Z (Qm Qm)
VieV vCeP

Intra-cluster \ ) \ )

edges ! Y
Fraction of Equivalent fraction in

intra-cluster edges a random graph
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Northwest  LOUvaln method (Blondel et al. 2008)
Input: G(V,E)
Goal: Compute a partitioning of V that maximizes modularity (Q)
Init: Every vertex starts in its own community (i.e., C(i)={1})
Multi-phase multi-iterative heuristic
Within each iteration:
* For every vertex i € V.
1. Let C(i) : current community of i
Upon no further 2. Compute modularity gain (4Q) for
modularity aain @ moving / into each of i's neighboring
Y9 communities
4 3. Let C,,.,: neighboring community with
Next 2 largest AQ
phase 4. If (AQ>0) {Set C(i) = C,,.x }
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Northwest
PARALLEL FOR each vertex i € V.
G(V’iﬁ)) 1. Let C(i) : current community of /
Vertex 2. Compute modularity gain (4Q) for

moving i into each of i's neighboring

. | communities
Coloring*m)pr set 3. Let C,,, : neighboring community with

argest AQ (ML)
4. If (4Q>0) {Set C(i) =C,,.,}

Following*

G,(V,aE,aO),) —— | FANSfOrm graph by collapsing
communities into nodes

* Steps are optional Rebuilding is nontrivial, but takes 1-10% of total time
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Fig. 7. Scalability of protein k-mer graphs.

We implement heuristics on top of the baseline distributed version, yielding speedups
of up to 2.5-46x (compared to baseline), modularity affects sometimes by ~8-20%
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Fig. 1. Parallel heuristics have little effect on RMAT generated Graph500 graphs.

However, heuristics have little impact for some inputs!
Our goal: To study the baseline version: Communication options, data structures, etc.
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P st servations from Vite

NATIONA! | ARNDATNADYV

. First phase Complete execution

Graphs #Vertices | #Edges Iterations | Modularity Time | Phases | Iterations | Modularity Time
friendster 65.6M 1.8B 143 0.619 | 565.201 3 440 0.624 || 567.173
it-2004 41.3M 1.15B 14 0.394 45.064 4 91 0.973 45.849
nlpkkt240 279M | 401.2M 3 0.143 3.57 5 832 0.939 21.084 !h
sk-2005 50.6M 1.9B 11 0.314 71.562 4 83 0.971 72.94
orkut 3M | 117.1IM 89 0.643 59.5 3 281 0.658 59.64
sinaweibo 58.6M | 261.3M 3 0.198 | 270.254 4 108 0.482 || 281.216
twitter-2010 21.2M 265M 3 0.028 | 209.385 4 184 0.478 || 386.483
uk2007 105.8M 3.3B 9 0431 35.174 6 139 0.972 37.988
web-cc12-paylvladmin 42.8M 1.2B 31 0.541 | 140.493 4 159 0.687 146.92
webbase-2001 118M 1B 14 0.458 14.702 7 239 0.983 24.455 *

For a number of real world graphs, the first phase of Louvain metho
does most of the work (little difference between first and final phase)

- B main 6.40e+11 100.0 1

HPCToolkit profiling shows over
60% of time is spent in managing«
and communicating vertex-
community information

2. About 40% is spent on global
communication (MPI_Allreduce)
for computing modularity

loop at main.cpp: 212 6.34e+1l 99.0%

- B 230: distLouvainMethod(int, int, DistGraph const&, std::vector<long, std::allocator<long> >&, double, double) 6.29e+11 98.2%
loop at distLouvainMethodNew.cpp: 47 6.24e+1l 97.5%
+ By 88: [I] _INTERNAL 24 distLouvainMethodNew_cpp_2cB85}7cd::distComputeModularity(Graph const&, std::vector

+ B 58! INTERNAL 24 distLouvainMethodNew_cpp_2c85374d::fillRemoteCommunities(DistGraph const&, int, int, sta

2.67e+11 41.6%

2.16e+1l 33.7%

1.38e+11 21.6%

-

+ B 68 __kmpc_fork_call
3.30e+09 0.5%

+ B> 125: INTERNAL 24 _distLouvainMethodNew_cpp_2c853 ] cd::updateRemoteCommunities (DistGraph consté&, std:

+ B 106: __kmpc_fork_call 5.62e+07  0.0%

+ B 46: _INTERNAL_24 _distLouvainMethodNew_cpp_2c8537cd::exchangeVertexRegs(DistGraph const&, int, int) 3.84e+09 0.6%
+ B 138: [I] std::unordered_map<long, long, std::hash<long>, std::equal_to<long>, std::allocator<std::pair<long cons 2.63e+08 0.0%
+ B 34 INTERNAL 24 distLouvainMethodNew_cpp_2c8537cd: distinitLouvain(DistGraph const&, std::vector<long, std 2.46e+08 0.0%
+ By 245 distbuildNextlLevelGraph(int, int, DistGraph*&, std::vector<long, std::allocator<long> >&) 5.06e+09 0.8%
+ B 145: loadDistGraphMPIO(int, int, DistGraph*&, std::string&)

+ B 365: MPI Finalize

6.11e+09 1.0%

2.64e+08 0.0%
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MPI Externals Distributed CSR

RGG (Ral_rsgom representation
* Implements a single phase of Louvain method generator] | numbers) | | ™ Algorithms
(without rebuilding the graph) Binary || core ||| [Single phase

« Capable of generating synthetic Random minivite
Geometric Graphs (RGG) in parallel (needs
random numbers)

»= Can also add random edges across processes

MPI

ECP Proxy Applications

» Can also use real world graphs as input (have M ...
to convert to a binary format first)

() Pa rtS Of COd e h as m u Itl p I e CO m m u n | Catl O n The online collection for exascale applications
options (can be selected at compile time) — 7o ey e e e s

Sendrecv, NB Isend/Irecv (default), MPlI RMA
and Collectives

¢ AbOUt 3K LOC Exascale Proxy Applications . ’;\\

EEEEEEEEEEEEEEEEEEEEEEEE
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? TOTAL VOLUME BYTES TOTAL VOLUME BYTES
Northwest clustering- T e
NATIONAL LABORATORY o RN 6.12€8 0 . —
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Computation: Performs some computation
(modularity), whereas other graph
workloads may have 0 FLOPS

Communication intensive: In every al
iteration, as a vertex migrates, {size, Louvain method on 256 PEs, Louvain method on 1K PEs,
degree} of communities Change and ghost Friendster (1.8B edges) Friendster (1.8B edges)
communities have to exchange information
accordingly

Nondeterministic: Execution time is
sensitive to structure and sizes of input
(#iterations, #clusters, relative sizes)

DVnamiC: Process neighborhood Changes 1/2-approx matching on 1K PEs, Graph500 BFS on 1K PEs,

N every phase, as graph gets rebuilt Friendster (1.8B edges) Scale 27 (2.14B edges)

Communication heat maps
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Nortwest Random Geometric Graph

» Constructed by randomly placing N nodes
within a unit square — only add an edge
between two vertices if their distance is
within a range d

* RGG is known to demonstrate good
community structure (meaningful)

» \WWe distribute equal number of vertices
across processes, each process may have
(cross) edges with its up and/or down
neighbors

» Option to add random number of (cross)
edges across processes that are farther
apart

6, mod=0.761

1, deg=

0.759

6, mod

4, deg

p=

6, mod=0.749

0.78#=2, deg=

8, deg=6, mod=

p=
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Nortwest  Communication characteristics
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NUMBER OF CALLS

NUMBER OF CALLS

MIN MESSAGE BYTES MIN MESSAGE BYTES

%)

(a) MPI calls — (b) MPI calls — Graph500
I ."-‘-' I miniVite. BES.
- ™ - . MEAN MESSAGE BYTES MEAN M[SS:"\E[ BYTES

(a) Basic RGG input, black (b) RGG input with 20%
spot means zero exchange.  extra edges.

T

Process only communicates with 2 neighbors for
basic RGG, however, communication patterns
change when extra edges are added randomly

(modularity changes as weII) (c) Mean message sizes — (d) Mean message sizes —
miniVite. Graph500 BFS.
Clustering BFS

No dark spots, reasonable communication volume per process
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Northwest
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RGG (basic) with unit weights

140
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100

1024 (1.59B) s

—=-2048 (3.24B) ,

AN 4096 (6.64B) ,_

//\\ 20

0

NBSR COLL SR

RGG (basic) with Euclidean weights

Impact of communication models

RGG (+20% edges) with unit weights

-— 4.//‘\\-
& > aum e
NBSR COLL SR RMA

RGG (+20%) with Euclidean weights
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/ \
. *24/‘\\.\ 10
NBSR COLL | SR | RMA | i

Subpar MP|_Sendrecv implementation?

——1024 (1.9B)
—=—2048 (3.89B)
4096 (7.97B)

Weak
scaling
runs

NBSR COLL SR RMA

Execution time increases with extra edges (up to 3x)

—1024 (1.9B)
—=—2048 (3.89B)
4096 (7.97B)
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Northwest
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RGG(basic) with unit weights RGG(+20%) with unit weights
0.754 0.6262
0.753
0.626
0.752
0.6258
0.751 0.6256
0.75 m 1024 (1.59B) 0:6254 m 1024 (1.9B)
0.749 m 2048 (3.24B) 0.6252 w2048 (3.89B)
0.748 4096 (6.64B) 0.625 4096 (7.97B)
0.747
0.6248
0.746
0.6246
0.745 0.6244
NBSR COLL ' NBSR COLL RMA
RGG(basic) with Euclidean weights RGG(+20%) with Euclidean weights
0.7772 07
0.777 06
0.7768 0.001
0.7766 09
0.7764 m 1024 (1.59B) 0.4 m 1024 (1.9B)
0.7762 m2048 (3.24B) 03 w2048 (3.89B)
0.776 4096 (6.64B) 4096 (7.97B)
0.7758 02
0.7756 0.1
0.7754 0

NBSR COLL NBSR COLL
Minor varlatlon in modularity, owing to non-deterministic nature of Louvaln
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Northwest  Strong scaling (Friendster, 1.8B edges)
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Number of iterations, execution time (in secs.) and Modularity
(Q) of Friendster (65.6M vertices, 1.8B edges) on 1024/2048 processes.

Versions 1024 processes 2048 processes

Itrs Time Q | Itrs Time Q
NBSR 111 | 745.80 | 0.6155 127 ]| 498.89 || 0.6177
COLL 109 | 75241 | 0.6159 || 141 | 554.98 || 0.6204
SR 111 | 783.94 | 0.6157 ||103] | 423.43 || 0.6191
RMA 109 | 782.47 | 0.6162 ||111] | 589.47 || 0.6190

+* *

Dissimilar number of iterations across versions affect execution
time and modularities
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Nortwest  Concluding remarks
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* miniVite serves as a sandbox for assessing performance of
different communication primitives, quality of heuristics,
correctness, and understanding impact of different datasets

» Can generate different datasets due to in-memory graph
generator, extra options that may impact communication

» Code released as part of ECP Proxy Apps suite

https://proxyapps.exascaleproject.org/app/minivite
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* DOE Exascale Computing Project

Thank you » Dave Richards and Abhinav Bhatele
(LLNL) — Thanks for the push!
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git clone https://github.com/Exa-Graph/miniVite.git
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