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Graph Clustering (community detection)

• Problem: Given G(V,E,w), identify tightly knit groups of 
vertices that strongly correlate to one another within their 
group, and sparsely so, outside. 

Input :
Ø V = {1,2,… n }   
Ø E: a set of M edges 
Ø w(e): weight of edge e

(non-negative)
Ø m = S"eÎE w(e)

Output :
Ø A partitioning of V into 

k mutually disjoint clusters 
P = {C1, C2,… Ck}   
such that: … ?
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Modularity (Newman 2004)

• A statistical measure for assessing the quality of a given community-wise 
partitioning P of the vertices V: 

Fraction of 
intra-cluster edges

Equivalent fraction in 
a random graph

intra-cluster
edges

inter-cluster
edges

Notation Definition
C(i) Cluster containing vertex i
ei->C(i) Number of edges from i to vertices in C(i)
aC Sum of the degree of all vertices in cluster C
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Louvain method (Blondel et al. 2008)

Multi-phase multi-iterative heuristic
Within each iteration: 
• For every vertex i Î V: 

1. Let C(i) : current community of i
2. Compute modularity gain (DQ) for 

moving i into each of i’s neighboring 
communities

3. Let Cmax : neighboring community with 
largest DQ

4. If (DQ>0)  { Set C(i) = Cmax }

Input: G(V,E)
Goal: Compute a partitioning of V that maximizes modularity (Q)
Init: Every vertex starts in its own community (i.e., C(i)={i})

Next
phase

Upon no further
modularity gain
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Our Parallel Algorithm: Grappolo

G(V,E,w)

Vertex
Following*

Coloring*

* Steps are optional

PARALLEL FOR each vertex i Î Vc: 
1. Let C(i) : current community of i
2. Compute modularity gain (DQ) for 

moving i into each of i’s neighboring 
communities

3. Let Cmax : neighboring community with 
largest DQ (ML)

4. If (DQ>0)  { Set C(i) = Cmax }

For every color set

Check for convergenceno

yes
Transform graph by collapsing

communities into nodes
G’(V’,E’,w’)

Rebuilding is nontrivial, but takes 1-10% of total time
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Distributed Grappolo: Vite

We implement heuristics on top of the baseline distributed version, yielding speedups
of up to 2.5-46x (compared to baseline), modularity affects sometimes by ~8-20%

However, heuristics have little impact for some inputs! 
Our goal: To study the baseline version: Communication options, data structures, etc.
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Observations from Vite

For a number of real world graphs, the first phase of Louvain method
does most of the work (little difference between first and final phase)

1. HPCToolkit profiling shows over 
60% of time is spent in managing 
and communicating vertex-
community information

2. About 40% is spent on global  
communication (MPI_Allreduce) 
for computing modularity
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miniVite (/’vi:te/)
• Implements a single phase of Louvain method 

(without rebuilding the graph)
• Capable of generating synthetic Random 

Geometric Graphs (RGG) in parallel (needs 
random numbers)
§ Can also add random edges across processes

• Can also use real world graphs as input (have 
to convert to a binary format first)

• Parts of code has multiple communication 
options (can be selected at compile time) –
Sendrecv, NB Isend/Irecv (default), MPI RMA 
and Collectives

• About 3K LoC 
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Why clustering?
• Computation: Performs some computation 

(modularity), whereas other graph 
workloads may have 0 FLOPS

• Communication intensive: In every 
iteration, as a vertex migrates, {size, 
degree} of communities change and ghost 
communities have to exchange information 
accordingly

• Nondeterministic: Execution time is 
sensitive to structure and sizes of input 
(#iterations, #clusters, relative sizes)

• Dynamic: Process neighborhood changes 
in every phase, as graph gets rebuilt

Louvain method on 256 PEs,
Friendster (1.8B edges)

Louvain method on 1K PEs,
Friendster (1.8B edges)

1/2-approx matching on 1K PEs,
Friendster (1.8B edges)

Graph500 BFS on 1K PEs,
Scale 27 (2.14B edges)

Communication heat maps
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Random Geometric Graph
• Constructed by randomly placing N nodes 

within a unit square – only add an edge 
between two vertices if their distance is 
within a range d
§ RGG is known to demonstrate good

community structure (meaningful)
• We distribute equal number of vertices 

across processes, each process may have 
(cross) edges with its up and/or down 
neighbors

• Option to add random number of (cross) 
edges across processes that are farther 
apart
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Communication characteristics

No dark spots, reasonable communication volume per process

Process only communicates with 2 neighbors for 
basic RGG, however, communication patterns 
change when extra edges are added randomly 

(modularity changes as well) 

BFSClustering
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Impact of communication models
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Execution time increases with extra edges (up to 3x)Subpar MPI_Sendrecv implementation?

Weak 
scaling 

runs
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Impact on modularity
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Minor variation in modularity, owing to non-deterministic nature of Louvain
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Strong scaling (Friendster, 1.8B edges)

Number of iterations, execution time (in secs.) and Modularity
(Q) of Friendster (65.6M vertices, 1.8B edges) on 1024/2048 processes.

Dissimilar number of iterations across versions affect execution 
time and modularities
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Concluding remarks

• miniVite serves as a sandbox for assessing performance of 
different communication primitives, quality of heuristics, 
correctness, and understanding impact of different datasets

• Can generate different datasets due to in-memory graph 
generator, extra options that may impact communication

• Code released as part of ECP Proxy Apps suite

https://proxyapps.exascaleproject.org/app/minivite



Thank you
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hala@pnnl.gov

• DOE Exascale Computing Project
• Dave Richards and Abhinav Bhatele

(LLNL) – Thanks for the push!

git clone https://github.com/Exa-Graph/miniVite.git

mailto:hala@pnnl.gov

