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Background

• When parallelized, many numerical methods require dot or 
norm calculations, result in global reduction on scalar values

• In multidimensional parallelization, lead to global broadcast 
and reduction on large vectors of size ⁄" # (could be 
megabytes or gigabytes) 

• MPI_Reduce succinctly express such requisite functionality 
and are widely used in many applications 
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• int MPI_Reduce(
– const void *sendbuf, 
– void *recvbuf, 
– int count, 
– MPI_Datatype datatype,
– MPI_Op op, 
– int root, 
– MPI_Comm comm)



Motivation

• MPI_Reduce on large vectors often become 
the performance scaling bottleneck

• Most optimizations focus on latency and 
bandwidth
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• Problem:
– Low single core 

performance
– Idle threads
– No performance 

improvement
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Approach

• Two new perspectives to improve reduce 

performance:

– Using OpenMP threads to accelerate local reduction

– Using data compression to reduce communication volume

• Accomplishments:

– Could perform up to 4X better than the Cray implementation 

on large vector size

– Improve application BIGSTICK performance up to 2.6X
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Outline

• Background and Motivation
• Algorithms for MPI_Reduce and their 

performance characteristics
– Binomial, Reduce-Scatter, Ring

• Performance analysis for MPI_Reduce
• Performance analysis for application 

BIGSTICK
• Summary and future work
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Algorithms

• MPI_Reduce:
– Binomial for short messages
– Reduce-Scatter for long messages
– Ring

• Simple Cost Model (! +#$ +#%)
– N: vector size
– ⍺: latency
– β: transfer time per byte
– %: compute time per byte (aggregate)
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Binomial

• Cost: 
– "#$(&)×() + +, ++-)

• Case: P = 4
– The numbers in the 

block represent the 
process ranks whose 
data has already been 
reduced. 

– The shaded blocks 
represents the 
communication data. 7
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a) Initial status and communication in 1st step b) After 1st step status

c) 2rd step communication d) After 2rd step status

Algorithm: Reduce-Scatter

• Cost Model: !"#$% & + !&()
& *+ + &()

& *,
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Algorithm: Ring

• Cost Model: ("#$ % + %)( + )*+,
* -. + *+,

* -/
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b) 1st step status and next step communication
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c) 2rd step status and next step communication d) Final status
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Performance Characteristics

• Ring: !"# $ + $ & + '()*
( +, + ()*

( +-
• RedScat: './0 ( & + '()*

( +, + ()*
( +-

• Binomial: ./0(()& + ./3(()+, + ./3(()+-
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OpenMP Implementation

• Each thread has its own independent buffers
– Float *rbuffer[NTHREADS]

• Using OpenMP parallel Region to implement 
workload partition:
– #pragma omp parallel 
– {

• tid = omp_get_thread_num()
• nthreads =  omp_get_num_threads()
• partition the work manually 
• perform the assigned work

– }
11



Outline

• Background and Motivation
• Algorithms for MPI_Reduce and their 

performance characteristics
– Binomial, Reduce-Scatter, Ring

• Performance analysis for MPI_Reduce
• Performance analysis for application 

BIGSTICK
• Summary and future work
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Platform

• Cori-KNL, located at NERSC
• Programming Environment:
– PrgEnv-intel/6.0.4
– MPI Version: cray-mpich/7.7.0
– Compiler: Intel/18.0.1.163

• Baseline: DMAPP enabled Cray 
implementation
– MPICH_NEMESIS_ASYNC_PROGRESS=MC 
– MPICH_MAX_THREAD_SAFETY=multiple 
– MPICH_USE_DMAPP_COLL=1 

• Using OMP_NUM_THREADS to set the 
number of OpenMP threads
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Performance: Micro
Large Messages

• N=200M floats, one MPI process/node
• Redscat performs best, significant better performance than Cray
• Threading is important
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Time Breakdown: Micro
Large Messages

• Cray: local time dominate, threading does not help
• Other three: threading reduce the local time 

significantly; the “other” time has been eliminated
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Performance: Micro
Small Messages

• Msg sizes < 2K floats, Cray performs best
• Msg sizes > 512K floats, Redscat performs best
• Msg sizes between 2K – 512K, binomial performs best 16



Data Sparsity 

• Algorithm IDX: using an extra index array
• Algorithm BITS: using one bit to indicate 

whether the element is zero or not
17
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Performance:
Data Sparsity 

• Implemented on top of threading and the 
packing/unpacking is vectorized efficiently

• The break-even point is around 35% for 
BITS and 65% for IDX
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BIGSTICK

Initial basis vector (vecin) 

HBlock(3,3) 

Fi
na

l b
as

is
 v

ec
to

r (
ve

co
ut

) Blocks also 
represent a 
team of MPI 
processes 
matched to  
block  
workload 

• Dominated by sparse 
matrix vector 
multiplication

• Vector size is big, 
around 10.6 billion 
elements for 130Cs

• Communication: 
MPI_Reduce in row 
direction; MPI_Bcast
in col direction
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Performance: BIGSTICK
Threading

• BIGSTICK scaling performance is highly related with MPI_Reduce
• Using threading could improve the performance up to 2.5X 
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Performance: BIGSTICK
Data Compression

• Data compression does not help performance 
though the average data sparsity is over 90%

• The density imbalance destroys the 
performance advantage of data compression
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Conclusion

• Making effective use of the idling threads on the 

manycore architectures could significantly improve 

large MPI_Reduce performance 

• Our threading algorithms performs up to 4x better 

than the Cray implementation and improve the 

BIGSTICK performance up to 2.6x.

• Compressing the sparse data could also help the 

performance, but may suffer from density 

imbalance. 
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Future Work

• Extend out algorithms to more applications and other 
HPC platforms

• Using threads to increase network injection bandwidth
• Develop smart algorithms to address the density 

imbalance problem
• Develop hierarchical algorithms to combine advantages 

of different ones 
• Develop auto-tuning framework for MPI persistent 

reduce functions
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