
Hongzhang Shan, Samuel Williams
Performance and Algorithms Research Group

Computational Research Division
Lawrence Berkeley National Laboratory

Improving MPI Reduction Performance
for Manycore Architectures with OpenMP

and Data Compression

Calvin W. Johnson
Department of Physics

San Diego State University 1

Background

• When parallelized, many numerical methods require dot or
norm calculations, result in global reduction on scalar values

• In multidimensional parallelization, lead to global broadcast
and reduction on large vectors of size ⁄" # (could be
megabytes or gigabytes)

• MPI_Reduce succinctly express such requisite functionality
and are widely used in many applications

2

0
1

2

3

4

5

6

7

8

9

+1

0

• int MPI_Reduce(
– const void *sendbuf,
– void *recvbuf,
– int count,
– MPI_Datatype datatype,
– MPI_Op op,
– int root,
– MPI_Comm comm)

Motivation

• MPI_Reduce on large vectors often become
the performance scaling bottleneck

• Most optimizations focus on latency and
bandwidth

0.01

0.10

1.00

10.00

100.00

1000.00

1 4 16 64 256

Av
er

ag
e R

un
ni

ng
 Ti

m
es

 (m
s)

OpenMP Concurrency

OpenMP Effect on MPI_Reduce

1K 1M 200M

• Problem:
– Low single core

performance
– Idle threads
– No performance

improvement

3

Approach

• Two new perspectives to improve reduce

performance:

– Using OpenMP threads to accelerate local reduction

– Using data compression to reduce communication volume

• Accomplishments:

– Could perform up to 4X better than the Cray implementation

on large vector size

– Improve application BIGSTICK performance up to 2.6X

4

Outline

• Background and Motivation
• Algorithms for MPI_Reduce and their

performance characteristics
– Binomial, Reduce-Scatter, Ring

• Performance analysis for MPI_Reduce
• Performance analysis for application

BIGSTICK
• Summary and future work

5

Algorithms

• MPI_Reduce:
– Binomial for short messages
– Reduce-Scatter for long messages
– Ring

• Simple Cost Model (! +#$ +#%)
– N: vector size
– ⍺: latency
– β: transfer time per byte
– %: compute time per byte (aggregate)

6

Binomial

• Cost:
– "#$(&)×() + +, ++-)

• Case: P = 4
– The numbers in the

block represent the
process ranks whose
data has already been
reduced.

– The shaded blocks
represents the
communication data. 7

N

01

0

0123

1 3

23

2

0

1

2

30 2

0

0
0

0
0

1
1

1
1

3
3

3
3

2
2

2
2

0 1 2 3

0123

0
0
01

0
1

01
0123

1

1
3

0123
23
3

3
23

2
2

0123

2

23
23

2
2

3
3

23
23

01

0
0
01

0 2 3
1

01
01
1

1

0 1 2 3
23
23

2
2

01

0
0
01

3
3

23
23

1

01
01
1

1

a) Initial status and communication in 1st step b) After 1st step status

c) 2rd step communication d) After 2rd step status

Algorithm: Reduce-Scatter

• Cost Model: !"#$% & + !&()
& *+ + &()

& *,

8

N
N/
2

N/
2

N/
4

Algorithm: Ring

• Cost Model: ("#$ % + %)(+)*+,
* -. + *+,

* -/

0
0

0
0

1
1

1
1

3
3

3
3

2
2

2
2

0 1 2 3

a) Initial status and communication in 1st step

2
2

23
2

03
3

3
3

0

0
0
01

0 2 3
1

1
12
1

1

b) 1st step status and next step communication

023
2

23
2

03
013

3
3

0

0
012
01

0 2 3
1

123
12
1

1
023
0123

23
2

03
013

3
0123

0

0123
012
01

0 2 3
0123

123
12
1

1

c) 2rd step status and next step communication d) Final status

9

N/
P

N/
P

N/
P

Performance Characteristics

• Ring: !"# $ + $ & + '()*
(+, + ()*

(+-
• RedScat: './0 (& + '()*

(+, + ()*
(+-

• Binomial: ./0(()& + ./3(()+, + ./3(()+-

10

0

1

2

3

4

5

6

7

8

2 4 8 16 32 64 128

B
an

dw
it

h
Ti

m
e

#Processes (P)

Bandwidth Effect

Binomial Redscat Ring

log(P)*N*β

N*β

1

10

100

1000

2 4 8 16 32 64 128

La
te

nc
y

Ti
m

e

#Processes (P)

Latency Effect

Ring Redscat Binomial

P*⍺

2log(P)*⍺

log(P)*⍺

OpenMP Implementation

• Each thread has its own independent buffers
– Float *rbuffer[NTHREADS]

• Using OpenMP parallel Region to implement
workload partition:
– #pragma omp parallel
– {

• tid = omp_get_thread_num()
• nthreads = omp_get_num_threads()
• partition the work manually
• perform the assigned work

– }
11

Outline

• Background and Motivation
• Algorithms for MPI_Reduce and their

performance characteristics
– Binomial, Reduce-Scatter, Ring

• Performance analysis for MPI_Reduce
• Performance analysis for application

BIGSTICK
• Summary and future work

12

Platform

• Cori-KNL, located at NERSC
• Programming Environment:
– PrgEnv-intel/6.0.4
– MPI Version: cray-mpich/7.7.0
– Compiler: Intel/18.0.1.163

• Baseline: DMAPP enabled Cray
implementation
– MPICH_NEMESIS_ASYNC_PROGRESS=MC
– MPICH_MAX_THREAD_SAFETY=multiple
– MPICH_USE_DMAPP_COLL=1

• Using OMP_NUM_THREADS to set the
number of OpenMP threads

13

Performance: Micro
Large Messages

• N=200M floats, one MPI process/node
• Redscat performs best, significant better performance than Cray
• Threading is important

0.00

0.50

1.00

1.50

2.00

2.50

O
M

P=
1

O
M

P=
2

O
M

P=
4

O
M

P=
8

O
M

P=
1

O
M

P=
2

O
M

P=
4

O
M

P=
8

O
M

P=
1

O
M

P=
2

O
M

P=
4

O
M

P=
8

O
M

P=
1

O
M

P=
2

O
M

P=
4

O
M

P=
8

O
M

P=
1

O
M

P=
2

O
M

P=
4

O
M

P=
8

P=2 P=4 P=16 P=64 P=512

Th
e

Av
er

ag
e

Ti
m

es
 (S

ec
on

ds
)

The Performance of Different Reduce Algorithms for Large Data

Cray Binomial

Redscat Ring

14

Time Breakdown: Micro
Large Messages

• Cray: local time dominate, threading does not help
• Other three: threading reduce the local time

significantly; the “other” time has been eliminated

0.00

0.50

1.00

1.50

2.00

2.50

OM
P=
1

OM
P=
2

OM
P=
4

OM
P=
8

OM
P=
1

OM
P=
2

OM
P=
4

OM
P=
8

OM
P=
1

OM
P=
2

OM
P=
4

OM
P=
8

OM
P=
1

OM
P=
2

OM
P=
4

OM
P=
8

Th
e

Av
ae

ra
ge

 Ti
m

es
 (s

)

RedScat Binomial Ring Cray

The Time Breakdowns for P=512

Comm Local

Gather Other

Cray Time

15

Performance: Micro
Small Messages

• Msg sizes < 2K floats, Cray performs best
• Msg sizes > 512K floats, Redscat performs best
• Msg sizes between 2K – 512K, binomial performs best 16

Data Sparsity

• Algorithm IDX: using an extra index array
• Algorithm BITS: using one bit to indicate

whether the element is zero or not
17

Packed

2 0 0 3 0006

2 3 6

0 2 4

10011000

Unpacked

Bits

Idx

Performance:
Data Sparsity

• Implemented on top of threading and the
packing/unpacking is vectorized efficiently

• The break-even point is around 35% for
BITS and 65% for IDX

0.00

0.10

0.20

0.30

0.40

0.50

0.60

10% 20% 30% 40% 50% 60% 70% 80% 90%

Av
era

ge
 Ru

nn
ing

 Ti
me

 (s)

Data Sparsity

The Performance of Bits and Idx Algorithms Against Baseline

BITS IDX Baseline

18

Outline

• Background and Motivation
• Algorithms for MPI_Reduce and their

performance characteristics
– Binomial, Reduce-Scatter, Ring

• Performance analysis for MPI|Reduce
• Performance analysis for application

BIGSTICK
• Summary and future work

19

BIGSTICK

Initial basis vector (vecin)

HBlock(3,3)

Fi
na

l b
as

is
 v

ec
to

r (
ve

co
ut

) Blocks also
represent a
team of MPI
processes
matched to
block
workload

• Dominated by sparse
matrix vector
multiplication

• Vector size is big,
around 10.6 billion
elements for 130Cs

• Communication:
MPI_Reduce in row
direction; MPI_Bcast
in col direction

20

Performance: BIGSTICK
Threading

• BIGSTICK scaling performance is highly related with MPI_Reduce
• Using threading could improve the performance up to 2.5X

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

1 2 4 8 16

Sp
ee

du
p

fo
r T

ot
al

 M
at

Ve
c

Ti
m

es

Th
e

Av
er

ag
e T

im
es

(s
)

The OpenMP Concurrency

The Total MatVec and MPI_Reduce Times

Total MatVec (Cray)
Total MatVec (RedScat)
MPI_Reduce (Cray)
MPI_Reduce (RedScat)
MatVec Speedup

21

Performance: BIGSTICK
Data Compression

• Data compression does not help performance
though the average data sparsity is over 90%

• The density imbalance destroys the
performance advantage of data compression

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

1 2 4 8 16

Th
e

Av
er

ag
e

Re
du

ce
 T

im
es

 (s
)

The OpenMP Conrrencies

The Performance Effect of Data Compression for BIGSTICK

Idx Bits Baseline

22

Conclusion

• Making effective use of the idling threads on the

manycore architectures could significantly improve

large MPI_Reduce performance

• Our threading algorithms performs up to 4x better

than the Cray implementation and improve the

BIGSTICK performance up to 2.6x.

• Compressing the sparse data could also help the

performance, but may suffer from density

imbalance.

23

Future Work

• Extend out algorithms to more applications and other
HPC platforms

• Using threads to increase network injection bandwidth
• Develop smart algorithms to address the density

imbalance problem
• Develop hierarchical algorithms to combine advantages

of different ones
• Develop auto-tuning framework for MPI persistent

reduce functions

24

Acknoledgements

• This material is based upon work supported by the
Advanced Scientific Computing Research Program in
the U.S. Department of Energy, Office of Science,
under Award Number DE-AC02-05CH11231.

• This research used resources of the National Energy
Research Scientific Computing Center (NERSC),
which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC02-
05CH11231.

25

