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Background

When parallelized, many numerical methods require dot or
norm calculations, result in global reduction on scalar values

In multidimensional parallelization, lead to global broadcast

and reduction on large vectors of size N/+/P (could be
megabytes or gigabytes)

MPI_Reduce succinctly express such requisite functionality
and are widely used in many applications

* int MPI_Reduce(
— const void *sendbuf,

OO0O0F

— void *recvbuf, o
— int count, o
— MPI_Datatype datatype, 1 d|©
— MPI_Op op, @) ©)
— int root, ®)
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— MPIL_Comm comm)




C =4D) Motivation

« MPI_Reduce on large vectors often become
the performance scaling bottleneck

* Most optimizations focus on latency and

bandwidth
OpenMP Effect on MPI_Reduce
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OpenMP Concurrency



 Two new perspectives to improve reduce
performance:

— Using OpenMP threads to accelerate local reduction
— Using data compression to reduce communication volume

 Accomplishments:

— Could perform up to 4X better than the Cray implementation
on large vector size

— Improve application BIGSTICK performance up to 2.6X



Outline

Algorithms for MPl_Reduce and their
performance characteristics

— Binomial, Reduce-Scatter, Ring
Performance analysis for MPl_Reduce

Performance analysis for application
BIGSTICK

« Summary and future work



CRD Algorithms

 MPIl_Reduce:
— Binomial for short messages

— Reduce-Scatter for long messages
— Ring
« Simple Cost Model (o + NS + Ny)
— N: vector size
— a: latency
— B: transfer time per byte
—y: compute time per byte (aggregate)



C R D Binomial

* Cost:
- log(P)X(ax+ NB + Ny)
« Case: P=4
— The numbers in the 0
block represent the 0123
process ranks whose 0 5

data has already been | o1] 23
reduced.

— The shaded blocks N‘D—(‘ﬂ L 22—| |—§|
represents the
communication data.




Algorithm: Reduce-Scatter

P-1 P-1
« Cost Model: 2alog(P) + ZTNB + TNY
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c) 2rd step communication d) After 2rd step status



Algorithm: Ring

« Cost Model: (log(P) + P)a + ZPTTINB + P%Ny
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c)2rds tatus and next step communication d) Final status



CRD

Latency Time

Performance Characteristics

Latency Effect Bandwidth Effect
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« Binomial: log(P)a + lop(P)Np + lop(P)Ny
« RedScat: 22log(P)a + Z%Nﬁ +P771Ny
 Ring: (log(P) +P)a + ZPTleB + PTTlNy
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OpenMP Implementation

« Each thread has its own independent buffers
— Float *rbufferfNTHREADS]

« Using OpenMP parallel Region to implement
workload partition:

— #pragma omp parallel
—{
* tid = omp_get_thread_num()

* nthreads = omp_get_num_threads()
* partition the work manually

» perform the assigned work
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Outline

 Performance analysis for MPl_Reduce

 Performance analysis for application
BIGSTICK

« Summary and future work
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Platform

 Cori-KNL, located at NERSC

 Programming Environment:
— PrgEnv-intel/6.0.4
— MPI Version: cray-mpich/7.7.0
— Compiler: Intel/18.0.1.163
- Baseline: DMAPP enabled Cray
implementation
— MPICH_NEMESIS_ASYNC_PROGRESS=MC
— MPICH_MAX THREAD_SAFETY=multiple
— MPICH_USE_DMAPP_COLL=1

 Using OMP_NUM_THREADS to set the
number of OpenMP threads
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The Average Times (Seconds)

Performance: Micro

Large Messages

The Performance of Different Reduce Algorithms for Large Data
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P=2 P=4 P=16 P=64 P=512

N=200M floats, one MPI process/node
Redscat performs best, significant better performance than Cray

Threading is important "
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Time Breakdown: Micro

Large Messages

The Time Breakdowns for P=512
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* Cray: local time dominate, threading does not help

« Other three: threading reduce the local time
significantly; the “other” time has been eliminated
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Message Size
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Performance: Micro
Small Messages

Normalized Best Algorithmic Performance to Cray
(B:Binomial, C:Cray, R:Redscat, G:Ring)
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* Msg sizes < 2K floats, Cray performs best
+ Msg sizes > 512K floats, Redscat performs best
* Msg sizes between 2K - 512K, binomial performs best
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Data Sparsity

Unpacked |CXOCIEXECD)
Packed [ I‘I’]

ldx| 0 2 4 |

Bits| 10011000 |

« Algorithm IDX: using an extra index array

« Algorithm BITS: using one bit to indicate
whether the element is zero or not
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Performance:

Data Sparsity

The Performance of Bits and Idx Algorithms Against Baseline
0.60

=
@ 0.50
E )
= =2 BITS IDX —o =Baseline
oo 0.40
£
| =
g 0.30 ﬁo———o———o———@ ______
(=
[))
oo  0.20
(4]
S
(5]
& 0.10

0.00

10% 20% 30% 40% 50% 60% 70% 80% 90%

Data Sparsity

* Implemented on top of threading and the
packing/unpacking is vectorized efficiently

* The break-even point is around 35% for
BITS and 65% for IDX
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Outline

 Performance analysis for application
BIGSTICK

« Summary and future work
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Blocks also
represent a
team of MPI
processes
matched to
block
workload

Initial basis vector (vecin)

BIGSTICK

A4

Final basis vector (vecout)

Dominated by sparse
matrix vector
multiplication

Vector size is big,
around 10.6 billion
elements for 13°Cs
Communication:
MPI_Reduce in row
direction; MPIl_Bcast
in col direction
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Performance: BIGSTICK

Threading

The Total MatVec and MPI_Reduce Times
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The OpenMP Concurrency

 BIGSTICK scaling performance is highly related with MPl_Reduce
« Using threading could improve the performance up to 2.5X
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Performance: BIGSTICK

Data Compression

The Performance Effect of Data Compression for BIGSTICK
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« Data compression does not help performance
though the average data sparsity is over 90%

 The density imbalance destroys the

performance advantage of data compression -



Conclusion

« Making effective use of the idling threads on the
manycore architectures could significantly improve
large MPI_Reduce performance

* Our threading algorithms performs up to 4x better
than the Cray implementation and improve the
BIGSTICK performance up to 2.6x.

« Compressing the sparse data could also help the
performance, but may suffer from density
imbalance.
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Future Work

Extend out algorithms to more applications and other
HPC platforms

Using threads to increase network injection bandwidth

Develop smart algorithms to address the density
imbalance problem

Develop hierarchical algorithms to combine advantages
of different ones

Develop auto-tuning framework for MPI persistent
reduce functions
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