CRD

Improving MPI Reduction Performance
for Manycore Architectures with OpenMP
and Data Compression

Hongzhang Shan, Samuel Williams
Performance and Algorithms Research Group
Computational Research Division
Lawrence Berkeley National Laboratory

Calvin W. Johnson
Department of Physics
San Diego State University

Background

When parallelized, many numerical methods require dot or
norm calculations, result in global reduction on scalar values

In multidimensional parallelization, lead to global broadcast

and reduction on large vectors of size N/+/P (could be
megabytes or gigabytes)

MPI_Reduce succinctly express such requisite functionality
and are widely used in many applications

* int MPI_Reduce(
— const void *sendbuf,

OO0O0F

— void *recvbuf, o
— int count, o
— MPI_Datatype datatype, 1 d|©
— MPI_Op op, @) ©)
— int root, ®)

(6 _

— MPIL_Comm comm)

C =4D) Motivation

« MPI_Reduce on large vectors often become
the performance scaling bottleneck

* Most optimizations focus on latency and

bandwidth
OpenMP Effect on MPI_Reduce
g 0o * Problem:
g oo K M —a200M — Low single core
B w000 performance
g — ldle threads
— No performance
T o improvement
1 4 16 64 256

OpenMP Concurrency

 Two new perspectives to improve reduce
performance:

— Using OpenMP threads to accelerate local reduction
— Using data compression to reduce communication volume

 Accomplishments:

— Could perform up to 4X better than the Cray implementation
on large vector size

— Improve application BIGSTICK performance up to 2.6X

Outline

Algorithms for MPl_Reduce and their
performance characteristics

— Binomial, Reduce-Scatter, Ring
Performance analysis for MPl_Reduce

Performance analysis for application
BIGSTICK

« Summary and future work

CRD Algorithms

 MPIl_Reduce:
— Binomial for short messages

— Reduce-Scatter for long messages
— Ring
« Simple Cost Model (o + NS + Ny)
— N: vector size
— a: latency
— B: transfer time per byte
—y: compute time per byte (aggregate)

C R D Binomial

* Cost:
- log(P)X(ax+ NB + Ny)
« Case: P=4
— The numbers in the 0
block represent the 0123
process ranks whose 0 5

data has already been | o1] 23
reduced.

— The shaded blocks N‘D—(‘ﬂ L 22—| |—§|
represents the
communication data.

Algorithm: Reduce-Scatter

P-1 P-1
« Cost Model: 2alog(P) + ZTNB + TNY
0 1 2 3 0 1 2 3
Of N/ |1 2| N/ |3 01 1 23 3
N o 2 |1 2|2 |3 01 1 23 3
0 1 2 3 0 01 2 23
0 1 2 3 0 01 2 23
a) Initial status and communication in 1st step b) After 1st step status
0 12 3 0 1 2 3
01 ¢ttt 23 3 0123 || 1 23 || 3
01) 23 3 01 1 || 0123
0 01 dome e eedeed 23 0o |[o0123] 2 | 23
01 fsssfomsPo s 23 0 01 2 || 0123

c) 2rd step communication d) After 2rd step status

Algorithm: Ring

« Cost Model: (log(P) + P)a + ZPTTINB + P%Ny

N/
0/~ TP 2 \3
0 1 244 03
01! 1 2 3
12 2 3
1 et 23

0 1 2 3 0 1 2 3
0 Ko 03 0 0123 023 03
01 1 2 013 01 1 0123| | 013
012 \\/ | 12 2 3 012 12 2 0123
k
'\ {128 23 3 0123 123 23 3

c)2rds tatus and next step communication d) Final status

CRD

Latency Time

Performance Characteristics

Latency Effect Bandwidth Effect
1000 8
=a=Ring Redscat Binomial / Binomial Redscat =e=Ring
v 6
£
100 £
P*a = 5 log(P)*N*B
=
3
10 2log(P)*t g
0) P
log(P)*« N*B
1 .
1 0
2 4 8 16 32 64 128 2 4 8 16 EY) 64 128
#Processes (P) #Processes (P)

« Binomial: log(P)a + lop(P)Np + lop(P)Ny
« RedScat: 22log(P)a + Z%Nﬁ +P771Ny
 Ring: (log(P) +P)a + ZPTleB + PTTlNy

10

OpenMP Implementation

« Each thread has its own independent buffers
— Float *rbufferfNTHREADS]

« Using OpenMP parallel Region to implement
workload partition:

— #pragma omp parallel
—{
* tid = omp_get_thread_num()

* nthreads = omp_get_num_threads()
* partition the work manually

» perform the assigned work

11

Outline

 Performance analysis for MPl_Reduce

 Performance analysis for application
BIGSTICK

« Summary and future work

12

Platform

 Cori-KNL, located at NERSC

 Programming Environment:
— PrgEnv-intel/6.0.4
— MPI Version: cray-mpich/7.7.0
— Compiler: Intel/18.0.1.163
- Baseline: DMAPP enabled Cray
implementation
— MPICH_NEMESIS_ASYNC_PROGRESS=MC
— MPICH_MAX THREAD_SAFETY=multiple
— MPICH_USE_DMAPP_COLL=1

 Using OMP_NUM_THREADS to set the
number of OpenMP threads

13

The Average Times (Seconds)

Performance: Micro

Large Messages

The Performance of Different Reduce Algorithms for Large Data

2.50

2.00 =8—Cray Binomial

1.50 Redscat Ring

1.00

— o O @ @ C==0—"o—0
C—C=—0—0

0.50 [S e——)

0.00
i (o] < ©0 - (o] < o0 - o~ < 0 -l (o] < (-] —l (o] < 0
1 1l 11 11 11] 11 11 1l 11 1 11 1l 11 11 11 1l 1 11 11
o [~ W o o o a. o a. a. o o a. a. o a. o a. o [~ W o
S = = = S = = = S = = = S = = = S = = =
O O O O O O ©0 © O O O © O O O © O O O ©

P=2 P=4 P=16 P=64 P=512

N=200M floats, one MPI process/node
Redscat performs best, significant better performance than Cray

Threading is important "

2.50

Time Breakdown: Micro

Large Messages

The Time Breakdowns for P=512

B Comm Local
2.00
‘q:': Gather Other
£
= 1.50
()
3
g
Z 1.00 Cray Time
QD .- Y -~ . L L R Y N R RN
i =
'—
) | II]
o M W N N IIII aEnnn
&L & &L & L &L
O® O® 0® O® O® 0® O® O® O® O® O® O® O® O® O® O®
RedScat Binomial Ring Cray
* Cray: local time dominate, threading does not help

« Other three: threading reduce the local time
significantly; the “other” time has been eliminated

15

Message Size

512
1024
2048
4096
8192

16384
32768
65536
131072
262144
524288
1048576
2097152
4194304
8388608
16777216

Performance: Micro
Small Messages

Normalized Best Algorithmic Performance to Cray
(B:Binomial, C:Cray, R:Redscat, G:Ring)

3.0
B 2.1 25
B 23
B24 B 1.8
B27 B 2.0
B 3.1 2.0
z B 1.8
R 2.9 R 2.0
R 2.9 R 2.3
R 3.0 R 2.6
R 3.1 R 2.8
R 3.2 R 2.9
R 3.3 ; R 3.0
2 4 16 64 512

Number of Processes

* Msg sizes < 2K floats, Cray performs best
+ Msg sizes > 512K floats, Redscat performs best
* Msg sizes between 2K - 512K, binomial performs best

/&l /\
L[&"'ln

BERKELEY LAB

16

Data Sparsity

Unpacked |CXOCIEXECD)
Packed [I‘I’]

ldx| 0 2 4 |

Bits| 10011000 |

« Algorithm IDX: using an extra index array

« Algorithm BITS: using one bit to indicate
whether the element is zero or not

17

Performance:

Data Sparsity

The Performance of Bits and Idx Algorithms Against Baseline
0.60

=
@ 0.50
E)
= =2 BITS IDX —o =Baseline
oo 0.40
£
| =
g 0.30 ﬁo———o———o———@ ______
(=
[))
oo 0.20
(4]
S
(5]
& 0.10

0.00

10% 20% 30% 40% 50% 60% 70% 80% 90%

Data Sparsity

* Implemented on top of threading and the
packing/unpacking is vectorized efficiently

* The break-even point is around 35% for
BITS and 65% for IDX

18

Outline

 Performance analysis for application
BIGSTICK

« Summary and future work

19

Blocks also
represent a
team of MPI
processes
matched to
block
workload

Initial basis vector (vecin)

BIGSTICK

A4

Final basis vector (vecout)

Dominated by sparse
matrix vector
multiplication

Vector size is big,
around 10.6 billion
elements for 13°Cs
Communication:
MPI_Reduce in row
direction; MPIl_Bcast
in col direction

20

Performance: BIGSTICK

Threading

The Total MatVec and MPI_Reduce Times

90.0 3.0
Total MatVec (Cray)

(7]

L]

80.0 Total MatVec (RedScat) 55 £

S

—~ 700 e=®== \IP|_Reduce (Cray) o

v MPI_Reduce (RedScat) >

9 600 20 ¥

£ MatVec Speedup s
-

o 500 -

1) 15 "6

S 00 =

: 5

< 300 10 ‘g

b S

-|E 20.0 o moamdamemeaafce ac oo e e - g

0.5 g

10.0 S

0.0 0.0
1 2 4 8 16
The OpenMP Concurrency

 BIGSTICK scaling performance is highly related with MPl_Reduce
« Using threading could improve the performance up to 2.5X

21

Performance: BIGSTICK

Data Compression

The Performance Effect of Data Compression for BIGSTICK

14.0 ldx Bits =M=Baseline

o
3
>

Data Sparsity

50%

The Average Reduce Times (s)
o)
o

1 2 4 8 16 0 500 1000 1500 2000
The OpenMP Conrrencies Process Ranks

« Data compression does not help performance
though the average data sparsity is over 90%

 The density imbalance destroys the

performance advantage of data compression -

Conclusion

« Making effective use of the idling threads on the
manycore architectures could significantly improve
large MPI_Reduce performance

* Our threading algorithms performs up to 4x better
than the Cray implementation and improve the
BIGSTICK performance up to 2.6x.

« Compressing the sparse data could also help the
performance, but may suffer from density
imbalance.

23

Future Work

Extend out algorithms to more applications and other
HPC platforms

Using threads to increase network injection bandwidth

Develop smart algorithms to address the density
imbalance problem

Develop hierarchical algorithms to combine advantages
of different ones

Develop auto-tuning framework for MPI persistent
reduce functions

24

Acknoledgements

* This material is based upon work supported by the
Advanced Scientific Computing Research Program in
the U.S. Department of Energy, Office of Science,
under Award Number DE-AC02-05CH11231.

* This research used resources of the National Energy
Research Scientific Computing Center (NERSC),
which is supported by the Office of Science of the U.S.

Department of Energy under Contract No. DE-AC02-
05CH11231.

25

