

Benchmarking Machine Learning Methods for Performance Modeling of Scientific Applications

Preeti Malakar, **Prasanna Balaprakash**, Venkatram Vishwanath, Vitali Morozov, Kalyan Kumaran **Argonne National Laboratory**

9th IEEE International Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS18)

Application performance modeling

Molecular dynamics

Computational fluid dynamics

Weather simulations

- Predicting full application performance is *still* a challenge
- Shared resources (interconnect, file systems)
 - Background traffic, hardware degradation

Application performance modeling

[H. Hoffmann, World Changing Ideas, SA 2009]

[S. Williams et al., ACM 2009]

- Algebraic performance models increasingly challenging
- Supervised machine learning performance models: an effective alternative
 - *small number of input-output points* obtained from empirical evaluation
 - job scheduling , co-scheduling, autotuning

Supervised learning methods

Deep neural networks

input_1: InputLayer		input:		(None, 10)		
		outpu	ıt:	(None, 10)		
dense_1: Dense	l	nput: (None, 10)		(None, 10)		
	0	utput: (1		None, 512)		
dropout_1: Dropout		input:		(None, 512)		
		output:		(None, 512)		
· · · · · · · · · · · · · · · · · · ·						
dense 2: Dense	Li	input: (None, 512)		
dense_2. Dense	0	output: (None, 512)		
dronout 2: Dronou	.t	input:		(None, 512)		
dropout_2: Dropout		output:		(None, 512)		
dense 3: Dense	l	input: (None, 512)		
dense_5. Dense	0	utput:	((None, 512)		
		¥				
dropout_3: Dropout		input:		(None, 512)		
		output:		(None, 512)		
V						
output: Dense -		nput: (1		None, 512)		
		atput:	(None, 1)			

Why benchmarking?

- *No free lunch*: no single method will work well on all data set
- All supervised learning algorithms *seek to reduce bias and variance* in a different way

Applications and platforms

Name	Processor	Interconnect topology	Maximum # cores
Mira (Blue Gene/Q)	Power BQC 1.6 GHz	5D torus	131072
Vesta (Blue Gene/Q)	Power BQC 1.6 GHz	5D torus	16384
Edison (Cray XC30)	Intel Ivy Bridge 2.4 GHz	Aries with dragon-fly	1728
Hopper (Cray XE6)	AMD MagnyCours 2.1 GHz	Gemini with 3D torus	12000

• Miniapps (# no of data points):

- miniMD (< 2K); O(1024) nodes
- miniAMR (< 1K); O(4096) nodes
- miniFE (6K to 15K); O(8192) nodes
- LAMMPS (< 1K); O(1024) nodes

Impact of domain-knowledge integration

- No Feature Engineering (No-FE)
 - application input parameters
- Feature Engineering (FE)
 - application input parameters
 - computation
 - ratio of the application problem size and the number of processes
 - communication
 - LogGP model terms
 - binary logarithm of number of processes
 - scaling
 - inverse of the number of processes

Image from http://www.ddm.org/

Box-whisker plot

https://sites.google.com/site/davidsstatistics/home/notched-box-plots

Impact of domain-knowledge integration

10 X 20:80 cross validation

• Domain-knowledge integration has a significant impact on the accuracy

Impact of hardware platforms

• Algorithmic complexity has more impact than (modern) hardware platforms

Impact of training data size on accuracy

• Nonlinear methods leverage large training data size

Transfer learning

Same application run on two different target systems

Transfer learning

input 1: InputI over		inpu	t:	(None, 10)				
Ĺ	mput_1: mputLayer		outpu	ıt:	(None, 10)			
			↓					
	dense 1. Dense		nput: ((None, 10)			
	dense_1: Dense		utput:		(None, 512)			
	· · · · · · · · · · · · · · · · · · ·							
d	dropout_1: Dropout		input:		(None, 512)			
^u			output:		(None, 512)			
	dansa 2. Dansa		input:		(None, 512)			
	dense_2. Dense	C	utput: (None, 512)			
d	ropout 2: Dropou		input:		(None, 512)			
^u	dropout_2: Dropout		output:		(None, 512)			
	· · · · · · · · · · · · · · · · · · ·							
	dense_3: Dense		input:		(None, 512)			
		C	utput:	((None, 512)			
d	dropout_3: Dropout		input:		(None, 512)			
			output:		(None, 512)			
	output: Dense	i	nput:	(None, 512)				
		output:		(None, 1)				

Freeze weights

Retrain weights (1% data from Hopper)

Mira model

Transfer learning

Transfer learning significantly improves prediction accuracy

Extrapolation

- miniFE: Learn from smaller process count (24–1,152) size to larger count (1,224–1,728)
- ML methods can't extrapolate but FE helps

Conclusion

- Explicit domain-knowledge integration/feature engineering significantly improves prediction accuracy
- Algorithmic and computational complexities of the ML methods have a significant impact on accuracy, model training, and inference times
- Bagging, boosting, and deep neural networks leverage large training datasets and produce better accuracy
- Deep neural network can enable transfer learning
- Extrapolation is difficult; domain-knowledge integration helps

Future work

- Uncertainty quantification for variability
- Active learning for selecting training points
- Domain-knowledge integration
 - Transfer learning
 - Extrapolation
- Applications with I/O
- Subspace characterization
- Job scheduling & autotuning

Acknowledgements

- DOE-ASCR, Early Career Research Program
- Argonne Leadership Computing Facility
- National Energy Research Scientific Computing Center

This work was supported by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research program under contract number DE-AC02-06CH11357.

Thank you