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Appllcatlon performance modeling
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Molecular dynamlcs Computational fluid dynamics Weather simulations

* Predicting full application performance is still a challenge
e Shared resources (interconnect, file systems)
* Background traffic, hardware degradation
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[H. Hoffmann, World Changing Ideas, SA 2009] [S. Williams et al., ACM 2009]

Algebraic performance models increasingly challenging
Supervised machine learning performance models: an effective alternative
small number of input-output points obtained from empirical evaluation
job scheduling , co-scheduling, autotuning



Supervised learning methods
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Deep neural networks

»
dropout_1: Dropout —

dense_’

(None, 512)
dropout_3: Dropout - —
(None, 512)

(None, 512)

output: Dense




Why benchmarking?
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* No free lunch: no single method will work well on all data set

All supervised learning algorithms seek to reduce bias and variance in a
different way




Applications and platforms

- =Sl - Miniapps (# no of data points):

?;“;‘;';/Q)(B"e | e miniMD (< 2K); 0(1024) nodes
| * MiniAMR (< 1K); O(4096) nodes

-\ * miniFE (6K to 15K); 0(8192) nodes
SR R I - LAMMPS (< 1K ); 0(1024) nodes




* No Feature Engineering (No-FE)

* Feature Engineering (FE)

Impact of domain-knowledge integration

e application input parameters

e application input parameters
* computation
* ratio of the application problem size and
the number of processes
* communication
* LogGP model terms
* binary logarithm of number of processes
* scaling
* inverse of the number of processes

Image from http://www.ddm.org/



Box-whisker plot

Notched Box Plot Normal Data Notched Box Plot of Skewed Data

5 Possible Outlier

Upper Whiskers

75th Percentile Lesser of 75th Percentile or
aka 3rd Quartile Maximum Value

The “Notch”

95% Confidence Interval of « - - - : Interquartile (IQR)

Histogram of Normal Data Histogram of Skewed Data

the Median : —Median (50 Percent of Data)

Median +/- 1.57 x IQR/n°> : ...

25th Percentile /

aka 1st Quartile Lower Whiskers
Greater of 25th Percentile or
Minimum Value

dataSNormal dataSLog

https://sites.google.com/site/davidsstatistics/home/notched-box-plots 9



Impact of domain-knowledge integration
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10 X 20:80 cross validation
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Domain-knowledge integration has a significant impact on the accuracy



Impact of hardware platforms
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e Algorithmic complexity has more impact than (modern) hardware platforms
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Nonlinear methods leverage large training data size



Transfer learning
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Same application run on two different target systems
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Transfer learning

(None, 10)
(None, 512)

Freeze weights

ropout_1I: Dropout
(None, 512)

(None, 512)

(None, 512) (None, 512)
Dropout - — pou Dropout - —
(None, 512) (None, 512)

(None, 512) (None, 512)
> Dense

Dropout |"P1E_| (None. S12) | ropout 3 Dropout (None,512) Retrain weights (1%

data from Hopper)

D (None, 512) (None, 512)
output: Dens ‘
(None, 1)

Mira model Hopper model 14



Transfer learning

* Transfer learning significantly improves prediction accuracy 15



Extrapolation

SR &

methods

* miniFE: Learn from smaller process count (24-1,152) size to larger count (1,224-1,728)
* ML methods can’t extrapolate but FE helps 16



Conclusion

Explicit domain-knowledge integration/feature engineering
significantly improves prediction accuracy

Algorithmic and computational complexities of the ML methods have a
significant impact on accuracy, model training, and inference times

Bagging, boosting, and deep neural networks leverage large training
datasets and produce better accuracy

Deep neural network can enable transfer learning
Extrapolation is difficult; domain-knowledge integration helps
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Future work

Uncertainty quantification for variability
Active learning for selecting training points
Domain-knowledge integration

— Transfer learning

— Extrapolation
Applications with I/O
Subspace characterization
Job scheduling & autotuning
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