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Application	performance	modeling	
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Molecular	dynamics	 Computational	fluid	dynamics	 Weather	simulations	

•  Predicting	full	application	performance	is	still	a	challenge	
•  Shared	resources	(interconnect,	file	systems)	

•  Background	traffic,	hardware	degradation		



[H.	Hoffmann,	World	Changing	Ideas,	SA	2009]	 [S.	Williams	et	al.,	ACM	2009]	
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Application	performance	modeling	

•  	Algebraic	performance	models	increasingly	challenging	
•  	Supervised	machine	learning	performance	models:	an	effective	alternative	

•  small	number	of	input-output	points	obtained	from	empirical	evaluation	
•  job	scheduling	,	co-scheduling,	autotuning	



Supervised	learning	methods	
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Deep	neural	networks	
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Why	benchmarking?	
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•  No	free	lunch:	no	single	method	will	work	well	on	all	data	set	
•  All	supervised	learning	algorithms	seek	to	reduce	bias	and	variance	in	a	

different	way		

Fortmann-Roe,	2012	

Deep	learning	summer	school	lecture,	CIFAR,		2016	



Applications	and	platforms	

•  Miniapps	(#	no	of	data	points):	
•  miniMD	(<	2K);	O(1024)	nodes	
•  miniAMR	(<	1K);	O(4096)	nodes	
•  miniFE	(6K	to	15K);	O(8192)	nodes		
•  LAMMPS	(<	1K	);	O(1024)	nodes	
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Impact	of	domain-knowledge	integration	

•  No	Feature	Engineering	(No-FE)	
•  application	input	parameters	

•  Feature	Engineering	(FE)	
•  application	input	parameters	
•  computation		

•  ratio	of	the	application	problem	size	and	
the	number	of	processes	

•  communication	
•  LogGP	model	terms	
•  binary	logarithm	of	number	of	processes	

•  scaling	
•  inverse	of	the	number	of	processes	
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Image	from	http://www.ddm.org/	



Box-whisker	plot	

9	https://sites.google.com/site/davidsstatistics/home/notched-box-plots	



10	X	20:80	cross	validation	
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•  Domain-knowledge	integration	has	a	significant	impact	on	the	accuracy	

Impact	of	domain-knowledge	integration	



Impact	of	hardware	platforms	

•  Algorithmic	complexity	has	more	impact	than	(modern)	hardware	platforms
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Impact	of	training	data	size	on	accuracy	

•  Nonlinear	methods	leverage	large	training	data	size	 12	



Transfer	learning	

13	Same	application	run	on	two	different	target	systems	



Transfer	learning	

Mira	model	 Hopper	model	

Freeze	weights	

Retrain	weights	(1%	
data	from	Hopper)	
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Transfer	learning	

•  Transfer	learning	significantly	improves		prediction	accuracy	 15	



Extrapolation	

•  miniFE:	Learn	from	smaller	process	count	(24–1,152)	size	to	larger	count	(1,224–1,728)		
•  ML	methods	can’t	extrapolate	but	FE	helps	 16	



Conclusion	
•  Explicit	domain-knowledge	integration/feature	engineering	

significantly	improves	prediction	accuracy	
•  Algorithmic	and	computational	complexities	of	the	ML	methods	have	a	

significant	impact	on	accuracy,	model	training,	and	inference	times	
•  Bagging,	boosting,	and	deep	neural	networks	leverage	large	training	

datasets	and	produce	better	accuracy	
•  Deep	neural	network	can	enable	transfer	learning	
•  Extrapolation	is	difficult;	domain-knowledge	integration	helps	
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Future	work	
•  Uncertainty	quantification	for	variability	
•  Active	learning	for	selecting	training	points	
•  Domain-knowledge	integration	

–  Transfer	learning	
–  Extrapolation	

•  Applications	with	I/O		
•  Subspace	characterization	
•  Job	scheduling	&	autotuning		
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