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GPUs and NVLink

* NVIDIA Tesla V100 (32GB HBM2 memory, 6 NVLinks,
15.7 TFLOPS)

« NVIDIA RTX 2080Ti (11GB GDDR6 memory, 2
NVLinks, 13.4TFLOPS)

« Each NVLink has bandwidth of 25GB/s in and

25GB/s out.

All leading-edge Al systems use V100 GPUs.
The difference is how these NVLinks are connected.

SXM2 Module

Image Ref:
https://devblogs.nvidia.com/using-cuda-warp-level-primitives/
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Image Ref:
https://images.nvidia.com/content/pdf/dgx1-v100-system-
architecture-whitepaper.pdf
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DGX-2 and NVSwitch

16 NVIDIA Tesla V100 GPUs
0.5TB Memory

12 NVIDIA NVSwitches ° 1 6X V1 OO (32GB) GPUS

Direct GPU-to-GPU Connec tion

Between ALLTE GRUS * 12x on-node NVSwitches
« Each NVSwitch has 18 NVLink ports
(16 in use).
» 2x 24-core Xeon 8186 (96 logic cores
in total)

* 1.5 TB system memory

= B B B B H - 30 TB NVMe SSD in 8-way RAIDO
EEEEEE

opU Image Ref:

https://images.nvidia.com/content/pdf/nvswitch-technical-

overview.pdf
B Nvswitch https://www.nvidia.com/en-us/data-center/hgx/
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IBM Power System AC922 (8335-GTH)

Server Block Diagram
Power Systems AC922 with NVIDIA Tesla V100 with Enhanced NVLink GPUs

+ 4x V100 (32GB) GPUs
= » 2x IBM 20-core Power9 CPU (160 logic
i cores in total)

« Each IBM Power9 CPU has 6 NVLinks.

» Two CPUs are connected by a SMP bus
(32GB/s).

* 4x IBM P9 systems (16 GPUs in total)

» Connected through InfiniBand (24 GB/s).

» The tested system uses GPFS (remote
filesystem) with block size of 1 MB and
bandwidth ~18 GB/s.

NVMe Flash Storage
(PCI-E x8 gen 4.0)

)y 15V POWERS SMP bus

sl Oirect Attach DDR4 memory (~170GB/s BW per CPU)

<l PC-Ex57ess X3 (gen 4.0) bus with CAPI for 1B (12.8G8/s)

1x PO-E x8 4.0 from each CPU to 18 (multi-socket host direct)

PCI-Express x8 {gen 4.0) bus with CAPI {12.8GB/s) Image Ref:
< ;G5 /5 V(01 NVLink Interconnect (50G8/s bi-directional) https://www.microway.com/product/ibm-power-systems-ac922/

75G8/s of bandwidth between points {3 links)
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Exxact TensorEX TS4 GPU Server

» (TS4-1598415-DPN)

+ 8x RTX 2080 Ti GPU

» All GPUs are connected by a PCle bus.
(x8 4GB/s)

» 2x 12-core Xeon 4116 CPUs (48 logic
cores in total)

» Cost-effective solution

Image Ref:
https://www.exxactcorp.com/Exxact-TS4-1598415-E1598415
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Inter-device Communication Bandwidth

NCCL All-reduce
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All-reduce operation is performed at the
end of every iteration during training.
DGX-2 has consistent peak unidirectional
bus bandwidth of 120 GB/s.

DGX-1 and have the same
NVLink Topology.

IBM-P9 has better 2-GPU communication
bandwidth. (3 NVLinks)

RTX uses a PCl-e bus.

When communicate across nodes, |IBM-
P9 and are bottlenecked by the
Infiniband / Ethernet.

Averaged over 500 iterations.

Source code Ref:
https://github.com/NVIDIA/nccl-tests
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Deep Learning workloads

Model Name Param.

[ AlexNet 61.10 M )
ResNet18 11.69 M

| ResNet50 2556 M|

ResNet101 44.55 M )
ResNet152 60.19 M
BERT-SWAG 1095M

\_BERT-SQUAD  109.5 M

Paper Ref:

ResNet: hitps://arxiv.org/abs/1512.03385
BERT: https://arxiv.org/abs/1810.04805
SWAG: hitps://arxiv.org/abs/1808.05326

= (LAl hitps://rajpurkar.github.io/SQuUAD-explorer/explore/1.1/dev/
[ N mee———

High-throughput

Large Models

PyTorch 1.0 (Docker, except IBM)
Computer Vision (ImageNet Classification)
* AlexNet (CNN + FC)
* ResNet (mostly CNN)
Natural Language Processing (BERT)
» Light data I/O
* SQuUAD and SWAG tasks

Performance Factors:

Model Complexity (number of operations)
Number of Parameters (affects the
communication cost)

GPU memory size (affects batch size,
therefore, consequently the number of
synchronizations needed per epoch.)


https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1808.05326
https://rajpurkar.github.io/SQuAD-explorer/explore/1.1/dev/

Results: BERT (Large Models)
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All leading-edge systems scale well except
AWS P3 when 16 GPUs (2 nodes) are in
use due to slow Ethernet connection.

+ BERT has 109M parameters.

» Batch size 64 (SWAG) and 32 (SQuUAD).

* Max-seq-length of 80 (SWAG) and 384
(SQUAD)

+ AWS P3 does not scale well in the case
of 16 GPUs

» Averaged over 1 epoch.



Results: ResNet-101 and 152 (Large Models)
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For smaller models, AWS P3 catches up.

Batch size of 128.

ResNet101 has 44.55M parameters
ResNet152 has 60.19M parameters
Averaged over 100 iterations.



Results: High-throughput models
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Results: High-throughput models
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Batch size of 256
Extremely data-
intensive (10,000
images per sec).
The tested IBM P9
has a remote
filesystem (GPFS).
AWS outperforms
DGX-2 at 16 GPUs.



Results: Investigation on CPU bottleneck
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j: the number of CPU data-
fetching processes associated
with each GPU.

Since two nodes of AWS P3 are
in use, the workload per CPU is
halved comparing to DGX-2
DGX-2 has better CPU (higher
clock speed). Larger j affects
Intel turbo boost. But still better
than AWS P3 atj = 4.

But lower IPC, indicating CPU
cache bottleneck.



Results: Mixed-precision Training
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» Since we are using FP16, we can
double the batch size.

* When hitting 10,000 instance per
second throughput, 1/0 and CPU
cache bottleneck appeared again.



Results: Instances per second for RTX
relative to DGX-2

Model Name 1GPU 2GPUs 4GPUs 8GPUs

AlexNet 78.19%  63.01% 53.41%  47.95%
ResNet18 73.50%  69.13%  64.39%  54.80%
ResNet50 67.97% _ 62.67%  62.97% __61.75%
Average @ 64.94%  60.26% @
ResNet101 69.70%  63.72% 64.15%  62.69%
ResNet152  69.73%  62.45%  62.96%  61.90%

BERT-SWAG  64.04%  57.52%  57.20%  56.25%
BERT-SQuAD 59.81% __4979%  4974%  48.22%
Average 65.82%  5837%  5851%  57.27%

Overall avg. 68.99% 61.19% 59.26%  56.22%




Conclusion

* The DGX-2 offers the best 16-GPU
collective communication.

* All leading-edge systems scale well with
large deep learning workloads

* High-throughput models put more stress
on I/O and CPU.

« RTX suits best for small-scale training and
model development.
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