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Outline

• Hardware Systems (DGX-1, DGX-2, AWS P3, IBM AC922, RTX-2080Ti) 
• Communication Bandwidth Test (NCCL)
• Realistic Deep Learning Workloads (Computer Vision, NLP)
• Training Throughput Results and Performance Analysis



GPUs and NVLink

• NVIDIA Tesla V100 (32GB HBM2 memory, 6 NVLinks, 
15.7 TFLOPS)

• NVIDIA RTX 2080Ti (11GB GDDR6 memory, 2 
NVLinks, 13.4TFLOPS)

• Each NVLink has bandwidth of 25GB/s in and 
25GB/s out.

Image Ref:
https://devblogs.nvidia.com/using-cuda-warp-level-primitives/

All leading-edge AI systems use V100 GPUs. 
The difference is how these NVLinks are connected.

SXM2 Module

https://devblogs.nvidia.com/using-cuda-warp-level-primitives/


AWS p3dn.24xlarge (DGX-1V)

Image Ref:
https://images.nvidia.com/content/pdf/dgx1-v100-system-
architecture-whitepaper.pdf

• 8x V100 (32GB) GPUs
• Hybrid cube-mesh topology
• 2x 24-core Xeon 8175M (96 logic cores in 

total)
• 768 GB system memory
• 2 TB NVMe SSD
• 2x AWS P3 (16 GPUs in total)
• Connected through 1.25GB/s 

Ethernet. (*then)

https://images.nvidia.com/content/pdf/dgx1-v100-system-architecture-whitepaper.pdf


DGX-2 and NVSwitch

• 16x V100 (32GB) GPUs
• 12x on-node NVSwitches
• Each NVSwitch has 18 NVLink ports 

(16 in use).
• 2x 24-core Xeon 8186 (96 logic cores 

in total)
• 1.5 TB system memory
• 30 TB NVMe SSD in 8-way RAID0

Image Ref:

https://images.nvidia.com/content/pdf/nvswitch-technical-
overview.pdf
https://www.nvidia.com/en-us/data-center/hgx/

https://images.nvidia.com/content/pdf/nvswitch-technical-overview.pdf
https://www.nvidia.com/en-us/data-center/hgx/


IBM Power System AC922 (8335-GTH)

• 4x V100 (32GB) GPUs
• 2x IBM 20-core Power9 CPU (160 logic 

cores in total)
• Each IBM Power9 CPU has 6 NVLinks.
• Two CPUs are connected by a SMP bus 

(32GB/s).
• 4x IBM P9 systems (16 GPUs in total)
• Connected through InfiniBand (24 GB/s).
• The tested system uses GPFS (remote 

filesystem) with block size of 1 MB and 
bandwidth ~18 GB/s.

Image Ref:
https://www.microway.com/product/ibm-power-systems-ac922/

https://www.microway.com/product/ibm-power-systems-ac922/


Exxact TensorEX TS4 GPU Server

Image Ref:
https://www.exxactcorp.com/Exxact-TS4-1598415-E1598415

• (TS4-1598415-DPN)
• 8x RTX 2080 Ti GPU
• All GPUs are connected by a PCIe bus. 

(x8 4GB/s)
• 2x 12-core Xeon 4116 CPUs (48 logic 

cores in total)
• Cost-effective solution

https://www.exxactcorp.com/Exxact-TS4-1598415-E1598415


Inter-device Communication Bandwidth
NCCL All-reduce

• All-reduce operation is performed at the 
end of every iteration during training.

• DGX-2 has consistent peak unidirectional 
bus bandwidth of 120 GB/s.

• DGX-1 and AWS P3 have the same 
NVLink Topology.

• IBM-P9 has better 2-GPU communication 
bandwidth. (3 NVLinks)

• RTX uses a PCI-e bus.
• When communicate across nodes, IBM-

P9 and AWS P3 are bottlenecked by the 
Infiniband / Ethernet.

• Averaged over 500 iterations.

Source code Ref:
https://github.com/NVIDIA/nccl-tests

https://github.com/NVIDIA/nccl-tests


Deep Learning workloads
• PyTorch 1.0 (Docker, except IBM)
• Computer Vision (ImageNet Classification)

• AlexNet (CNN + FC)
• ResNet (mostly CNN)

• Natural Language Processing (BERT)
• Light data I/O
• SQuAD and SWAG tasks
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Performance Factors:
• Model Complexity (number of operations)
• Number of Parameters (affects the 

communication cost)
• GPU memory size (affects batch size, 

therefore, consequently the number of 
synchronizations needed per epoch.)Paper Ref:

ResNet: https://arxiv.org/abs/1512.03385
BERT: https://arxiv.org/abs/1810.04805
SWAG: https://arxiv.org/abs/1808.05326
SQuAD: https://rajpurkar.github.io/SQuAD-explorer/explore/1.1/dev/

https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1808.05326
https://rajpurkar.github.io/SQuAD-explorer/explore/1.1/dev/


Results: BERT (Large Models)

BERT-SWAG BERT-SQuAD

• BERT has 109M parameters.
• Batch size 64 (SWAG) and 32 (SQuAD).
• Max-seq-length of 80 (SWAG) and 384 

(SQuAD)
• AWS P3 does not scale well in the case 

of 16 GPUs
• Averaged over 1 epoch.

All leading-edge systems scale well except 
AWS P3 when 16 GPUs (2 nodes) are in 
use due to slow Ethernet connection.



Results: ResNet-101 and 152 (Large Models)

ResNet-101 ResNet-152

• Batch size of 128.
• ResNet101 has 44.55M parameters
• ResNet152 has 60.19M parameters
• Averaged over 100 iterations.

For smaller models, AWS P3 catches up.



AlexNet ResNet18 ResNet50

Results: High-throughput models

• Batch size of 256
• Extremely data-

intensive (10,000 
images per sec).

• The tested IBM P9 
has a remote 
filesystem (GPFS).



AlexNet ResNet18 ResNet50

Results: High-throughput models

• Batch size of 256
• Extremely data-

intensive (10,000 
images per sec).

• The tested IBM P9 
has a remote 
filesystem (GPFS).

• AWS outperforms 
DGX-2 at 16 GPUs.



Results: Investigation on CPU bottleneck
• 𝑗: the number of CPU data-

fetching processes associated 
with each GPU.

• Since two nodes of AWS P3 are 
in use, the workload per CPU is 
halved comparing to DGX-2 

• DGX-2 has better CPU (higher 
clock speed). Larger 𝑗 affects 
Intel turbo boost. But still better 
than AWS P3 at 𝑗 = 4.

• But lower IPC, indicating CPU 
cache bottleneck.CPU 

Type
Num. Cores Base Freq. L1 

Cache
AWS P3 8175M 4 (2x2) 112 2.1 GHz 1.5 MB

DGX-2 8186 2 56 2.5 GHz 1.75 MB



Results: Mixed-precision Training

• Since we are using FP16, we can 
double the batch size. 

• When hitting 10,000 instance per 
second throughput,  I/O and CPU 
cache bottleneck appeared again.



Results: Instances per second for RTX 
relative to DGX-2



Conclusion

• The DGX-2 offers the best 16-GPU 
collective communication.

• All leading-edge systems scale well with 
large deep learning workloads

• High-throughput models put more stress 
on I/O and CPU.

• RTX suits best for small-scale training and 
model development.
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Thank you

• Questions?


