Justin Salmon

Prof Simon Mclntosh-Smith
HPC research group
University of Bristol

@simonmcs

Exploiting Hardware-Accelerated Ray Tracing for
Monte Carlo Particle Transport with OpenMC

Elic University of
BRISTOL EPSRC ASIME\

Increased heterogeneity is an important response to the slowing
of Moore’s Law

* Expect to see more “application-oriented” optimisations
e Matrix multiply units in SIMD instruction sets (AVX, SVE)
* Floating point formats optimized for deep learning (BFLOAT16)

* Important recent example: TensorCores

D =

FP16 or FP32
Elic University of
BRISTOL

(Aco Aoi Aoz

Ao A A

A).O A).l A).Z

l Ao Ay A,
FP16

(

B0.0 BO.I BO,)
Bl.() BI,I BI,I

8).0 B?.l B),)

83.0 B},l B],Z
FP16

https://uob-hpc.github.io/

FP16 or FP32

IA\ S l m %\VI

Ray Tracing cores

e NVIDIA’s latest architectural innovation

(Turing-class GPUs)

* Designed to accelerate the ray tracing
algorithms used in graphical rendering in

games, rather than for HPC

e Potential speedups of up to 10X vs CUDA

code on same GPU

* Accelerates ray / surface intersection

6y

calculations

* 10 GigaRays/s on RT cores vs 1-2 GigaRays/s in
CUDA on the same GPU

i
o

University of

BRISTOL

https://uob-hpc.github.io/

Warp Scheduler + Dispatch (32 thread/clk) ‘Warp Scheduler + Dispatch (32 thread/clk) |

ister File (16,384 x 32-bit) Register File (16,384 x 32-bit)

TENSOR TENSOR
INT32 FP32 CORES INT32 FP32 CORES

Warp Scheduler + Dispatch (32 thread/clk) Warp Scheduler + Dispatch (32 thread/clk)

ister File (16,384 x 32-bit)

TENSOR TENSOR
INT32 = FP32 e INT32 | FP32 —

~ RTCORE -

IA\ S l m %\VI

Which parts of ray tracing do the RT cores accelerate?

Software Emulation for BVH Search Hardware Acceleration with RT
(Pascal) (Turing)
Shaders Shaders RT Core
[Rayprove |——— e
Decode box
~ Intersection test
Fetch box Sub-box or tris?
Decode box
Intersection test
Sub-box or tris?
Ray/triangle R
Many thousands intersection test J’
> of instruction slots |
Ray/triangle per ray
intersection test Raturn hit
T
Return hit
>y

]

-% University of
BRISTOL https://uob-hpc.github.io

Box
Intersection
Evaluators

Triangle
Intersection
Evaluators

IA\ S l m %\VI

Observation: Monte Carlo particle transport has similarities to RT

Image

Camera / 8 Light Source

SEEX

View Ray/ig; Shadow Ray 1 2 3 4 5

~ Scene Object

Both require large numbers of linear geometric queries
to be executed over complex 3D geometric models

Elic University of
BRISTOL https://uob-hpc.github.io/ ,A\ S I m %\VI

Monte Carle particle transport

 MC particle transport has applications in fission and fusion reactor
design, radiography, and accelerator design

* Requires large numbers of particles >= O(10°), therefore
computationally expensive

* Many codes and mini-apps developed for MC particle transport:
 OpenMC, MCNP, Quicksilver, Branson, neutral [1]

 We've focused on OpenMC for this work

EA Universi
S UﬂlVCfSlty Of [1] M. Martineau and S. Mclntosh-Smith. Exploring on-node parallelism with neutral, a Monte Carlo neutral A r I m %\ I
/ N 11 v

BRISTOL particle transport mini-app. In Cluster Computing (CLUSTER), 2017 IEEE International Conference on, 2017.

9)OpenMC

* A Monte Carlo particle transport code focused on neutron
criticality simulations, recently developed in the Computational
Reactor Physics Group at MIT [1]

e Modern C++

* Being evaluated by the UK Atomic Energy Authority (UKAEA) as a
tool for simulating the ITER nuclear fusion reactor [2]

* CPUs only, using OpenMP for on-node parallelism and MPI for
inter-node parallelism

[1] P. K. Romano and B. Forget, “The OpenMC Monte Carlo particle transport
code,” Annals of Nuclear Energy, vol. 51, pp. 274-281, 2013.

University of [2] A. Turner, “Investigations into alternative radiation transport codes for ITER A c. \ 7
/ N\ Il] l%’% v

BRISTOL neutronics analysis,” in Transactions of the American Nuclear Society, 2017.

Motivation — fusion reactor design

 Tokamak model from
UKAEA

 CAD model

* O(108) triangles in mesh

* O(10) GBytes of data

Elic University of
BRISTOL https://uob-hpc.github.io/ /\\ S | m %.%\vl

Generating the input geometries

* Can be Constructive Solid Geometry (CSG) or meshes of many
small triangles from CAD tools

/_\
g
/n\

e
U ov

N\

v\

Elic University of
BRISTOL https://uob-hpc.github.io/ /\\ S | m %’[%\vl

Acceleration structures

* For large models, finding the
intersection points is expensive

* Acceleration structures use a A A
hierarchy of progressively smaller

bounding boxes around model sub- / AN
regions B B C

 These boxes are then tested for cCl —> / N\
intersection in a binary tree style
search, massively reducing the
number of surfaces that need to be | |
tested

 E.g. Bounding Volume Hierarchy
(BVH) trees, Octrees and Kd- trees

Elic University of
BRISTOL https://uob-hpc.github.io/ ,A\ S I m %\v/

How the RT cores work

e Each SM on the GPU has access to its own RT core to which it can
issue “ray probe” requests

* Each RT core has triangle intersection and BVH traversal units
e Can cache triangle vertex and BVH tree data

 The two units in the RT core execute the ray probe
asynchronously, writing the result back to an SM register once
complete. The SM can perform other work in parallel.

-% U ty of
. BIIH{VIeé'S}fOOL https://uob-hpc.github.io/ / \Jlm%‘%\ V4

Implementation

* |t's not yet possible to program the RT cores directly via CUDA et al

 Have to use a library: NVIDIA’s OptiX™ ray tracing library, or Vulkan,
Microsoft DXR, ...

* |In OptiX, the user provides a set of CUDA-like kernel programs as PTX
strings, each of which performs a specific function in the ray tracing
pipeline

* E.g. generating rays, handling intersections or handling rays which miss the
geometry entirely

 These programs are then compiled on-the-fly by OptiX and woven into
a single “mega kernel”

e OptiX then handles scheduling of kernel launches internally,
automatically balancing load across the GPU

Elic University of
BRISTOL https://uob-hpc.github.io/ ,A\ S I m %\v/

Benchmarking RT cores for raytracing

(a) Cube, 12 (b) Sphere, 89k (c) Happy Buddha, 1.1m (d) Hairball, 2.9m (e) Asian Dragon, 7.2m

* Developed a simple benchmark to evaluate the raw ray tracing
nerformance of RT cores

 Renders frames of a 3D triangle mesh scene as fast as possible

* Each thread handles a single ray and writes the computed pixel colour
to an output buffer, which is then interpreted as an image

* Five 3D models were selected to use as rendering targets, from a trivial
12 triangles, to over 7 million triangles.

Elic University of
BRISTOL https://uob-hpc.github.io/ /\\ S | m %.%\vl

Raytracing speedup using the RT cores and OptiX

RTX Benchmark: Resolution=15360x8640

rsianbracon | * 4.6X speedup on average for
7.2m triangles the Tu rlng GPU

Hairball F

2.9m triangles

HappyBuddha F

* Over 12 GigaRays/sec for the

1.1m triangles Happy Buddha and Asian
Sphere_—
B2k triangles Dragon models
_CubeF . .
W2wangles VP * The Hairball model is the
0 2 4 6 8 10 12 .
GigaRays/sec most geometrically complex,
RTX 2080 Ti (Turing) RTX = ON s achieves an 11.8X speedup.
RTX 2080 Ti (Turing) RTX = OFF

GTX 1080 Ti (Pascal) RTX=ON mam
GTX 1080 Ti (Pascal) RTX = OFF

Elic University of
BRISTOL https://uob-hpc.github.io/ ,A\ S I m %\v/

Porting OpenMC to GPUs

Ported the main kernel to CUDA and to OptiX for comparisons

In the absence of a real fusion reactor model, we used the same
five models from the RT benchmark

Each model is filled with a fissionable material (*3°U) and is
surrounded by a bounding cube filled with a vacuum

Particles are terminated if they hit the edge of the bounding cube

The particle source is set inside the model

Each model was simulated for 2 generations using 2 batches of N
particles, where N ranges from 103 up to 10’.

.% University of
A& BRISTOL ASIMEN

Methodology

* Ran native OpenMC on a 16-core AMD Ryzen 7 2700 CPU using
GCC7.4

* Only using the Cube and Sphere models as needed to be CSG for CPU

e Also used the same two GPUs as before: RTX 2080 Ti (Turing) and
GTX 1080 Ti (Pascal)

* We collected the particle calculation rate (measured in particles/s)
and wallclock time spent in particle transport.

-% U ty of
. Brllivlesrs']ljooL https://uob-hpc.github.io/ / \le%\ V4

CUDA OpenMC results on simple geometries

OpenMC: Number of Particles=1000000

e GPU version ~13X the native
CPU version

Cube e Turing ~1.4X faster than
12 triangles Pasca|

Sphere
82k triangles

0 400,000 800,000 1,200,000 1,600,000
Calculation Rate (particles/sec)

Triangle Mesh (OptiX, Turing GPU) Il

Triangle Mesh (OptiX, Pascal GPU) s

CSG (OptiX, Turing GPU)

CSG (OptiX, Pascal GPU) mmm

CSG (OpenMC Native, AMD CPU) s
Triangle Mesh (DAGMC, AMD CPU)

Elic University of A
BRISTOL https://uob-hpc.github.io/ / \

IM&YV

U]

Increasing particle counts

OpenMC: Model=Sphere

Calculation Rate (particles/sec)

1,800,000 - A _
AT T A
1,500,000 - _-7
”/” ________ x\\~~
1,200,000 - k’/ X ‘____::::_N_
/// ”””” ,,A’ ———————— _.g
900,000 - ol X//’ ot and _3—mmmmmmmm T H—mmmmmmTTT
/,/ ,,/,"”, ”””””
600,000 - '/////,X”/
300,000 4 #2227
103 104 10° 106 10’
Triangle Mesh (OptiX, Turing GPU) -&-
Triangle Mesh (OptiX, Pascal GPU) -#&-
CSG (OptiX, Turing GPU) ->-
CSG (OptiX, Pascal GPU) -»¢-
CSG (OpenMC Native, AMD CPU)
" Triangle Mesh (DAGMC, AMD CPU)
Elic University of
¢9 . _ . .
BRISTOL https://uob-hpc.github.io/

* Peak speedup is 16.4X over
the CPU

* Peak GPU performance at
1M particles

IA\ S I m %\VI

RT (OptiX) OpenMC results

OpenMC: Number of Particles=1000000 e RTX mode on the Tu ring GPU
?fi“tﬁEiZ?e2J= is the fastest in all cases,
2.9m triangles] being 30-50% faster on the

Ry Buddha e — larger geometries
Dok e — * The Hairball model shows
12 rian the biggest difference, being

0 500,000 1,000,000 1,500,000 2,000,000 20.1x faster with RTX mode
Calculation Rate (particles/sec) .
on Turing.

Triangle Mesh (Turing GPU) RTX =ON mm
Triangle Mesh (Turing GPU) RTX = OFF

Triangle Mesh (Pascal GPU) RTX=ON mmm
Triangle Mesh (Pascal GPU) RTX = OFF mam

Elic University of
BRISTOL https://uob-hpc.github.io/ ,A\ S I m %\v/

Conclusions

* Monte Carlo-based particle transport can port well to GPUs

* Ray tracing hardware holds promise for accelerating this
application, with results from 1.3X to 20X over CUDA alone

* Currently hard to program these cores — have to go through a
graphics APl to do it

 AMD, Intel, Arm and others are also adding RT hardware
* Potentially other uses of RT hardware that can be explored

.% University of
A& BRISTOL ASIMEN

For more information

M. Martineau and S. Mcintosh-Smith. Exploring on-node parallelism with neutral, a Monte Carlo
neutral particle transport mini-app. In Cluster Computing (CLUSTER), 2017 IEEE International
Conference on, 2017. DOI: 10.1109/CLUSTER.2017.83

On the Porting and Optimisation of Physics Simulations for Heterogeneous Parallel Processors.
Matt Martineau, PhD thesis, University of Bristol, January 2019.

Bristol HPC group: https://uob-hpc.github.io/
Isambard: http://gw4.ac.uk/isambard/
Acknowledgements: ASiMoV is funded by EPSRC, grant no. EP/S005072/1.

Elic University of
BRISTOL https://uob-hpc.github.io/ ,A\ S I m %\VI

https://uob-hpc.github.io/
http://gw4.ac.uk/isambard/

