
Exploiting Hardware-Accelerated Ray Tracing for
Monte Carlo Particle Transport with OpenMC

Justin Salmon
Prof Simon McIntosh-Smith
HPC research group
University of Bristol
@simonmcs

Increased heterogeneity is an important response to the slowing
of Moore’s Law

• Expect to see more “application-oriented” optimisations
• Matrix multiply units in SIMD instruction sets (AVX, SVE)
• Floating point formats optimized for deep learning (BFLOAT16)

• Important recent example: TensorCores

https://uob-hpc.github.io/

Ray Tracing cores
• NVIDIA’s latest architectural innovation

(Turing-class GPUs)
• Designed to accelerate the ray tracing

algorithms used in graphical rendering in
games, rather than for HPC

• Potential speedups of up to 10X vs CUDA
code on same GPU

• Accelerates ray / surface intersection
calculations
• 10 GigaRays/s on RT cores vs 1-2 GigaRays/s in

CUDA on the same GPU

https://uob-hpc.github.io/

Which parts of ray tracing do the RT cores accelerate?

https://uob-hpc.github.io/

Observation: Monte Carlo particle transport has similarities to RT

https://uob-hpc.github.io/

Appendix D
Ray Tracing Overview

NVIDIA Turing GPU Architecture WP-09183-001_v01 | 69

Source: https://en.wikipedia.org/wiki/Ray_tracing_(graphics)#/media/File:Ray_trace_diagram.svg

Figure 45. Basic Ray Tracing Process

Ray tracing can be very costly in terms of the computational horsepower required to generate
realistic-looking scenes, largely related to the number of rays shot into the scene, and the
number of additional rays generated by reflections and refractions. Many factors contribute to
the number of rays shot into the scene, including, but not limited to the number and type of
objects desired to be ray traced, available GPU processing power per frame, screen resolution,
and number of rays desired to be shot through each pixel into the scene.

Ray tracing can produce images that are indistinguishable from those captured by a camera and
has been used extensively for movie special effects for years. In fact, live action movies use ray
tracing to blend computer-generated effects with images captured by cameras seamlessly, while
animated feature films can also look amazingly realistic using ray tracing.

BASIC RAY TRACING MECHANICS
Understanding how ray tracing works at a deeper level requires understanding a few
fundamentals, starting with ray casting, which is a visibility determination technique used in the
inner loops at the core of photorealistic ray-traced renderers.

Ray casting is actually the process in a ray tracing algorithm that shoots one or more rays from
the camera (eye position) through each pixel in an image plane, and then tests to see if the rays
intersect any primitives (triangles) in the scene. If a ray passing through a pixel and out into the
3D scene hits a primitive, then the distance along the ray from the origin (camera or eye point) to
the primitive is determined, and the color data from the primitive contributes to the final color of
the pixel. The ray may bounce and hit other objects and pick up color and lighting information
from those other objects. (A related technique called Path Tracing is a far more intensive form of
ray tracing that might trace hundreds or thousands of rays through each pixel and follow the rays
through numerous bounces off or through objects before reaching the light source in order to
collect color and lighting information).

Both require large numbers of linear geometric queries
to be executed over complex 3D geometric models

Monte Carle particle transport

• MC particle transport has applications in fission and fusion reactor
design, radiography, and accelerator design

• Requires large numbers of particles >= O(106), therefore
computationally expensive

• Many codes and mini-apps developed for MC particle transport:
• OpenMC, MCNP, Quicksilver, Branson, neutral [1]

• We’ve focused on OpenMC for this work

https://uob-hpc.github.io/
[1] M. Martineau and S. McIntosh-Smith. Exploring on-node parallelism with neutral, a Monte Carlo neutral
particle transport mini-app. In Cluster Computing (CLUSTER), 2017 IEEE International Conference on, 2017.

OpenMC
• A Monte Carlo particle transport code focused on neutron

criticality simulations, recently developed in the Computational
Reactor Physics Group at MIT [1]

• Modern C++
• Being evaluated by the UK Atomic Energy Authority (UKAEA) as a

tool for simulating the ITER nuclear fusion reactor [2]
• CPUs only, using OpenMP for on-node parallelism and MPI for

inter-node parallelism

https://uob-hpc.github.io/

[1] P. K. Romano and B. Forget, “The OpenMC Monte Carlo particle transport
code,” Annals of Nuclear Energy, vol. 51, pp. 274–281, 2013.

[2] A. Turner, “Investigations into alternative radiation transport codes for ITER
neutronics analysis,” in Transactions of the American Nuclear Society, 2017.

Motivation – fusion reactor design
• Tokamak model from

UKAEA
• CAD model
• O(108) triangles in mesh
• O(10) GBytes of data

https://uob-hpc.github.io/

Generating the input geometries
• Can be Constructive Solid Geometry (CSG) or meshes of many

small triangles from CAD tools

https://uob-hpc.github.io/

Acceleration structures
• For large models, finding the

intersection points is expensive
• Acceleration structures use a

hierarchy of progressively smaller
bounding boxes around model sub-
regions

• These boxes are then tested for
intersection in a binary tree style
search, massively reducing the
number of surfaces that need to be
tested

• E.g. Bounding Volume Hierarchy
(BVH) trees, Octrees and Kd- trees

https://uob-hpc.github.io/

How the RT cores work
• Each SM on the GPU has access to its own RT core to which it can

issue “ray probe” requests
• Each RT core has triangle intersection and BVH traversal units
• Can cache triangle vertex and BVH tree data
• The two units in the RT core execute the ray probe

asynchronously, writing the result back to an SM register once
complete. The SM can perform other work in parallel.

https://uob-hpc.github.io/

Implementation
• It’s not yet possible to program the RT cores directly via CUDA et al
• Have to use a library: NVIDIA’s OptiX™ ray tracing library, or Vulkan,

Microsoft DXR, …
• In OptiX, the user provides a set of CUDA-like kernel programs as PTX

strings, each of which performs a specific function in the ray tracing
pipeline
• E.g. generating rays, handling intersections or handling rays which miss the

geometry entirely
• These programs are then compiled on-the-fly by OptiX and woven into

a single “mega kernel”
• OptiX then handles scheduling of kernel launches internally,

automatically balancing load across the GPU

https://uob-hpc.github.io/

Benchmarking RT cores for raytracing

• Developed a simple benchmark to evaluate the raw ray tracing
performance of RT cores

• Renders frames of a 3D triangle mesh scene as fast as possible
• Each thread handles a single ray and writes the computed pixel colour

to an output buffer, which is then interpreted as an image
• Five 3D models were selected to use as rendering targets, from a trivial

12 triangles, to over 7 million triangles.

https://uob-hpc.github.io/

Raytracing speedup using the RT cores and OptiX
• 4.6X speedup on average for

the Turing GPU
• Over 12 GigaRays/sec for the

Happy Buddha and Asian
Dragon models

• The Hairball model is the
most geometrically complex,
achieves an 11.8X speedup.

https://uob-hpc.github.io/

(a) Cube, 12 (b) Sphere, 89k (c) Happy Buddha, 1.1m (d) Hairball, 2.9m (e) Asian Dragon, 7.2m

Fig. 3: Renderings of the five 3D models produced by the RTX benchmark tool, with approximate triangle counts.

launch dimensions (which directly correspond to output image
resolution) are varied from 960x540 doubling each time up to
15360x8640, roughly corresponding to the range of a 540p
SD image up to a 16k Ultra HD image. This is repeated
for each model, thus allowing us to investigate the effects
of varying both model complexity and launch dimensionality
independently.

The main metric used to measure performance is rays cast
per second, calculated as the total number of rays cast divided
by the total runtime duration, measured in GigaRays per
second.

B. Results: Model Complexity
Figure 4 shows how each model behaves at a launch

resolution of 15360x8640 on a Turing-class RTX 1080 Ti
GPU and a Pascal-class GTX 1080 Ti. Note that enabling
RTX mode on the Pascal GPU is a valid configuration despite
the lack of RT cores, as it will still use the improved OptiX
execution pipeline.

Fig. 4: Results of the RTX-enabled graphics benchmark on
each of the tested models and GPUs for a fixed launch
resolution of 15360x8640. Figures in GigaRays/s, higher is
better.

Using RTX mode on the Turing GPU yields a 4.6x speedup
on average at this resolution. A fraction of this is attributable
to the optimised execution pipeline in OptiX 6, which can be
seen when comparing the two results on the Pascal GPU. Most

of the speedup however is due to the RT cores themselves. The
benchmark is able to produce over 12 GigaRays/sec for the
Happy Buddha and Asian Dragon models, which corroborates
NVIDIA’s own benchmarks for these two models [?]. The
result profiles for these models appears quite similar, despite
being almost an order of magnitude apart in terms of triangle
count. This suggests that both are ideal workloads, and are
probably reaching the optimal throughput of the RT cores.1

It is clear to see that the number of triangles alone does
not dictate performance. The Hairball model is clearly the
heaviest workload, despite not being the largest model in
terms of triangle count. It is 11.8x faster with RTX mode
on the Turing GPU. This suggests that the higher topological
complexity of the model is having a significant impact, most
likely because its multi-volume topography results in a higher
number of potential intersections along a single ray path,
thereby requiring a greater number of triangle vertex buffer
lookups to complete the full traversal. This then becomes the
dominant performance factor. Additionally, the generated BVH
tree is likely to be deeper and therefore slower to search.

The reason why the Cube and Sphere models are slower
than the larger Asian Dragon and Happy Buddha models under
RT core acceleration is simply because ray-triangle intersec-
tion testing and BVH traversal operations comprise less of the
overall runtime due to the simplicity of the models. As the
models get larger, the overall runtime increases proportionally
and the ray tracing operations become the dominant factor.
The Hairball model shows the extreme case of this, where
ray tracing takes such a large amount of effort that runtime
increases to the detriment of ray casting throughput.

The Turing GPU also outperforms the Pascal GPU with
RTX mode disabled. This simply suggests that the generational
improvements of the Turing architecture are providing some
benefit for this particular type of workload, such as the larger
L1 and L2 caches permitting better locality for triangle vertex
data.

C. Results: Launch Dimensions
Figure 5 shows how the ray tracing throughput changes

as the launch dimensions are varied for the Happy Buddha
model. For this model, the peak speedup is 6.4x, which
occurs at the 1920x1080 resolution. The other four models
exhibit essentially the same behaviour, so are omitted here for
brevity. There is clearly a sublinear scaling profile as launch

1It is perhaps not surprising that these models were used to produce the
advertised performance numbers.

(a) Cube, 12 (b) Sphere, 89k (c) Happy Buddha, 1.1m (d) Hairball, 2.9m (e) Asian Dragon, 7.2m

Fig. 3: Renderings of the five 3D models produced by the RTX benchmark tool, with approximate triangle counts.

launch dimensions (which directly correspond to output image
resolution) are varied from 960x540 doubling each time up to
15360x8640, roughly corresponding to the range of a 540p
SD image up to a 16k Ultra HD image. This is repeated
for each model, thus allowing us to investigate the effects
of varying both model complexity and launch dimensionality
independently.

The main metric used to measure performance is rays cast
per second, calculated as the total number of rays cast divided
by the total runtime duration, measured in GigaRays per
second.

B. Results: Model Complexity
Figure 4 shows how each model behaves at a launch

resolution of 15360x8640 on a Turing-class RTX 1080 Ti
GPU and a Pascal-class GTX 1080 Ti. Note that enabling
RTX mode on the Pascal GPU is a valid configuration despite
the lack of RT cores, as it will still use the improved OptiX
execution pipeline.

Fig. 4: Results of the RTX-enabled graphics benchmark on
each of the tested models and GPUs for a fixed launch
resolution of 15360x8640. Figures in GigaRays/s, higher is
better.

Using RTX mode on the Turing GPU yields a 4.6x speedup
on average at this resolution. A fraction of this is attributable
to the optimised execution pipeline in OptiX 6, which can be
seen when comparing the two results on the Pascal GPU. Most

of the speedup however is due to the RT cores themselves. The
benchmark is able to produce over 12 GigaRays/sec for the
Happy Buddha and Asian Dragon models, which corroborates
NVIDIA’s own benchmarks for these two models [?]. The
result profiles for these models appears quite similar, despite
being almost an order of magnitude apart in terms of triangle
count. This suggests that both are ideal workloads, and are
probably reaching the optimal throughput of the RT cores.1

It is clear to see that the number of triangles alone does
not dictate performance. The Hairball model is clearly the
heaviest workload, despite not being the largest model in
terms of triangle count. It is 11.8x faster with RTX mode
on the Turing GPU. This suggests that the higher topological
complexity of the model is having a significant impact, most
likely because its multi-volume topography results in a higher
number of potential intersections along a single ray path,
thereby requiring a greater number of triangle vertex buffer
lookups to complete the full traversal. This then becomes the
dominant performance factor. Additionally, the generated BVH
tree is likely to be deeper and therefore slower to search.

The reason why the Cube and Sphere models are slower
than the larger Asian Dragon and Happy Buddha models under
RT core acceleration is simply because ray-triangle intersec-
tion testing and BVH traversal operations comprise less of the
overall runtime due to the simplicity of the models. As the
models get larger, the overall runtime increases proportionally
and the ray tracing operations become the dominant factor.
The Hairball model shows the extreme case of this, where
ray tracing takes such a large amount of effort that runtime
increases to the detriment of ray casting throughput.

The Turing GPU also outperforms the Pascal GPU with
RTX mode disabled. This simply suggests that the generational
improvements of the Turing architecture are providing some
benefit for this particular type of workload, such as the larger
L1 and L2 caches permitting better locality for triangle vertex
data.

C. Results: Launch Dimensions
Figure 5 shows how the ray tracing throughput changes

as the launch dimensions are varied for the Happy Buddha
model. For this model, the peak speedup is 6.4x, which
occurs at the 1920x1080 resolution. The other four models
exhibit essentially the same behaviour, so are omitted here for
brevity. There is clearly a sublinear scaling profile as launch

1It is perhaps not surprising that these models were used to produce the
advertised performance numbers.

Porting OpenMC to GPUs
• Ported the main kernel to CUDA and to OptiX for comparisons
• In the absence of a real fusion reactor model, we used the same

five models from the RT benchmark
• Each model is filled with a fissionable material (235U) and is

surrounded by a bounding cube filled with a vacuum
• Particles are terminated if they hit the edge of the bounding cube
• The particle source is set inside the model
• Each model was simulated for 2 generations using 2 batches of N

particles, where N ranges from 103 up to 107.
https://uob-hpc.github.io/

Methodology
• Ran native OpenMC on a 16-core AMD Ryzen 7 2700 CPU using

GCC 7.4
• Only using the Cube and Sphere models as needed to be CSG for CPU

• Also used the same two GPUs as before: RTX 2080 Ti (Turing) and
GTX 1080 Ti (Pascal)

• We collected the particle calculation rate (measured in particles/s)
and wallclock time spent in particle transport.

https://uob-hpc.github.io/

CUDA OpenMC results on simple geometries

• GPU version ~13X the native
CPU version

• Turing ~1.4X faster than
Pascal

https://uob-hpc.github.io/

V. RESULTS: GPU VS CPU
A. Model Complexity

Figure 6 shows the range in calculation rate performance on
the Sphere and Cube models between GPU and CPU versions,
for a launch size of 106 particles.

The GPU versions are significantly faster on average than
the CPU on both models. In this case, the fastest GPU version
is 13x faster than the native CPU version, and 47.5x faster than
the DAGMC CPU version. It is not necessarily fair to compare
CPU performance on a single node, since OpenMC is capable
of scaling to thousands of processors, but it is nevertheless
useful to get a sense of on-node scale.

Fig. 6: Range in particle calculation rate between CPU and
GPU versions for the Sphere and Cube models with a particle
count of 106. Higher is better.

The increased triangle count of the Sphere model slows
down the native and DAGMC versions quite significantly
compared to the Cube model, whereas the GPU versions show
much less of a dependency on triangle count. Note that the
native CPU version is slower on the Sphere model simply be-
cause the CSG sphere intersection calculation is more complex
than the CSG cube intersection. The DAGMC version is the
least performant, suggesting the efficiency of its ray tracing
implementation over triangle meshes is comparatively poor.

A secondary observation from Figure 6 is the difference
in performance between Turing and Pascal GPUs, with the
former being 1.4x faster than the latter. This is most likely to
be evidence of the memory subsystem improvements in the
Turing architecture.

B. Launch Dimensions
Figure 7 shows how the calculation rate varies as the number

of simulated particles is scaled up on the Sphere model. The
triangle mesh geometry on the GPU is the fastest in all cases,
being 1.4x faster than the GPU CSG geometry.

Fig. 7: Comparison between CPU and GPU versions when
scaling up the particle count for the Sphere model.

The difference in performance becomes more pronounced
as the number of particles is increased, with the GPU versions
appearing to peak in performance at 106 particles. Peak
speedup is 16.4x over native CPU. This peak suggests that
one or more resources on the GPU are being most efficiently
used at that scale, and begin to deteriorate at larger scales.
As discussed previously in Section III-C, this is most likely a
result of OptiX managing kernel grid and block sizes.

The CPU versions appear to have reasonably consistent
calculation rates, regardless of number of particles, suggesting
that the CPU throughput is simply saturated and cannot
process any faster without added parallelism, but does not
deteriorate in performance.

VI. RESULTS: RT CORE ACCELERATION

Having seen the performance improvements brought by
porting OpenMC to the GPU, we can now move on to
the task of exploiting RT core acceleration. As described
in Section II-D, the RTX mode available with the OptiX
6 API enables RT core accelerated ray tracing on Turing
GPUs, as well as a more efficient execution pipeline that
simulates RT cores in software on older GPU architectures.
The following sections present and discuss the results of
the model complexity and particle count experiments for the
extended OpenMC GPU version which supports RTX mode,
as well as the original GPU versions.

At this point we will depart from the native CPU version
and the CSG GPU version, since we will be benchmarking
against triangle meshes that are not possible to define using the
constructive solid geometry format provided by OpenMC. We
will also depart from the DAGMC version, since it is in a much
lower performance category and therefore not significantly
valuable to consider any further.

V. RESULTS: GPU VS CPU
A. Model Complexity

Figure 6 shows the range in calculation rate performance on
the Sphere and Cube models between GPU and CPU versions,
for a launch size of 106 particles.

The GPU versions are significantly faster on average than
the CPU on both models. In this case, the fastest GPU version
is 13x faster than the native CPU version, and 47.5x faster than
the DAGMC CPU version. It is not necessarily fair to compare
CPU performance on a single node, since OpenMC is capable
of scaling to thousands of processors, but it is nevertheless
useful to get a sense of on-node scale.

Fig. 6: Range in particle calculation rate between CPU and
GPU versions for the Sphere and Cube models with a particle
count of 106. Higher is better.

The increased triangle count of the Sphere model slows
down the native and DAGMC versions quite significantly
compared to the Cube model, whereas the GPU versions show
much less of a dependency on triangle count. Note that the
native CPU version is slower on the Sphere model simply be-
cause the CSG sphere intersection calculation is more complex
than the CSG cube intersection. The DAGMC version is the
least performant, suggesting the efficiency of its ray tracing
implementation over triangle meshes is comparatively poor.

A secondary observation from Figure 6 is the difference
in performance between Turing and Pascal GPUs, with the
former being 1.4x faster than the latter. This is most likely to
be evidence of the memory subsystem improvements in the
Turing architecture.

B. Launch Dimensions
Figure 7 shows how the calculation rate varies as the number

of simulated particles is scaled up on the Sphere model. The
triangle mesh geometry on the GPU is the fastest in all cases,
being 1.4x faster than the GPU CSG geometry.

Fig. 7: Comparison between CPU and GPU versions when
scaling up the particle count for the Sphere model.

The difference in performance becomes more pronounced
as the number of particles is increased, with the GPU versions
appearing to peak in performance at 106 particles. Peak
speedup is 16.4x over native CPU. This peak suggests that
one or more resources on the GPU are being most efficiently
used at that scale, and begin to deteriorate at larger scales.
As discussed previously in Section III-C, this is most likely a
result of OptiX managing kernel grid and block sizes.

The CPU versions appear to have reasonably consistent
calculation rates, regardless of number of particles, suggesting
that the CPU throughput is simply saturated and cannot
process any faster without added parallelism, but does not
deteriorate in performance.

VI. RESULTS: RT CORE ACCELERATION

Having seen the performance improvements brought by
porting OpenMC to the GPU, we can now move on to
the task of exploiting RT core acceleration. As described
in Section II-D, the RTX mode available with the OptiX
6 API enables RT core accelerated ray tracing on Turing
GPUs, as well as a more efficient execution pipeline that
simulates RT cores in software on older GPU architectures.
The following sections present and discuss the results of
the model complexity and particle count experiments for the
extended OpenMC GPU version which supports RTX mode,
as well as the original GPU versions.

At this point we will depart from the native CPU version
and the CSG GPU version, since we will be benchmarking
against triangle meshes that are not possible to define using the
constructive solid geometry format provided by OpenMC. We
will also depart from the DAGMC version, since it is in a much
lower performance category and therefore not significantly
valuable to consider any further.

Increasing particle counts

https://uob-hpc.github.io/

V. RESULTS: GPU VS CPU
A. Model Complexity

Figure 6 shows the range in calculation rate performance on
the Sphere and Cube models between GPU and CPU versions,
for a launch size of 106 particles.

The GPU versions are significantly faster on average than
the CPU on both models. In this case, the fastest GPU version
is 13x faster than the native CPU version, and 47.5x faster than
the DAGMC CPU version. It is not necessarily fair to compare
CPU performance on a single node, since OpenMC is capable
of scaling to thousands of processors, but it is nevertheless
useful to get a sense of on-node scale.

Fig. 6: Range in particle calculation rate between CPU and
GPU versions for the Sphere and Cube models with a particle
count of 106. Higher is better.

The increased triangle count of the Sphere model slows
down the native and DAGMC versions quite significantly
compared to the Cube model, whereas the GPU versions show
much less of a dependency on triangle count. Note that the
native CPU version is slower on the Sphere model simply be-
cause the CSG sphere intersection calculation is more complex
than the CSG cube intersection. The DAGMC version is the
least performant, suggesting the efficiency of its ray tracing
implementation over triangle meshes is comparatively poor.

A secondary observation from Figure 6 is the difference
in performance between Turing and Pascal GPUs, with the
former being 1.4x faster than the latter. This is most likely to
be evidence of the memory subsystem improvements in the
Turing architecture.

B. Launch Dimensions
Figure 7 shows how the calculation rate varies as the number

of simulated particles is scaled up on the Sphere model. The
triangle mesh geometry on the GPU is the fastest in all cases,
being 1.4x faster than the GPU CSG geometry.

Fig. 7: Comparison between CPU and GPU versions when
scaling up the particle count for the Sphere model.

The difference in performance becomes more pronounced
as the number of particles is increased, with the GPU versions
appearing to peak in performance at 106 particles. Peak
speedup is 16.4x over native CPU. This peak suggests that
one or more resources on the GPU are being most efficiently
used at that scale, and begin to deteriorate at larger scales.
As discussed previously in Section III-C, this is most likely a
result of OptiX managing kernel grid and block sizes.

The CPU versions appear to have reasonably consistent
calculation rates, regardless of number of particles, suggesting
that the CPU throughput is simply saturated and cannot
process any faster without added parallelism, but does not
deteriorate in performance.

VI. RESULTS: RT CORE ACCELERATION

Having seen the performance improvements brought by
porting OpenMC to the GPU, we can now move on to
the task of exploiting RT core acceleration. As described
in Section II-D, the RTX mode available with the OptiX
6 API enables RT core accelerated ray tracing on Turing
GPUs, as well as a more efficient execution pipeline that
simulates RT cores in software on older GPU architectures.
The following sections present and discuss the results of
the model complexity and particle count experiments for the
extended OpenMC GPU version which supports RTX mode,
as well as the original GPU versions.

At this point we will depart from the native CPU version
and the CSG GPU version, since we will be benchmarking
against triangle meshes that are not possible to define using the
constructive solid geometry format provided by OpenMC. We
will also depart from the DAGMC version, since it is in a much
lower performance category and therefore not significantly
valuable to consider any further.

• Peak speedup is 16.4X over
the CPU

• Peak GPU performance at
1M particles

V. RESULTS: GPU VS CPU
A. Model Complexity

Figure 6 shows the range in calculation rate performance on
the Sphere and Cube models between GPU and CPU versions,
for a launch size of 106 particles.

The GPU versions are significantly faster on average than
the CPU on both models. In this case, the fastest GPU version
is 13x faster than the native CPU version, and 47.5x faster than
the DAGMC CPU version. It is not necessarily fair to compare
CPU performance on a single node, since OpenMC is capable
of scaling to thousands of processors, but it is nevertheless
useful to get a sense of on-node scale.

Fig. 6: Range in particle calculation rate between CPU and
GPU versions for the Sphere and Cube models with a particle
count of 106. Higher is better.

The increased triangle count of the Sphere model slows
down the native and DAGMC versions quite significantly
compared to the Cube model, whereas the GPU versions show
much less of a dependency on triangle count. Note that the
native CPU version is slower on the Sphere model simply be-
cause the CSG sphere intersection calculation is more complex
than the CSG cube intersection. The DAGMC version is the
least performant, suggesting the efficiency of its ray tracing
implementation over triangle meshes is comparatively poor.

A secondary observation from Figure 6 is the difference
in performance between Turing and Pascal GPUs, with the
former being 1.4x faster than the latter. This is most likely to
be evidence of the memory subsystem improvements in the
Turing architecture.

B. Launch Dimensions
Figure 7 shows how the calculation rate varies as the number

of simulated particles is scaled up on the Sphere model. The
triangle mesh geometry on the GPU is the fastest in all cases,
being 1.4x faster than the GPU CSG geometry.

Fig. 7: Comparison between CPU and GPU versions when
scaling up the particle count for the Sphere model.

The difference in performance becomes more pronounced
as the number of particles is increased, with the GPU versions
appearing to peak in performance at 106 particles. Peak
speedup is 16.4x over native CPU. This peak suggests that
one or more resources on the GPU are being most efficiently
used at that scale, and begin to deteriorate at larger scales.
As discussed previously in Section III-C, this is most likely a
result of OptiX managing kernel grid and block sizes.

The CPU versions appear to have reasonably consistent
calculation rates, regardless of number of particles, suggesting
that the CPU throughput is simply saturated and cannot
process any faster without added parallelism, but does not
deteriorate in performance.

VI. RESULTS: RT CORE ACCELERATION

Having seen the performance improvements brought by
porting OpenMC to the GPU, we can now move on to
the task of exploiting RT core acceleration. As described
in Section II-D, the RTX mode available with the OptiX
6 API enables RT core accelerated ray tracing on Turing
GPUs, as well as a more efficient execution pipeline that
simulates RT cores in software on older GPU architectures.
The following sections present and discuss the results of
the model complexity and particle count experiments for the
extended OpenMC GPU version which supports RTX mode,
as well as the original GPU versions.

At this point we will depart from the native CPU version
and the CSG GPU version, since we will be benchmarking
against triangle meshes that are not possible to define using the
constructive solid geometry format provided by OpenMC. We
will also depart from the DAGMC version, since it is in a much
lower performance category and therefore not significantly
valuable to consider any further.

RT (OptiX) OpenMC results
• RTX mode on the Turing GPU

is the fastest in all cases,
being 30-50% faster on the
larger geometries

• The Hairball model shows
the biggest difference, being
20.1x faster with RTX mode
on Turing.

https://uob-hpc.github.io/

A. Model Complexity

Figure 8 shows the calculation rates for each of the five
models for a single launch of 106 particles. RTX mode on
the Turing GPU is the fastest in all cases, being 6.0x faster
on average than without. On the Pascal GPU, RTX mode is
1.6x faster on average. The Hairball model shows the biggest
difference, being 20.1x faster with RTX mode on Turing.

Fig. 8: Effects of RTX mode (which uses RT cores on the
Turing GPU) on all models for a particle count of 106.

The number of triangles has a clear and simple effect on the
calculation rate for the single solid volume models, which is
all except the Hairball model. The Hairball model exhibits
the most dramatic behaviour due to its high topological
complexity, which has an even greater effect than on the
graphics benchmark. This is because of the way the point-
in-volume and boundary distance algorithm works; it traces
a ray iteratively over all intersections at each layer of the
model until it misses. For the single cell models, most of
the time there are only two hits to escape the model (one
to escape the cell, then one to escape the bounding cube).
This means that the ray tracer does not have to work very
hard. For the Hairball model, there are potentially many more
surface hits before the bounding cube is reached, meaning the
ray tracer has to work harder to calculate the full path. This
is in contrast to the graphics benchmark, which stops once
the first surface intersection occurs. RT core acceleration is
actually 20.1x faster in this case, allowing its superior ray
tracing speed to show over the software implementation as
ray tracing completely dominates the workload.

B. Launch Dimensions

Figure 9 shows how the calculation rate varies as the number
of simulated particles is scaled up for the Asian Dragon
and Hairball models respectively. These two models represent
the most realistic examples in terms of scale. The same
performance peak at 106 particles (as seen in Section V-B)

Fig. 9: Effects of RTX mode when the particle count is scaled
up for the Asian Dragon and Hairball models.

is visible with RT core acceleration enabled. This again is
likely to be an artifact of the way OptiX internally manages
kernel launch dimensions to balance load, and that there is an
optimal input problem size past which performance begins to
deteriorate.

VII. PROFILING

As mentioned in Section III-D, the available profiling tools
do not yet support the Turing architecture, nor do they support
profiling of RTX mode kernels with OptiX 6. We attempt here
to use the available profiling data to speculate on how the main
transport kernel might be behaving on the Turing GPU.

A. Occupancy

The kernel uses 80 registers per thread by default, which
leads to an acceptable (albeit not spectacular) occupancy of
37.2% regardless of model. This is expectedly lower than the
RT core benchmark, due to the greatly increased compute
workload. An attempt was made to reduce the number of reg-
isters at compile time in order to improve occupancy, however
this did not result in any significant performance improvement,
suggesting that the OptiX scheduling mechanism is performing
well in this scenario.

A. Model Complexity

Figure 8 shows the calculation rates for each of the five
models for a single launch of 106 particles. RTX mode on
the Turing GPU is the fastest in all cases, being 6.0x faster
on average than without. On the Pascal GPU, RTX mode is
1.6x faster on average. The Hairball model shows the biggest
difference, being 20.1x faster with RTX mode on Turing.

Fig. 8: Effects of RTX mode (which uses RT cores on the
Turing GPU) on all models for a particle count of 106.

The number of triangles has a clear and simple effect on the
calculation rate for the single solid volume models, which is
all except the Hairball model. The Hairball model exhibits
the most dramatic behaviour due to its high topological
complexity, which has an even greater effect than on the
graphics benchmark. This is because of the way the point-
in-volume and boundary distance algorithm works; it traces
a ray iteratively over all intersections at each layer of the
model until it misses. For the single cell models, most of
the time there are only two hits to escape the model (one
to escape the cell, then one to escape the bounding cube).
This means that the ray tracer does not have to work very
hard. For the Hairball model, there are potentially many more
surface hits before the bounding cube is reached, meaning the
ray tracer has to work harder to calculate the full path. This
is in contrast to the graphics benchmark, which stops once
the first surface intersection occurs. RT core acceleration is
actually 20.1x faster in this case, allowing its superior ray
tracing speed to show over the software implementation as
ray tracing completely dominates the workload.

B. Launch Dimensions

Figure 9 shows how the calculation rate varies as the number
of simulated particles is scaled up for the Asian Dragon
and Hairball models respectively. These two models represent
the most realistic examples in terms of scale. The same
performance peak at 106 particles (as seen in Section V-B)

Fig. 9: Effects of RTX mode when the particle count is scaled
up for the Asian Dragon and Hairball models.

is visible with RT core acceleration enabled. This again is
likely to be an artifact of the way OptiX internally manages
kernel launch dimensions to balance load, and that there is an
optimal input problem size past which performance begins to
deteriorate.

VII. PROFILING

As mentioned in Section III-D, the available profiling tools
do not yet support the Turing architecture, nor do they support
profiling of RTX mode kernels with OptiX 6. We attempt here
to use the available profiling data to speculate on how the main
transport kernel might be behaving on the Turing GPU.

A. Occupancy

The kernel uses 80 registers per thread by default, which
leads to an acceptable (albeit not spectacular) occupancy of
37.2% regardless of model. This is expectedly lower than the
RT core benchmark, due to the greatly increased compute
workload. An attempt was made to reduce the number of reg-
isters at compile time in order to improve occupancy, however
this did not result in any significant performance improvement,
suggesting that the OptiX scheduling mechanism is performing
well in this scenario.

Conclusions
• Monte Carlo-based particle transport can port well to GPUs
• Ray tracing hardware holds promise for accelerating this

application, with results from 1.3X to 20X over CUDA alone
• Currently hard to program these cores – have to go through a

graphics API to do it
• AMD, Intel, Arm and others are also adding RT hardware
• Potentially other uses of RT hardware that can be explored

https://uob-hpc.github.io/

For more information

M. Martineau and S. McIntosh-Smith. Exploring on-node parallelism with neutral, a Monte Carlo
neutral particle transport mini-app. In Cluster Computing (CLUSTER), 2017 IEEE International
Conference on, 2017. DOI: 10.1109/CLUSTER.2017.83

On the Porting and Optimisation of Physics Simulations for Heterogeneous Parallel Processors.
Matt Martineau, PhD thesis, University of Bristol, January 2019.

Bristol HPC group: https://uob-hpc.github.io/

Isambard: http://gw4.ac.uk/isambard/

Acknowledgements: ASiMoV is funded by EPSRC, grant no. EP/S005072/1.

https://uob-hpc.github.io/

https://uob-hpc.github.io/
http://gw4.ac.uk/isambard/

