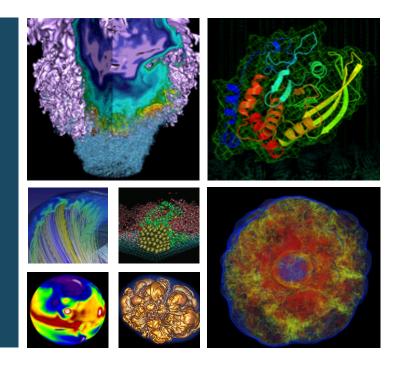
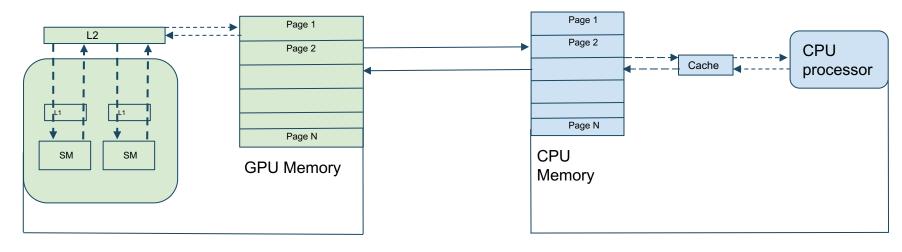
Comparing Managed Memory and ATS on Volta GPUs



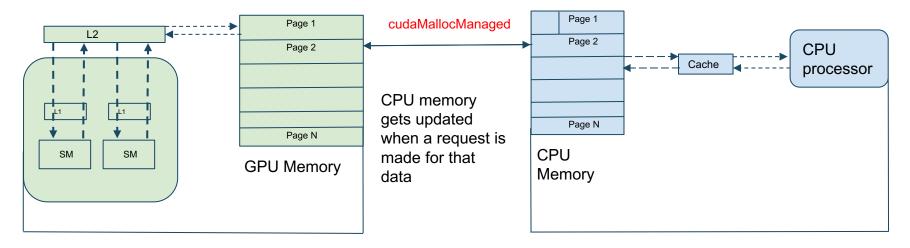
Rahul Gayatri, Kevin Gott, Jack Deslippe @ SC 2019 (PMBS19)

CPU and **GPU** architecture



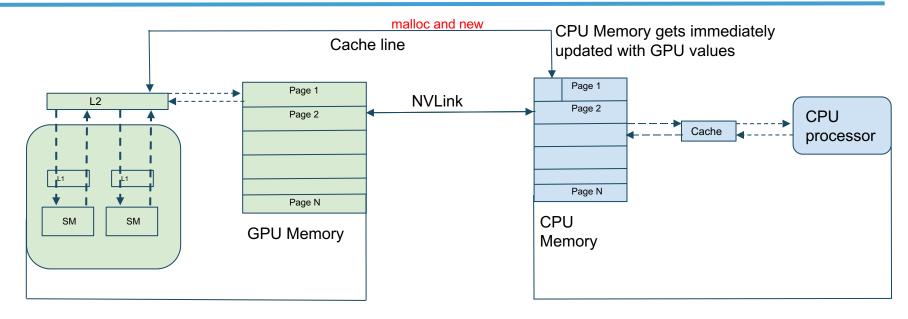
GPU

Managed implementation



GPU

ATS implementation



GPU

ATS available on V100 + P9 connected via NVLink

Managed vs ATS

Managed

- cudaMallocManaged
- Granularity of data transfer page size
- Data back on CPU when needed
- Available since cuda/6.0

Address Translation Service (ATS)

- malloc and new
- Granularity of data transfer cache line
- Cache coherency on CPU
- GPU accesses entire CPU page tables
- Available since cuda/9.2

Experimental Pseudo code


```
//x[N][M], y[N][M]
#if managed_memory
cudaMallocManaged(&x,N*M*sizeof(double));
cudaMallocManaged(&x,N*M*sizeof(double));
#elif defined(ATS)
x = (double*) malloc(N*M*sizeof(double));
y = (double*) malloc(N*M*sizeof(double));
#endif
```

```
for(outer)//GPU-CPU toggle
  for(inner)//consecutive GPU kernel launches
     //N = 80 (number of SMs in V100)
    DAXPY <<N, 32>>> (x, y);
  } //end inner
  TouchOnCPU(y);
1//end outer
```


Experimental Parameters


```
for(outer)//GPU-CPU toggle
  for (inner) //consecutive GPU kernel launches
     //N = 80 (number of SMs in V100)
    DAXPY <<N, 32>>> (x, y);
  } //end inner
  TouchOnCPU(y);
}//end outer
```

- Continuous transfer of data between
 CPU-and-GPU
- Effects of continuous GPU memory accesses
- Size of data

Metrics studied

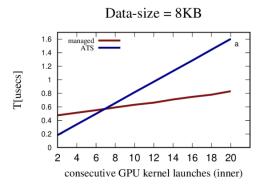

```
for(outer)//GPU-CPU toggle
  for(inner)//consecutive GPU kernel launches
     //N = 80 (number of SMs in V100)
   DAXPY <<N, 32>>> (x, y);
  } //end inner
  TouchOnCPU(y);
}//end outer
```

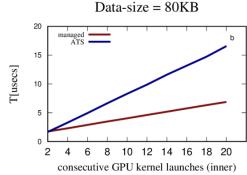
- Continuous transfer of data betweenCPU-and-GPU
- Effects of continuous GPU memory accesses
- Size of data

- DAXPY performance
- TouchOnCPU performance
- Prefetch vs non-prefetch
- Total performance

Managed is better for more GPU work

CPU-GPU toggles (outer) = 2



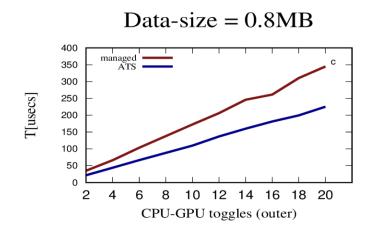


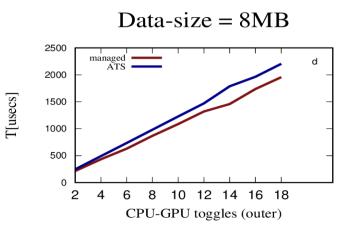
- ATS better for low number of consecutive
 GPU kernel launches and small data sizes
- Managed memory has a higher initial cost
- Managed slope is lower than ATS
- Data always on GPU for managed after the first kernel launch

Data size - data processed by each threadblock

Managed better with higher data sizes

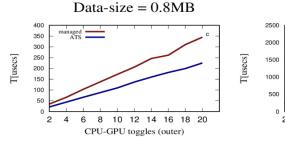
Consecutive GPU kernel launches (inner) = 2

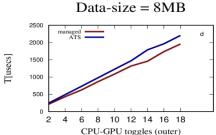




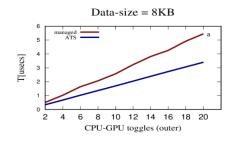
Consecutive GPU accesses more important

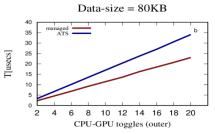
Consecutive GPU kernel launches (inner) = 2





Consecutive GPU kernel launches (inner) = 4





- As data size increases managed memory is faster than ATS
- For smaller data sizes with fewer number of consecutive GPU accesses ATS is better than managed
- Number of consecutive GPU accesses is more important than frequency of CPU accesses

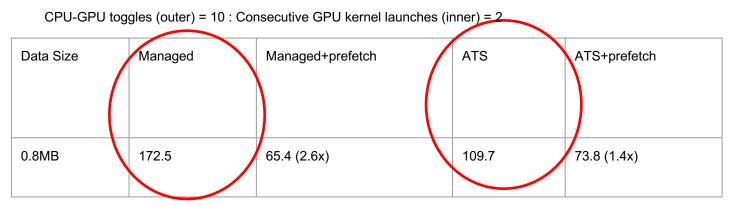
Prefetch directive

- cudaMemPrefetchAsync(void* devPtr, size_t size, int dstDevice, cudaStream_t stream)
 - dstDevice GPU number
 - cudaCpuDeviceId CPU

```
cudaMemPrefetchAsync(x, N*M*sizeof(double),qpuDeviceId,0);
for (outer)
  cudaMemPrefetchAsync(y, N*M*sizeof(double),gpuDeviceId,0);
  for(inner)
   DAXPY <<N, 32>>> (x, y);
  } //end inner
  cudaMemPrefetchAsync(y, N*M*sizeof(double),cudaCPUDeviceId,0);
  TouchOnCPU(y);
}//end outer
```

Managed vs ATS

(T[microsecs])



CPU-GPU toggles (inner) = 2 : Consecutive GPU kernel launches (inner) = 10

Data Size	Managed	Managed+prefetch	ATS	ATS+prefetch
0.8MB	55.3	34.5 (1.6x)	126.5	37.13 (3.4x)

Managed+prefetch vs ATS+prefetch

Data Size Managed Managed+prefetch ATS ATS+prefetch

0.8MB 172.5 65.4 (2.6x) 109.7 73.8 (1.4x)

CPU-GPU toggles (inner) = 2 : Consecutive GPU kernel launches (inner) = 10

Data Size	Managed	Managed+prefetch	ATS	ATS+prefetch
0.8MB	55.3	34.5 (1.6x)	126.5	37.13 (3.4x)

T[Managed+prefetch] < T[ATS+prefetch]

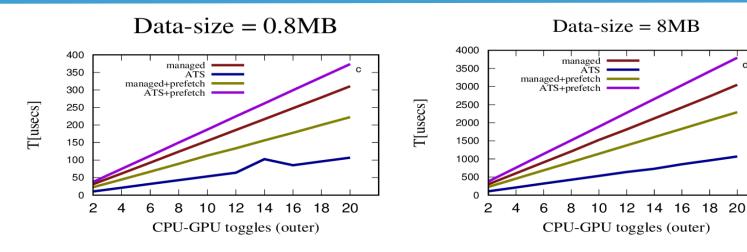
CPU-GPU toggles (outer) = 10 : Consecutive GPU kernel launches (inner) = 2

Data Size	Managed	Managed+prefetch	ATS	ATS+prefetch
0.8MB	172.5	65.4 (2.6x)	109.7	73.8 (1.4x)

CPU-GPU toggles (inner) = 2 : Consecutive GPU kernel launches (inner) = 10

Data Size	Managed	Managed+prefetch	ATS	ATS+prefetch
0.8MB	55.3	34.5 (1.6x)	126.5	37.13 (3.4x)

TouchOnCPU (Consecutive GPU kernel launches = 2)

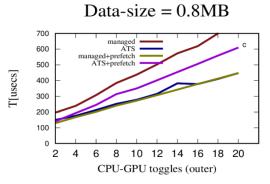


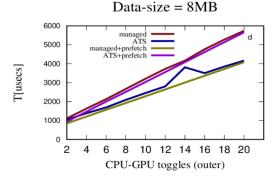
- ATS without prefetch, expectedly is always fastest on CPU
- ATS with prefetch is slowest due to low bandwidth for prefetch on ATS

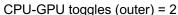
 Managed benefits with prefetch on both CPU and GPU

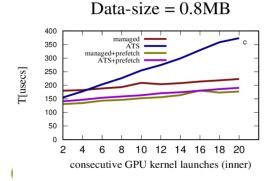
Total time (CPU+GPU)

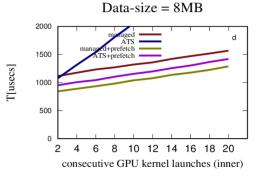
Consecutive kernel launches (inner) = 2











- With increasing data sizesmanaged+prefetch is the clear winner.
- ATS without prefetch gets worse with increasing data sizes for higher number of consecutive GPU kernels but second best if data is utilized more on CPU.
- Managed benefits from prefetch both on CPU and GPU whereas ATS only benefits with prefetch on GPU.

Conclusion

- 4 UVM strategies explored: ATS, managed, ATS+prefetch, managed+prefetch
- Prefetch calls are important to gain performance benefits for GPU kernels.
 - Usage of prefetch defeats the purpose of UVM.
- ATS is beneficial only in very few cases compared to managed memory.
 - The benefits of ATS can be overcome with prefetch directives.
- Prefetch directives are beneficial for both CPU and GPU kernels for managed memory.
- Prefetch directives with ATS only help GPU kernels.
- When provided with the prefetch directive managed+prefetch was the most successful memory management technique.

Additional Slides

DAXPY (y += a*x)


```
x,y = pointers to an array of double's
a - constant
N rows and M columns
void daxpy(double *x, double *y)
{
  int i,j;
  for(i = 0; i < N; ++i)
    for(j = 0; j < M; ++j)
      y(i,j) += a*x(i,j);
}</pre>
```

```
#define y(i,j) = y[i*M+j]
```

#define
$$x(i,j) = x[i*M+j]$$

DAXPY (Memory Allocation)


```
x,y = pointers to an array of double's
a - constant
N rows and M columns
void daxpy(double *x, double *y)
{
   int i,j;
   for(i = 0; i < N; ++i)
      for(j = 0; j < M; ++j)
      y(i,j) += a*x(i,j);
}</pre>
```

```
#if managed_memory
cudaMallocManaged(&x,N*M*sizeof(double));
cudaMallocManaged(&x,N*M*sizeof(double));
#elif defined(ATS)
x = (double*) malloc(N*M*sizeof(double));
y = (double*) malloc(N*M*sizeof(double));
#endif
```

DAXPY - GPU kernel

CPU

```
void daxpyl(double *x, double *y)
{
  int i,j;
  for(i = 0; i < N; ++i)
    for(j = 0; j < M; ++j)
      y(i,j) += a*x(i,j);
}</pre>
```

GPU

```
void daxpy_kernel(double *x, double *y)
{
  int i,j;
  for(i = blockIdx.x; i< N; i += gridDim.x)
    for(j = threadIdx.x; j < M; j += blockDim.x)
      y(i,j) += a*x(i,j);
}</pre>
```

CPU kernel (TouchOnCPU)

CPU

```
void daxpy_kernel(double *x, double *y)
{
  int i,j;
  for(i = 0; i < N; ++i)
    for(j = 0; j < M; ++j)
      y(i,j) += a*x(i,j);
}</pre>
```

GPU

```
void daxpy_kernel(double *x, double *y)
{
  int i,j;
  for(i = blockIdx.x; i< N; i += gridDim.x)
    for(j = threadIdx.x; j < M; j += blockDim.x)
      y(i,j) += a*x(i,j);
}</pre>
```

```
void TouchOnCPU(double *x, double *y)
{
   int i,j;
   for(i = 0; i < N; ++i)
     for(j = 0; j < M; ++j)
     y(i,j) -= 0.5;
}</pre>
```

Experiment


```
for(outer)//GPU-CPU toggle
  for(inner)//consecutive GPU kernel launches
    daxpy_kernel <<< N, 32>>> (x,y);
  } //end inner
  TouchOnCPU(y);
}//end outer
```

Experiment


```
for(outer)//GPU-CPU toggle
  for(inner)//consecutive GPU kernel launches
    daxpy_kernel << N, 32>>> (x,y);
  } //end inner
  TouchOnCPU(y);
}//end outer
```

- N = 80
 - Number of SMs in V100
- M = data processed by each threadblock
 - M*sizeof(double)
- outer = times the data is brought back
 to CPU
- inner = times DAXPY is consecutively launched

Usage of Prefetch directive


```
cudaMemPrefetchAsync(x, N*M*sizeof(double),gpuDeviceId,0);
for (outer)
  cudaMemPrefetchAsync(y, N*M*sizeof(double),gpuDeviceId,0);
  for (inner)
    daxpy kernel <<N, 32>>> (x,y);
  } //end inner
  cudaMemPrefetchAsync(y, N*M*sizeof(double), cudaCPUDeviceId, 0);
 TouchOnCPU(y);
}//end outer
```