
Optimizing large
reductions in
BerkeleyGW

Comparing
Managed Memory
and ATS on Volta
GPUs

Rahul Gayatri, Kevin Gott, Jack
Deslippe @ SC 2019 (PMBS19)

CPU and GPU architecture

2

Page 1

Page 2

Page N

SM

L1

L2

GPU Memory

Page 1

Page 2

Page N

CPU
Memory

Cache
CPU
processor

GPU CPU

SM

L1

Managed implementation

3

Page 1

Page 2

Page N

SM

L1

L2

GPU Memory

Page 1

Page 2

Page N

CPU
Memory

Cache
CPU
processor

GPU CPU

SM

L1
CPU memory
gets updated
when a request is
made for that
data

cudaMallocManaged

ATS implementation

4

Page 1

Page 2

Page N

SM

L1

L2

GPU Memory

Page 1

Page 2

Page N

CPU
Memory

Cache
CPU
processor

GPU CPU

SM

L1

CPU Memory gets immediately
updated with GPU values

ATS available on V100 + P9 connected
via NVLink

Cache line
malloc and new

NVLink

Managed vs ATS

● cudaMallocManaged

● Granularity of data transfer - page size

● Data back on CPU when needed

● Available since cuda/6.0

5

● malloc and new

● Granularity of data transfer - cache line

● Cache coherency on CPU

● GPU accesses entire CPU page tables

● Available since cuda/9.2

Managed Address Translation Service (ATS)

Experimental Pseudo code

6

for(outer)//GPU-CPU toggle

{

for(inner)//consecutive GPU kernel launches

{

//N = 80 (number of SMs in V100)

DAXPY<<<N,32>>>(x,y);

} //end inner

TouchOnCPU(y);

}//end outer

//x[N][M], y[N][M]

#if managed_memory

cudaMallocManaged(&x,N*M*sizeof(double));

cudaMallocManaged(&x,N*M*sizeof(double));

#elif defined(ATS)

x = (double*) malloc(N*M*sizeof(double));

y = (double*) malloc(N*M*sizeof(double));

#endif

Experimental Parameters

7

● Continuous transfer of data between

CPU-and-GPU

● Effects of continuous GPU memory

accesses

● Size of data

for(outer)//GPU-CPU toggle

{

for(inner)//consecutive GPU kernel launches

{

//N = 80 (number of SMs in V100)

DAXPY<<<N,32>>>(x,y);

} //end inner

TouchOnCPU(y);

}//end outer

Metrics studied

8

● Continuous transfer of data between

CPU-and-GPU

● Effects of continuous GPU memory

accesses

● Size of data

for(outer)//GPU-CPU toggle

{

for(inner)//consecutive GPU kernel launches

{

//N = 80 (number of SMs in V100)

DAXPY<<<N,32>>>(x,y);

} //end inner

TouchOnCPU(y);

}//end outer

• DAXPY performance
• TouchOnCPU performance

• Prefetch vs non-prefetch

• Total performance

Managed is better for more GPU work

9

CPU-GPU toggles (outer) = 2

● ATS better for low number of consecutive

GPU kernel launches and small data sizes

● Managed memory has a higher initial cost

● Managed slope is lower than ATS

● Data always on GPU for managed after the

first kernel launch

Data size - data processed by each threadblock

Managed better with higher data sizes

10

Consecutive GPU kernel launches (inner) = 2

Consecutive GPU accesses more important

11

Consecutive GPU kernel launches (inner) = 2

Consecutive GPU kernel launches (inner) = 4

● As data size increases managed memory is

faster than ATS

● For smaller data sizes with fewer number of

consecutive GPU accesses ATS is better

than managed

● Number of consecutive GPU accesses is

more important than frequency of CPU

accesses

Prefetch directive

12

• cudaMemPrefetchAsync(void* devPtr, size_t size, int dstDevice, cudaStream_t stream)
– dstDevice - GPU number

– cudaCpuDeviceId - CPU

cudaMemPrefetchAsync(x, N*M*sizeof(double),gpuDeviceId,0);
for(outer)
{
cudaMemPrefetchAsync(y, N*M*sizeof(double),gpuDeviceId,0);
for(inner)
{
DAXPY<<<N,32>>>(x,y);

} //end inner
cudaMemPrefetchAsync(y, N*M*sizeof(double),cudaCPUDeviceId,0);
TouchOnCPU(y);

}//end outer

Managed vs ATS (T[microsecs])

13

Data Size Managed Managed+prefetch ATS ATS+prefetch

0.8MB 172.5 65.4 (2.6x) 109.7 73.8 (1.4x)

Data Size Managed Managed+prefetch ATS ATS+prefetch

0.8MB 55.3 34.5 (1.6x) 126.5 37.13 (3.4x)

CPU-GPU toggles (inner) = 2 : Consecutive GPU kernel launches (inner) = 10

CPU-GPU toggles (outer) = 10 : Consecutive GPU kernel launches (inner) = 2

Managed+prefetch vs ATS+prefetch

14

Data Size Managed Managed+prefetch ATS ATS+prefetch

0.8MB 172.5 65.4 (2.6x) 109.7 73.8 (1.4x)

Data Size Managed Managed+prefetch ATS ATS+prefetch

0.8MB 55.3 34.5 (1.6x) 126.5 37.13 (3.4x)

CPU-GPU toggles (inner) = 2 : Consecutive GPU kernel launches (inner) = 10

CPU-GPU toggles (outer) = 10 : Consecutive GPU kernel launches (inner) = 2

T[Managed+prefetch] < T[ATS+prefetch]

15

CPU-GPU toggles (outer) = 10 : Consecutive GPU kernel launches (inner) = 2

Data Size Managed Managed+prefetch ATS ATS+prefetch

0.8MB 172.5 65.4 (2.6x) 109.7 73.8 (1.4x)

CPU-GPU toggles (inner) = 2 : Consecutive GPU kernel launches (inner) = 10

Data Size Managed Managed+prefetch ATS ATS+prefetch

0.8MB 55.3 34.5 (1.6x) 126.5 37.13 (3.4x)

TouchOnCPU (Consecutive GPU kernel launches = 2)

16

• ATS without prefetch, expectedly is
always fastest on CPU

• ATS with prefetch is slowest due to
low bandwidth for prefetch on ATS

• Managed benefits with prefetch on
both CPU and GPU

Total time (CPU+GPU)

17

● With increasing data sizes

managed+prefetch is the clear winner.

● ATS without prefetch gets worse with

increasing data sizes for higher number of

consecutive GPU kernels but second best if

data is utilized more on CPU.

● Managed benefits from prefetch both on CPU

and GPU whereas ATS only benefits with

prefetch on GPU.

Consecutive kernel launches (inner) = 2

CPU-GPU toggles (outer) = 2

Conclusion

18

• 4 UVM strategies explored : ATS, managed, ATS+prefetch, managed+prefetch

• Prefetch calls are important to gain performance benefits for GPU kernels.

– Usage of prefetch defeats the purpose of UVM.

• ATS is beneficial only in very few cases compared to managed memory.

– The benefits of ATS can be overcome with prefetch directives.

• Prefetch directives are beneficial for both CPU and GPU kernels for managed memory.

• Prefetch directives with ATS only help GPU kernels.

• When provided with the prefetch directive managed+prefetch was the most successful memory

management technique.

Additional Slides

19

DAXPY (y += a*x)

20

x,y = pointers to an array of double’s
a - constant
N rows and M columns
void daxpy(double *x, double *y)
{

int i,j;
for(i = 0; i < N; ++i)

for(j = 0; j < M; ++j)
y(i,j) += a*x(i,j);

}

#define y(i,j) = y[i*M+j]

#define x(i,j) = x[i*M+j]

DAXPY (Memory Allocation)

21

#if managed_memory

cudaMallocManaged(&x,N*M*sizeof(double));

cudaMallocManaged(&x,N*M*sizeof(double));

#elif defined(ATS)

x = (double*) malloc(N*M*sizeof(double));

y = (double*) malloc(N*M*sizeof(double));

#endif

x,y = pointers to an array of double’s
a - constant
N rows and M columns
void daxpy(double *x, double *y)
{

int i,j;
for(i = 0; i < N; ++i)

for(j = 0; j < M; ++j)
y(i,j) += a*x(i,j);

}

DAXPY - GPU kernel

22

void daxpyl(double *x, double *y)
{

int i,j;
for(i = 0; i < N; ++i)

for(j = 0; j < M; ++j)
y(i,j) += a*x(i,j);

}

void daxpy_kernel(double *x, double *y)
{

int i,j;
for(i = blockIdx.x; i< N; i += gridDim.x)

for(j = threadIdx.x; j < M;j += blockDim.x)
y(i,j) += a*x(i,j);

}

CPU GPU

CPU kernel (TouchOnCPU)

23

void daxpy_kernel(double *x, double *y)
{

int i,j;
for(i = 0; i < N; ++i)

for(j = 0; j < M; ++j)
y(i,j) += a*x(i,j);

}

void daxpy_kernel(double *x, double *y)
{

int i,j;
for(i = blockIdx.x; i< N; i += gridDim.x)

for(j = threadIdx.x; j < M;j += blockDim.x)
y(i,j) += a*x(i,j);

}

CPU GPU

void TouchOnCPU(double *x, double *y)
{

int i,j;
for(i = 0; i < N; ++i)

for(j = 0; j < M; ++j)
y(i,j) -= 0.5;

}

Experiment

24

for(outer)//GPU-CPU toggle

{

for(inner)//consecutive GPU kernel launches

{

daxpy_kernel<<<N,32>>>(x,y);

} //end inner

TouchOnCPU(y);

}//end outer

Experiment

25

for(outer)//GPU-CPU toggle

{

for(inner)//consecutive GPU kernel launches

{

daxpy_kernel<<<N,32>>>(x,y);

} //end inner

TouchOnCPU(y);

}//end outer

● N = 80

○ Number of SMs in V100

● M = data processed by each

threadblock

○ M*sizeof(double)

● outer = times the data is brought back

to CPU

● inner = times DAXPY is consecutively

launched

Usage of Prefetch directive

26

cudaMemPrefetchAsync(x, N*M*sizeof(double),gpuDeviceId,0);
for(outer)
{
cudaMemPrefetchAsync(y, N*M*sizeof(double),gpuDeviceId,0);
for(inner)
{
daxpy_kernel<<<N,32>>>(x,y);

} //end inner
cudaMemPrefetchAsync(y, N*M*sizeof(double),cudaCPUDeviceId,0);
TouchOnCPU(y);

}//end outer

