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CPU and GPU architecture
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Managed implementation
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ATS implementation
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Managed vs ATS

● cudaMallocManaged

● Granularity of data transfer - page size

● Data back on CPU when needed

● Available since cuda/6.0
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● malloc and new

● Granularity of data transfer - cache line

● Cache coherency on CPU

● GPU accesses entire CPU page tables

● Available since cuda/9.2

Managed Address Translation Service (ATS)



Experimental Pseudo code
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for(outer)//GPU-CPU toggle

{

for(inner)//consecutive GPU kernel launches

{

//N = 80 (number of SMs in V100)

DAXPY<<<N,32>>>(x,y);

} //end inner

TouchOnCPU(y);

}//end outer

//x[N][M], y[N][M]

#if managed_memory

cudaMallocManaged(&x,N*M*sizeof(double));

cudaMallocManaged(&x,N*M*sizeof(double));

#elif defined(ATS)

x = (double*) malloc(N*M*sizeof(double));

y = (double*) malloc(N*M*sizeof(double));

#endif



Experimental Parameters
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● Continuous transfer of data between 

CPU-and-GPU

● Effects of continuous GPU memory 

accesses

● Size of data

for(outer)//GPU-CPU toggle

{

for(inner)//consecutive GPU kernel launches

{

//N = 80 (number of SMs in V100)

DAXPY<<<N,32>>>(x,y);

} //end inner

TouchOnCPU(y);

}//end outer



Metrics studied
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● Continuous transfer of data between 

CPU-and-GPU

● Effects of continuous GPU memory 

accesses

● Size of data

for(outer)//GPU-CPU toggle

{

for(inner)//consecutive GPU kernel launches

{

//N = 80 (number of SMs in V100)

DAXPY<<<N,32>>>(x,y);

} //end inner

TouchOnCPU(y);

}//end outer

• DAXPY performance
• TouchOnCPU performance

• Prefetch vs non-prefetch

• Total performance



Managed is better for more GPU work
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CPU-GPU toggles (outer) = 2

● ATS better for low number of consecutive 

GPU kernel launches and small data sizes 

● Managed memory has a higher initial cost

● Managed slope is lower than ATS

● Data always on GPU for managed after the 

first kernel launch

Data size - data processed by each threadblock



Managed better with higher data sizes
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Consecutive GPU kernel launches (inner) = 2



Consecutive GPU accesses more important
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Consecutive GPU kernel launches (inner) = 2

Consecutive GPU kernel launches (inner) = 4

● As data size increases managed memory is 

faster than ATS

● For smaller data sizes with fewer number of 

consecutive GPU accesses ATS is better 

than managed

● Number of consecutive GPU accesses is 

more important than frequency of CPU 

accesses



Prefetch directive
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• cudaMemPrefetchAsync(void* devPtr, size_t size, int dstDevice, cudaStream_t stream)
– dstDevice - GPU number

– cudaCpuDeviceId - CPU 

cudaMemPrefetchAsync(x, N*M*sizeof(double),gpuDeviceId,0);
for(outer)
{
cudaMemPrefetchAsync(y, N*M*sizeof(double),gpuDeviceId,0);
for(inner)
{
DAXPY<<<N,32>>>(x,y);

} //end inner
cudaMemPrefetchAsync(y, N*M*sizeof(double),cudaCPUDeviceId,0);
TouchOnCPU(y);

}//end outer



Managed vs ATS     (T[microsecs])
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Data Size Managed Managed+prefetch ATS ATS+prefetch

0.8MB 172.5 65.4 (2.6x) 109.7 73.8 (1.4x)

Data Size Managed Managed+prefetch ATS ATS+prefetch

0.8MB 55.3 34.5 (1.6x) 126.5 37.13 (3.4x)

CPU-GPU toggles (inner) = 2 : Consecutive GPU kernel launches (inner) = 10

CPU-GPU toggles (outer) = 10 : Consecutive GPU kernel launches (inner) = 2



Managed+prefetch vs ATS+prefetch
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Data Size Managed Managed+prefetch ATS ATS+prefetch

0.8MB 172.5 65.4 (2.6x) 109.7 73.8 (1.4x)

Data Size Managed Managed+prefetch ATS ATS+prefetch

0.8MB 55.3 34.5 (1.6x) 126.5 37.13 (3.4x)

CPU-GPU toggles (inner) = 2 : Consecutive GPU kernel launches (inner) = 10

CPU-GPU toggles (outer) = 10 : Consecutive GPU kernel launches (inner) = 2



T[Managed+prefetch] < T[ATS+prefetch]
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CPU-GPU toggles (outer) = 10 : Consecutive GPU kernel launches (inner) = 2

Data Size Managed Managed+prefetch ATS ATS+prefetch

0.8MB 172.5 65.4 (2.6x) 109.7 73.8 (1.4x)

CPU-GPU toggles (inner) = 2 : Consecutive GPU kernel launches (inner) = 10

Data Size Managed Managed+prefetch ATS ATS+prefetch

0.8MB 55.3 34.5 (1.6x) 126.5 37.13 (3.4x)



TouchOnCPU (Consecutive GPU kernel launches = 2)
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• ATS without prefetch, expectedly is 
always fastest on CPU

• ATS with prefetch is slowest due to 
low bandwidth for prefetch on ATS

• Managed benefits with prefetch on 
both CPU and GPU



Total time (CPU+GPU) 
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● With increasing data sizes 

managed+prefetch is the clear winner.

● ATS without prefetch gets worse with 

increasing data sizes for higher number of 

consecutive GPU kernels but second best if 

data is utilized more on CPU.

● Managed benefits from prefetch both on CPU 

and GPU whereas ATS only benefits with 

prefetch on GPU.

Consecutive kernel launches (inner) = 2

CPU-GPU toggles (outer) = 2



Conclusion
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• 4 UVM strategies explored :  ATS, managed, ATS+prefetch, managed+prefetch

• Prefetch calls are important to gain performance benefits for GPU kernels.

– Usage of prefetch defeats the purpose of UVM.

• ATS is beneficial only in very few cases compared to managed memory.

– The benefits of ATS can be overcome with prefetch directives.

• Prefetch directives are beneficial for both CPU and GPU kernels for managed memory.

• Prefetch directives with ATS only help GPU kernels.

• When provided with the prefetch directive managed+prefetch was the most successful memory 

management technique.



Additional Slides
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DAXPY (y += a*x) 
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x,y = pointers to an array of double’s
a - constant
N rows and M columns
void daxpy(double *x, double *y)
{

int i,j;
for(i = 0; i < N; ++i)

for(j = 0; j < M; ++j)
y(i,j) += a*x(i,j);

}

#define y(i,j) = y[i*M+j]

#define x(i,j) = x[i*M+j]



DAXPY  (Memory Allocation) 
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#if managed_memory

cudaMallocManaged(&x,N*M*sizeof(double));

cudaMallocManaged(&x,N*M*sizeof(double));

#elif defined(ATS)

x = (double*) malloc(N*M*sizeof(double));

y = (double*) malloc(N*M*sizeof(double));

#endif

x,y = pointers to an array of double’s
a - constant
N rows and M columns
void daxpy(double *x, double *y)
{

int i,j;
for(i = 0; i < N; ++i)

for(j = 0; j < M; ++j)
y(i,j) += a*x(i,j);

}



DAXPY - GPU kernel
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void daxpyl(double *x, double *y)
{

int i,j;
for(i = 0; i < N; ++i)

for(j = 0; j < M; ++j)
y(i,j) += a*x(i,j);

}

void daxpy_kernel(double *x, double *y)
{

int i,j;
for(i = blockIdx.x; i< N; i += gridDim.x)

for(j = threadIdx.x; j < M;j += blockDim.x)
y(i,j) += a*x(i,j);

}

CPU GPU



CPU kernel (TouchOnCPU)
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void daxpy_kernel(double *x, double *y)
{

int i,j;
for(i = 0; i < N; ++i)

for(j = 0; j < M; ++j)
y(i,j) += a*x(i,j);

}

void daxpy_kernel(double *x, double *y)
{

int i,j;
for(i = blockIdx.x; i< N; i += gridDim.x)

for(j = threadIdx.x; j < M;j += blockDim.x)
y(i,j) += a*x(i,j);

}

CPU GPU

void TouchOnCPU(double *x, double *y)
{

int i,j;
for(i = 0; i < N; ++i)

for(j = 0; j < M; ++j)
y(i,j) -= 0.5;

}



Experiment
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for(outer)//GPU-CPU toggle

{

for(inner)//consecutive GPU kernel launches

{

daxpy_kernel<<<N,32>>>(x,y);

} //end inner

TouchOnCPU(y);

}//end outer



Experiment
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for(outer)//GPU-CPU toggle

{

for(inner)//consecutive GPU kernel launches

{

daxpy_kernel<<<N,32>>>(x,y);

} //end inner

TouchOnCPU(y);

}//end outer

● N = 80 

○ Number of SMs in V100

● M = data processed by each 

threadblock

○ M*sizeof(double)

● outer = times the data is brought back 

to CPU

● inner = times DAXPY is consecutively 

launched



Usage of Prefetch directive
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cudaMemPrefetchAsync(x, N*M*sizeof(double),gpuDeviceId,0);
for(outer)
{
cudaMemPrefetchAsync(y, N*M*sizeof(double),gpuDeviceId,0);
for(inner)
{
daxpy_kernel<<<N,32>>>(x,y);

} //end inner
cudaMemPrefetchAsync(y, N*M*sizeof(double),cudaCPUDeviceId,0);
TouchOnCPU(y);

}//end outer


