
CUDA Flux: A Lightweight Instruction Profiler for CUDA
Applications

Lorenz Braun, Holger Fröning  
{lorenz.braun, holger.froening}@ziti.uni-heidelberg.de 

Heidelberg University, Germany

PMBS 2019, Denver, CO - November 18, 2019

Profiling GPU Applications
Our research goal: Performance prediction

• Many approaches for performance prediction already exist
• Prediction Models mostly use hardware related metrics
• Using only application related metrics is challenging, but also

offers some advantages
• Portability
• Predictability

Nice side effect:
CUDA Flux is usable for other tasks such as performance
debugging

2

Currently Available Tools for Profiling
Hardware performance-counter based: nvprof

• CUDA API trace
• Light to heavy performance impact
• Slowdown due to kernel replays

GPU simulators: GPGPU-Sim, Multi2Sim, Barra

• Very detailed analyses possible
• Very slow
• Usually behind currently available hardware

Instrumentation based: GPU Ocelot/Lynx,
SASSI, NVBit (Research Prototype)

• Custom profiling
• No hardware metrics such as cache hit-

rate
• Fast, low overhead
• Longevity often limited

Currently available tools for profiling do not fit our needs well
-> development of CUDA Flux

3

CUDA Flux
• LLVM Based - a compiler framework supported by a large community
• Low Overhead - 6 to 10 times (average) faster than using nvprof
• PTX Based - a stable and well defined ISA
• Fine Grained Instruction Counter - for in-depth performance debugging
• Portable Profiling Results - enables performance modelling
• Selectable Degree of Instrumentation - accuracy/time trade-off
• Open-Source - available on github: https://github.com/UniHD-CEG/cuda-flux
• Lightweight Code Base - better maintainability and extendability

4

https://github.com/UniHD-CEG/cuda-flux

The LLVM Compiler Framework and CUDA
• Since integration of gpucc¹, CUDA code is natively

supported
• Framework can be split up in front-end, 'middle-end'

(optimizer) and back-end
• Middle-end can be easily extended by registering

custom transformation passes

• CUDA compilation is implemented using mixed mode
compilation flow

¹ Wu, Jingyue, et al. "gpucc: an open-source GPGPU compiler"
Proceedings of the 2016 International Symposium on Code Generation and Optimization. ACM, 2016

image modified from 1

5

Tool Design
Contributions of this work:

• CUDA Flux Device Pass
• PTX Processing
• CUDA Flux Host Pass

Host and device passes run before machine code
generation.

Static runtimes to manage instrumentation
counters are linked to host and device code before
code generation.

PTX Processing iterates over all kernels and
produces a PTX block summary which contains
instructions counts of all sections in kernel.

Instrumentation on either warp-level, CTA-level
or full thread-grid.

6

Computing Instruction Counter on PTX level
• Each Basic Block (BB) is instrumented.
• On entering a BB the corresponding counter for

the block is increased.
• After kernel execution: PTX instruction counter

are calculated using BB counter and the PTX
instruction summary.

Advantages:

• Fine grained instruction counter regardless of
GPU used and supported profiling metrics

• Profiling time does not depend on number of
metrics monitored

• PTX is an accessible intermediate assembly for
CUDA GPUs
• Less changes, easier to keep updated
• Same PTX code for GPU in with same compute

capability

7

Limitations
• Profiling on PTX level, not SASS
• Kernel definition and kernel launch need to be in the same compilation module
• Modification of build system needed (in majority of cases):

• Change nvcc to clang++
• Non compatible compiler flags
• Easy on good/simple build systems, error-prone on complicated build systems

• Instrumentation takes place at IR level
• Applications with texture memory are not supported (clang limitation)

8

Performance Evaluation
CUDA Flux vs. nvprof:

• Polybench-GPU Benchmark

• Measurements on NVIDIA Tesla K20 and Titan Xp
• Four different profiling configurations:

• flux_warp: all threads of one single warp
• flux_cta: all threads of one single CTA (aka. threadblock)
• flux_full: all threads of the complete threadgrid
• nvprof: measurement with 8 different metrics instruction counter metrics

• Baseline measurement without any instrumentation or profiling is used to normalize the
results

• Time measurements:
• Only kernel time is measured
• Median of five executions

9

10

11

Overhead Summary

flux_warp flux_cta flux_full nvprof

min 1.05 1.05 1.10 17.63

mean 23.42 27.56 24.22 241.88

max 204.98 199.71 202.44 2378.64

flux_warp flux_cta flux_full nvprof

min 0.78 0.75 0.76 14.76

mean 59.21 57.04 55.92 363.59

max 248.68 250.24 244.25 2966.64

Tesla K20:

Titan Xp:

12

Outlook
• Optimizations

• Basic block instrumentation
• Counter implementation
• Warp/CTA performance

• In-source integration into Clang/LLVM
• Compile-time analysis for semi-dynamic control flow graphs
• Performance modelling

13

Conclusion
PTX Level Instrumentation:

• Portable - PTX traces do not depend on specific GPU
• Fine Grained - Each instruction (sub)-type can be counted individually
• Lightweight Implementation - about 2200 lines of code

Performance:

• Overhead of ~25x (K20) up to ~60x (Titan Xp)
• Profiling mode does not affect overhead significantly
• Speed-up compared to profiling with nvprof of about ~10x (K20) to ~6x (Titan Xp)

14

Github:
https://github.com/UniHD-CEG/cuda-flux

https://github.com/UniHD-CEG/cuda-flux

