
Benchmarking Fortran DO CONCURRENT on CPUs
and GPUs Using BabelStream
Jeff Hammond (NVIDIA, Finland)
Tom Deakin (Bristol, UK)
James (Jim) Cownie (Bristol, UK)
Simon McIntosh-Smith (Bristol, UK)

Fortran remains ubiquitous in HPC

https://portal.nersc.gov/project/m888/nersc10/workload/N10_Workload_Analysis.latest.pd
f

NERSC

https://portal.nersc.gov/project/m888/nersc10/workload/N10_Workload_Analysis.latest.pdf

Programming Models for GPUs
A brief, possibly incomplete, history

CUDA 1.0

PGI 12.6

PGI 2009

1.0 Specification

2007 2013 2016 2019 2022 Future2010

CUDA C/C++

CUDA Fortran

OpenACC

OpenMP

StdPar

NVIDIA SoftwareSpecifications

NVHPC 20.11
4.0 Specification (offload)

NVHPC 20.11
Fortran 2008 Specification C++17 Specification

Intel oneAPI 2021.1

Cray 8.1
GCC 5.1

Cray 8.5
GCC 6.1

Intel oneAPI 2022.3

Intel Software Cray Software AMD Software GCC Software

AMD ROCm 3.9

“When you can measure what you are speaking about, and
express it in numbers, you know something about it; but when
you cannot measure it, when you cannot express it in
numbers, your knowledge is of a meagre and unsatisfactory
kind: it may be the beginning of knowledge, but you have
scarcely, in your thoughts, advanced to the stage of science,
whatever the matter may be.”

Lord Kelvin, Popular Lectures and Addresses vol. 1 (1889)
‘Electrical Units of Measurement’, delivered 3 May 1883

Objectives

Create an idiomatic, complete and objective benchmark for Fortran
programming models, based on BabelStream:

1. Use modern Fortran programming style.
2. Reproduce BabelStream C++, both in performance and

functionality.
3. Support all Fortran parallel programming models for CPUs and

GPUs.
4. Support as many platforms (compilers + hardware) as possible.

Then measure everything…

Evaluating attainable memory bandwidth of parallel programming models via BabelStream.
Deakin T, Price J, Martineau M, McIntosh-Smith S. https://dl.acm.org/doi/10.5555/3292750.329275

https://dl.acm.org/doi/10.5555/3292750.329275

Summary of Experiments - Hardware

System Name CPU GPU
orin Arm Cortex-A78AE (12x) not included

nuclear Intel Core i7-1165G7 (Tiger Lake) Iris Xe Graphics (device=0x9a49),
GeForce RTX 2060 (Turing, cc75)

perlmutter AMD 7713 (Milan) NVIDIA A100-40G
gorby AMD 7742 (Rome) NVIDIA A100-80G
brewster Ampere Altra Q80-30 NVIDIA A100-40G
c6g16xlarge AWS Graviton 2 -
c7g16xlarge AWS Graviton 3 -
mi100 AMD 7502 (Rome) AMD MI100
ice4 Intel Xeon 6338 (Ice Lake) -
a64fx Fujitsu A64fx -

Summary of Experiments - Software

Programming motifs

▪ Sequential loops (not shown)
▪ Array notation
▪ Do Concurrent
▪ OpenMP classic
▪ OpenMP workshare @ Array
▪ OpenMP taskloop
▪ OpenMP target prescriptive
▪ OpenMP target descriptive
▪ OpenACC loop
▪ OpenACC kernels @ Array

Compilers

▪ AMD ROCm 5.1.6 (GPU)
▪ ARM 22.0.2
▪ Cray 10.0.3 (A64fx) or 14.0.1 (GPU)
▪ Fujitsu 4.3.1
▪ GCC 11 or 12
▪ Intel 2021.6 (LLVM-based on GPU)
▪ NVHPC 22.7

Implementation Design

1. Every implementation is contained in a module that implements 6
management procedures (e.g. allocation) and the 6 BS kernels.

2. The driver is implementation agnostic except for preprocessor
selection of the different implementation modules.

3. The input parser and output match C++ essentially exactly.
4. The build system uses GNU Make, which works perfectly.

Workarounds for compiler bugs is incomplete.

We support both Fortran and OpenMP timers, because the former isn’t
always accurate.

Everything can be seen here:
https://github.com/UoB-HPC/BabelStream/pull/135

https://github.com/UoB-HPC/BabelStream/pull/135

Fortran versus C++, Part 1

NVIDIA compilers show minimal differences between languages with OpenMP
on an Ampere Altra Q80 CPU and CUDA on an A100-80G GPU, except when the
CUDA C++ Dot product uses a suboptimal (processor-dependent) parameter.

1. DOT_NUM_BLOCKS=256, which is the default.
2. DOT_NUM_BLOCKS=1024.

Fortran versus C++, Part 2

OpenMP target is the only model available for all GPUs. Unfortunately, the
performance difference between languages is larger with some compilers.

The Dot product kernel is particularly affected, sometimes profoundly, but these
are compiler issues, not flaws in the languages themselves.

Function ROCM/MI100 NVHPC/A100 Intel/Xe iGPU Cray/A100
Copy -15.98% -1.77% -4.56% -3.12%
Mul -15.62% -1.62% -1.05% -3.71%
Add -15.84% -1.01% -0.20% -0.11%
Triad -15.98% -1.07% -0.43% -0.71%
Dot 165.82% -6.43% -10.9% -0.97%

Intel Ice Lake Xeon

unimplemented

no
 p

ar
al

le
lis

m

ex
pe

ct
ed

unimpl.

Fortran 2023

no parallelism

no parallelism
expected

User
error?

AMD Milan

unimplemented

un
im

pl
.

no parallelism

no parallelism

User
error?

no parallelism
expected

no
 p

ar
al

le
lis

m

ex
pe

ct
ed

AWS Graviton 3

unimplemented

no
 p

ar
al

le
lis

m
 e

xp
ec

te
d

no
 p

ar
al

le
lis

m

ex
pe

ct
edun

im
pl

em
en

te
d

User
error?

The Graviton 2 and Ampere Altra
results are similar, and thus omitted.

Fujitsu A64fx

no
 p

ar
al

le
lis

m

ex
pe

ct
ed

un
im

pl
em

en
te

d

Fortran 2023

no
parallelism
expected

NVIDIA A100

unimplementedunimplemented

Other GPUs

unimplemented

unimplemented
un

im
pl

em
en

te
d

Summary of Results - Good News

1. There are no less than 7* different Fortran compilers for HPC users that
together support a wide range of parallel programming models for CPUs
and GPUs.

2. OpenMP 4 with prescriptive loop parallelism works well essentially
everywhere.

3. Most compilers show negligible performance differences between C++
and Fortran, despite the massive difference in compiler investment.

4. Do Concurrent is implemented effectively for CPUs in Cray, Fujitsu,
Intel and NVHPC compilers, and for GPUs with NVHPC and Intel**
compilers.

* 5 if one considers the shared ancestry (PGI) of NVHPC, ARM and AMD.
** Intel support for Do Concurrent on GPUs was released too recently to evaluate here.

Summary of Results - Bad News

1. OpenMP workshare is poorly implemented in many compilers, which
discourages adoption of more expressive Fortran constructs.

2. OpenMP taskloop and target loop implementations require more
investment from compilers to be useful.

3. The HPC community continues to get what it pays for from the GCC
Fortran compiler.

4. Compiler support for AMD and Intel GPUs is immature.
The Cray compiler is going to be essential for AMD GPUs.

5. Do Concurrent reductions are a Fortran 2023 (draft) feature only
implemented by the NVHPC compiler. We expect Cray and Intel to
support it very soon, once the standard is published.

▪ BabelStream Fortran should be a useful tool for HPC users to evaluate the
quality of their Fortran compilers. It might even be a good procurement
benchmark for HPC centers.

▪ Our experiments involved no processor or compiler specialization for
performance. This is a good topic those with the relevant compiler and
hardware expertise to investigate.

▪ We couldn’t evaluate AMD MI200 GPUs for this paper, and both Intel and
NVIDIA will have interesting high-bandwidth hardware in 2023.

▪ Find the code here:
https://github.com/UoB-HPC/BabelStream/pull/135

▪ Evaluating attainable memory bandwidth of parallel programming
models via BabelStream. Deakin T, Price J, Martineau M, McIntosh-Smith S.
https://dl.acm.org/doi/10.5555/3292750.329275

What Now?

https://github.com/UoB-HPC/BabelStream/pull/135
https://dl.acm.org/doi/10.5555/3292750.329275

